
Vol.:(0123456789)

SN Computer Science (2023) 4:270
https://doi.org/10.1007/s42979-023-01702-7

SN Computer Science

ORIGINAL RESEARCH

A Novel Weight‑Assignment Load Balancing Algorithm for Cloud
Applications

Adekunbi A. Adewojo1 · Julian M. Bass1

Received: 1 September 2022 / Accepted: 23 January 2023
© The Author(s) 2023

Abstract
Web applications commonly suffer from flash crowds and resource failure, resulting in performance degradation. Flash
crowds are large, sudden, yet legitimate influxes of user requests that constitute a critical problem because of their potential
economic damage. For cloud providers, resource estimation is challenging, while distributing workload and sustaining
performance. To alleviate flash crowds and resource failure problems, we propose a novel weight assignment load balanc-
ing algorithm that combines five carefully selected server metrics to efficiently distribute the workload of three-tier web
applications among virtual machines. We experimentally characterised, using a private cloud running OpenStack, the load
distribution ability of our proposed novel algorithm, as well as a baseline algorithm and round-robin algorithm. We com-
pared the performance of the three algorithms by simulating resource failures and flash crowds, while carefully measuring
response times. Our experimental results show that our approach improves average response times by 12.5% when compared
to the baseline algorithm and 22.3% when compared to the round-robin algorithm in the flash crowds’ situation. In addition,
average response time was improved by 20.7% when compared to the baseline algorithm and 21.4% when compared to the
round-robin algorithm in resource failure situations. These experiments show that our novel algorithm is more resilient to
fluctuating loads and resource failures than baseline algorithms.

Keywords Cloud computing · Load balancing · Weight assignment · Three-tier applications

Introduction

The use of cloud applications continues to gain rapid adop-
tion in businesses because of the benefits of using the cloud
[1–3]. These benefits include but are not limited to high
availability, increased agility, flexibility, lower total cost of
ownership, ability to reach users across the globe, and pro-
vision of configurable options that suit users’ needs [4–6].
Cloud applications are commonly offered as Software as a
Service (SaaS) to end users. Scalability, on-demand, and

elasticity are key features of the cloud [3, 7, 8] that promote
the rapid adoption of cloud and cloud-based applications.

The popularity of cloud has promoted the hosting of
e-commerce and social networks such as Facebook, Twitter,
and LinkedIn [3]. Posts on these networks can easily become
viral, leading to large number of requests trying to access
the application, thereby resulting in performance degrada-
tion [3]. This scenario is termed flash crowds. Flash crowd
is a legitimate, rapid, and fluctuating user request surge, that
occurs because of the increase in users trying to access an
application. Therefore, the cloud’s ability to scale, such that
available resources can cater to this need, is highly essential.
Apart from the flash crowd, it is possible for these applica-
tions to experience resource failures, leading to performance
degradation.

Cloud providers typically use common load balancing
and auto-scaling strategies to combat flash crowds and
resource failure scenarios. However, research confirms that
this approach does not suffice [3, 8–10]. This is because
these applications still suffer some levels of performance
degradation due to the inability of the load balancer to

This article is part of the topical collection “Advances on Cloud
Computing and Services Science” guest edited by Donald F.
Ferguson, Claus Pahl and Maarten van Steen.

 * Adekunbi A. Adewojo
 a.a.adewojo@edu.salford.ac.uk

 Julian M. Bass
 j.bass@salford.ac.uk

1 School of Science, Engineering, and Environment,
University of Salford, 43, The Crescent, M5 4WT Salford,
UK

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-023-01702-7&domain=pdf
http://orcid.org/0000-0003-1482-3158

 SN Computer Science (2023) 4:270 270 Page 2 of 17

SN Computer Science

effectively distribute the workload, or because the auto-
scaling strategy was too slow to scale out resources, or
never responded at the required time.

To combat these problems in cloud applications, espe-
cially in three-tier applications, a targeted and improved
load-balancing algorithm that works in collaboration
with an auto scaler is essential. Unfortunately, there has
been limited research on load-balancing algorithms for
web-based three-tier business applications deployed on
the cloud [7, 11]. There is even more limited research
on experimentally evaluating load balancing/distribution
techniques using real cloud infrastructures. Most studies
conducted on the evaluation and development of load bal-
ancing techniques have focused on the use of simulation
tools to evaluate these cloud models [8, 10, 12–15]. This
is in contrast to the few evaluations done on real cloud
infrastructure [16–18].

In this research, we introduce a novel weight assignment
load balancing algorithm. This algorithm improves the per-
formance of cloud-based three-tier web applications by alle-
viating the negative effect of flash crowds and resource fail-
ures. The algorithm’s implementation architecture mitigates
common limitations of general load balancing algorithms
such as single point of failure, excessive re-routing, and slow
sensing of uncertainties.

Compared to other research outputs, the proposed novel
algorithm incurs less communication overhead than that of
Qu et al. [7]. This is because the novel load balancing archi-
tecture does not use agents in its communication strategy. In
addition, compared to Grozev et al. [8], it does not require an
auto-scaling algorithm because it collaborates with existing
and standard auto-scaling technique.

The newly introduced algorithm combines five carefully
selected key server (Virtual Machine [VM]) metrics (thread
count, network buffer, Central Processing Unit (CPU),
Rapid Access Memory (RAM), and bandwidth utilisation)
to properly distribute the workload of a web-based three-tier
business application. This research implements our novel
algorithm by combining the use of a software load balancer
called HAProxy with our novel weight-assignment load
distribution technique. The proposed solution follows the
monitor-analyze-plan-execute loop architecture commonly
adopted by cloud-based systems [7, 19]. This consistently
distributes workload across available servers to maintain the
agreed SLA response time without performance degradation
despite random user request surges. We validated our algo-
rithm by comparing it to a baseline load balancing algorithm
by [8] and the round-robin algorithm. The proposed load
balancing solution was evaluated on a private OpenStack
cloud using a case study E-commerce application deployed
on the private cloud.

This research will help cloud software developers and
organisations who want to migrate their applications to the

cloud or want to build a data-driven cloud-native application
to become aware of improved load balancing algorithms and
techniques.

The major contributions of this research are:

• A novel hybrid-dynamic load distribution algorithm that
improves response time and scalability of web-based
three-tier business applications; and

• An extended evaluation of the proposed algorithm evalu-
ated in a private cloud test-bed

The rest of this paper is organised as follows: "Related
Work" summarises related work and how it compares with
this research. "Motivation" and "Use Case Scenarios" pro-
vides motivation for the research, present our research ques-
tions, and describes the use cases of the proposed solution.
"Application Architecture and Requirements" describes the
architecture of our chosen software application, assump-
tions, and requirements. "The Proposed Approach" presents
our proposed approach and design of the load balancing ser-
vice. "Proposed Load Balancing Algorithm" presents the
novel load balancing algorithm. "Experimental Environ-
ment" and "Performance Analysis and Results" describes the
experimental environment, evaluation, and present results of
our algorithm and benchmark algorithms. "Conclusions and
Future Work" concludes the research.

Related Work

Load balancing in the cloud is a method to optimally dis-
tribute workload so that the resources of a VM in a cloud
computing environment are efficiently utilised. Since cloud
computing services have become a vital part of companies, it
is even more crucial to improve existing load balancing tech-
niques and enhance cloud application performance because
the number of resources are restricted.

Static and dynamic load balancing techniques represent
the two broad categories of load distribution techniques [1,
14]. Static techniques are commonly used to distribute pre-
dictable loads. The use of static techniques does not require
foreknowledge of the current state of the system. Dynamic
techniques are used to distribute unpredictable loads. This
technique considers the current state of the system before
distributing loads.

Researchers have proposed various load balancing algo-
rithms based on either the static or dynamic load balancing
technique. Shafiq et al. in [12] proposed a dynamic load
balancing algorithm for allocating resources on the Infra-
structure as a Service (IaaS) cloud model. The load bal-
ancing algorithm was aimed at optimizing resources and
improving load balancing of VMs. Their proposed algorithm
focused mainly on addressing the priority of VMs, Quality

SN Computer Science (2023) 4:270 Page 3 of 17 270

SN Computer Science

of Service (QOS) task parameters, and resource allocation.
They used an efficient task scheduling technique to improve
load balancing of VMs across IaaS by considering the prior-
ity of workload, SLA, and key metrics that determine per-
formance. Results show that their algorithm resulted in an
average of 78% resource utilisation compared to the existing
dynamic load balancing algorithm which had a much lower
resource utilisation rate.

Chen et al. in [9] proposed a load-balancing architecture
and a dynamic load-balancing algorithm for cloud services.
Their approach used a dynamic annexed balance method
to solve the problem of uneven workload distribution on
servers. Their approach considered both server process-
ing power and computer load to create a load-balancing
algorithm that can handle excessive computational require-
ments. Their result showed that their approach improved the
mean response time of load-balancing digital applications
deployed on the cloud.

Wang et al. in [16] experimentally compared weighted
round-robin and probabilistic routing policies in load bal-
ancing multi-class workloads of applications with SLA
differentiated across users. Based on their discovery of the
relationship between the two policies, they presented and
verified algorithms that support multi-class workloads for
applications with SLA across different users.

In the bid to improve existing work on dynamic load-
balancing for cloud applications, authors [8, 9, 18, 20, 21]
identified specific server metrics that commonly affect the
performance of both cloud applications and the servers they
are running on. These identified metrics included the CPU,
RAM, bandwidth utilisation, and network buffer, among oth-
ers. Tychalas et al. in [10] proposed a dynamic probabilistic
load balancing algorithm that uses the weighted round-robin
algorithm. Their research combined computational power
and the current utilisation of key server metrics to assign
probabilities to each available resource. Their simulation
result using Bag-of-Tasks jobs as workload showed that
their algorithm performed better than the popular weighted
round-robin method in terms of mean response time by 8.5%
and the utilisation of remote fast resources by 25%.

Similar to the research by Tychalas et al. authors in [20,
21] proposed dynamic load balancing algorithms that com-
bined key server metrics in determining the weights of serv-
ers. They highlighted that these metrics play important roles
in determining the efficiency of a load balancer. Further-
more, because these algorithms are dynamic, a foreknowl-
edge of the current utilisation of resources and available
capacity is a good determiner of how much load a server
can handle.

In addition to research that focusses on developing
dynamic load balancers, researchers have also focused on
incorporating techniques to improve the limitations of the
load balancing architecture such as single point of failure [1,

8, 22], scalability, limitation in sensing uncertainties [17],
excessive overhead and re-routing [17].

Zhang et al. in [17] introduced Hermes, a data cen-
tre load balancer that is resilient to uncertainties such
as traffic dynamics, topology asymmetry, and failures.
Hermes leverages comprehensive sensing to detect path
conditions and reacts using timely yet cautious re-routing
techniques. Hermes is a hardware-based load balancer that
was implemented using switches. Evaluation using real
testbed experiments and simulations show that Hermes
can handle uncertainties under asymmetries with 10%
and 20% improved performance compared to existing
implementations.

Cruz et al. in [22] identified a major challenge in deter-
mining how to optimize the mapping of tasks to cluster
nodes and cores through increased locality and load bal-
ancing. To solve this problem, they proposed an EagerMap
algorithm to determine task mappings, which is based on
greedy heuristics to match application communication pat-
terns to hardware hierarchies. This technique also considers
task load when mapping tasks. They argue that their solution
influences communication performance and load balancing
in parallel architectures because EagerMap helps to evenly
distribute load among clusters and grids. They also claim
that their algorithm design alleviates the single point of fail-
ure problem in load balancing.

Grozev et al. in [8] introduced an approach for deploy-
ing three-tier applications across multiple clouds so that it
can satisfy key non-functional requirements. Their research
proposed a dynamic and adaptive resource provisioning
and load distribution algorithm to improve the load balanc-
ing of workload in a multi-cloud setting using heuristics.
Their algorithm uses heuristics to optimize overall cost and
response delays without violating essential legislative and
regulatory requirements. Their simulation results show that
their approach improved popular load-balancing algorithms
for multi-cloud in terms of availability, regulatory compli-
ance, and quality of experience (QoE) with acceptable sac-
rifice in cost and latency.

On one hand, dynamic load-balancing techniques are
being used frequently to create load-balancing algorithms
for cloud applications, and the result from these studies are
promising. On the other hand, the use of cloud simulation to
experimentally evaluate these cloud models are increasingly
used by researchers [8, 17, 23–26]. Furthermore, evaluation
of the above researches including these [14, 15, 27] were all
done using simulation tools and environment. Also, there is
little research [18] on evaluating cloud computing models
by completely using real cloud infrastructures. In general,
a simplified real infrastructure experiment is performed to
complement the simulated experiments as recorded in [8,
16, 17]. Cloud simulation is a common and suitable alterna-
tive to using real cloud infrastructure. Cloud simulators are

 SN Computer Science (2023) 4:270 270 Page 4 of 17

SN Computer Science

software that can reproduce the behaviour of cloud systems
with a high degree of precision. Cloud simulation employ
models to represent and experiment with cloud characteris-
tics and behaviours.

Fakhfakh et al. [25] argues that experimentation in a
real cloud environment is a difficult problem with both
high financial cost and required time. Again, experiments
are not repeatable because several variables are not under
the control of the tester. In summation, the use of a cloud
simulation framework is preferred because it offers cheaper
and faster means for testing new cloud policies and algo-
rithms. Calheiros et al. in [28] claim that cloud simulation
provides an avenue to simplify the process of quantifying the
performance of scheduling and allocation policy on cloud
infrastructure. They argue that because the cloud supports a
variety of internet-based applications that require different
configuration and deployment requirements, there is a need
for a modelling framework that enables seamless model-
ling, simulation, and experimentation of cloud properties.
Many other researchers [14, 15, 23, 24] also posit that the
advantages of using simulation include flexibility to switch
between different models of cloud providers, repeatability,
and self-contained platforms for experiments.

On the contrary, cloud simulation might not be cheaper
in terms of the realism of produced results. In addition, the
capability of cloud simulator tools is not exhaustive because
each one is usually designed to address a specific process
of the cloud, for the cloud is usually a combination of sev-
eral complex components [23]. To successfully use a cloud
simulation tool, comprehensive documentation of the tool is
required. Likewise, users must be conversant with the pro-
gramming language required to use the tool. When users
are not familiar with the programming language required,
learning a new language requires some effort resulting in
a loss of time. The availability of cloud simulation tools is
limited, not all cloud simulation tools are open source, and
this defeats the claim that using real infrastructure requires
financial cost [23, 25]. Cloud tools require regular updates
to include new and emerging features in the cloud, this
becomes a problem if the tool is not regularly updated [24].
In summary, simulation experiments rely heavily on param-
eters to be accurate, and so the challenge remains - how to
choose an accurate parameter. As a result, if the parameters
are not right, an incorrect simulation result is inevitable.

In this paper, we present a dynamic load-balancing algo-
rithm that combines carefully selected key server metrics
specific to three-tier web applications, to determine the
weight of a server. The proposed algorithm and architecture
improve performance degradation due to the negative effect
of flash crowds and resource failures, limitations such as
single point of failure, reduces excessive re-routing using
HAproxy, and quick sensing of uncertainties using selected
key server metrics. It complements and works cooperatively

with auto-scaling mechanisms in cloud data centres to
achieve its objectives. While previous work focused on a
few server metrics, this research focused on server metrics
that directly impact three-tier cloud-deployed applications
and the algorithm can be extended to function in a multi-
cloud environment. Moreover, due to the stated disadvan-
tages of using cloud simulation tools, this research uses
real cloud infrastructure to experiment with the proposed
algorithm. This research has access to a private cloud and
researchers are conversant with using the cloud infrastruc-
ture, so this prevents the challenge of time and cost. We
argue that running our experiments on real cloud infrastruc-
ture presents real behaviours of resources used and therefore
produced more realistic results. This research validates a
baseline algorithm and compared the baseline algorithm
with round-robin and our novel algorithm. Also, it extends
previous research by [4] to accommodate extensive experi-
ments on flash crowds and resource failure situations in
cloud-deployed applications.

Motivation

A good load-balancing algorithm should reduce response
time, increase throughput, and improve the utilisation
of resources while it enhances system performance at a
lower cost. Furthermore, a suitable load balancing tech-
nique should consider different metrics to make it relevant
for applications whose size and needs may increase and
which may need to use more resources [1]. A load balancer
becomes ineffective when it does not match the traffic pat-
terns and instantiates additional resources accordingly. Con-
sequently, the result of an ineffective load balancer is an
increased load on existing servers and increased application
latency.

Research [8–10] confirms that standard load-balancing
techniques will not be sufficient for many applications
deployed on the cloud. Cloud-deployed web applications
popularly called SaaS are interactive web applications whose
usage fluctuates, so there is a need to monitor and efficiently
balance the workload of these applications to ensure consist-
ent performance. These web-based applications commonly
suffer from flash crowds and sometimes resource failures;
because of these challenges, we posit that SaaS will benefit
from dynamic load balancers.

One approach to resolve the challenges associated
with standard load balancing techniques and algorithm is
to include in the algorithm the key factors that affect the
real-time behaviours of a server and cloud resource. The
following: CPU utilisation, memory utilisation, network
bandwidth, number of threads running, and network buffers
were carefully chosen as the major server metrics responsi-
ble for determining a VM’s real-time capacity and load, in

SN Computer Science (2023) 4:270 Page 5 of 17 270

SN Computer Science

this research. The use of the above server metrics in a load
balancing algorithm will enable a load balancer to distribute
the load based on the current capacity of a server, thereby
leading to better utilisation of resources.

Our proposed algorithm enhances the previous load bal-
ancing algorithm proposed by Grozev et al. [8]. The pro-
posed algorithm combines dynamic load balancing tech-
niques with key server metrics to calculate the weight of
a VM. Each VM is assigned a weight based on its current
utilisation and capacity. Therefore, the probability of using
a VM changes dynamically during runtime every time its
current state is evaluated. This concept is represented in our
novel load balancing algorithm, depicted in 1.

Use Case Scenarios

The proposed load balancing algorithm will combat the fol-
lowing issues in a three-tier cloud-deployed application:

Flash Crowds

Flash crowds are rapid, fluctuating, exponential, and legiti-
mate web request surges that occur due to increased user
requests in web applications [7, 29, 30]. Flash crowds occur
without prior notice and may become difficult to manage.
A common solution to flash crowd is the use of autoscal-
ing services in combination with load balancers [8, 31].
Commercial cloud providers commonly use autoscaling
services to launch new VMs after an application already
experienced increased user requests for a specific period of
time, a time usually set by users. The services will continue
to monitor user requests and will often terminate some VMs
and services after a steady stream of user requests has been
established. In this research, our proposed algorithm can
complement the role of an autoscaler in cloud deployment.
The proposed algorithm will effectively balance application
workload across VMs and maintain the consistent perfor-
mance that is in line with predefined service level agreement
(SLA) before new resources are provisioned during flash
crowds situations.

Resource Failures

Resource failure in cloud happens when a component of a
cloud environment fails to function as it is intended to or
does not start up when required. Authors in [32, 33] iden-
tified hardware, virtual machines and application failures
as the three common resource failures in a cloud environ-
ment. Authors in [34] argued that faults lead to partial fail-
ures in cloud. These authors classified failures in terms of
fault namely; network faults, physical faults, process faults,
and service expiry faults. The failure of any cloud resource

can happen abruptly, thereby, resulting in degradation of
performance of cloud services or even a total loss of ser-
vice. One of the common methods to mitigate the effect of
resource failure is to use timely intervention of autoscalers
and load balancers to mitigate the effect of resource fail-
ure. Meanwhile, an autoscaler requires time to launch new
resources, the time between the launch and full functionality
of resources usually results in performance degradation if
current user requests are not properly managed [7]. There-
fore, our proposed algorithm will aid in maintaining accept-
able service performance while the autoscaler provisions
new resources. Our proposed algorithm combines dynamic
and adaptive methods to effectively distribute workload by
re-assigning weights to available servers.

Application Architecture and Requirements

This work primarily focuses on three-tier web applications.
This architecture is an enterprise software architecture and
a common architectural pattern for web applications that
supports loose coupling, scalability, reliability, efficient load
balancing, etc. [35–37]. It features three physical deploy-
ment tiers of logical layers (code organisation) of a software
application. Therefore, a three-tier web application has three
or more layers deployed across three physical tiers [35, 38].
These layers are referred to as

• Presentation Layer: This represents the user interface,
and is commonly referred to as the presentation or client
tier.

• Business/Domain Layer: This layer contains the business
logic and sometimes an application facade. The business
logic is responsible for the manipulation of application
data; application of business rules and policies; and
ensuring data consistency and validity. This is commonly
called the App Tier and is deployed on the application
server.

• Data Layer: This layer abstracts the logic to manage the
persistent data. It is commonly called the data tier.

The main reason for deploying software layers across mul-
tiple tiers is to ensure a balance between performance, scal-
ability, fault tolerance, and security [36]. The presentation
layer often executes at the users’ end and is thus not a focus
of this research work. The business and data layer of a three-
tier web application is executed in the back-end server and
can be scaled because they are deployed across different
tiers.

The business layer commonly consists of one or more
Application Servers (AS) which are hosted in separate VMs
in Infrastructure as a Service (IaaS) cloud environments,
thus supporting scalability. In addition, performance can be

 SN Computer Science (2023) 4:270 270 Page 6 of 17

SN Computer Science

achieved because one of the goals of the cloud is the speed of
network communication. Therefore, network boundaries (tiers)
are not an issue, so each tier can have multiple running servers
that communicate seamlessly while they accommodate user
workload. Load balancing also becomes easier because the
application and database functionality is separated, so the load
balancer can be focused on a specific tier. In terms of fault tol-
erance, each tier is isolated, so any tier can be modified without
affecting the other tiers. Adequate security policies can also be
enforced within each tier without affecting users. Horizontally
scaling the business layer by adding application servers VMs
will improve the ability of a load balancer to distribute incom-
ing requests. However, this is not always the case if the applica-
tion’s business layer is designed to keep session data. For this
research, we focus on applications whose domain layer does
not keep session data in memory, these types of applications
are called stateless applications.

The data layer also consists of one or more database
servers. However, this layer often becomes a performance
choke point because of the requirements for transactional
access and atomicity [8, 39]. Some techniques such as
replication, caching, and sharding are recommended to
ease the scaling of the data layer [8, 35]. These tech-
niques are application specific, so will be impossible to
include them in a generalised framework that targets any
three-tier web applications. In short, the right balance
for applying the above technique is domain-inherent.
Therefore, this research work does not cover application-
specific data deployment. Our approach assumes data has
been deployed appropriately and will focus on distribut-
ing workload effectively across the app tier or application
server layer.

The Proposed Approach

As discussed in "Application Architecture and Require-
ments" about the focus of this research on stateless appli-
cation, a key principle behind stateless applications and
our proposed approach is session continuity. Session
continuity is an important factor in distributing requests
across any application server. “Session continuity ensures
that end-user sessions, established over any access net-
works, will not lose connection or any internal state even
when different servers process the user requests [4]”. Ses-
sion continuity is the principle behind the improved per-
formance of stateless applications. Stateless applications
do not keep track of requests made previously or store
them on servers, so user requests can be distributed across
any application server without any difficulty. Also, state-
less applications can be easily scaled because they do not
require the persistence of end-user Internet Protocol (IP).

Load Balancing Architecture

Figure 1 depicts the design architecture of our proposed load-
balancing service. The load-balancing algorithm (load balancer
controller) forms part of our load-balancing service, including a
load-balancer software (HAProxy), and a monitoring module.
The load balancer controller returns the weight of all partici-
pating servers to the load balancer software at a specified time
that will be discussed later. The monitoring module monitors
all servers for scaling/de-scaling purposes, the health of servers,
and the frequency of incoming user requests.

The communication strategy used in the above design is
the message-based communication strategy. This strategy
improves decoupling, flexibility, and maintainability [40].
This included serialisation of data when required, particularly
when transferring data to calculate the weights of the server.

The load balancer and other components were deployed
on the same VM in the same data centre with the test web
application. The co-location of these components helps to
achieve fast detection of flash crowds and perform quick
adaptations.

Overall Architecture

Figure 2 depicts the overall architecture of the proposed
load-balancing system and software application. The con-
ventional three-tier web application was extended to include
an extra layer of components. This extra layer represents the
proposed load balancing service and an auto-scaler. This
extra layer of component enables the migration of existing
three-tier application to the cloud with little or no modifica-
tion to the code base.

The workflow of this architecture is as follows: users will
interact with the presentation layer and requests will be sent
to an entry point that consists of VMs that host our load
balancing service. The load balancing service will send user
requests to the application server. These application serv-
ers are hosted on separate VMs, and they host the domain

Fig. 1 Proposed load balancing architecture [4]

SN Computer Science (2023) 4:270 Page 7 of 17 270

SN Computer Science

layer. The domain layer then interacts with the data layer
to manipulate required data before sending back responses
to the user. The data and domain layers consist of multiple
servers installed across VMs. The process is repeated every
time requests come in, and the load balancing service dis-
tributes the workload accordingly.

Design and Deployment Architecture

An efficient and bespoke load-balancing algorithm should
include different metrics that are relevant to the application it
supports [1]. Therefore, the design of the proposed load bal-
ancing algorithm will address issues and limitations that were
discussed in "Related Work" by incorporating techniques and
carefully selected metrics that are important to load-balance
an interactive three-tier web application. These issues spot-
light areas of improvement in a load-balancing algorithm and
architecture. Below we discuss these issues and techniques to
mitigate them as used in the proposed design.

• Scalability: Scalability in load balancing is the ability
of a load balancer to continue to distribute workload
across any finite number of servers. The proposed load-
balancing architecture will scale across any number of
servers because it uses a proven load-balancing system -
HAProxy 2.4.2-1 [41]. HAProxy is an open source, very
fast and reliable reverse proxy high-performing TCP/
HTTP load balancer [41]. It is recommended for most
websites and is particularly suited for high-traffic web-
sites. It is commonly used by major websites and powers
a significant portion of the world’s most visited sites [41].
In addition, our experiments featured the removal and
addition of a varied number of heterogeneous VMs to test
scalability. The solution proved its ability to distribute
the load across a finite number of nodes on the server.

• Fault Tolerance: Cloud fault tolerance is the capability of
the infrastructure to support uninterrupted functionality
of deployed applications despite failures of components
[42, 43]. In the cloud, fault tolerance approaches include

Fig. 2 Proposed overall layered
architecture in a single data
center

 SN Computer Science (2023) 4:270 270 Page 8 of 17

SN Computer Science

the use of various system models that depend on network
topology, proactive approaches such as the use of a fault
detection system, reactive approaches such as the use of
VM placement model, and other approaches such as the
use of machine learning and meta-heuristic approach in
algorithms [34]. The ability of a load balancer to con-
tinue to deliver services despite failure [44] of a cloud
component is highly desirable in guaranteeing the avail-
ability and reliability of cloud-deployed applications. The
proposed architecture created multiple load-balancing
front-ends and standby application servers as failover
systems. This technique also includes self-healing, job
migration, and replication policies of HAProxy as an
additional fault tolerance technique in the proposed archi-
tecture. The proposed approach utilised HAProxy’s high
availability keep-alive technology to regularly monitor
servers and services for a fast job migration. More so,
the use of floating IPs that can be moved between load
balancers to allow continued availability of service at
optimum performance level.

• Reduced Overhead and Latency: Performance overhead is
the extra time taken in performing an assigned functional-
ity by a cloud component. A high-performance overhead
will lead to an increased communication cost and notice-
able performance degradation [45] in running applications.
In a load balancer, performance overhead is influenced by
several factors, including the load balancing algorithm
[14, 44]. Our proposed load balancing algorithm runs effi-
ciently with negligible performance overhead of less than
2% when compared to other load balancing algorithms. In
addition, the proposed load-balancing architecture exem-
plifies a decentralised approach to collecting and updating
server metrics. This centralised approach is a recommenda-
tion by authors in [14] to reduce performance overhead and
latency. Also, in the proposed architecture, each participat-
ing VM is preinstalled with glances [46] agents, a cross-
platform monitoring tool for monitoring system resources
and utilisation. Glances agent uses the RESTful Applica-
tion Programming Interface (API) of glances to capture
server metrics that are sent to a time series database called
InfluxDB. The use of the RESTful API improves perfor-
mance when data is collated.

• Server Metrics: Server metrics play an important role in
determining the efficiency of a load-balancing algorithm.
Chen et al. [9] encouraged the use of varied but applica-
tion-specific server metrics in load-balancing algorithms.
The proposed algorithm combines carefully selected key
server metrics in its formulation. These server metrics are
specific to three-tier web applications and are also recom-
mended by various authors [8, 10, 16, 21]. We argue that
besides popular and common metrics of CPU, Memory,
and network bandwidth utilisation, the thread count of a
processor is a vital server metric that is often overlooked.

Thread count determines how efficiently data can be
transmitted in and out of a system, and provides a sum-
mary of concurrent requests within a server. The com-
bination of these metrics indicates the true state of the
server’s current workload; thereby providing adequate
information for the load balancer to perform efficiently.

Proposed Load Balancing Algorithm

This section describes our novel weight assignment tech-
nique and load balancing algorithm.

Proposed Weighting Technique

The proposed VM weighting technique for our novel load
balancing algorithm is an improvement on the research work
by [9] and [18]. The weighting technique combined four
server metrics to calculate the weight of a VM and an addi-
tional server metric as a key determining factor in the load-
balancing algorithm. These server metrics are represented
as follows: M

k
 represents Memory utilisation, B

k
 represents

Bandwidth utilisation, C
k
 represents CPU utilisation, T

k

represents Thread Count and NB
k
 represents Transmission

Control Protocol (TCP) network buffer/queues.
The weight of a VM represented as W(X

k
) requires first

calculating the real-time load, Lr(X
k
) , as shown in eq. (1).

The real-time load uses the following server metrics: M
k
 , B

k
 ,

C
k
 , T

k
 . These metrics are retrieved in percentages from the

monitoring tool and therefore converted to integer values by
dividing each of them by 100.

To compensate for the presence of bias and to reflect the
influence each metric has on a VM, weight factors were
used for all the metrics, as shown in eq. (1). e1, e2, e3, e4
represents the weights of CPU, RAM, bandwidth, and
thread count respectively. The sum of these weights is 1.
The weight factor values were carefully chosen experi-
mental proven values. Weight factor values were fitted in
experiments, and chosen values were the best-fit values
representing the unique influences of each server metric of
an application server for a three-tier web application. The
chosen values for each weight factor are 0.5forCPU, 0.3for-
RAM, 0.15forbandwidth, and0.05forthreadcount for thread
count. CPU utilisation has the biggest weight because our
chosen class of application becomes processor intensive
when a lot of data is being passed. Memory utilisation has
the next biggest weight because its influence on a VM can
quickly lead to a non-responsive server when the utilisation
is high.

(1)
Lr(X

k
) = (e1 ∗ (C

k
∕100)) + (e2 ∗ (M

k
∕100))

+(e3 ∗ (B
k
∕100)) + (e4 ∗ (T

k
∕100))

SN Computer Science (2023) 4:270 Page 9 of 17 270

SN Computer Science

Network buffer was not included in eq. (1), so no weight was
assigned to it. The reason network buffer was not included in the
equation is because this metric stores packets temporarily and
can measure the ratio of network utilisation to availability of a
network, consequently its influence on a server is constant. In this
experiment, the network buffer was used in the load balancing
algorithm to regularly monitor network availability, mostly when
the real-time load of a server is being calculated because a larger
buffer size reduces the potential for flow control to occur.

We define a threshold for load comparison as the aver-
age value of all participating application server VM load, as
shown in eq. (2). n represents the number of all participating
application server VMs.

To further improve and analyse the weight calculator, some
modalities are set out as follows: if Lr(X

k
) ≤ Lr

th
 , this means

the application server’s load is relatively small, so the weight
assigned to the server can be increased. If it is the opposite,
the assigned weight should be decreased because the server’s
load was high. To define and quantify these changes, a modi-
fication parameter � is defined as shown in eq. (3).

Following these calculations, the real-time load can now be
calculated and a load comparison of servers can also be done
using the aforementioned equations. The weight calculator
will return the lowest real-time load value for the least uti-
lised VM, but HAProxy, our chosen load balancer, functions
in a reverse manner. This means the load balancer expects
or appropriates the biggest weight value for the least utilised
VM. To make the weight calculator function in line with
HAProxy’s policy on weight, the inverse of the real-time
load, Lr(X

k
) , in eq. (4) is computed. This makes the lowest

real-time load value to be assigned the biggest value.
Lastly, HAProxy’s weight policy is bounded for real integer

values, this means that the supplied weight must be a whole
number; otherwise, it will not be consistent with the original
intention. The proposed novel algorithm rounds up any decimal
value that is greater than eight to make the value a whole num-
ber. The weight calculator is represented in eq. (4).

Proposed Load Balancing Algorithm

We present the proposed novel load balancing algorithm in
Algorithm 1. This algorithm is an abstraction of the overall

(2)Lr
th
=

∑

Lr(X
k
)

n

(3)� =
Lr(X

k
)

∑

Lr(X
k
)

(4)W(X
k
) =

{

(
1

Lr(Xk)
+ �), Lr(X

k
) ≤ Lr

th

(
1

Lr(Xk)
− �), Lr(X

k
) ≥ Lr

th

process flow of the weighting and load-balancing logic. It is
a hybrid-dynamic load balancing algorithm that computes
every two seconds the utilisation of all participating servers.
After computing the utilisation of each server VM, it then
assigns a weight to each server during runtime using our pro-
posed weighting technique, this process also changes the load
balancer’s configuration, in other words, the load balancer is
notified of the changes. The load balancer then automatically
adjusts the amount of load distributed to each server based on
the weight of each server.

The input parameters for the algorithm are as follows:

• Thc—CPU threshold;
• Thr—RAM threshold;
• Thbw—Bandwidth threshold;
• Th

t
r—Thread count threshold;

• VM
as—list of currently deployed application server VMs;

The algorithm first receives and sets the overall threshold for
the above input parameters. Experimentally and research-
approved threshold values of 80%, 80%, 80%, 85% for CPU,
RAM, Bandwidth, and Thread count respectively are set.
Experimentally, we performed profiling tests on a medium
application server VM using a synthetic workload generated
from real web application requests to corroborate the thresh-
old values. A pre-defined SLA that states that 90% of requests
should be handled within one second, as recommended by [7]
was used to determine the average utilisation percentage.

In line 7 of the algorithm, the function TCPBufferOver-
loaded() represents an extracted logic for checking TCP
network buffer NB

k
 . This function utilises the netstat com-

mand to check for the presence of a TCP socket whose ratio
of the buffer sizes, Recv-Q and Send-Q values, is greater
than 0.9. The value of 0.9 is a research-verified value by [8].
A ratio value greater than 0.9 means the network buffer is
overloaded and requests will not arrive promptly at the VM.

The algorithm regularly retrieves the utilisation values of our
chosen VM metrics. After the retrieval, in line 2, the algorithm
loops through available server VMs, and compare each utilisa-
tion metric of the current server against the set threshold. The
algorithm then computes the weight using our weighting tech-
nique in eq.(4), and carries out the TCP network buffer check.
A weight is then assigned to each server VM whose network
buffer is not overloaded as depicted in line 9. If the server VM
is fully utilised 100% , a weight of 0 is assigned to the VM as
shown in line 11. A fully utilised VM with a weight of zero
means, the VM will not accept any more incoming requests
until the utilisation rate is lower or equal to the set threshold.

In line 14, requests will be distributed by the load bal-
ancer according to the weight of each server VM in a round-
robin manner. This process distributes server load propor-
tionally based on a VM’s real-time capacity.

 SN Computer Science (2023) 4:270 270 Page 10 of 17

SN Computer Science

Algorithm 1: Novel Load Balancing Algorithm.
Input: si, Thc, Thr, Thbw, Thtr, VMas

1 RetrieveAllocateToInputThresholdValues ();
2 for each VM, vmi ∈ VMas do
3 Utlcpu ← CPU utilisation of vmi;
4 Utlram ← RAM utilisation of vmi;
5 Utlbw ← Bandwidth utilisation of vmi;
6 UtlThreadCount ← Threadcount of vmi;
7 if (Utlcpu ¡ Thc & Utlram ¡ Thr & Utlbw ¡ Thbw &

UtlThreadCount ¡ Thtr & !TCPBufferOverloaded ()) then
8 W (Xk) ← CalculateWeightbyutilisation (Utlcpu, Utlram,

Utlbw, UtlThreadCount, VMas, vmi);
9 assignweighttoVM (vmi,W (Xk));

10 else
11 assignweighttoVM (vmi, 0);
12 end
13 end
14 HAProxyAssignRequest (si, V M)

A visual representation of the proposed algorithm and the
weighting technique is depicted in Fig. 3.

Experimental Environment

We depict our experimental setup in Fig. 4. The proposed
load balancing algorithm was evaluated on a private cloud
infrastructure running OpenStack, the train version. The

experimental testbed consists of seventeen heterogeneous
VMs with characteristics as shown in Table 1.

Apache Jmeter, an open source load testing tool for
measuring and analysing the performance of services,
was deployed and run on a separate stand-alone machine.
HAProxy was deployed alongside our load-balancing solu-
tion on two VM instances. Eight medium instances of VMs
were launched as application servers, two extra medium

Fig. 3 Visual representation of
the load-balancing algorithm

SN Computer Science (2023) 4:270 Page 11 of 17 270

SN Computer Science

instances of application server VM are in standby mode,
and four large VM instances were launched as database serv-
ers. Each application server had installed on them, technolo-
gies for hosting our case study applications, and a part of
the load-balancing module that was responsible for polling
utilisation values.

Case Study Application

The case study application used in this research is a state-
less, three-tier, open source multi-tenant E-Commerce appli-
cation. It is a pre-built application that used Orchard Core
framework coupled with elastic search for its search func-
tionalities. The application is a data-driven application that
is backed by MySQL database. The case study application
was deployed on each participating application server. The
database was also deployed and replicated on all participat-
ing database servers.

Workload

Apache Jmeter was used to simulate user requests that were
sent to the case study application. Apache Jmeter was hosted
on a standalone machine because of the need to simulate
realistic requests in terms of location and time. Our evalua-
tions seek to characterise prominent load balancing perfor-
mance parameters as identified by researchers. It will also
compare the difference in performance between our novel
load balancing algorithm and the baseline load balancing

algorithm by Grozev et al. [8]. We generated workload from
Apache Jmeter by simulating loads of various scenarios
using a predefined model that will be discussed below.

Firstly, we profiled one of our application instances to
determine the number of requests that can be successfully
handled within one second. Secondly, we profiled our appli-
cation instance again to determine the number of requests
that can be handled with an SLA constraint of 90% within
one second as recommended by [7].

An average combination of the two profiles showed that
our application server instance can handle between 90 and
92 requests per second. Based on this profiling, we created
our workload to emulate a Poisson distribution because of
the nature of user request arrival as discussed by [47]. We
used Jmeter to send requests based on the Poisson workload
model to our deployed application. We repeated each experi-
ment three times and took the average of the repeated tests
in all of our evaluations.

Baseline Application and Evaluation

To evaluate our proposed load balancing solution; we test
the performance of our algorithm, and we compare our algo-
rithm with a baseline algorithm by [8] and a standard load
balancing algorithm - round-robin algorithm. Our evaluation
sought to characterise our algorithm using response times, a
prominent load-balancing performance parameter [14, 44].

Performance Analysis and Results

This section discusses the analysis and performance com-
parison of our novel algorithm and the benchmarks. In this
paper, we extend the experiments performed in our previous
research [4] to include more resource failures and signifi-
cantly increased flash crowds.

Table 1 VM capacity used in experiments

Characteristics m1.medium m1.large

VCPUs 4 8
Memory Size 4GB 8GB
Storage Size 40GB 80GB

Fig. 4 Experimental test-bed

 SN Computer Science (2023) 4:270 270 Page 12 of 17

SN Computer Science

Fig. 5 Fully utilised VM nodes

(a) One Fully Utilised Node. (b) Two Fully Utilised Nodes.

(c) Three Fully Utilised Nodes. (d) Four Fully Utilised Nodes.

(e) Five Fully Utilised Nodes.

(a) 1 Server Failure. (b) 2 Server Failures. (c) 3 Server Failures.

(d) 4 Server Failures. (e) 5 Server Failures.

Fig. 6 Distribution values of server failures

SN Computer Science (2023) 4:270 Page 13 of 17 270

SN Computer Science

Performance Under Resource Failures

To test the algorithms’ performance, we first validated our
novel algorithm by testing its ability to distribute workload
across VM. The baseline algorithm by [8] was also tested
to ascertain it produces similar results recorded by the
researchers. We simulated varying numbers (1–5) of over-
utilised VM as depicted in Fig. 5. The aim of this experiment
was to test if the proposed novel algorithm will assign the
correct weight to the VM, and if it will redirect workload
to other VMs while correctly assigning appropriate weight
to these working VMs. The proposed novel algorithm uni-
formly distributed workload among available VMs within
the stipulated time demanded by the SLA.

The aim of simulating resource failure is to test the level
of fault tolerance and scalability of the load balancing sys-
tem in this research. To replicate resource failure situations,
especially hardware failure, some VMs were stopped and
removed from the available pool of participating VMs. VMs
were removed at 300ms time point at every experiment.
VMs were gradually added back to the pool after five sec-
onds to emulate recovery from failure. In total, five different
server failure scenarios were created.

The performance of the three (novel load balancing algo-
rithm, baseline algorithm, and round-robin algorithm) algo-
rithms were compared in all the experiments. The round-
robin algorithm performed worst, as depicted in Fig. 6. The
number of requests the round-robin algorithm handled when
it encountered between one and two server failures were 10%
less than the stipulated SLA requirement. The performance
of the round-robin algorithm depleted when server failure
was more than four. The algorithm handled less than 80%

of requests within one second. This shows that randomly
distributing workload, even uniformly, cannot suffice for
our chosen class of application. This type of load balancing
might be sufficient for applications that are not critical or
resource intensive.

The baseline algorithm by [8] performed better than the
round-robin algorithm, as shown in Fig. 6. When server
failures were not more than three, the baseline algorithm
could handle approximately 90% of requests, albeit at a
much higher response time compared to the novel algorithm.
When server failures increased to five, the algorithm suffered
from performance degradation. The response times were
high, with values between 1.2 and 1.6 s. The percentage
of requests handled declined to less than 80% of requests.
Also, we noted that at the peak of server failures, the algo-
rithm became unresponsive resulting into errors as shown
in Fig. 7.

The proposed novel load balancing algorithm distributed
requests within the stipulated SLA as shown in Fig. 6. It
did not violate the SLA at any point of the server failure.
Response times were constant and improved compared to the
two other algorithms. During all server failures, the novel
algorithm attended to over 90% of requests between 0 ms
and 998ms. The result showed that response times of our
novel algorithm falls within an acceptable range and were
less than the response times of the two benchmark algo-
rithm. This proves that the proposed novel algorithm func-
tions best for our chosen class of applications.

To explore boundaries where our approach starts to break
down, the ratio of the number of server failures to available
servers was experimented with. The result showed that to
achieve the SLA recommendation of 90% of requests to be
handled in one second, using our workload model with the
number of requests between 1000 and 50,000 requests, a
minimum of three VMs should be available and running.
Figure 7 showed that the novel algorithm had less than 1500
failed requests when there were five server failures, unlike
round-robin and the baseline algorithm that had over 3000
failed requests with response times more than 1 s.

Performance Under Flash Crowds

To test the algorithms’ performances under flash crowds sce-
nario, we simulated flash crowds by updating our request
workload to exponentially increase for a period of 300ms
every five seconds within one minute. The percentage of
flash crowds ranged between 110% and 320% of the nor-
mal workload. The three algorithms consistently distributed
workload across available VMs. The three algorithm all han-
dled 90% or more requests within one second, as depicted in
Fig. 8a. When the flash crowd reached 150%, their response

Fig. 7 Failed request chart — error rates

 SN Computer Science (2023) 4:270 270 Page 14 of 17

SN Computer Science

times varied but they all maintained the SLA constraint of
attending to 90% of requests within one second.

Flash crowds of 188% as shown in Fig. 8c revealed that
the baseline and round-robin algorithm’s performance are
starting to get depleted but with failed requests of 8% of the
overall requests.

Flash crowds of 240% revealed that the round-robin
algorithm could only handle 50% of requests at approxi-
mately 300ms when the first flash crowd happen, and 56%
of requests when flash crowds occurred a second time.
However, Fig. 8d showed that the round-robin algorithm
took 1190ms before it could meet 67% of requests, thereby
violating the SLA constraint. The baseline algorithm as
shown in Fig. 8d did better than the round-robin algorithm.
The baseline algorithm handled 70% of requests at around
300ms when the first flash crowd hit, and then handled
81% of requests when the second flash crowd happened.
The baseline algorithm handled a total of 89% of requests
at 999.987ms. The baseline algorithm could not handle
90% of requests within one second. The novel algorithm
as shown in Fig. 8d handled 77% of requests at 300ms
when the first flash crowd hit, and 85% of requests when
the second flash crowd occurred. The novel algorithm still

maintained the handling of a minimum of 90% of requests
within one second, even though the response time was
999.999ms longer than the previous occurrence of flash

(a) 125% Increased
Request Flash Crowds.

(b) 150% Increased
Request Flash Crowds.

(c) 188% Increased
Request Flash Crowds.

(d) 240% Increased Request Flash
Crowds.

(e) 320% Increased Request Flash
Crowds.

Fig. 8 Cumulative distribution of flash crowd

Fig. 9 Failed request chart – error rates during peak flash crowds

SN Computer Science (2023) 4:270 Page 15 of 17 270

SN Computer Science

crowds; with a response time between 960.905ms and
992.798ms.

A flash crowd of 320% above the normal is shown in
Fig. 8e. Figure 8e shows a different calibration of the
response time because it took longer for the algorithms to
attend to requests. Round-robin algorithm handled 23%
and 21% of requests when flash crowds of 320% occurred.
The overall average response time of the round-robin algo-
rithm was 450ms longer than the other two algorithms.
The baseline algorithm handled 50% and 56% of requests
during flash crowds of 320%. The baseline algorithm could
only handle 70% of requests within one second before the
algorithm started to timeout. The novel algorithm han-
dled 70% and 80% of requests when flash crowds of 320%
occurred. It took a longer time for the novel algorithm
to attend to 90% of requests, this means a flash crowd of
320% above normal workload will break the three algo-
rithms if no extra VM is provisioned. The ability of the
algorithm to consistently distribute workload during the
varying scenarios confirms and validates our choice of
carefully selected metrics.

Figure 9 showed the amount of failed request at the peak
of flash crowds - 320% flash crowds. The graph showed that
the novel algorithm recorded less than 2000 failed requests
at the peak of the flash crowds compared to the round-robin
which had almost 19000 failed requests and the baseline
algorithm which had 14560 failed requests.

To test the effect of the auto scaler when there is a flash
crowd and how the proposed load balancing service will
work with an autoscaler, the auto scaler was programmed to
start when all the available VMs utilisation exceeded 89%
usage. In addition, two extra VMs were kept as standby
VMs, these two VMs will be used by the autoscaler to
launch extra VMs when needed.

Research Limitation

The scope and limitations of this research are discussed
using the model of experimental research limitations. This
approach is characterised by evaluating the research’s pro-
cess through the lens of internal and external validity and
threats to validity. Identifying and defining the variables of
interest, including how to measure them in a reliable and
valid manner, is the first step in evaluating the validity of
experimental research’s data [48, 49].

This research identified potential variables and their
measures through the extensive literature on similar research
work. This research then carefully selected widely cited vari-
ables and their units of measurement from research works
such as [7–9, 50, 51]. Identified variables are but not limited
to CPU, RAM, Network buffer, bandwidth, response time,
throughput, latency, and so on.

A research design has strong internal validity if the
observed relationship is not related to extraneous variables
such as differences in subjects, location, or other related fac-
tors [48, 49, 52]. To create a strong internal validity for this
research, the appropriateness of the variables were consid-
ered before deciding to use them.

The load balancing algorithm apply to three-tier web
applications; therefore, the behaviour of the algorithm
is uncertain when used in other cloud services. Also, the
number and size of user requests used in the experimental
evaluations were within the limits of a private cloud. There-
fore, the results of this study should not be generalised to
extremely large public clouds.

The use of a real cloud infrastructure nullifies the effects
of location and setting on experimental scenarios. The rea-
son for this is that real infrastructure corresponds to a natural
context for using the cloud.

Conclusions and Future Work

Web applications commonly suffer from flash crowds and
resource failures, which degrade their performance. We have
created a novel weight assignment load balancing algorithm
and architecture for cloud-based three-tier web applications.
This new algorithm utilises five carefully selected server
metrics to determine and assign weight to server VMs by
analysing their utilisation values to determine a VM’s real-
time load. The server metrics are as follows: thread count,
CPU, RAM, network buffers, and network bandwidth uti-
lisation. Our novel load balancing algorithm addresses the
challenges faced by three-tier web applications deployed on
cloud.

To tackle single point of failure, reliability, and scalabil-
ity, a highly available deployment architecture and a stand-
ardised load balancer software were also used. Addition-
ally, the proposed load balancing algorithm and service were
deployed in the same data centre. As a result, rapid adapta-
tion to changes in the environment, reduced communication
overhead, and faster network capabilities were achieved.

Using a case study e-commerce web application, the load
balancing solution and benchmark algorithms were evalu-
ated on an OpenStack private cloud. Firstly, the novel algo-
rithm was validated on the test bed by evaluating its ability
to distribute workload evenly. Secondly, the novel algo-
rithm’s performance was compared with a baseline load bal-
ancing algorithm by [8] and round-robin algorithm. During
the workload simulation, we experimentally measured and
compared the response times of the case study application.

When compared to the baseline algorithm and round-
robin algorithm, the novel algorithm proposed improved
the overall average response times by 20.7% and 21.4%
respectively, in resource failure situations. In flash crowd

 SN Computer Science (2023) 4:270 270 Page 16 of 17

SN Computer Science

situations, the novel algorithm improved response times by
12.5% and 22.3% respectively, over the baseline algorithm
and round-robin algorithm. These results show that the novel
algorithm can adapt to flash crowds and resource failures
without performance degradation.

The experiments will be extended in the future to evaluate
other types of resource failures and the algorithms’ perfor-
mance. Additionally, we will investigate serverless deploy-
ment across both single cloud and multi-cloud environment.

Data availability This is a future work recommendation, so there is no
available data yet.

Declarations

Conflict of interest Adekunbi Adewojo declares that she has no con-
flict of interest. Julian Bass declares that he has no conflict of interest.

Ethical approval This article does not contain any studies with human
or animal participants performed by the authors.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Kumar P, Kumar R. Issues and challenges of load balancing tech-
niques in cloud computing: a survey. ACM Comput Surv (CSUR).
2019;51(6):1–35.

 2. Akintoye SB, Bagula A. Improving quality-of-service in cloud/
fog computing through efficient resource allocation. Sensors.
2019;19(6):1267. https:// doi. org/ 10. 3390/ s1906 1267.

 3. de Paula Junior U, Drummond LM, de Oliveira D, Frota Y, Bar-
bosa VC. Handling flash-crowd events to improve the perfor-
mance of web applications. In: Proceedings of the 30th Annual
ACM Symposium on Applied Computing, pp. 769–774 (2015)

 4. Adewojo A, Bass J. A novel weight-assignment load balancing
algorithm for cloud applications. In: CLOSER 2022: 12th Inter-
national Conference on Cloud Computing and Services Science
(2022). Scitepress

 5. Cloud Adoption to Accelerate IT Modernization | McKinsey.
https:// www. mckin sey. com/ busin ess- funct ions/ mckin sey- digit
al/ our- insig hts/ cloud- adopt ion- to- accel erate- it- moder nizat ion.
Accessed 2022-07-20

 6. Elmroth E. “15 Years of Cloud Control” (2022). https:// closer. scite
vents. org/ Previ ousIn vited Speak ers. aspx. Accessed 2022-04-27

 7. Qu C, Calheiros RN, Buyya R. Mitigating impact of short-term
overload on multi-cloud web applications through geographical
load balancing. Concurr Comput Pract Exp. 2017;29(12):4126.

 8. Grozev N, Buyya R. Multi-cloud provisioning and load distribu-
tion for three-tier applications. ACM Trans Auton Adapt Syst.
2014;9(3):13–11321. https:// doi. org/ 10. 1145/ 26621 12.

 9. Chen S-L, Chen Y-Y, Kuo S-H. Clb: A novel load balancing
architecture and algorithm for cloud services. Comput Electr Eng.
2017;58:154–60.

 10. Tychalas D, Karatza H. An advanced weighted round robin sched-
uling algorithm. In: 24th Pan-Hellenic Conference on Informatics,
pp. 188–191 (2020)

 11. Buyya R, Srirama SN, Casale G, Calheiros R, Simmhan Y, Var-
ghese B, Gelenbe E, Javadi B, Vaquero LM, Netto MA, et al.
A manifesto for future generation cloud computing: research
directions for the next decade. ACM Comput Surv (CSUR).
2018;51(5):1–38.

 12. Shafiq DA, Jhanjhi NZ, Abdullah A, Alzain MA. A load balanc-
ing algorithm for the data centres to optimize cloud computing
applications. IEEE Access 9, 41731–41744 (2021)

 13. Kang S, Veeravalli B, Mi Aung K.M. Scheduling multiple divis-
ible loads in a multi-cloud system. In: 2014 IEEE/ACM 7th
International Conference on Utility and Cloud Computing, pp.
371–378 (2014). https:// doi. org/ 10. 1109/ UCC. 2014. 47

 14. Zomaya AY, Teh Y-H. Observations on using genetic algorithms
for dynamic load-balancing. IEEE Trans Parallel Distrib Syst.
2001;12(9):899–911.

 15. Hellemans T, Bodas T, Van Houdt B. Performance analysis of
workload dependent load balancing policies. Proc ACM Measure-
ment Anal Comput Syst. 2019;3(2):1–35.

 16. Wang W, Casale G. Evaluating weighted round robin load balanc-
ing for cloud web services. In: 2014 16th International Sympo-
sium on Symbolic and Numeric Algorithms for Scientific Com-
puting, pp. 393–400 (2014). IEEE

 17. Zhang H, Zhang J, Bai W, Chen K, Chowdhury M. Resilient data-
center load balancing in the wild. In: Proceedings of the Confer-
ence of the ACM Special Interest Group on Data Communication,
pp. 253–266 (2017)

 18. Chen Z, Zhang H, Yan J, Zhang Y. Implementation and research
of load balancing service on cloud computing platform in ipv6
network environment. In: Proceedings of the 2nd International
Conference on Telecommunications and Communication Engi-
neering, pp. 220–224 (2018)

 19. Zeng J, Plale B. Multi-tenant fair share in nosql data stores.
In: 2014 IEEE International Conference on Cluster Computing
(CLUSTER), pp. 176–184 (2014). IEEE

 20. Devi DC, Uthariaraj VR. Load balancing in cloud computing
environment using improved weighted round robin algorithm for
nonpreemptive dependent tasks. Sci World J. 2016;2016:3896065.
https:// doi. org/ 10. 1155/ 2016/ 38960 65

 21. Sahu Y, Pateriya RK, Gupta RK. Cloud server optimization with
load balancing and green computing techniques using dynamic
compare and balance algorithm. In: 2013 5th International Con-
ference and Computational Intelligence and Communication
Networks, pp. 527–531 (2013). https:// doi. org/ 10. 1109/ CICN.
2013. 114

 22. Cruz EH, Diener M, Pilla LL, Navaux PO. Eagermap: a task
mapping algorithm to improve communication and load bal-
ancing in clusters of multicore systems. ACM Trans Parallel
Comput (TOPC). 2019;5(4):1–24.

 23. Bambrik I. A survey on cloud computing simulation and mod-
eling. SN Comput Sci. 2020;1(5):1–34.

 24. Byrne J, Svorobej S, Giannoutakis K.M, Tzovaras D, Byrne
PJ, Östberg P-O, Gourinovitch A, Lynn T. A review of cloud
computing simulation platforms and related environments. In:
International Conference on Cloud Computing and Services
Science. 2017;2: 679–691. https:// doi. org/ 10. 5220/ 00063 73006
790691.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s19061267
https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/cloud-adoption-to-accelerate-it-modernization
https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/cloud-adoption-to-accelerate-it-modernization
https://closer.scitevents.org/PreviousInvitedSpeakers.aspx
https://closer.scitevents.org/PreviousInvitedSpeakers.aspx
https://doi.org/10.1145/2662112
https://doi.org/10.1109/UCC.2014.47
https://doi.org/10.1155/2016/3896065
https://doi.org/10.1109/CICN.2013.114
https://doi.org/10.1109/CICN.2013.114
https://doi.org/10.5220/0006373006790691
https://doi.org/10.5220/0006373006790691

SN Computer Science (2023) 4:270 Page 17 of 17 270

SN Computer Science

 25. Fakhfakh F, Kacem HH, Kacem AH. Simulation tools for cloud
computing: a survey and comparative study. In: 2017 IEEE/ACIS
16th International Conference on Computer and Information Sci-
ence (ICIS). 2017; 221–226. https:// doi. org/ 10. 1109/ ICIS. 2017.
79599 97

 26. Makaratzis AT, Giannoutakis KM, Tzovaras D. Energy mode-
ling in cloud simulation frameworks. Future Gener Comput Syst.
2018;79:715–25. https:// doi. org/ 10. 1016/j. future. 2017. 06. 016.

 27. Elgedawy I. Sultan: A composite data consistency approach for
saas multi-cloud deployment. In: 2015 IEEE/ACM 8th Inter-
national Conference on Utility and Cloud Computing (UCC).
2015;122–131. https:// doi. org/ 10. 1109/ UCC. 2015. 28

 28. Calheiros RN, Ranjan R, Beloglazov A, De Rose CA, Buyya R.
Cloudsim: a toolkit for modeling and simulation of cloud comput-
ing environments and evaluation of resource provisioning algo-
rithms. Software Pract Exp. 2011;41(1):23–50.

 29. Ari I, Hong B, Miller E.L, Brandt SA, Long DD. Managing flash
crowds on the internet. In: 11th IEEE/ACM International Sym-
posium on Modeling, Analysis and Simulation of Computer Tel-
ecommunications Systems, 2003. MASCOTS 2003. IEEE 2003;
246–249.

 30. Le Q, Zhanikeev M, Tanaka Y. Methods of distinguishing flash
crowds from spoofed dos attacks. In: 2007 Next Generation Inter-
net Networks. IEEE. 2007;167–173

 31. Amazon: AWS Serverless Multi-Tier Architectures with Amazon
API Gateway and AWS Lambda AWS Whitepaper. https:// docs.
aws. amazon. com/ white papers/ latest/ serve rless- multi- tier- archi
tectu res- api- gatew ay- lambda/ three- tier- archi tectu re- overv iew.
html Accessed 2021-01-01

 32. Priyadarsini RJ, Arockiam L. Failure management in cloud: An
overview. International Journal of Advanced Research in Com-
puter and Communication Engineering. 2013;2(10):2278–1021.

 33. Prathiba S, Sowvarnica S. Survey of failures and fault tolerance
in cloud. In: 2017 2nd International Conference on Computing
and Communications Technologies (ICCCT). 2017. pp. 169–172.
IEEE

 34. Kumari P, Kaur P. A survey of fault tolerance in cloud computing.
J King Saud Univ Comput Inf Sci. 2021;33(10):1159–76. https://
doi. org/ 10. 1016/j. jksuci. 2018. 09. 021.

 35. Fowler M. Patterns of Enterprise Application Architecture. Bos-
ton: Addison-Wesley Longman Publishing Co. Inc; 2002.

 36. Rockford Lhotka - Should All Apps Be N-tier? https://web.
archive.org/web/20200802111420/http://www.lhotka.net:80/
weblog/ShouldAllAppsBeNtier.aspx Accessed 2022-08-15

 37. Archiveddocs: Chapter 19: Physical Tiers and Deployment.
https:// docs. micro soft. com/ en- us/ previ ous- versi ons/ msp-n- p/
ee658 120(v= pandp. 10) Accessed 2022-08-15

 38. Ramirez AO. Three-tier architecture. Linux J. 2000(75es) (2000)
 39. Brewer E. Cap twelve years later: How the “rules’’ have changed.

Computer. 2012;45(2):23–9.
 40. Archiveddocs: Chapter 18: Communication and Messaging.

https:// docs. micro soft. com/ en- us/ previ ous- versi ons/ msp-n- p/
ee658 118(v= pandp. 10) Accessed 2022-08-16

 41. HAProxy: HAProxy Technologies - The World’s Fastest and
Most Widely Use Load Balancing Solution. https:// hapro xy. com/
Accessed 2021-01-01

 42. Bala A, Chana I. Fault tolerance-challenges, techniques and imple-
mentation in cloud computing. Int J Comput Sci Issues (IJCSI).
2012;9(1):288.

 43. What Is Fault Tolerance? Definition & FAQs. https:// www- stage.
avine tworks. com/ gloss ary/ fault- toler ance/ Accessed 2022-08-18

 44. Shah J.M, Kotecha K, Pandya S, Choksi D, Joshi N. Load bal-
ancing in cloud computing: Methodological survey on different
types of algorithm. In: 2017 International Conference on Trends
in Electronics and Informatics (ICEI). 2017. pp. 100–107. IEEE

 45. Xu F, Liu F, Jin H, Vasilakos AV. Managing performance over-
head of virtual machines in cloud computing: a survey, state of
the art, and future directions. Proc IEEE. 2013;102(1):11–31.

 46. Hennion N. Glances an Eye on Your System. A Top/htop Alter-
native for GNU/Linux, BSD, Mac OS and Windows Operat-
ing Systems. https:// glanc es. readt hedocs. io/ en/ latest/ Accessed
2021-01-01

 47. Chlebus E, Brazier J. Nonstationary poisson modeling of web
browsing session arrivals. Inf Process Lett. 2007;102(5):187–90.

 48. Yin RK. Case study research: design and methods. New York:
Sage publications; 2014.

 49. Experimental design research approaches. Perspectives. 2014.
Cham: Springer.

 50. Fehling C, Leymann F, Retter R, Schupeck W, Arbitter P. Cloud
computing patterns. In: Fundamentals to design build, and man-
age cloud applications. 2014. Springer, London. https:// doi. org/
10. 1007/ 978-3- 7091- 1568-8

 51. Grozev N, Buyya R. Performance modelling and simulation of
three-tier applications in cloud and multi-cloud environments.
Comput J. 2015;58(1):1–22.

 52. Bhandari P. Internal Validity in Research | Definition, Threats
& Examples (2020). https:// www. scrib br. com/ metho dology/ inter
nal- valid ity/ Accessed 2022-10-24

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/ICIS.2017.7959997
https://doi.org/10.1109/ICIS.2017.7959997
https://doi.org/10.1016/j.future.2017.06.016
https://doi.org/10.1109/UCC.2015.28
https://docs.aws.amazon.com/whitepapers/latest/serverless-multi-tier-architectures-api-gateway-lambda/three-tier-architecture-overview.html
https://docs.aws.amazon.com/whitepapers/latest/serverless-multi-tier-architectures-api-gateway-lambda/three-tier-architecture-overview.html
https://docs.aws.amazon.com/whitepapers/latest/serverless-multi-tier-architectures-api-gateway-lambda/three-tier-architecture-overview.html
https://docs.aws.amazon.com/whitepapers/latest/serverless-multi-tier-architectures-api-gateway-lambda/three-tier-architecture-overview.html
https://doi.org/10.1016/j.jksuci.2018.09.021
https://doi.org/10.1016/j.jksuci.2018.09.021
https://docs.microsoft.com/en-us/previous-versions/msp-n-p/ee658120%28v=pandp.10)
https://docs.microsoft.com/en-us/previous-versions/msp-n-p/ee658120%28v=pandp.10)
https://docs.microsoft.com/en-us/previous-versions/msp-n-p/ee658118%28v=pandp.10)
https://docs.microsoft.com/en-us/previous-versions/msp-n-p/ee658118%28v=pandp.10)
https://haproxy.com/
https://www-stage.avinetworks.com/glossary/fault-tolerance/
https://www-stage.avinetworks.com/glossary/fault-tolerance/
https://glances.readthedocs.io/en/latest/
https://doi.org/10.1007/978-3-7091-1568-8
https://doi.org/10.1007/978-3-7091-1568-8
https://www.scribbr.com/methodology/internal-validity/
https://www.scribbr.com/methodology/internal-validity/

	A Novel Weight-Assignment Load Balancing Algorithm for Cloud Applications
	Abstract
	Introduction
	Related Work
	Motivation
	Use Case Scenarios
	Flash Crowds
	Resource Failures

	Application Architecture and Requirements
	The Proposed Approach
	Load Balancing Architecture
	Overall Architecture
	Design and Deployment Architecture

	Proposed Load Balancing Algorithm
	Proposed Weighting Technique
	Proposed Load Balancing Algorithm

	Experimental Environment
	Case Study Application
	Workload
	Baseline Application and Evaluation

	Performance Analysis and Results
	Performance Under Resource Failures
	Performance Under Flash Crowds

	Research Limitation
	Conclusions and Future Work
	References

