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ABSTRACT  

A mathematical model is developed for studying the onset of mono-diffusive convective fluid flow 

in a horizontal porous layer with temperature gradient, internal heat generation and viscous 

dissipation effects. Darcy’s model is used for the porous medium which is considered to be 

isotropic and homogenous. A linear instability analysis is conducted and transverse or longitudinal 

roll disturbances are examined. The dimensionless emerging eigenvalue problem is solved 

numerically with Runge-Kutta and shooting methods for both cases of disturbances i.e. 

longitudinal and transverse rolls. Critical wave number and critical vertical thermal Rayleigh 

number 𝑅𝑧 are identified. For higher value of Gebhart number 𝐺𝑒 , a significant destabilizing effect 

of Hadley-Prats flow as computed. Internal heat generation also strongly modifies critical vertical 

Rayleigh number. Extensive interpretation of the solutions related to the onset of convection is 

provided. The study is relevant to geophysical flows and materials processing systems.  

 

KEYWORDS Thermo-convective instability; viscous dissipation, internal heat source, horizontal 
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1. INTRODUCTION 

  The analysis of the thermo-convective instability in a horizontal infinite porous layer 
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saturated with the fluid has many applications such as insulation of buildings [1,27], underground 

energy transport [2], groundwater transport [3], chemical engineering micro/nano-devices [4] and  

oil recovery [5] and chemical reactor engineering [27]. The occurrence of mono-diffusive 

convection (in the appearance of scalars diffusing at various rates) in a saturated porous medium 

is of high practical significance in various branches of engineering and science, such as chemical 

engineering, oceanography, transport of contaminants in saturated soil and geophysics. The 

mathematical analysis of these flows provides useful insights and a strong compliment to 

experimental investigations which is beneficial in optimizing thermofluid characteristics in for 

example materials processing systems. In these applications the porous medium is frequently 

simulated as a Darcian regime in which the flow is  dominated by viscous forces. Many complex 

characteristics arise in such flows including linear and nonlinear hydrodynamic stability, 

convection rolls, oscillatory behaviour etc.  Several interesting studies have been conducted for 

such flows.  Thermal convection between two parallel infinite horizontal porous layers caused by 

temperature variations in the middle of the boundaries was originally examined by Horton and 

Rogers [6] and Lapwood [7]. More recently mono-diffusive convection between two horizontal 

parallel porous layers with internal heat generation has attracted some attention. A comprehensive 

linear instability analysis was presented by  Nield [8]. This has been subsequently extended by 

various researchers with considering the additional effect of viscous dissipation on transport 

characteristics. However releatively few researchers have examined the thermal convection 

instability with the combined effects of viscous dissipation and internal heat generation. Barletta 

et al. [9] studied the case of inclined infinite horizontal  porous layers with internal heat generation 

in which parallel boundaries were considered as isothermal. A linear instability analysis provides 

the sufficient condition for the perturbation of the basic steady state solution to be destabilized.  A 

lucid description of porous media thermal instability analysis has been documented for a range of 

practical applications in the monograph of Nield and Bejan [10].  Hill [11] examined  thermosolutal 

instability in porous horizontal layers in the presence of internal heat generation which is a function 

of concentration. Weber [12] considered thermal instability with both vertical and horizontal 

temperature gradients, although this analysis was confined to the case of small horizontal gradient. 

 

Viscous dissipation which is associated with frictional heating arises in many industrial 
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processes including both internal and external convection flows such as thermal mixing devices, 

boundary layer coating systems etc.  This effect is significant in real viscous flows and its inclusion 

therefore furnishes more accurate appraisal of the heat transfer behaviour in engineering systems. 

Important studies of viscous dissipation in thermal convection flows have been presented by 

Barletta and Nield [13-14] and an early seminal boundary layer analysis has been presented by 

Gebhart [15]. Turcotte et al. [16] computed the effects of viscous dissipation on Bénard convection 

with an adiabatic temperature gradient.  They evaluated in detail the  finite amplitude convection 

response and observed that both viscous heating and temperature gradient substantially decelerate 

the flow, eventually inducing stability. Investigations of Hadley-Prats flows in porous media 

include Barletta and Storesletten [17], Nield et al. [18], Barletta and Nield [19] and Deepika and 

Narayana [20].These studies have generally shown that instabilities induced by viscous dissipation 

can originate even when there is no temperature increase or decrease in the vertical direction of 

the porous medium.  

Convection with internal heat generation has also been assessed by a number of  

researchers [21], [22]. Internal heat generation arises for example in geophysical flows where the 

earth's mantle is heated internally. Internal heat generation strongly effect on the vertical motion 

[24-25, 28]. Brinkman number measures the internal heat generation by the act of viscous 

dissipation to the temperature difference [20].  Parthiban and Patil [23] deployed a Galerkin 

method to simulate the influence of horizontal temperature gradients due to non-uniform heating 

of the boundaries on the onset of convection in saturated porous medium with uniformly 

distributed internal heat sources. They showed that the onset of convection is encouraged with 

internal heat source, in particular with stronger horizontal temperature gradients and that there is 

a boost in the critical Rayleigh number with higher horizontal gradients. Further studies have been 
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presented by Matta et al. [24] (who included mass flux effects) and also Matta [25] (who 

considered gravity variation).  

The motivation for the present study is to generalize previous investigations by considering 

the collective influence of viscous dissipation and internal heat source.  It also included the 

additional efftes of temperature gradient on mono-diffusive Haldey-Prats thermoconvective 

stability in a horizontal saturated porous medium layer.  Darcy’s model is implemented for the 

porous medium.  The transport equations are non-dimensionalized and transformed into  a robust 

eigenvalue problem.  Numerical solutions are evaluated with a Runge-Kutta (RK) shooting method 

[24, 25, 27, 28, 29].  In particular the impact of viscous heating and internal heat generation on the 

onset of convection in Hadley-Prats flow for both cases of disturbances i.e. longitudinal and 

transverse rolls, is addressed. Critical wave number and critical vertical thermal Rayleigh number 

𝑅𝑧 are identified. For higher value of Gebhart number 𝐺𝑒, a significant destabilizing effect of 

Hadley-Prats flow is computed.  This research paper is organized as follows.  Section 2 provides 

the details of the physical system where the fluid flow takes place with the derivation of associated 

governing equations. Section 3 describes the basic steady state solutions. Section 4 presents the 

equations for perturbations. Section 5 deals with  linear stability analysis of the perturbation 

equations. Section 6 documents the numerical and graphical results with interpretation. Section 7 

presents the conclusions.  

 

2. MATHEMATICAL FORMULATION  

The basic model consists of a homogeneous infinite horizontal fluid saturated porous layer with 

height 𝑑. The upward vertical axis is 𝑧′ and the horizontal axis is  𝑥′ . The imposed horizontal 

temperature gradient is 𝛽𝜃 with  internal heat generation 𝑄′. The physical model is depicted in Fig. 
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1. 

 

Figure 1:   Schematic representation of the physical system. 

 

∆𝜃 is the perpendicular thermal variation through the horizontal boundaries. The linear Oberbeck-

Boussinesq approximation ( density deviations such that are supposed to be sufficiently small to 

be overlook every term exclusion of the body force term) [8, 24, 25, 27, 28, 29]   is applied and 

Darcy’s law is deployed for the porous medium. Under these assumptions, the governing equations 

for the thermal convection in the horizontal porous layer with associated boundary conditions are 

as follows [8,20,24-25]: 

                     ∇′. 𝑞′ = 0,                                                                                                       (2.1)                                                          

                    
𝜇

𝐾
𝑞′ + ∇′𝑃′ − 𝜌𝑓

′ 𝑔𝑘 = 0,                                                                                 (2.2) 

                    (𝜌𝑐)𝑚
𝜕𝜃′

𝜕𝑡′ + (𝜌𝑐𝑃)𝑓𝑞′. ∇′𝜃′ = 𝑘𝑚∇′2𝜃′ + (𝜌𝑐𝑃)𝑓
𝜗

𝐾𝑐
𝑞′. 𝑞′ + 𝑄′,                    (2.3) 

                     𝜌𝑓
′ = 𝜌0[1−(𝜃′−𝜃0)𝛾𝜃].                                                                                       (2.4) 

 

 The  conditions on the horizontal boundaries  are defined by: 

                        𝑤′ = 0,        𝜃′ = 𝜃0 −
1

2
(∓∆𝜃) − 𝛽𝜃𝑥′,      at          𝑧′ = ∓

𝑑

2
.                     (2.5) 
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In the above Eqns., the seepage (Darcy) flow velocity is 𝑞′ = (𝑢′, 𝑣′, 𝑤′) , 𝑃′  denotes the  pressure 

and 𝜃′ is the temperature. The subscripts 𝑓 and 𝑚 designate respectively the fluid and the porous 

medium. Additionally, 𝜇,  𝑐, 𝑘𝑚, 𝐾, 𝛾𝜃, 𝜗 and 𝜌0 represents dynamic viscosity, specific heat, 

thermal conductivity, permeability of the porous medium, a fluid property that is indicative of the 

extent to which a fluid expands upon heating (thermal expansion coefficient)  in the infinite porous 

layer, kinematic viscosity, and the density of the fluid medium, respectively. The following 

dimensionless variables and parameters are invoked [8, 12, 20, 24, 25, 27, 28, 29]: 

(𝑥, 𝑦, 𝑧) =
1

𝑑
(𝑥′, 𝑦′, 𝑧′)  ,   𝑡 =

𝛼𝑚𝑡′

𝑎𝑑2
 ,    (𝑢, 𝑣, 𝑤) = 𝑞 =

𝑑𝑞′

𝛼𝑚
,    𝑃 =

𝐾(𝑃′ + 𝜌0𝑔𝑧′)

𝜇𝛼𝑚
 

          𝜃 =
𝑅𝑧(𝜃′−𝜃0)

∆𝜃
 ,                𝑄 =

𝑑2𝑄′

𝑘𝑚∆𝜃
 ,                   𝛼𝑚 =

𝑘𝑚

(𝜌𝑐𝑝)𝑓
 ,                     𝑎 =

(𝜌𝑐)𝑚

(𝜌𝑐𝑝)𝑓
 . (2.6) 

Here 𝑎 is the ratio of the heat capacity of the porous and fluid media and  𝛼𝑚 is the thermal 

diffusivity of the fluid medium. Q is the internal heat generation parameter. 

Under these non dimensional transformations, the governing Eqns.  (2.1)  to (2.5) emerge as 

follows: 

                               ∇. 𝑞 = 0 ,                               (2.7) 

                                                              𝑞 + ∇𝑃 − 𝜃𝑘 = 0 ,                              (2.8) 

                                                   
𝜕𝜃

𝜕𝑡
+ 𝑞. ∇𝜃 =  ∇2𝜃 + 𝐺𝑒 𝑞. 𝑞 + 𝑄𝑅𝑧 ,                                    (2.9)  

 

The prescribed boundary conditions at the horizontal walls assume the form: 

                        𝑤 = 0,        𝜃 = −
1

2
(∓𝑅𝑧) − 𝑅𝑥𝑥,      at          𝑧 = ∓

1

2
.                                (2.10) 

In the above Eqns. (2.7)-(2.10),  the vertical and horizontal thermal Rayleigh numbers are denoted 

as 𝑅𝑧, and  𝑅𝑥, 𝐺𝑒 represents the Gebhart number (viscous heating parameter). These 

dimensionless numbers are defined as follows [8, 12, 20, 24, 25, 27, 28, 29]: 

          𝑅𝑥 =
𝜌0𝑔𝛾𝜃𝐾𝑑2𝛽𝜃

𝜇𝛼𝑚
  ,                     𝑅𝑧 =

𝜌0𝑔𝛾𝜃𝐾𝑑∆𝜃

𝜇𝛼𝑚
   ,                      𝐺𝑒 =

𝛾𝜃𝑔𝑑

𝑐
 .       (2.11) 
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Eqn. (2.10) indicates that linear conditions for the temperatures on the horizontal boundaries are 

utilized. 

3. STEADY STATE SOLUTIONS    

Eqns. (2.7) to (2.9) have basic steady state solutions, subject to the conditions at the horizontal 

boundaries as follows: 

                                                    𝜃𝑠 = 𝜃 ̃(𝑧) − 𝑅𝑥𝑥 ,                                                                           (3.1)   

                       (𝑢𝑠 , 𝑣𝑠  , 𝑤𝑠  ) = (𝑢(𝑧), 0, 0),                                     𝑃𝑠 = 𝑃(𝑥, 𝑦, 𝑧)                         (3.2) 

This is a solution provided that: 

𝑢𝑠 = −
𝜕𝑃

𝜕𝑥
 ,                  0 = −

𝜕𝑃

𝜕𝑧
+ 𝜃̃(𝑧) − 𝑅𝑥𝑥 , 

𝐷2𝜃̃(𝑧) =  −𝑄𝑅𝑧 − 𝑢𝑠𝑅𝑥 − 𝐺𝑒𝑢𝑠
2.    (3.3) 

Here 𝐷 =
𝑑

𝑑𝑧
,  the net flow along the direction of 𝑥-axis is  ∫ 𝑢(𝑧)

1

2
−1

2

𝑑𝑧 = 0.  The basic steady state 

solutions therefore now become:  

𝑢𝑠 = 𝑅𝑥𝑧                                                                                                                                       (3.4)  

𝜃̃ = −𝑅𝑧𝑧 +
𝑅𝑥

2

24
(𝑧 − 4𝑧3 − 2𝐺𝑒(𝑧4 − 4)) +

𝑄𝑅𝑧

8
(1 − 4𝑧2)                                          (3.5)   

4     DISTURBANCE EQUATIONS 

In this section, the basic steady state solutions are perturbed as  𝑞 = 𝑞𝑠 + 𝑞̅, 𝜃 = 𝜃𝑠 + 𝜃̅,  and 𝑃 =

𝑃𝑠 + 𝑃̅. Replacing these perturbations in the non dimensional equations (2.7) to (2.9), leads to the 

following perturbation equations: 

                                                                         ∇. 𝑞̅ = 0,           (4.1) 
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                                                               𝑞̅ = 𝜃̅𝑘 − ∇𝑃̅,             (4.2)  

                                            
𝜕𝜃̅

𝜕𝑡
+ 𝑞𝑠. ∇𝜃̅ + 𝑞̅. ∇𝜃𝑠 + 𝑞̅. ∇𝜃̅ = ∇2𝜃̅ + 𝐺𝑒(2𝑞𝑠. 𝑞̅ + 𝑞.̅ 𝑞̅)       (4.3) 

Here  ∇𝜃𝑠 = −(𝑅𝑥, 0, 𝑅𝑧 − 𝐴̃) , 𝐴̃ =
𝑅𝑥

2

24
(1 − 12𝑧2 − 8𝐺𝑒𝑧3) − 𝑄𝑅𝑧𝑧. 

Now the conditions at the horizontal boundaries are defined as follows: 

                                          𝑤̅ = 0,                   𝜃̅ = 0      at      𝑧 = ∓
1

2
.                             (4.4) 

These boundary conditions indicate that there is no orthogonal flow velocity and no porous 

medium temperature disturbances arising at the boundaries. 

5   LINEAR INSTABILITY ANALYSIS  

In this section, thermal instability is addressed via a linear stability analysis. To execute a linear 

stability analysis, the nonlinear terms appearing in Eqn. (4.3) are neglected. The linearized 

disturbance equations  therefore emerge as: 

∇. 𝑞̅ = 0,               (5.1) 

𝑞̅ = 𝜃̅𝑘 − ∇𝑃̅,                (5.2) 

𝜕𝜃̅

𝜕𝑡
+ 𝑞𝑠. ∇𝜃̅ + 𝑞̅. ∇𝜃𝑠 = ∇2𝜃̅ + 2𝐺𝑒(𝑞𝑠. 𝑞̅)              (5.3) 

 Here    ∇𝜃𝑠 = − (𝑹𝒙, 𝟎, 𝑹𝒛 −
𝑅𝑥

2

24
(1 − 12𝑧2 − 8𝐺𝑒𝑧3) + 𝑄𝑅𝑧𝑧) ,  

The linearized conditions at the boundaries take the form: 

                                          𝑤̅ = 0,                   𝜃̅ = 0      at      𝑧 = ∓
1

2
.                             (5.4) 
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Now linearized perturbation equations become: 

∇. 𝑞̅ = 0,              (5.5) 

𝑞̅ = 𝜃̅𝑘 − ∇𝑃̅,                 (5.6) 

𝜕𝜃̅

𝜕𝑡
+ 𝑢𝑠

𝜕𝜃̅

𝜕𝑥
− 𝑅𝑥𝑢̅ + 𝑤̅(𝐷𝜃̃) = ∇2𝜃̅ + 2𝐺𝑒(𝑢𝑠𝑢̅)           (5.7) 

Adopting a Fourier mode solution to Eqns. (5.6) to (5.7) along with the boundary conditions (5.4)  

we have: 

[𝑞̅, 𝜃,̅  𝑃̅ ] = [𝑞(𝑧), 𝜃(𝑧), 𝑃(𝑧)] 𝑒𝑥𝑝{𝑖(𝑘𝑥 + 𝑙𝑦 − 𝜎𝑡)}      (5.8) 

Eliminating the pressure term 𝑃 from the equation (5.6) yields [8, 24, 25, 27]: 

(𝐷2 − 𝛼2) 𝑤 + 𝛼2𝜃 = 0,                   (5.9) 

(𝐷2 − 𝛼2 + 𝑖(𝜎 − 𝑘𝑢𝑠)) 𝜃 +
𝑖𝑘

𝛼2
(𝑅𝑥 + 2 𝐺𝑒 𝑢𝑠) 𝐷𝑤 − (𝐷𝜃̃) 𝑤 = 0,           (5.10) 

The above equations (5.9) and (5.10), conditional on 𝑤 = 𝜃 = 0 at both the boundaries  𝑧 =
1

2
 and 

𝑧 =
−1

2
,  satisfy: 

𝐷𝜃̃ =  −𝑅𝑧 +
𝑅𝑥

2

24
(1 − 12𝑧2 − 8 𝐺𝑒 𝑧3) − 𝑄𝑅𝑧𝑧 ,   (5.11) 

The eigenvalue problem is therefore defined for the vertical thermal Rayleigh number 𝑅𝑧 with 

𝜎, 𝑅𝑥, 𝑄, 𝐺𝑒, 𝑘 and 𝑙 as variables. Furthermore  𝛼 = √𝑘2 + 𝑙2  represents the overall wave number.  
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6   RESULTS AND DISCUSSION 

In the previous sections, a linear stability analysis has been conducted to examine the 

consequence of a viscous dissipation and internal heat generation on mono-diffusive 

celebrated Hadley-Prats flow in an infinite horizontal porous layer. Following the 

numerical strategy of Barletta and Nield [13, 14] the eigenvalue problem i.e. Eqns. (5.9) to 

(5.10) is derived. A linear stability analysis, is conducted in which, vertical thermal 

Rayleigh number (𝑅𝑧) is considered as the eigenvalue of the stability problem. Ideal 

Fourier mode analysis is implemented to investigate the thermal instability of Hadley-Prats 

flow. The value of critical 𝑅𝑧 is determined as the lowest magnitude of all 𝑅𝑧 values as 𝛼 

is changed. The matching wave number is defined as a row vector such as 𝛼 = (𝑘; 𝑙; 0). 

Let us consider the stationary convection which is accomplished by substituting 𝜎 = 0  as 

described in the earlier work of Nield [8]. The type of the longitudinal perturbations is 

registered by setting 𝑘 = 0 in the eigenvalue problem encountered from the stability 

analysis. 𝐺𝑒 is a non-dimensional number represents the viscous dissipation and this non-

dimensional number represents the rate of viscous heating and its significance will not 

change with several numbers and its importance is the work done by the shear forces will 

converts in to heat energy and similarly 𝑄 is an internal heat source parameter. The 

MATLAB software is used for numerical calculations and Origin software is used for the 

plotting the graphs. 

 

 𝑅𝑥 0 10 20 30 40 

 

𝐺𝑒 = 0 

𝑅𝑧 39.4784 42.0076 49.5486 61.9566 78.9671 

𝛼 3.1399 3.1399 3.1499 3.1599 3.1999 

 

𝐺𝑒 = 5 

 

𝑅𝑧 39.4784 41.9821 49.1156 59.5244 70.3359 

𝛼 3.1399 3.1399 3.1699 3.1999 3.1999 

 

𝐺𝑒 = 10 

𝑅𝑧 39.4784 41.9055 47.7973 52.3438 46.2155 

𝛼 3.1399 3.1499 3.1999 3.1999 3.1999 

 

                                                           Table 1 :  Critical 𝑹𝒛 at 𝑸 = 𝟎 
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Table 1 summarizes the computations for 𝑄 = 0 and 𝐺𝑒 = 0. It is clear that values of critical 

vertical Rayleigh number, 𝑅𝑧  is reduced as  𝐺𝑒 is elevated from 0 to 10, Thus, the destabilization 

of Hadley-Prats flow is observed at elevated values of the Gebhart number. The linear results are 

constituted by the curves in Figures 2-7.  

Visualization of  the vertical Rayleigh number (𝑅𝑧)  variation with horizontal Rayleigh number 

(𝑅𝑥) for 𝑄 = 0.5 (fixed internal heating) and various Gebhart number values (Ge) is given in Fig. 

2. Significant deviation is induced with increasing Gebhart number. Vertical Rayleigh number 

grows strongly with horizontal Rayleigh number for Ge = 0 and Ge = 5; however with Ge  =10, 

it initially grows and then there is a downsurge (means decreasing trend or fall down) in vertical 

Rayleigh number at a critical value of horizontal Rayleigh number. In Fig. 3 (with zero horizontal 

Rayliegh number prescribed i.e. Rx = 0) there is a slight reduction in vertical Rayleigh number (Rz) 

with increase in Ge up to a critical value of Q; beyond this Q value there is a strong enhancement 

in vertical Rayleigh number with a Ge= 0, although the decrease in vertical Rayleigh number with 

Ge >0 is sustained. Also the vertical Rayleigh number initially decreases with increasing  Q up to 

the critical point, and thereafter it ascends strongly with subsequent increasing  Q values, for only 

the case of Ge = 0 (absence of viscous heating).   
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                                     Figure 2:    Deviations of 𝑹𝒛 with 𝑹𝒙 at 𝑸 = 𝟎. 𝟓 

 

                                        Figure 3:    Deviations of 𝑹𝒛 with 𝑸 at 𝑹𝒙 = 𝟎 
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The deviations of 𝑅𝑧 are recognized as a function of 𝑄 in the appearance and disappearance of 𝑅𝑥 

and the Gebhart number 𝐺𝑒 in Figures 3 and 6, respectively. It is also identified that, when 𝐺𝑒 =

0 and 𝐺𝑒 = 5, the value of 𝑅𝑧 is reduced with enlargement of the value of internal heat generation 

𝑄, indicating the flow is unstable and instability is connected to the appearance and disappearance 

of the Gebhart number 𝐺𝑒. An enlargement of the heat generation boosts the overall temperature 

of the horizontal porous layer. Additionally, it is established that, the value of 𝑅𝑧 is reduced with 

enlargement in Gebhart number 𝐺𝑒.  Overall vertical Rayleigh number, 𝑅𝑧 is reduced by an 

increase in viscous dissipation. 

 

 

In Fig. 4 the distribution of  vertical Rayleigh number (𝑅𝑧) with horizontal Rayleigh number (𝑅𝑥) 

with 𝐺𝑒 = 3 for various Q values is depicted. A monotonic increase in vertical Rayleigh number 

accompanies an increase in horizontal Rayleigh number. There is also a weak refunction (means 

it decreases) in vertical Rayleigh number with increasing Q values.  
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                                       Figure 4:    Deviations of 𝑹𝒛 with 𝑹𝒙 at  𝑮𝒆 = 𝟑 
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                                           Figure 5:    Deviations of 𝑹𝒛 with 𝑮𝒆 at  𝑹𝒙 = 𝟓 

The critical 𝑅𝑧 versus Gebhart number 𝐺𝑒 is shown in Figures 5 and 7. Figure 5 represents 

deviations of 𝑅𝑧 as a function of the Gebhart number 𝐺𝑒, for variation in internal heat generation 

𝑄 at 𝑅𝑥 = 0. An enlargement in the value of the heat generation diminishes the vertical thermal 

critical Rayleigh number 𝑅𝑧.  Additionally,  it is evident that greater viscous dissipation effect also 

boosts the critical value of 𝑅𝑧. The flow is destabilized at high values of viscous dissipation and 

internal heat generation in the porous medium. Fig. 6 shows that a strong decrement is produced 

in vertical Rayleigh number with increasing heat generation values (Q). However there is a 

sustained increment in critical vertical Rayleigh number (Rz) with increasing horizontal Rayleigh 

number (Rx).  
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Figure 6:    Deviations of 𝑹𝒛 with 𝑸 at  𝑮𝒆 = 𝟎. 𝟐 

 

                Figure 𝟕:    Deviations of 𝑹𝒛 with 𝑮𝒆 at  𝑸 = 𝟎 
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Ultimately, larger values of  𝐺𝑒 and 𝑅𝑥, encourage the flow to be destabilized in the porous 

medium. Internal heat source exert a strong influence on the value of critical 𝑅𝑧.  

 

7   CONCLUSIONS 

A mathematical model has been derived to study the thermoconvective instability in a horixontal 

porous layer with heat generation, viscous dissipation and horizontal temperature gradients. A 

linear stability analysis of the thermal convection in a Hadley-Prats flow has therefore been 

presented to evaluate the impact of internal heat generation and viscous dissipation on convection. 

The critical values of the vertical thermal Rayleigh number 𝑅𝑧 is established for different values 

of the emerging parameters. The principal findings of the study can be summarized as follows. 

• An enlargement in the porous medium internal heat generation parameter induces  flow 

destabilization since it strongly modified the critical vertical Rayleigh number, and 

increases the overall temperatures of the system. 

• The results show some qualitative changes in stability of the fluid flow with increasing 

Gebhart number (viscous heating) for dissimilar combinations of internal heat generation 

𝑄 and horizontal thermal Rayleigh numbers 𝑅𝑥. 

• Increased Gebhart number and thermal horizontal gradients have a dual impact on the 

critical values of vertical Rayleigh number 𝑅𝑧 and modify the stability of the incipient 

thermal convection; strong destabilization of the Hadley-Prats flow is computed for 

elevated values of the Gebhart number 𝐺𝑒. 

• Combined effects of internal heat source and viscous dissipation may cause instability in 

the fluid system. 
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The present model for mono-diffusive Hadley-Prats flow can be extended to consider other cases 

including nanofluids with species diffusion i.e. double-diffusive convection [26] and efforts in this 

direction are currently underway. Further, the present work on linear stability analysis can be 

extended to examine others types of fluids and boundary effects including  variable viscosity flows 

[30],  Maxwell viscoelastic fluids [31], particle-fluid suspensions [32], Rabinowitsch non-

Newtonian fluids [33], electro-magnetic fluids [34], slip hydrodynamics at the boundaries [35],  

hybrid nanofluids [36] and nanoparticle-doping [37], [38]. All these areas are relevant to refining 

the current study with applications in geophysical transport and materials processing systems and 

will be explored soon.    
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