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Abstract
Web applications commonly suffer from flash crowds and resource failure, resulting in performance degradation. Flash 
crowds are large, sudden, yet legitimate influxes of user requests that constitute a critical problem because of their potential 
economic damage. For cloud providers, resource estimation is challenging, while distributing workload and sustaining 
performance. To alleviate flash crowds and resource failure problems, we propose a novel weight assignment load balanc-
ing algorithm that combines five carefully selected server metrics to efficiently distribute the workload of three-tier web 
applications among virtual machines. We experimentally characterised, using a private cloud running OpenStack, the load 
distribution ability of our proposed novel algorithm, as well as a baseline algorithm and round-robin algorithm. We com-
pared the performance of the three algorithms by simulating resource failures and flash crowds, while carefully measuring 
response times. Our experimental results show that our approach improves average response times by 12.5% when compared 
to the baseline algorithm and 22.3% when compared to the round-robin algorithm in the flash crowds’ situation. In addition, 
average response time was improved by 20.7% when compared to the baseline algorithm and 21.4% when compared to the 
round-robin algorithm in resource failure situations. These experiments show that our novel algorithm is more resilient to 
fluctuating loads and resource failures than baseline algorithms.
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Introduction

The use of cloud applications continues to gain rapid adop-
tion in businesses because of the benefits of using the cloud 
[1–3]. These benefits include but are not limited to high 
availability, increased agility, flexibility, lower total cost of 
ownership, ability to reach users across the globe, and pro-
vision of configurable options that suit users’ needs [4–6]. 
Cloud applications are commonly offered as Software as a 
Service (SaaS) to end users. Scalability, on-demand, and 

elasticity are key features of the cloud [3, 7, 8] that promote 
the rapid adoption of cloud and cloud-based applications.

The popularity of cloud has promoted the hosting of 
e-commerce and social networks such as Facebook, Twitter, 
and LinkedIn [3]. Posts on these networks can easily become 
viral, leading to large number of requests trying to access 
the application, thereby resulting in performance degrada-
tion [3]. This scenario is termed flash crowds. Flash crowd 
is a legitimate, rapid, and fluctuating user request surge, that 
occurs because of the increase in users trying to access an 
application. Therefore, the cloud’s ability to scale, such that 
available resources can cater to this need, is highly essential. 
Apart from the flash crowd, it is possible for these applica-
tions to experience resource failures, leading to performance 
degradation.

Cloud providers typically use common load balancing 
and auto-scaling strategies to combat flash crowds and 
resource failure scenarios. However, research confirms that 
this approach does not suffice [3, 8–10]. This is because 
these applications still suffer some levels of performance 
degradation due to the inability of the load balancer to 
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effectively distribute the workload, or because the auto-
scaling strategy was too slow to scale out resources, or 
never responded at the required time.

To combat these problems in cloud applications, espe-
cially in three-tier applications, a targeted and improved 
load-balancing algorithm that works in collaboration 
with an auto scaler is essential. Unfortunately, there has 
been limited research on load-balancing algorithms for 
web-based three-tier business applications deployed on 
the cloud [7, 11]. There is even more limited research 
on experimentally evaluating load balancing/distribution 
techniques using real cloud infrastructures. Most studies 
conducted on the evaluation and development of load bal-
ancing techniques have focused on the use of simulation 
tools to evaluate these cloud models [8, 10, 12–15]. This 
is in contrast to the few evaluations done on real cloud 
infrastructure [16–18].

In this research, we introduce a novel weight assignment 
load balancing algorithm. This algorithm improves the per-
formance of cloud-based three-tier web applications by alle-
viating the negative effect of flash crowds and resource fail-
ures. The algorithm’s implementation architecture mitigates 
common limitations of general load balancing algorithms 
such as single point of failure, excessive re-routing, and slow 
sensing of uncertainties.

Compared to other research outputs, the proposed novel 
algorithm incurs less communication overhead than that of 
Qu et al. [7]. This is because the novel load balancing archi-
tecture does not use agents in its communication strategy. In 
addition, compared to Grozev et al. [8], it does not require an 
auto-scaling algorithm because it collaborates with existing 
and standard auto-scaling technique.

The newly introduced algorithm combines five carefully 
selected key server (Virtual Machine [VM]) metrics (thread 
count, network buffer, Central Processing Unit (CPU), 
Rapid Access Memory (RAM), and bandwidth utilisation) 
to properly distribute the workload of a web-based three-tier 
business application. This research implements our novel 
algorithm by combining the use of a software load balancer 
called HAProxy with our novel weight-assignment load 
distribution technique. The proposed solution follows the 
monitor-analyze-plan-execute loop architecture commonly 
adopted by cloud-based systems [7, 19]. This consistently 
distributes workload across available servers to maintain the 
agreed SLA response time without performance degradation 
despite random user request surges. We validated our algo-
rithm by comparing it to a baseline load balancing algorithm 
by [8] and the round-robin algorithm. The proposed load 
balancing solution was evaluated on a private OpenStack 
cloud using a case study E-commerce application deployed 
on the private cloud.

This research will help cloud software developers and 
organisations who want to migrate their applications to the 

cloud or want to build a data-driven cloud-native application 
to become aware of improved load balancing algorithms and 
techniques.

The major contributions of this research are:

• A novel hybrid-dynamic load distribution algorithm that 
improves response time and scalability of web-based 
three-tier business applications; and

• An extended evaluation of the proposed algorithm evalu-
ated in a private cloud test-bed

The rest of this paper is organised as follows: "Related 
Work" summarises related work and how it compares with 
this research.  "Motivation" and "Use Case Scenarios" pro-
vides motivation for the research, present our research ques-
tions, and describes the use cases of the proposed solution. 
"Application Architecture and Requirements" describes the 
architecture of our chosen software application, assump-
tions, and requirements. "The Proposed Approach" presents 
our proposed approach and design of the load balancing ser-
vice. "Proposed Load Balancing Algorithm" presents the 
novel load balancing algorithm. "Experimental Environ-
ment" and "Performance Analysis and Results" describes the 
experimental environment, evaluation, and present results of 
our algorithm and benchmark algorithms. "Conclusions and 
Future Work" concludes the research.

Related Work

Load balancing in the cloud is a method to optimally dis-
tribute workload so that the resources of a VM in a cloud 
computing environment are efficiently utilised. Since cloud 
computing services have become a vital part of companies, it 
is even more crucial to improve existing load balancing tech-
niques and enhance cloud application performance because 
the number of resources are restricted.

Static and dynamic load balancing techniques represent 
the two broad categories of load distribution techniques [1, 
14]. Static techniques are commonly used to distribute pre-
dictable loads. The use of static techniques does not require 
foreknowledge of the current state of the system. Dynamic 
techniques are used to distribute unpredictable loads. This 
technique considers the current state of the system before 
distributing loads.

Researchers have proposed various load balancing algo-
rithms based on either the static or dynamic load balancing 
technique. Shafiq et al. in [12] proposed a dynamic load 
balancing algorithm for allocating resources on the Infra-
structure as a Service (IaaS) cloud model. The load bal-
ancing algorithm was aimed at optimizing resources and 
improving load balancing of VMs. Their proposed algorithm 
focused mainly on addressing the priority of VMs, Quality 
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of Service (QOS) task parameters, and resource allocation. 
They used an efficient task scheduling technique to improve 
load balancing of VMs across IaaS by considering the prior-
ity of workload, SLA, and key metrics that determine per-
formance. Results show that their algorithm resulted in an 
average of 78% resource utilisation compared to the existing 
dynamic load balancing algorithm which had a much lower 
resource utilisation rate.

Chen et al. in [9] proposed a load-balancing architecture 
and a dynamic load-balancing algorithm for cloud services. 
Their approach used a dynamic annexed balance method 
to solve the problem of uneven workload distribution on 
servers. Their approach considered both server process-
ing power and computer load to create a load-balancing 
algorithm that can handle excessive computational require-
ments. Their result showed that their approach improved the 
mean response time of load-balancing digital applications 
deployed on the cloud.

Wang et al. in [16] experimentally compared weighted 
round-robin and probabilistic routing policies in load bal-
ancing multi-class workloads of applications with SLA 
differentiated across users. Based on their discovery of the 
relationship between the two policies, they presented and 
verified algorithms that support multi-class workloads for 
applications with SLA across different users.

In the bid to improve existing work on dynamic load-
balancing for cloud applications, authors [8, 9, 18, 20, 21] 
identified specific server metrics that commonly affect the 
performance of both cloud applications and the servers they 
are running on. These identified metrics included the CPU, 
RAM, bandwidth utilisation, and network buffer, among oth-
ers. Tychalas et al. in [10] proposed a dynamic probabilistic 
load balancing algorithm that uses the weighted round-robin 
algorithm. Their research combined computational power 
and the current utilisation of key server metrics to assign 
probabilities to each available resource. Their simulation 
result using Bag-of-Tasks jobs as workload showed that 
their algorithm performed better than the popular weighted 
round-robin method in terms of mean response time by 8.5% 
and the utilisation of remote fast resources by 25%.

Similar to the research by Tychalas et al. authors in [20, 
21] proposed dynamic load balancing algorithms that com-
bined key server metrics in determining the weights of serv-
ers. They highlighted that these metrics play important roles 
in determining the efficiency of a load balancer. Further-
more, because these algorithms are dynamic, a foreknowl-
edge of the current utilisation of resources and available 
capacity is a good determiner of how much load a server 
can handle.

In addition to research that focusses on developing 
dynamic load balancers, researchers have also focused on 
incorporating techniques to improve the limitations of the 
load balancing architecture such as single point of failure [1, 

8, 22], scalability, limitation in sensing uncertainties [17], 
excessive overhead and re-routing [17].

Zhang et al. in [17] introduced Hermes, a data cen-
tre load balancer that is resilient to uncertainties such 
as traffic dynamics, topology asymmetry, and failures. 
Hermes leverages comprehensive sensing to detect path 
conditions and reacts using timely yet cautious re-routing 
techniques. Hermes is a hardware-based load balancer that 
was implemented using switches. Evaluation using real 
testbed experiments and simulations show that Hermes 
can handle uncertainties under asymmetries with 10% 
and 20% improved performance compared to existing 
implementations.

Cruz et al. in [22] identified a major challenge in deter-
mining how to optimize the mapping of tasks to cluster 
nodes and cores through increased locality and load bal-
ancing. To solve this problem, they proposed an EagerMap 
algorithm to determine task mappings, which is based on 
greedy heuristics to match application communication pat-
terns to hardware hierarchies. This technique also considers 
task load when mapping tasks. They argue that their solution 
influences communication performance and load balancing 
in parallel architectures because EagerMap helps to evenly 
distribute load among clusters and grids. They also claim 
that their algorithm design alleviates the single point of fail-
ure problem in load balancing.

Grozev et al. in [8] introduced an approach for deploy-
ing three-tier applications across multiple clouds so that it 
can satisfy key non-functional requirements. Their research 
proposed a dynamic and adaptive resource provisioning 
and load distribution algorithm to improve the load balanc-
ing of workload in a multi-cloud setting using heuristics. 
Their algorithm uses heuristics to optimize overall cost and 
response delays without violating essential legislative and 
regulatory requirements. Their simulation results show that 
their approach improved popular load-balancing algorithms 
for multi-cloud in terms of availability, regulatory compli-
ance, and quality of experience (QoE) with acceptable sac-
rifice in cost and latency.

On one hand, dynamic load-balancing techniques are 
being used frequently to create load-balancing algorithms 
for cloud applications, and the result from these studies are 
promising. On the other hand, the use of cloud simulation to 
experimentally evaluate these cloud models are increasingly 
used by researchers [8, 17, 23–26]. Furthermore, evaluation 
of the above researches including these [14, 15, 27] were all 
done using simulation tools and environment. Also, there is 
little research [18] on evaluating cloud computing models 
by completely using real cloud infrastructures. In general, 
a simplified real infrastructure experiment is performed to 
complement the simulated experiments as recorded in [8, 
16, 17]. Cloud simulation is a common and suitable alterna-
tive to using real cloud infrastructure. Cloud simulators are 
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software that can reproduce the behaviour of cloud systems 
with a high degree of precision. Cloud simulation employ 
models to represent and experiment with cloud characteris-
tics and behaviours.

Fakhfakh et al. [25] argues that experimentation in a 
real cloud environment is a difficult problem with both 
high financial cost and required time. Again, experiments 
are not repeatable because several variables are not under 
the control of the tester. In summation, the use of a cloud 
simulation framework is preferred because it offers cheaper 
and faster means for testing new cloud policies and algo-
rithms. Calheiros et al. in [28] claim that cloud simulation 
provides an avenue to simplify the process of quantifying the 
performance of scheduling and allocation policy on cloud 
infrastructure. They argue that because the cloud supports a 
variety of internet-based applications that require different 
configuration and deployment requirements, there is a need 
for a modelling framework that enables seamless model-
ling, simulation, and experimentation of cloud properties. 
Many other researchers [14, 15, 23, 24] also posit that the 
advantages of using simulation include flexibility to switch 
between different models of cloud providers, repeatability, 
and self-contained platforms for experiments.

On the contrary, cloud simulation might not be cheaper 
in terms of the realism of produced results. In addition, the 
capability of cloud simulator tools is not exhaustive because 
each one is usually designed to address a specific process 
of the cloud, for the cloud is usually a combination of sev-
eral complex components [23]. To successfully use a cloud 
simulation tool, comprehensive documentation of the tool is 
required. Likewise, users must be conversant with the pro-
gramming language required to use the tool. When users 
are not familiar with the programming language required, 
learning a new language requires some effort resulting in 
a loss of time. The availability of cloud simulation tools is 
limited, not all cloud simulation tools are open source, and 
this defeats the claim that using real infrastructure requires 
financial cost [23, 25]. Cloud tools require regular updates 
to include new and emerging features in the cloud, this 
becomes a problem if the tool is not regularly updated [24]. 
In summary, simulation experiments rely heavily on param-
eters to be accurate, and so the challenge remains - how to 
choose an accurate parameter. As a result, if the parameters 
are not right, an incorrect simulation result is inevitable.

In this paper, we present a dynamic load-balancing algo-
rithm that combines carefully selected key server metrics 
specific to three-tier web applications, to determine the 
weight of a server. The proposed algorithm and architecture 
improve performance degradation due to the negative effect 
of flash crowds and resource failures, limitations such as 
single point of failure, reduces excessive re-routing using 
HAproxy, and quick sensing of uncertainties using selected 
key server metrics. It complements and works cooperatively 

with auto-scaling mechanisms in cloud data centres to 
achieve its objectives. While previous work focused on a 
few server metrics, this research focused on server metrics 
that directly impact three-tier cloud-deployed applications 
and the algorithm can be extended to function in a multi-
cloud environment. Moreover, due to the stated disadvan-
tages of using cloud simulation tools, this research uses 
real cloud infrastructure to experiment with the proposed 
algorithm. This research has access to a private cloud and 
researchers are conversant with using the cloud infrastruc-
ture, so this prevents the challenge of time and cost. We 
argue that running our experiments on real cloud infrastruc-
ture presents real behaviours of resources used and therefore 
produced more realistic results. This research validates a 
baseline algorithm and compared the baseline algorithm 
with round-robin and our novel algorithm. Also, it extends 
previous research by [4] to accommodate extensive experi-
ments on flash crowds and resource failure situations in 
cloud-deployed applications.

Motivation

A good load-balancing algorithm should reduce response 
time, increase throughput, and improve the utilisation 
of resources while it enhances system performance at a 
lower cost. Furthermore, a suitable load balancing tech-
nique should consider different metrics to make it relevant 
for applications whose size and needs may increase and 
which may need to use more resources [1]. A load balancer 
becomes ineffective when it does not match the traffic pat-
terns and instantiates additional resources accordingly. Con-
sequently, the result of an ineffective load balancer is an 
increased load on existing servers and increased application 
latency.

Research [8–10] confirms that standard load-balancing 
techniques will not be sufficient for many applications 
deployed on the cloud. Cloud-deployed web applications 
popularly called SaaS are interactive web applications whose 
usage fluctuates, so there is a need to monitor and efficiently 
balance the workload of these applications to ensure consist-
ent performance. These web-based applications commonly 
suffer from flash crowds and sometimes resource failures; 
because of these challenges, we posit that SaaS will benefit 
from dynamic load balancers.

One approach to resolve the challenges associated 
with standard load balancing techniques and algorithm is 
to include in the algorithm the key factors that affect the 
real-time behaviours of a server and cloud resource. The 
following: CPU utilisation, memory utilisation, network 
bandwidth, number of threads running, and network buffers 
were carefully chosen as the major server metrics responsi-
ble for determining a VM’s real-time capacity and load, in 
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this research. The use of the above server metrics in a load 
balancing algorithm will enable a load balancer to distribute 
the load based on the current capacity of a server, thereby 
leading to better utilisation of resources.

Our proposed algorithm enhances the previous load bal-
ancing algorithm proposed by Grozev et al. [8]. The pro-
posed algorithm combines dynamic load balancing tech-
niques with key server metrics to calculate the weight of 
a VM. Each VM is assigned a weight based on its current 
utilisation and capacity. Therefore, the probability of using 
a VM changes dynamically during runtime every time its 
current state is evaluated. This concept is represented in our 
novel load balancing algorithm, depicted in 1.

Use Case Scenarios

The proposed load balancing algorithm will combat the fol-
lowing issues in a three-tier cloud-deployed application:

Flash Crowds

Flash crowds are rapid, fluctuating, exponential, and legiti-
mate web request surges that occur due to increased user 
requests in web applications [7, 29, 30]. Flash crowds occur 
without prior notice and may become difficult to manage. 
A common solution to flash crowd is the use of autoscal-
ing services in combination with load balancers [8, 31]. 
Commercial cloud providers commonly use autoscaling 
services to launch new VMs after an application already 
experienced increased user requests for a specific period of 
time, a time usually set by users. The services will continue 
to monitor user requests and will often terminate some VMs 
and services after a steady stream of user requests has been 
established. In this research, our proposed algorithm can 
complement the role of an autoscaler in cloud deployment. 
The proposed algorithm will effectively balance application 
workload across VMs and maintain the consistent perfor-
mance that is in line with predefined service level agreement 
(SLA) before new resources are provisioned during flash 
crowds situations.

Resource Failures

Resource failure in cloud happens when a component of a 
cloud environment fails to function as it is intended to or 
does not start up when required. Authors in [32, 33] iden-
tified hardware, virtual machines and application failures 
as the three common resource failures in a cloud environ-
ment. Authors in [34] argued that faults lead to partial fail-
ures in cloud. These authors classified failures in terms of 
fault namely; network faults, physical faults, process faults, 
and service expiry faults. The failure of any cloud resource 

can happen abruptly, thereby, resulting in degradation of 
performance of cloud services or even a total loss of ser-
vice. One of the common methods to mitigate the effect of 
resource failure is to use timely intervention of autoscalers 
and load balancers to mitigate the effect of resource fail-
ure. Meanwhile, an autoscaler requires time to launch new 
resources, the time between the launch and full functionality 
of resources usually results in performance degradation if 
current user requests are not properly managed [7]. There-
fore, our proposed algorithm will aid in maintaining accept-
able service performance while the autoscaler provisions 
new resources. Our proposed algorithm combines dynamic 
and adaptive methods to effectively distribute workload by 
re-assigning weights to available servers.

Application Architecture and Requirements

This work primarily focuses on three-tier web applications. 
This architecture is an enterprise software architecture and 
a common architectural pattern for web applications that 
supports loose coupling, scalability, reliability, efficient load 
balancing, etc. [35–37]. It features three physical deploy-
ment tiers of logical layers (code organisation) of a software 
application. Therefore, a three-tier web application has three 
or more layers deployed across three physical tiers [35, 38]. 
These layers are referred to as

• Presentation Layer: This represents the user interface, 
and is commonly referred to as the presentation or client 
tier.

• Business/Domain Layer: This layer contains the business 
logic and sometimes an application facade. The business 
logic is responsible for the manipulation of application 
data; application of business rules and policies; and 
ensuring data consistency and validity. This is commonly 
called the App Tier and is deployed on the application 
server.

• Data Layer: This layer abstracts the logic to manage the 
persistent data. It is commonly called the data tier.

The main reason for deploying software layers across mul-
tiple tiers is to ensure a balance between performance, scal-
ability, fault tolerance, and security [36]. The presentation 
layer often executes at the users’ end and is thus not a focus 
of this research work. The business and data layer of a three-
tier web application is executed in the back-end server and 
can be scaled because they are deployed across different 
tiers.

The business layer commonly consists of one or more 
Application Servers (AS) which are hosted in separate VMs 
in Infrastructure as a Service (IaaS) cloud environments, 
thus supporting scalability. In addition, performance can be 
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achieved because one of the goals of the cloud is the speed of 
network communication. Therefore, network boundaries (tiers) 
are not an issue, so each tier can have multiple running servers 
that communicate seamlessly while they accommodate user 
workload. Load balancing also becomes easier because the 
application and database functionality is separated, so the load 
balancer can be focused on a specific tier. In terms of fault tol-
erance, each tier is isolated, so any tier can be modified without 
affecting the other tiers. Adequate security policies can also be 
enforced within each tier without affecting users. Horizontally 
scaling the business layer by adding application servers VMs 
will improve the ability of a load balancer to distribute incom-
ing requests. However, this is not always the case if the applica-
tion’s business layer is designed to keep session data. For this 
research, we focus on applications whose domain layer does 
not keep session data in memory, these types of applications 
are called stateless applications.

The data layer also consists of one or more database 
servers. However, this layer often becomes a performance 
choke point because of the requirements for transactional 
access and atomicity [8, 39]. Some techniques such as 
replication, caching, and sharding are recommended to 
ease the scaling of the data layer [8, 35]. These tech-
niques are application specific, so will be impossible to 
include them in a generalised framework that targets any 
three-tier web applications. In short, the right balance 
for applying the above technique is domain-inherent. 
Therefore, this research work does not cover application-
specific data deployment. Our approach assumes data has 
been deployed appropriately and will focus on distribut-
ing workload effectively across the app tier or application 
server layer.

The Proposed Approach

As discussed in "Application Architecture and Require-
ments" about the focus of this research on stateless appli-
cation, a key principle behind stateless applications and 
our proposed approach is session continuity. Session 
continuity is an important factor in distributing requests 
across any application server. “Session continuity ensures 
that end-user sessions, established over any access net-
works, will not lose connection or any internal state even 
when different servers process the user requests [4]”. Ses-
sion continuity is the principle behind the improved per-
formance of stateless applications. Stateless applications 
do not keep track of requests made previously or store 
them on servers, so user requests can be distributed across 
any application server without any difficulty. Also, state-
less applications can be easily scaled because they do not 
require the persistence of end-user Internet Protocol (IP).

Load Balancing Architecture

Figure 1 depicts the design architecture of our proposed load-
balancing service. The load-balancing algorithm (load balancer 
controller) forms part of our load-balancing service, including a 
load-balancer software (HAProxy), and a monitoring module. 
The load balancer controller returns the weight of all partici-
pating servers to the load balancer software at a specified time 
that will be discussed later. The monitoring module monitors 
all servers for scaling/de-scaling purposes, the health of servers, 
and the frequency of incoming user requests.

The communication strategy used in the above design is 
the message-based communication strategy. This strategy 
improves decoupling, flexibility, and maintainability [40]. 
This included serialisation of data when required, particularly 
when transferring data to calculate the weights of the server.

The load balancer and other components were deployed 
on the same VM in the same data centre with the test web 
application. The co-location of these components helps to 
achieve fast detection of flash crowds and perform quick 
adaptations.

Overall Architecture

Figure 2 depicts the overall architecture of the proposed 
load-balancing system and software application. The con-
ventional three-tier web application was extended to include 
an extra layer of components. This extra layer represents the 
proposed load balancing service and an auto-scaler. This 
extra layer of component enables the migration of existing 
three-tier application to the cloud with little or no modifica-
tion to the code base.

The workflow of this architecture is as follows: users will 
interact with the presentation layer and requests will be sent 
to an entry point that consists of VMs that host our load 
balancing service. The load balancing service will send user 
requests to the application server. These application serv-
ers are hosted on separate VMs, and they host the domain 

Fig. 1  Proposed load balancing architecture [4]
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layer. The domain layer then interacts with the data layer 
to manipulate required data before sending back responses 
to the user. The data and domain layers consist of multiple 
servers installed across VMs. The process is repeated every 
time requests come in, and the load balancing service dis-
tributes the workload accordingly.

Design and Deployment Architecture

An efficient and bespoke load-balancing algorithm should 
include different metrics that are relevant to the application it 
supports [1]. Therefore, the design of the proposed load bal-
ancing algorithm will address issues and limitations that were 
discussed in "Related Work" by incorporating techniques and 
carefully selected metrics that are important to load-balance 
an interactive three-tier web application. These issues spot-
light areas of improvement in a load-balancing algorithm and 
architecture. Below we discuss these issues and techniques to 
mitigate them as used in the proposed design.

• Scalability: Scalability in load balancing is the ability 
of a load balancer to continue to distribute workload 
across any finite number of servers. The proposed load-
balancing architecture will scale across any number of 
servers because it uses a proven load-balancing system - 
HAProxy 2.4.2-1 [41]. HAProxy is an open source, very 
fast and reliable reverse proxy high-performing TCP/ 
HTTP load balancer [41]. It is recommended for most 
websites and is particularly suited for high-traffic web-
sites. It is commonly used by major websites and powers 
a significant portion of the world’s most visited sites [41]. 
In addition, our experiments featured the removal and 
addition of a varied number of heterogeneous VMs to test 
scalability. The solution proved its ability to distribute 
the load across a finite number of nodes on the server.

• Fault Tolerance: Cloud fault tolerance is the capability of 
the infrastructure to support uninterrupted functionality 
of deployed applications despite failures of components 
[42, 43]. In the cloud, fault tolerance approaches include 

Fig. 2  Proposed overall layered 
architecture in a single data 
center
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the use of various system models that depend on network 
topology, proactive approaches such as the use of a fault 
detection system, reactive approaches such as the use of 
VM placement model, and other approaches such as the 
use of machine learning and meta-heuristic approach in 
algorithms [34]. The ability of a load balancer to con-
tinue to deliver services despite failure [44] of a cloud 
component is highly desirable in guaranteeing the avail-
ability and reliability of cloud-deployed applications. The 
proposed architecture created multiple load-balancing 
front-ends and standby application servers as failover 
systems. This technique also includes self-healing, job 
migration, and replication policies of HAProxy as an 
additional fault tolerance technique in the proposed archi-
tecture. The proposed approach utilised HAProxy’s high 
availability keep-alive technology to regularly monitor 
servers and services for a fast job migration. More so, 
the use of floating IPs that can be moved between load 
balancers to allow continued availability of service at 
optimum performance level.

• Reduced Overhead and Latency: Performance overhead is 
the extra time taken in performing an assigned functional-
ity by a cloud component. A high-performance overhead 
will lead to an increased communication cost and notice-
able performance degradation [45] in running applications. 
In a load balancer, performance overhead is influenced by 
several factors, including the load balancing algorithm 
[14, 44]. Our proposed load balancing algorithm runs effi-
ciently with negligible performance overhead of less than 
2% when compared to other load balancing algorithms. In 
addition, the proposed load-balancing architecture exem-
plifies a decentralised approach to collecting and updating 
server metrics. This centralised approach is a recommenda-
tion by authors in [14] to reduce performance overhead and 
latency. Also, in the proposed architecture, each participat-
ing VM is preinstalled with glances [46] agents, a cross-
platform monitoring tool for monitoring system resources 
and utilisation. Glances agent uses the RESTful Applica-
tion Programming Interface (API) of glances to capture 
server metrics that are sent to a time series database called 
InfluxDB. The use of the RESTful API improves perfor-
mance when data is collated.

• Server Metrics: Server metrics play an important role in 
determining the efficiency of a load-balancing algorithm. 
Chen et al. [9] encouraged the use of varied but applica-
tion-specific server metrics in load-balancing algorithms. 
The proposed algorithm combines carefully selected key 
server metrics in its formulation. These server metrics are 
specific to three-tier web applications and are also recom-
mended by various authors [8, 10, 16, 21]. We argue that 
besides popular and common metrics of CPU, Memory, 
and network bandwidth utilisation, the thread count of a 
processor is a vital server metric that is often overlooked. 

Thread count determines how efficiently data can be 
transmitted in and out of a system, and provides a sum-
mary of concurrent requests within a server. The com-
bination of these metrics indicates the true state of the 
server’s current workload; thereby providing adequate 
information for the load balancer to perform efficiently.

Proposed Load Balancing Algorithm

This section describes our novel weight assignment tech-
nique and load balancing algorithm.

Proposed Weighting Technique

The proposed VM weighting technique for our novel load 
balancing algorithm is an improvement on the research work 
by [9] and [18]. The weighting technique combined four 
server metrics to calculate the weight of a VM and an addi-
tional server metric as a key determining factor in the load-
balancing algorithm. These server metrics are represented 
as follows: M

k
 represents Memory utilisation, B

k
 represents 

Bandwidth utilisation, C
k
 represents CPU utilisation, T

k
 

represents Thread Count and NB
k
 represents Transmission 

Control Protocol (TCP) network buffer/queues.
The weight of a VM represented as W(X

k
) requires first 

calculating the real-time load, Lr(X
k
) , as shown in eq.  (1). 

The real-time load uses the following server metrics: M
k
 , B

k
 , 

C
k
 , T

k
 . These metrics are retrieved in percentages from the 

monitoring tool and therefore converted to integer values by 
dividing each of them by 100.

To compensate for the presence of bias and to reflect the 
influence each metric has on a VM, weight factors were 
used for all the metrics, as shown in eq.  (1). e1, e2, e3, e4 
represents the weights of CPU, RAM, bandwidth, and 
thread count respectively. The sum of these weights is 1. 
The weight factor values were carefully chosen experi-
mental proven values. Weight factor values were fitted in 
experiments, and chosen values were the best-fit values 
representing the unique influences of each server metric of 
an application server for a three-tier web application. The 
chosen values for each weight factor are 0.5forCPU, 0.3for-
RAM, 0.15forbandwidth, and0.05forthreadcount for thread 
count. CPU utilisation has the biggest weight because our 
chosen class of application becomes processor intensive 
when a lot of data is being passed. Memory utilisation has 
the next biggest weight because its influence on a VM can 
quickly lead to a non-responsive server when the utilisation 
is high.

(1)
Lr(X

k
) = (e1 ∗ (C

k
∕100)) + (e2 ∗ (M

k
∕100))

+(e3 ∗ (B
k
∕100)) + (e4 ∗ (T

k
∕100))
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Network buffer was not included in eq. (1), so no weight was 
assigned to it. The reason network buffer was not included in the 
equation is because this metric stores packets temporarily and 
can measure the ratio of network utilisation to availability of a 
network, consequently its influence on a server is constant. In this 
experiment, the network buffer was used in the load balancing 
algorithm to regularly monitor network availability, mostly when 
the real-time load of a server is being calculated because a larger 
buffer size reduces the potential for flow control to occur.

We define a threshold for load comparison as the aver-
age value of all participating application server VM load, as 
shown in eq. (2). n represents the number of all participating 
application server VMs.

To further improve and analyse the weight calculator, some 
modalities are set out as follows: if Lr(X

k
) ≤ Lr

th
 , this means 

the application server’s load is relatively small, so the weight 
assigned to the server can be increased. If it is the opposite, 
the assigned weight should be decreased because the server’s 
load was high. To define and quantify these changes, a modi-
fication parameter � is defined as shown in eq. (3).

Following these calculations, the real-time load can now be 
calculated and a load comparison of servers can also be done 
using the aforementioned equations. The weight calculator 
will return the lowest real-time load value for the least uti-
lised VM, but HAProxy, our chosen load balancer, functions 
in a reverse manner. This means the load balancer expects 
or appropriates the biggest weight value for the least utilised 
VM. To make the weight calculator function in line with 
HAProxy’s policy on weight, the inverse of the real-time 
load, Lr(X

k
) , in eq. (4) is computed. This makes the lowest 

real-time load value to be assigned the biggest value.
Lastly, HAProxy’s weight policy is bounded for real integer 

values, this means that the supplied weight must be a whole 
number; otherwise, it will not be consistent with the original 
intention. The proposed novel algorithm rounds up any decimal 
value that is greater than eight to make the value a whole num-
ber. The weight calculator is represented in eq. (4).

Proposed Load Balancing Algorithm

We present the proposed novel load balancing algorithm in 
Algorithm 1. This algorithm is an abstraction of the overall 

(2)Lr
th
=

∑

Lr(X
k
)

n

(3)� =
Lr(X

k
)

∑

Lr(X
k
)

(4)W(X
k
) =

{

(
1

Lr(Xk)
+ �), Lr(X

k
) ≤ Lr

th

(
1

Lr(Xk)
− �), Lr(X

k
) ≥ Lr

th

process flow of the weighting and load-balancing logic. It is 
a hybrid-dynamic load balancing algorithm that computes 
every two seconds the utilisation of all participating servers. 
After computing the utilisation of each server VM, it then 
assigns a weight to each server during runtime using our pro-
posed weighting technique, this process also changes the load 
balancer’s configuration, in other words, the load balancer is 
notified of the changes. The load balancer then automatically 
adjusts the amount of load distributed to each server based on 
the weight of each server.

The input parameters for the algorithm are as follows:

• Thc—CPU threshold;
• Thr—RAM threshold;
• Thbw—Bandwidth threshold;
• Th

t
r—Thread count threshold;

• VM
as—list of currently deployed application server VMs;

The algorithm first receives and sets the overall threshold for 
the above input parameters. Experimentally and research-
approved threshold values of 80%, 80%, 80%, 85% for CPU, 
RAM, Bandwidth, and Thread count respectively are set. 
Experimentally, we performed profiling tests on a medium 
application server VM using a synthetic workload generated 
from real web application requests to corroborate the thresh-
old values. A pre-defined SLA that states that 90% of requests 
should be handled within one second, as recommended by [7] 
was used to determine the average utilisation percentage.

In line 7 of the algorithm, the function TCPBufferOver-
loaded() represents an extracted logic for checking TCP 
network buffer NB

k
 . This function utilises the netstat com-

mand to check for the presence of a TCP socket whose ratio 
of the buffer sizes, Recv-Q and Send-Q values, is greater 
than 0.9. The value of 0.9 is a research-verified value by [8]. 
A ratio value greater than 0.9 means the network buffer is 
overloaded and requests will not arrive promptly at the VM.

The algorithm regularly retrieves the utilisation values of our 
chosen VM metrics. After the retrieval, in line 2, the algorithm 
loops through available server VMs, and compare each utilisa-
tion metric of the current server against the set threshold. The 
algorithm then computes the weight using our weighting tech-
nique in eq.(4), and carries out the TCP network buffer check. 
A weight is then assigned to each server VM whose network 
buffer is not overloaded as depicted in line 9. If the server VM 
is fully utilised 100% , a weight of 0 is assigned to the VM as 
shown in line 11. A fully utilised VM with a weight of zero 
means, the VM will not accept any more incoming requests 
until the utilisation rate is lower or equal to the set threshold.

In line 14, requests will be distributed by the load bal-
ancer according to the weight of each server VM in a round-
robin manner. This process distributes server load propor-
tionally based on a VM’s real-time capacity.
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Algorithm 1: Novel Load Balancing Algorithm.
Input: si, Thc, Thr, Thbw, Thtr, VMas

1 RetrieveAllocateToInputThresholdValues ();
2 for each VM, vmi ∈ VMas do
3 Utlcpu ← CPU utilisation of vmi;
4 Utlram ← RAM utilisation of vmi;
5 Utlbw ← Bandwidth utilisation of vmi;
6 UtlThreadCount ← Threadcount of vmi;
7 if (Utlcpu ¡ Thc & Utlram ¡ Thr & Utlbw ¡ Thbw &

UtlThreadCount ¡ Thtr & !TCPBufferOverloaded ()) then
8 W (Xk) ← CalculateWeightbyutilisation (Utlcpu, Utlram,

Utlbw, UtlThreadCount, VMas, vmi);
9 assignweighttoVM (vmi,W (Xk));

10 else
11 assignweighttoVM (vmi, 0);
12 end
13 end
14 HAProxyAssignRequest (si, V M)

A visual representation of the proposed algorithm and the 
weighting technique is depicted in Fig. 3.

Experimental Environment

We depict our experimental setup in Fig. 4. The proposed 
load balancing algorithm was evaluated on a private cloud 
infrastructure running OpenStack, the train version. The 

experimental testbed consists of seventeen heterogeneous 
VMs with characteristics as shown in Table 1.

Apache Jmeter, an open source load testing tool for 
measuring and analysing the performance of services, 
was deployed and run on a separate stand-alone machine. 
HAProxy was deployed alongside our load-balancing solu-
tion on two VM instances. Eight medium instances of VMs 
were launched as application servers, two extra medium 

Fig. 3  Visual representation of 
the load-balancing algorithm
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instances of application server VM are in standby mode, 
and four large VM instances were launched as database serv-
ers. Each application server had installed on them, technolo-
gies for hosting our case study applications, and a part of 
the load-balancing module that was responsible for polling 
utilisation values.

Case Study Application

The case study application used in this research is a state-
less, three-tier, open source multi-tenant E-Commerce appli-
cation. It is a pre-built application that used Orchard Core 
framework coupled with elastic search for its search func-
tionalities. The application is a data-driven application that 
is backed by MySQL database. The case study application 
was deployed on each participating application server. The 
database was also deployed and replicated on all participat-
ing database servers.

Workload

Apache Jmeter was used to simulate user requests that were 
sent to the case study application. Apache Jmeter was hosted 
on a standalone machine because of the need to simulate 
realistic requests in terms of location and time. Our evalua-
tions seek to characterise prominent load balancing perfor-
mance parameters as identified by researchers. It will also 
compare the difference in performance between our novel 
load balancing algorithm and the baseline load balancing 

algorithm by Grozev et al. [8]. We generated workload from 
Apache Jmeter by simulating loads of various scenarios 
using a predefined model that will be discussed below.

Firstly, we profiled one of our application instances to 
determine the number of requests that can be successfully 
handled within one second. Secondly, we profiled our appli-
cation instance again to determine the number of requests 
that can be handled with an SLA constraint of 90% within 
one second as recommended by [7].

An average combination of the two profiles showed that 
our application server instance can handle between 90 and 
92 requests per second. Based on this profiling, we created 
our workload to emulate a Poisson distribution because of 
the nature of user request arrival as discussed by [47]. We 
used Jmeter to send requests based on the Poisson workload 
model to our deployed application. We repeated each experi-
ment three times and took the average of the repeated tests 
in all of our evaluations.

Baseline Application and Evaluation

To evaluate our proposed load balancing solution; we test 
the performance of our algorithm, and we compare our algo-
rithm with a baseline algorithm by [8] and a standard load 
balancing algorithm - round-robin algorithm. Our evaluation 
sought to characterise our algorithm using response times, a 
prominent load-balancing performance parameter [14, 44].

Performance Analysis and Results

This section discusses the analysis and performance com-
parison of our novel algorithm and the benchmarks. In this 
paper, we extend the experiments performed in our previous 
research [4] to include more resource failures and signifi-
cantly increased flash crowds.

Table 1  VM capacity used in experiments

Characteristics m1.medium m1.large

VCPUs 4 8
Memory Size 4GB 8GB
Storage Size 40GB 80GB

Fig. 4  Experimental test-bed
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Fig. 5  Fully utilised VM nodes

(a) One Fully Utilised Node. (b) Two Fully Utilised Nodes.

(c) Three Fully Utilised Nodes. (d) Four Fully Utilised Nodes.

(e) Five Fully Utilised Nodes.

(a) 1 Server Failure. (b) 2 Server Failures. (c) 3 Server Failures.

(d) 4 Server Failures. (e) 5 Server Failures.

Fig. 6  Distribution values of server failures
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Performance Under Resource Failures

To test the algorithms’ performance, we first validated our 
novel algorithm by testing its ability to distribute workload 
across VM. The baseline algorithm by [8] was also tested 
to ascertain it produces similar results recorded by the 
researchers. We simulated varying numbers (1–5) of over-
utilised VM as depicted in Fig. 5. The aim of this experiment 
was to test if the proposed novel algorithm will assign the 
correct weight to the VM, and if it will redirect workload 
to other VMs while correctly assigning appropriate weight 
to these working VMs. The proposed novel algorithm uni-
formly distributed workload among available VMs within 
the stipulated time demanded by the SLA.

The aim of simulating resource failure is to test the level 
of fault tolerance and scalability of the load balancing sys-
tem in this research. To replicate resource failure situations, 
especially hardware failure, some VMs were stopped and 
removed from the available pool of participating VMs. VMs 
were removed at 300ms time point at every experiment. 
VMs were gradually added back to the pool after five sec-
onds to emulate recovery from failure. In total, five different 
server failure scenarios were created.

The performance of the three (novel load balancing algo-
rithm, baseline algorithm, and round-robin algorithm) algo-
rithms were compared in all the experiments. The round-
robin algorithm performed worst, as depicted in Fig. 6. The 
number of requests the round-robin algorithm handled when 
it encountered between one and two server failures were 10% 
less than the stipulated SLA requirement. The performance 
of the round-robin algorithm depleted when server failure 
was more than four. The algorithm handled less than 80% 

of requests within one second. This shows that randomly 
distributing workload, even uniformly, cannot suffice for 
our chosen class of application. This type of load balancing 
might be sufficient for applications that are not critical or 
resource intensive.

The baseline algorithm by [8] performed better than the 
round-robin algorithm, as shown in Fig. 6. When server 
failures were not more than three, the baseline algorithm 
could handle approximately 90% of requests, albeit at a 
much higher response time compared to the novel algorithm. 
When server failures increased to five, the algorithm suffered 
from performance degradation. The response times were 
high, with values between 1.2 and 1.6 s. The percentage 
of requests handled declined to less than 80% of requests. 
Also, we noted that at the peak of server failures, the algo-
rithm became unresponsive resulting into errors as shown 
in Fig. 7.

The proposed novel load balancing algorithm distributed 
requests within the stipulated SLA as shown in Fig. 6. It 
did not violate the SLA at any point of the server failure. 
Response times were constant and improved compared to the 
two other algorithms. During all server failures, the novel 
algorithm attended to over 90% of requests between 0 ms 
and 998ms. The result showed that response times of our 
novel algorithm falls within an acceptable range and were 
less than the response times of the two benchmark algo-
rithm. This proves that the proposed novel algorithm func-
tions best for our chosen class of applications.

To explore boundaries where our approach starts to break 
down, the ratio of the number of server failures to available 
servers was experimented with. The result showed that to 
achieve the SLA recommendation of 90% of requests to be 
handled in one second, using our workload model with the 
number of requests between 1000 and 50,000 requests, a 
minimum of three VMs should be available and running. 
Figure 7 showed that the novel algorithm had less than 1500 
failed requests when there were five server failures, unlike 
round-robin and the baseline algorithm that had over 3000 
failed requests with response times more than 1 s.

Performance Under Flash Crowds

To test the algorithms’ performances under flash crowds sce-
nario, we simulated flash crowds by updating our request 
workload to exponentially increase for a period of 300ms 
every five seconds within one minute. The percentage of 
flash crowds ranged between 110% and 320% of the nor-
mal workload. The three algorithms consistently distributed 
workload across available VMs. The three algorithm all han-
dled 90% or more requests within one second, as depicted in 
Fig. 8a. When the flash crowd reached 150%, their response 

Fig. 7  Failed request chart — error rates
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times varied but they all maintained the SLA constraint of 
attending to 90% of requests within one second.

Flash crowds of 188% as shown in Fig. 8c revealed that 
the baseline and round-robin algorithm’s performance are 
starting to get depleted but with failed requests of 8% of the 
overall requests.

Flash crowds of 240% revealed that the round-robin 
algorithm could only handle 50% of requests at approxi-
mately 300ms when the first flash crowd happen, and 56% 
of requests when flash crowds occurred a second time. 
However, Fig. 8d showed that the round-robin algorithm 
took 1190ms before it could meet 67% of requests, thereby 
violating the SLA constraint. The baseline algorithm as 
shown in Fig. 8d did better than the round-robin algorithm. 
The baseline algorithm handled 70% of requests at around 
300ms when the first flash crowd hit, and then handled 
81% of requests when the second flash crowd happened. 
The baseline algorithm handled a total of 89% of requests 
at 999.987ms. The baseline algorithm could not handle 
90% of requests within one second. The novel algorithm 
as shown in Fig. 8d handled 77% of requests at 300ms 
when the first flash crowd hit, and 85% of requests when 
the second flash crowd occurred. The novel algorithm still 

maintained the handling of a minimum of 90% of requests 
within one second, even though the response time was 
999.999ms longer than the previous occurrence of flash 

(a) 125% Increased
Request Flash Crowds.

(b) 150% Increased
Request Flash Crowds.

(c) 188% Increased
Request Flash Crowds.

(d) 240% Increased Request Flash
Crowds.

(e) 320% Increased Request Flash
Crowds.

Fig. 8  Cumulative distribution of flash crowd

Fig. 9  Failed request chart – error rates during peak flash crowds
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crowds; with a response time between 960.905ms and 
992.798ms.

A flash crowd of 320% above the normal is shown in 
Fig. 8e. Figure 8e shows a different calibration of the 
response time because it took longer for the algorithms to 
attend to requests. Round-robin algorithm handled 23% 
and 21% of requests when flash crowds of 320% occurred. 
The overall average response time of the round-robin algo-
rithm was 450ms longer than the other two algorithms. 
The baseline algorithm handled 50% and 56% of requests 
during flash crowds of 320%. The baseline algorithm could 
only handle 70% of requests within one second before the 
algorithm started to timeout. The novel algorithm han-
dled 70% and 80% of requests when flash crowds of 320% 
occurred. It took a longer time for the novel algorithm 
to attend to 90% of requests, this means a flash crowd of 
320% above normal workload will break the three algo-
rithms if no extra VM is provisioned. The ability of the 
algorithm to consistently distribute workload during the 
varying scenarios confirms and validates our choice of 
carefully selected metrics.

Figure 9 showed the amount of failed request at the peak 
of flash crowds - 320% flash crowds. The graph showed that 
the novel algorithm recorded less than 2000 failed requests 
at the peak of the flash crowds compared to the round-robin 
which had almost 19000 failed requests and the baseline 
algorithm which had 14560 failed requests.

To test the effect of the auto scaler when there is a flash 
crowd and how the proposed load balancing service will 
work with an autoscaler, the auto scaler was programmed to 
start when all the available VMs utilisation exceeded 89% 
usage. In addition, two extra VMs were kept as standby 
VMs, these two VMs will be used by the autoscaler to 
launch extra VMs when needed.

Research Limitation

The scope and limitations of this research are discussed 
using the model of experimental research limitations. This 
approach is characterised by evaluating the research’s pro-
cess through the lens of internal and external validity and 
threats to validity. Identifying and defining the variables of 
interest, including how to measure them in a reliable and 
valid manner, is the first step in evaluating the validity of 
experimental research’s data [48, 49].

This research identified potential variables and their 
measures through the extensive literature on similar research 
work. This research then carefully selected widely cited vari-
ables and their units of measurement from research works 
such as [7–9, 50, 51]. Identified variables are but not limited 
to CPU, RAM, Network buffer, bandwidth, response time, 
throughput, latency, and so on.

A research design has strong internal validity if the 
observed relationship is not related to extraneous variables 
such as differences in subjects, location, or other related fac-
tors [48, 49, 52]. To create a strong internal validity for this 
research, the appropriateness of the variables were consid-
ered before deciding to use them.

The load balancing algorithm apply to three-tier web 
applications; therefore, the behaviour of the algorithm 
is uncertain when used in other cloud services. Also, the 
number and size of user requests used in the experimental 
evaluations were within the limits of a private cloud. There-
fore, the results of this study should not be generalised to 
extremely large public clouds.

The use of a real cloud infrastructure nullifies the effects 
of location and setting on experimental scenarios. The rea-
son for this is that real infrastructure corresponds to a natural 
context for using the cloud.

Conclusions and Future Work

Web applications commonly suffer from flash crowds and 
resource failures, which degrade their performance. We have 
created a novel weight assignment load balancing algorithm 
and architecture for cloud-based three-tier web applications. 
This new algorithm utilises five carefully selected server 
metrics to determine and assign weight to server VMs by 
analysing their utilisation values to determine a VM’s real-
time load. The server metrics are as follows: thread count, 
CPU, RAM, network buffers, and network bandwidth uti-
lisation. Our novel load balancing algorithm addresses the 
challenges faced by three-tier web applications deployed on 
cloud.

To tackle single point of failure, reliability, and scalabil-
ity, a highly available deployment architecture and a stand-
ardised load balancer software were also used. Addition-
ally, the proposed load balancing algorithm and service were 
deployed in the same data centre. As a result, rapid adapta-
tion to changes in the environment, reduced communication 
overhead, and faster network capabilities were achieved.

Using a case study e-commerce web application, the load 
balancing solution and benchmark algorithms were evalu-
ated on an OpenStack private cloud. Firstly, the novel algo-
rithm was validated on the test bed by evaluating its ability 
to distribute workload evenly. Secondly, the novel algo-
rithm’s performance was compared with a baseline load bal-
ancing algorithm by [8] and round-robin algorithm. During 
the workload simulation, we experimentally measured and 
compared the response times of the case study application.

When compared to the baseline algorithm and round-
robin algorithm, the novel algorithm proposed improved 
the overall average response times by 20.7% and 21.4% 
respectively, in resource failure situations. In flash crowd 
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situations, the novel algorithm improved response times by 
12.5% and 22.3% respectively, over the baseline algorithm 
and round-robin algorithm. These results show that the novel 
algorithm can adapt to flash crowds and resource failures 
without performance degradation.

The experiments will be extended in the future to evaluate 
other types of resource failures and the algorithms’ perfor-
mance. Additionally, we will investigate serverless deploy-
ment across both single cloud and multi-cloud environment.

Data availability This is a future work recommendation, so there is no 
available data yet.
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