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Abstract: The large time behaviour of passive contaminant in non-Newtonian peristaltic blood flow in a two-dimensional 

channel (capillary) has been examined in the present article. The power-law model is employed in order to highlight the non-

Newtonian blood characteristic. The study was conducted using the Reynolds decomposition technique, which converts a two-

dimensional transport problem into a one-dimensional transport model in which species concentration can be decomposed into 

sectional average concentration and variation from its mean value. For flow velocity, the same decomposition method is used. 

This allows the derivation of the dispersion coefficient and convection coefficient. Using Fick's law, the advection-diffusion 

equation is modified by replacing these coefficients by their corresponding average values and analytical solutions for the mean 

concentration are derived. In the absence of peristalsis effects ( 0 = ) i.e., for the straight rigid channel, the dispersion 

coefficient is invariant along the channel length. With increasing modulation (peristaltic wave) parameter,   , there is a strong 

elevation in advection coefficient in the initial half of the channel with a subsequent suppression in the second half of the channel, 

indicating that the location in the channel strongly influences advection characteristics. Advection coefficient is significantly 

elevated with increment in power-law rheological index (for shear-thinning fluids, 1n  ) across the channel length and exhibits 

an oscillatory nature due to the peristaltic waves. In the shear-thickening range ( 1n  ), with progressive increase in n, an 

increment in peristaltic modulation parameter,  , induces a marked reduction in the axially average relative advection 

coefficient. Dispersion coefficient is initially boosted along the early section of the channel with increment in modulation 

parameter whereas further long the channel this trend is reversed. Increasing aspect ratio and Péclet number consistently boost 

dispersion coefficient along the entire channel length. The study provides a solid benchmark for further generalized simulations 

with computational fluid dynamics. 

Keywords: Peristaltic pumping; blood flow; power-law model; mean concentration; advection 

coefficient; dispersion coefficient 
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Nomenclature 

𝐶(𝑥, 𝑦, 𝑡)  solute concentration 

𝑑  semi − width of channel
𝐷  molecular diffusion coefficient 

𝐷(𝑥)  dispersion coefficient 

ℎ  half of separation width between the two walls 

𝐾  flow consistancy 

𝐾1  advection coefficient 

𝑛  flow behavior index 

𝑝  pressure 

Pe  Péclet number 

𝑡  time 

𝑢(𝑥, 𝑦)  flow velocity 

⟨𝑢⟩  transversely average velocity 

𝑣wave  speed of peristaltic wave 

𝑥  axial coordinate 

𝑦  transverse coordinate 

 

Greek symbols 

𝜖  aspect ratio 

𝛾   modulation parameter 

𝜆   wavelength of peristaltic wave 

𝜇eff   apparent viscosity 

𝜏   stress 

Superscripts 

′ dimensionless 

 ̃ deviation from average 

Subscript 

𝑁 Newtonian case 

1.Introduction 

Peristalsis is a fundamental mechanism utilized in biological transport. It arises in many internal 

flow applications including blood flow in capillaries [1], gastric pumping etc.  In peristaltic flows 

in biological conduits e. g. blood vessels, longitudinally oriented muscle in the segment ahead 

of the advancing intraluminal contents contracts while the circumferentially oriented muscle 

layer relaxes in the same segment. Simultaneous shortening of the longitudinal axis and 

relaxation of the circular muscle result in expansion of the lumen and peristaltic waves are 
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generated along the vessel walls producing a very efficient propulsion mechanism. Peristalsis 

also arises in airway transport [2] and swallowing dynamics (esophageal flows) [3]. It has also 

been explored as a very efficient mechanism in biomimetic pumps for pharmacology [4] and also 

cardiopulmonary bypass blood supply [5]. Fundamental studies of Newtonian peristaltic flow 

were conducted by Jaffrin and Shapiro [6] who introduced lubrication approximations i.e., long 

wavelength and low Reynolds numbers to develop simplified solutions for peristaltic pumping 

dynamics. However, they did not consider non-Newtonian effects which have been shown to be 

important in smaller blood vessels where the rheological characteristics of blood cannot be 

neglected [7]. In recent years many excellent studies [] have therefore been communicated which 

examine peristaltic transport in non-Newtonian fluids and utilize many different rheological 

models. Raju and Devanathan [8] generalized the Jaffrin-Shapiro model [6] to consider the 

peristaltic motion of a power law fluid in a tube, with a sinusoidal wave of small amplitude. They 

derived solutions for the stream function is obtained as a power series in terms of the amplitude 

of the wave and investigated the effects of the applied pressure gradient along with non-

Newtonian parameters on the streamlines and velocity profiles. Tripathi et al. [9] studied 

viscoelastic slip flow in peristaltic propulsion with the Oldroyd-B model and a homotopy 

method. Another method, namely, the Direct-forcing immersed boundary–non-Newtonian lattice 

Boltzmann method (IB–NLBM) has also been used by several authors [10,11,12] to investigate 

the sedimentation and interaction of particles in different fluid models. Suresh and Hemadri [13] 

reviewed the accuracy of a variety of non-Newtonian models including viscoplastic Casson and 

power-law models for pharmacological peristaltic transport.  Maiti and Misra [14] studied 

theoretically the Herschel–Bulkley rheological peristaltic flow of blood through a micro-vessel 

(arteriole) of variable cross-section. They noted that flow velocity and wall shear stress are 

strongly modified by non-uniformity of the cross-sectional radius of the blood vessel of the 

micro-circulatory system and that the peristaltic transport is significantly influenced by wave 

amplitude ratio and non-Newtonian power-law index. They also observed that backward flow is 

produced by contraction of vessels and a higher possibility of trapping is associated with higher 

power-law index.  Furthermore, they identified that retrograde flow region is sustained for 

negative or zero pressure difference for Herschel–Bulkley fluids, and that shear stress difference 

between outlet and inlet in converging vessels is greater for the shear-thickening case. Tripathi 

and Bég [15] used a homotopy perturbation method (HPM) to investigate the peristaltic transport 

of generalized Maxwell viscoelastic fluids through a Darcy-Brinkman porous medium in a 

diseased blood vessel. They noted that in the entire pumping region and the free pumping region, 

both volumetric flow rate and pressure are suppressed with increasing viscoelastic relaxation 

time, whereas in the co-pumping region, the volumetric flow rate is enhanced strongly with 
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increment in relaxation time.  They also observed that the trapped bolus is expanded by with 

greater permeability of the porous medium but reduced with higher peristaltic wave amplitude 

ratio. Usha and Ramachandra [16] studied theoretically the peristaltic pumping of two-layered 

power-law fluids in axisymmetric tubes. They showed that a negative time-mean flow is 

produced in free pumping (zero pressure difference case) when one of peripheral layer and core 

fluids is non-Newtonian. They also noted that noticed that a sinusoidal wave generally produces 

a positive mean flow for power-law fluids and that the size of the trapped bolus volume is smaller 

for shear thinning cases in the core and the peripheral layer fluids. Further studies have examined 

peristaltic propulsion of Herschel Bulkley fluid in an inclined tube [17], Carreau shear-dependent 

viscosity peristaltic flows in a curved channel [18], peristalsis in Casson biofluids [19, 20] and 

Vocadlo viscoplastic peristaltic dynamics [21]. All these investigations have confirmed the 

significant influence of non-Newtonian blood characteristics on wall shear stress, pressure 

distribution and hydromechanical efficiency in peristaltic wave propagation vessels.  

Blood is a complex fluid which in addition to featuring rheological behaviour in micro-vessels 

also contains many suspensions. These include ions, proteins, oxygen, nutrients etc. Solute 

transport is an essential function of blood and involves mass transfer i.e., species diffusion and 

convection. It is also relevant to transport of drugs or toxins in physiological systems and bio-, 

chromatographic separations in medical engineering processing devices. When a solute is present 

in blood, it is convected and dispersed within the blood stream. Mathematical models of 

dispersion in blood flow are critical to understanding the fate of solutes. For example, in 

pharmacodynamics, these models can improve our understanding of the fate of drugs and their 

efficacy. The solute dispersion process in a Newtonian fluid in a rigid cylindrical vessel was first 

addressed by Taylor [22] who identified that the solute is dispersed owing to molecular diffusion 

and computed the variation in the velocity over the cross section. This constitutes the classical 

Taylor hydrodynamic dispersion theory. Later, Aris [23] generalized the Taylor dispersion 

model for both steady and pulsatile flows using the method of moments. Gill & 

Sankarasubramanian [24] further improved the Aris-Taylor model to consider solute dispersion 

at small and large times, in which an improved solution for the time-dependent dispersion 

coefficient, which tends to Taylor–Aris’s diffusion coefficient at large time, was derived using 

the series expansion technique. They also showed that following the injection of solute at small 

time, the axial dispersion process is principally dictated by the axial convection of solute rather 

than the transverse diffusion. However at large times, the solute transport is more dominated by 

molecular diffusion. A number of clinical and analytical studies of dispersion in blood have also 

been communicated. Lane and Sirs [25] investigated the dispersion of solutes in plasma and 

blood has been studied by observing the clearance at a point down-stream of a bolus of labelled 
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solution by the steady flow of unlabelled solution. They showed that dispersion of solutes during 

blood flow through a straight tube is controlled by the combined effects of solute diffusion and 

laminar convection, and motion of the erythrocytes may contribute to mixing, in the bulk of the 

flow. Caro [26] examined the dispersion of indicator flowing through blood vessels with a focus 

on velocity modification. Roy et al. [27] studied the hydrodynamic dispersion in reactive drug 

transport in a blood vessel containing a non-Darcy porous medium. They showed that higher 

values of reaction parameter and Forchheimer (non-Darcy) number suppress the dispersion 

coefficient and that maximum mean concentration is enhanced with greater Forchheimer 

numbers, although the centre of the solute cloud is displaced in the backward direction. They 

further observed that peak mean concentration is decreased over time since the dispersion 

process is largely dominated by diffusion at the large time. These studies however were confined 

to Newtonian flows. Non-Newtonian hydrodynamic dispersion however is more representative 

of actual micro-vessel blood flows. Early work in non-Newtonian dispersion was motivated by 

chemical engineering developments and interesting studies were presented by Fan and Wang 

[28] and later by Dejam [29] for power-law fluids, Shah and Cox [30] for Casson fluids and later 

Sharp [31] for additionally Bingham viscoplastic (yield stress) fluids. More recently Roy and 

Bég [32] considered transient Taylor reactive dispersion in two-fluid (micropolar and 

Newtonian) blood flow. They used the Gill decomposition method for the concentration field. 

They observed that transverse concentration is boosted with increasing micropolar coupling 

number and reaction rate. They also noted that transverse concentration is boosted with 

increasing micropolar coupling number and reaction rate; however, whereas it is suppressed with 

greater micropolar material parameter and viscosity ratio. Additionally, axial mean concentration 

peaks are reduced in magnitude and pushed further along the vessel length and also dispersion 

coefficient is reduced with increasing micropolar material parameter whereas it is boosted with 

a greater viscosity ratio. Bég and Roy [33] further investigated dual component species 

convective-diffusion transport in non-Newtonian blood flow with bulk chemical reaction through 

a two-dimensional rigid vessel is with the yield stress Casson fluid model. Two different bulk 

degradation reaction rates are included for the dual species (pharmacological agents, A, 

B). Further studies have been reported by Saadun et al. [34] who deployed the Bingham model 

and considered body acceleration effects in hydrodynamic dispersion in rheological blood flow. 

Rana and Murthy [35] deployed a two-phase Casson viscoplastic model to compute the 

dispersion of solute in an unsteady blood flow in small arteries with and without absorption at 

the wall. They showed that mean concentration of solute is decreased with increasing radius of 

the vessels and with decreasing values of Schmidt number, the molecular diffusion becomes 

more effective in the solute dispersion process, and this leads to an increase in axial 
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dispersion. Ponalagusamy and Murugan [36] analyzed the Taylor dispersion of a solute in blood 

flow in a tube using a thixotropic non-Newtonian model and including homogeneous chemical 

reaction. They showed that the dispersion coefficient is reduced with greater reaction rate 

constant whereas with increment in thixotropic parameter reduces the equivalent dispersion 

coefficient.  

The above studies did not simultaneously consider peristaltic non-Newtonian blood flow with 

hydrodynamic dispersion. This is the focus of the present study. The Ostwald-DeWaele power-law 

model is deployed. This model can accommodate both shear thinning in blood and also shear 

thickening. The latter may arise for example when there is an imbalance in the proteins and cells 

responsible for blood and blood clotting develops, the blood can become too thick. This is known 

as hypercoagulability and is characterized by shear-thickening. Therefore, the power-law model 

is also appropriate for simulating such blood flows. In previous studies alternate non-Newtonian 

models have been considered for dispersion in peristaltic blood flows including the Stokes couple 

stress model [37] and the Eringen micropolar model [38]. In the present work, a novel 

investigation is conducted for hydrodynamic dispersion in non-Newtonian peristaltic blood flow 

in a two-dimensional channel with boundary chemical reaction, as a simulation of solute 

transport in capillaries. A velocity solution is derived for generalized power-law index. The 

unsteady convective diffusive equation for concentration of solute is then formulated with 

appropriate boundary conditions. Appropriate transformations are deployed to render the model 

non-dimensional. Convection is assumed to be dominant compared to the axial diffusion. 

Reynolds’ decomposition technique is applied in order to convert reduce the two-dimensional 

solute transport model into an equivalent one-dimensional model, in which the chemical species 

concentration and velocity in the channel can be considered as the sum of the cross-sectional 

average values and their deviations from the averages. This allows the derivation of the 

dispersion coefficient and convection coefficient. Using Fick's law, the advection-diffusion 

equation is modified by replacing these coefficients by their corresponding average values and 

analytical solutions for the mean concentration are derived. The effects of peristaltic modulation 

parameter ( ) and power-law index (n) on both advection and dispersion coefficients is 

computed along the channel length. Both shear thinning blood (n <1) and shear-thickening blood 

(n >1) are investigated. The analysis presented is relevant to broadening the clinical 

understanding of the influence of rheology in peristaltic blood flows [39, 40]. 
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2.Mathematical Model  

In the present model we consider solute dispersion process in peristaltic propulsion of non-

Newtonian power-law fluid through a uniform 2-D channel (micro-blood vessel) having width 

2d and oscillating walls. The channel oscillations are imposed by traveling sinusoidal waves of 

long wavelength   which propagate along the distensible channel walls, and obey the following 

relation [38]: 

 wave

2
sin ( )y h d a x v t





 
=  =  + − 

 
 (1) 

Here a  is the amplitude, and wavev  is the speed of the peristaltic wave. The geometrical 

configuration is displayed in Fig. 1. 

 

 

Figure 1: Schematic diagram of the model geometry. 

By virtue of these assumptions, the governing equation of motion for steady blood flow is: 

 
p

y x

 
=

 
 (2) 

The symbol , ,p u  symbolize the pressure, stress and axial velocity respectively. 

The constitutive equation for power-law non-Newtonian fluids, in one dimensional shear flow may be 

written as:  
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n

u
K

y


 
=  

 
 (3) 

Here K  is the flow consistency index and n  is the flow behavior index (dimensionless). Combination 

of Eqn. (1) and eff /u y =    results in the apparent viscosity, eff , for the so-called power law fluid 

as follows  

 

1

eff

n

u
K

y


−

 
=  

 
 (1) 

It should be noted that the flow behavior index can vary from zero to infinity (0 )n    in theory. For 

0 1n  , the fluid exhibits shear-thinning (or pseudo plastic) behavior where the apparent viscosity 

decreases with increasing shear rate. Solving (2) using (3) and no slip boundary condition i.e., waveu v=  

at y h=   we obtain: 

 

1 1

wave( , ) 1
1

n

n nnh h dp y
u x y v

n K dx h

+ 
   = + −   +  

 

 (2) 

where u  is the average velocity. 

Associated with above flow scenario, the problem of solute transport (e. g., oxygen) is governed by the 

unsteady convective diffusive equation [37, 38]: 

 
2 2

2 2
,

C C C C
u D h y h

t x x y

    
+ = + −   

    
 (6) 

Here D , the molecular diffusivity of the solute (oxygen) in the fluid, is assumed to be constant. 

The initial and boundary conditions are, respectively, given as 

 ( ) 0, , ( , )  at 0   C x y t C x y t= =  (7a) 

 0,  a t   
C

y h
y


= = 


 (7b) 

 ( )  , , 0, t  a  C x y t x= →   (7c) 

Here 0C  is the initial solute concentration. 

Introducing the following dimensionless parameters: 
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wave

wave

2

wave wave

1

0

, , , , ,  ,

, , ,Pe/
n

v tu x y h d
u x t t y h

v d d a

K v v C
p p C

d D C


 

 
+

     = = − = = = =

 = = =

 (8) 

In Eqn. (8) `  ' denotes the dimensionless variable and Pe is Péclet number. Using the above scaling from 

Eqn. (8) in Eqns. (3) and (4) we have:  

 
2 2

2 2 2

22

1
,

Pe

C C C C
u

t x x y

       
+ = + 

       
ò ò ò  (9) 

 

 ( ), , 1  at 0   C x y t t    = =  (10a) 

    0,  at 
C

y h
y


= = 


 (10b) 

 ( ), , 0,  t a   C x y t x    = →   (10c) 

Here 𝜖 is aspect ratio of the channel (blood vessel) i.e., length relative to depth. Furthermore, where 

* 1u u= −  and 1 sin(2 )h x  = + . For simplicity we have dropped primes hereafter. The appropriate 

expression for u* is: 

 

1 1

1
1

n

n nnh dp y
u h

n dx h

+



 
    = −    +    

 

 (11) 

2.1 Reduced transport model 

In the subsequent analysis Reynolds decomposition technique is applied in order to reduce the two-

dimensional solute transport model into an equivalent one-dimensional model, in which the chemical 

species concentration and velocity in the channel can be considered as the sum of the cross-sectional 

average values and their deviations from the averages as given by [29, 41]: 

 ( , , ) ( , , )C x y t C C x y t= +  (12a) 

 ( , ) ( , )u x y u u x y= +  (12b) 

Here the parentheses < > represents the cross-sectional averages of the chemical species concentration 

and velocity inside the channel, defined as 
1

0
Cdy  and 

1

0
udy , and C  and u  are the corresponding 

deviations from the averages. Therefore, it follows that: 

 
0

( , , ) 0
h

C x y t dy =  (13a) 
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0

( , ) 0
h

u x y dy =  (13b) 

By substitution of Eqn. (12a) into Eqn. (9), the following equation is obtained: 

 

2 2 2
2 2 2 2 2 2

2 2 2Pe
,

1C C CC C C C
u u

t t x x x x y

 
      

+ + + = + +         
ò ò ò ò ò ò  (14) 

The associated initial and boundary conditions emerge as:  

 0   1  at C C t+ = =  (15a) 

 .  0,  at  
C

y h
y


= =


 (15b) 

 0  0,  at  
C

y
y


= =


 (15c) 

  at  0,  C C x+ = →   (15d) 

Taking the cross-sectional average of Eqn. (6) and using the boundary condition at the center of the 

channel and Eqn. (5) leads to: 

 
2

2

1
,

Pe

C C CC
u u

t x x x

 
  

+ + =
   

 (16) 

By virtue of Eqns. (15)-(13) one arrives at the following form of the advection dispersion equation: 

 
2 2

2 2 2

1 1
,

Pe

CC C C C C
u u u u

t x x x x y

 
      

 + − + − = +        ò
 (17) 

In the ensuring analysis, the following three assumptions adopted 

(i) When a sufficient amount of time has passed after the injection of the solute at the channel's inlet 

i.e., / 0C t   . This assumption is based on the fact that transverse diffusion smooths out the 

concentration fluctuations in the vertical direction and this assumption is valid at a time scale 

2( / )O h D  

(ii) The fluctuating component of concentration C , varies slowly which turns out 

/ /u C x u C x      . 

(iii) The convection is dominant compared to the axial diffusion i.e.,  Pexx x
C u C

. 

Incorporating these assumptions leads to: 
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1 1
2

2

2 1 2 1
Pe

n

n n CC nh p n y
h

y n x n h x

+ 
      

= −    
 +  +      

ò  (18) 

Solving Eqn. (18) using Eqns. (13a) and (15b, c) we obtain: 

 

3 1
2 2

2 2 (6 1)

2( 1) ( 1)(3 1)) 6(3
P

1)(4 1
e

)

n

n Cn y n y n n
C h u

n h n n h n n x

+



 
+    = − −    + + + + +    

 

ò  (19) 

Here: 

 

1

2 1

nnh p
u h

n x

  
=  

+  
 (20) 

 

2

0

1 2

1
( ) ( )

Pe

C C C C
K x D x

t x x

  
+ =

  
 (21) 

Where: 

 

2
2 2 4 4

2

2
( ) 1

3(2 1) (4 1)( )

Pe

5 2

nn h p
D x h

n n n x

 
= +  

+ + +  

ò
 (22a) 

 

1

1( )
2 1

nnh p
K x h

n x

 
=  

+  
 (22b) 

The two coefficients in Eqns. (22a) and (22b) are termed respectively, dispersion coefficient and 

advection coefficient. It is important to mention here that these three coefficients are functions of axial 

co-ordinate. Now when when n →  (Newtonian fluid case) these coefficients become: 

 
2 2 4

lim ( ) 1
0

Pe

12n

h
D x

→
= +

ò
 (23a) 

 
1lim ( )

2n

h
K x

→
=  (23b) 

and well with existing work [42] for straight channel (i.e., ℎ = 1).  To analyses the integrated impact of 

these transport coefficient we take an average over one wavelength, i.e., 

 
1

0
( )D D x dx =   (24a) 

 
1

1 1
0

( )K K x dx =   (24b) 
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2.2 Mean Concentration 

Based on Fick's law, the advection-diffusion equation (Eqn. (22)) can be approximated by replacing the 

1( )K x  and (D x ) by their corresponding average values 1K 
 and D

.Then the corresponding analytical 

solution for the advection dispersion blood flow model is given by 

 1 1 1Pe1
( , ) erfc exp erfc

2 2 / Pe 2 / Pe

x K t K x x K t
C x t

DD t D t

  

 

     − +
= +     

      

 (25) 

Numerical evaluation of the dispersion characteristics has been conducted in symbolic software, 

MATLAB. The computations are presented in the next section for the influence of key parameters on 

these characteristics in the channel (blood vessel). Fig. 2 summarizes all key stages of the analysis 

conducted. 

 

Fig. 2: Flowchart describing key stages of the analysis 

3.Result and discussion 

Figures 3-9 illustrate the advection and dispersion characteristics computed for various peristaltic wave 

modulation and non-Newtonian power-law index parameters, along the channel length at fixed time. 
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Figure 3: Advection coefficient against axial location, for various channel modulations,  , for fixed 10, 0.5Pe = =ò  

 

Figure 3 shows that in the absence of peristalsis ( = 0) i.e., for the straight rigid channel, the advection 

coefficient is invariant along the channel length. With increasing modulation (peristaltic wave) parameter, 

, there is a strong elevation in advection coefficient in the initial half of the channel with a subsequent 

suppression in the second half of the channel, indicating that the location along the channel strongly 

influences advection (convective mass transfer) characteristics. This is associated with the expansion and 

contraction characteristics of the peristaltic motion. This is important since it shows that the average 

advection speed is constant irrespective of wave modulation for one period of wave oscillation.  

 

Figure 4: Advection coefficient against axial location, for various flow behavior index and fixed 

/ 1, 0.5,  Pe 10,p x  = = =ò  and  0.1 = . 

 

Figure 4 shows that advection coefficient is significantly elevated with increment in power-law 

rheological index (for shear-thinning fluids, n < 1) across the channel length and exhibits an oscillatory 

nature due to the peristaltic waves which is consistent with Fig. 3. However much higher magnitudes are 

observed for dilatant i.e., shear-thickening blood (n >1). Slightly higher values are computed earlier along 
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the channel length with lower magnitudes observed further along the channel. At very high n values 

(dilatancy) the profiles do not subsequently alter tangibly. 

 

 

  

Figure 5: (a) Axially average advection coefficient and (b) axially average relative advection coefficient against flow behavior 

index for various channel modulations and fixed pressure gradient / 1, 0.5p x  = =ò  and Pe 10= . 

 

 

Figure 5 illustrates the collective influence of peristaltic modulation parameter and power-law index on 

(a) axially average advection coefficient and (b) axially average relative advection coefficient. In both 

plots the vertical dotted line indicates the Newtonian case (n =1) and no variation in either coefficient is 

computed for this case. In Fig 5a, for shear thinning fluids (n <1), initially with increment in modulation 

parameter, , there is a noticeable boost in axially averaged advection coefficient, K1* (the maximum 

elevation is computed for lowest power-law index of n = 0.1); the trend is sustained for n < 1; however, 

after the Newtonian case, as one enters the range n > 1, the effect is suppressed and eventually all profiles 

are observed to merge for n + 3 (strongly dilatant behaviour).  Minimal 
*

1K values are computed at all 

values of n for the straight non-peristaltic case (=0). Clearly the advection process is enhanced for 

strongly pseudoplastic fluids whereas it is suppressed for strongly dilatant fluids. The rheology of blood 

therefore clearly modifies the advection behaviour.  Figure 5b shows that similar trends are computed for 

the axially average relative advection coefficient 
* *

1 1/ NK K , for pseudoplastic blood (n <1) i.e., the 

increase in peristaltic modulation parameter, , boosts the magnitude of the axially average relative 

advection coefficient. However, in the shear-thickening range (n >1), with progressive increase in n, an 

increment in peristaltic modulation parameter, , induces a marked reduction in the axially average 

relative advection coefficient 
* *

1 1/ NK K . The greater viscosity of the dilatant blood contributes to this. 
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Figure 6: Dispersion coefficient against axial location, for (a) various channel modulations,  , for fixed 10, 0.5Pe = =ò , (b) 

various aspect ratio ò , for fixed  10, 0.1Pe = = , and (c) various fixed Péclet number Pe , for fixed 0.1, 0.5 = =ò . 

 

Figure 6 illustrates the collective influence of (a) various channel modulations,  , (b) various aspect 

ratio, ò , and (c) various Péclet number Pe, on the dispersion coefficient, D(x). In all the plots the 

sinusoidal nature of the peristaltic motion is clearly captured. Figure 6a shows that initially along the 

channel left half space, there is a boost in dispersion coefficient with increment in modulation parameter. 

The case of the rigid straight channel,  = 0 again exhibits no variation. However further long the channel, 

these trends are reversed, and the dispersion coefficient is decreased with greater modulation parameter. 

The peristaltic wave intensity therefore exerts a different influence on dispersion depending on whether 

contraction or expansion of the channel walls is occurring. Figure 6b shows that increasing aspect ratio 

𝜖,  i.e., length of channel relative to the depth, there is a significant elevation in the dispersion coefficient, 

in particular near the entry section to the channel. The enhancement in dispersion coefficient is however 

sustained throughout the length of the channel. Slender geometries of the blood vessel (i.e., length greater 

than depth, for example, 𝜖 = 0.7 ) contribute to assisting the hydrodynamic dispersion process whereas 

wider geometries (lower aspect ratio i.e., 𝜖 = 0.3 ) induce the opposite effect.  Figure 6c shows that with 

increasing Péclet number (Pe), there is a substantial elevation in dispersion coefficient. Pe =
𝑣wave𝜆

𝐷
 and 

is directly proportional to the peristaltic wave speed on the channel walls. Essentially it expresses the 

relative contribution of convective (i.e., advective) and molecular diffusive transport phenomena in the 

blood flow. For Pe = 1, both mechanisms contribute equally. For Pe >> 1 advection dominates diffusion 

and this is the case examined in Fig. 6c. Increasing advection intensity clearly strongly assists the 

dispersion process at all locations, along the blood vessel (channel). All the plots correspond to the 

pseudoplastic case (n <1) and positive pressure gradient. 
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Figure 7: Dispersion coefficient against axial location, for various flow behavior index and fixed 

/ 1, 0.5, 10,p x Pe  = = =ò  and  0.1 = . 

Figure 7 visualizes the impact of the rheological power-law index on the dispersion coefficient, D(x). 

With stronger power-law fluids (lower n value), there is a suppression in the dispersion coefficient. With 

weaker power-law fluids (increasing n) the dispersion coefficient is boosted. However, a much greater 

increment is computed in the dispersion coefficient with n > 1 i.e., dilatant fluids. Shear thickening fluids 

therefore produce enhanced dispersion in the peristaltic blood flow compared with shear-thinning fluids. 

In all cases strong undulation is computed in the plots due to the peristaltic sinusoidal wave motion. 

Higher dispersion coefficient is generally observed earlier in the channel (blood vessel), closer to the 

entry zone, with much lower values computed further along the channel. 

 

  

Figure 8: (a) Axially average dispersion coefficient and (b) axially average relative dispersion coefficient against flow behavior 

index for various channel modulations and fixed pressure gradient / 1, 0.5p x  = =ò  and Pe=10. 

Figure 8 displays the evolution in (a) axially averaged dispersion coefficient and (b) axially averaged 

relative dispersion coefficient against flow behavior index (n) and various channel peristaltic modulation 

parameter (). Figure 8a shows that at all values of power-law index (n) there is a sharp increase in the 

axially averaged dispersion coefficient, D*. This coefficient is minimized in the absence of peristalsis ( 

= 0). Overall, much greater magnitudes are computed for shear-thickening blood (n>1) compared with 

shear-thinning blood (n <1). For the case of Newtonian blood (n =1) a constant value of axially averaged 

dispersion coefficient is computed. The rheological characteristics of blood therefore strongly modify the 
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axial dispersion behaviour, which cannot be observed with the simple Newtonian model.  Figure 8b 

reveals that for shear-thinning blood (n <1), a significant decrement in axially averaged relative dispersion 

coefficient / ND D   is present with increasing peristaltic modulation parameter (). The opposite response 

is observed for shear thickening blood (n >1) where an enhancement in axially averaged relative 

dispersion coefficient 
* */ ND D  is computed. Clearly the much greater viscosity of dilatant (shear-

thickening) blood contributes substantially to the boost in axial dispersion. Again, these plots correspond 

to the assistive pressure gradient case (∂𝑝/ ∂𝑥 = 1) with strong advection dominance (Pe =10) and 

intermediate aspect ratio of the channel (ϵ = 0.5).  

Figure 9 depicts the distribution in mean concentration against axial distance at time 1t =  for (a) for 

various channel modulations () and (b) for various flow behavior index values (n). In Fig. 9a there is a 

marked elevation in mean concentration, <C> as peristaltic modulation parameter is increased, indicating 

that more intense peristaltic wave motion at the channel walls enhances mean concentration. All profiles 

decay asymptotically from a maximum at the channel inlet (x = 0) to vanish further along the channel 

length. Similarly in Fig. 9b there is a progressive increase in mean concentration <C> with increment in 

power-law index. Mean concentration is depressed for strongly pseudoplastic blood (n = 0.2) whereas it 

is boosted for strongly dilatant blood (n= 2,5, 10). The solute distribution in the blood vessel is clearly 

significantly modified depending on whether blood is shear thinning or shear thickening.  

 

  

Figure 9: Mean concentration Vs axial distance at time 1t =  for (a) variation of flow behavior index and fixed 

/ 1, 0.5, 0.2p x   = = =ò  and Pe=10 Axially average dispersion coefficient and (b) for various channel modulations and fixed 

pressure 

 

4.Conclusions  

A theoretical study has been conducted to analyse the unsteady solute convective-diffusive transport in 

non-Newtonian peristaltic blood flow in a two-dimensional channel (capillary). The power-law 

rheological model has been deployed and both pseudoplastic and dilatant blood has been considered. A 

velocity solution has been derived for generalized power-law index. Reynolds’ decomposition technique 
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has been utilized in order to reduce the two-dimensional solute transport model into an equivalent one-

dimensional model, in which the chemical species concentration and velocity in the channel have been 

considered as the sum of the cross-sectional average values and their deviations from the averages, 

enabling the extraction of the dispersion coefficient and convection coefficient. Using Fick's law, the 

advection-diffusion equation has then been modified by replacing these coefficients by their 

corresponding average values and analytical solutions for the mean concentration have been derived. The 

close formed solutions have been numerically evaluated in symbolic software. The principal findings of 

the present study may be summarized as follows: 

(i) In the absence of peristalsis effects (=0) i.e., for the straight rigid channel, the dispersion 

coefficient is invariant along the channel length. With increasing modulation (peristaltic wave) 

parameter, , there is a strong elevation in advection coefficient in the initial half of the channel 

with a subsequent suppression in the second half of the channel, indicating that the location in 

the channel strongly influences advection characteristics.  

(ii) Advection coefficient is significantly elevated with increment in power-law rheological index 

(for shear-thinning fluids, n < 1) across the channel length and exhibits an oscillatory nature due 

to the peristaltic waves.  

(iii) In the shear-thickening range (n >1), with progressive increase in n, an increment in peristaltic 

modulation parameter, , induces a marked reduction in the axially average relative advection 

coefficient.  

(iv) Dispersion coefficient is initially boosted along the early section of the channel with increment 

in modulation parameter whereas further long the channel this trend is reversed.  

(v) Increasing aspect ratio and Péclet number consistently boost dispersion coefficient along the 

entire channel length.  

(vi) Significantly higher magnitudes for axially averaged dispersion coefficient, D* are computed for 

shear-thickening blood (n >1) compared with shear-thinning blood (n <1). 

(vii) A strong enhancement in mean solute concentration is induced with increasing peristaltic 

modulation parameter and for strongly dilatant blood. However, mean solute concentration is 

reduced considerably for strongly pseudoplastic blood. 

The present study has considered a relatively simple non-Newtonian model for blood i.e., the power-law 

model, which has been shown to modify both advection and dispersion characteristics considerably in 

peristaltic flow. Future studies may explore alternative rheological models e. g. micropolar, Quemada, 

Carreau-Yasuda, bi-viscosity models etc, and may also include curved channel geometries.  Also, it is 

very interesting to investigate nanoparticle transport [43, 44] as an extension of the present simulations 

for drug delivery applications. Efforts in these directions will be communicated imminently. 
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