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ABSTRACT

Theoretical studies of micro-electro-mechanical systems provide important insight into the mechanisms and optimization of such devices for
a range of applications, including biomedical and chemical engineering. Inspired by emerging applications of microfluidics, unsteady viscous
flow in a microchannel with periodic membrane pumping modulated by electro-magnetohydrodynamics is analyzed in a mathematical
framework. The membrane kinematics induces the pressure inside the microchannel, where an electric field enhances the capability of the
pumping flow rate. This model is formulated based on the Navier–Stokes equations, the Poisson equation, and the Maxwell electromagnetic
equations and is further simplified using the lubrication approximations and Debye–H€uckel linearization. The transformed dimensionless
conservation equations under appropriate boundary conditions are analytically solved and the graphical results are illustrated through
MATLAB (2019b) software. From the computational results, it is found that the Hartmann number enhances the fluid pressure uniformly
throughout the microchannel, while the electric field parameter enforces the direction of the pressure-driven flow. The time-averaged flow
rate exhibits a linear decay with axial pressure gradient, and it is strongly elevated with electric field parameter whereas it is weakly increased
with electric double layer thickness parameter. It is further observed that the fluid is driven unidirectionally by the membrane contractions
via a particle tracking simulation method. This study is relevant to provide the parametric estimation in designing the magnetic field-based
microfluidics devices for microlevel transport phenomena.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0111050

NOMENCLATURE

A Amplitude of membrane contraction
a Half-length of the membrane
B Applied magnetic field ð0 ;B0; 0Þ
E Applied electrical field
e Protonic charge
F Body force
J Local ion current density

KB Boltzmann constant
L Length of the microchannel
M Shape of the membrane profile
n0 Concentration of ions
p Pressure of the fluid
Q Volumetric flow rate

t Time scale
Ta Averaged temperature of the electrolyte solution
Ue0 Reference electro-osmotic velocity
U i Velocity vector u; v; 0ð Þ of the fluid
z The valence of the ions

Greek symbols

e Permittivity of electromagnetic fluid
j Inverse electric double layer (EDL) thickness
k Width of the microchannel
l Viscosity of the fluid
q Density of the fluid

qe Density of charged ions

r Electrical conductivity
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w Stream function
U Electric potential

U0 Zeta potential

Dimensionless parameter

ET Electric field parameter
Re Reynolds number
Ha Hartmann number

d Ratio of width to length of the microchannel

I. INTRODUCTION

Micro-electro-mechanical systems (MEMS) are being increas-
ingly deployed in medical and bio-engineering applications due to
their excellent integrated functionalities achievable in such systems. A
micropump is one of the key features of these systems where an elec-
tric field can be used to enhance the pumping efficiency. Jeong et al.1

have fabricated a mechanical sensitivity-based peristaltic micropump
that achieves a maximum flow rate of about 0:36ll=s. This is particu-
larly relevant to optimize the transportation of separated cells, moving
reagents to the separation/mixing chamber, drug transport, genomic
DNA analysis through pneumatic microfluidic pumping,2 and separa-
tion techniques in capillary electrophoresis.3 Based on the characteris-
tics of peristaltic pumping, Forouzandeh et al.4 classified the fluid
actuation induced by the peristaltic micropump (PMP). These studies
have focused on wave propagation in the flow direction, which is
referred to as the continuous-scheme PMP.5,6 Despite their good effi-
ciency, several challenges exist in designing micropumps to deliver
consistently high flow rates as well as high-pressure drops.

To induce consistently high flow rates in microfluidic devices with-
out loss of pressure drop, the deployment of external electric field gra-
dients (electro-osmotic flow, i.e., EOF) has, therefore, become
increasingly popular in micromechanical systems. Typically, electro-
osmotic flow7 involves the generation of an electric double layer (EDL)
near the charged surface as a charged solid surface comes into contact
with an electrolyte solution. Therefore, when an electric field is imposed,
the EDL has induced a bulk fluid flow, which is referred to as electro-
osmotic flow.8 This non-mechanical mechanism has proven to be the
most efficient mechanism for conveying small quantities (microvo-
lumes) of fluids in microfluidic devices.9 Most recently, some interesting
studies10–15 on electro-osmotic flow (EOF) have been presented in the
literature, including EOF of viscoelastic fluids with slip-dependent zeta
potential,10 evolution from periodic to chaotic AC electro-osmotic
flows,11 fluid mixing in combined electro-osmotic and pressure driven
transport,12 EOF of viscoelastic fluids in an isosceles right triangular
cross section,13 EOF over high zeta potential modulated surfaces,14 and
energy efficiency analysis in oscillatory EOF.15 These studies have
addressed the effects of the zeta potential, EDL thickness, fluids proper-
ties, and geometrical properties for electro-osmotic flow.

Magnetohydrodynamics (MHD) is another key mechanism avail-
able for regulating natural transport phenomena and has also been imple-
mented widely in the augmentation of biological flows.16 MHD
techniques, which involve the interaction of an applied magnetic field and
electrically conducting fluid media, are also deployed in controlling hemo-
dynamic circulation, biomagnetic tissue thermal therapy, cancer tumor
treatment, etc.17–19 Das et al.20 developed a novel technique to separate
particles-based size in narrow fluidic confinements by studying the

combined effects of magnetophoretic and magnetohydrodynamic trans-
port phenomena. According to Chakraborty and Paul,21 a significant
increase in volumetric flow rates can be accomplished with a low-
magnitude magnetic field. Bhandari et al.22 analyzed the hydromagnetic
flow induced by the periodic membrane contraction in a two-dimensional
finite length channel. In addition, some studies have also focused on the
influence of inducedmagnetic fields inMHD flows.23–25 These arise when
the magnetic Reynolds number is sufficiently high to generate magnetic
induction, and the flow distorts the magnetic field. With the combination
of magnetic and electric fields, electromagnetohydrodynamics (EMHD)
has become increasingly popular for more efficiently manipulated fluid
flow in micromechanical systems.26–29 In this regard, a computational
fluid dynamics (CFD) simulation of the combined influence of electric
and magnetic fields in regulating the peristaltic transport of physiological
fluids in a microchannel was reported by Ramesh et al.,30 in which the
effects of the Hartmann number and EDL thickness on flow and pumping
characteristics were studied. Prakash et al.31 have considered the dual
effects of the external electric and magnetic fields in regulating non-
Newtonian fluids flow through peristaltic pumping and discussed the flow
analysis under the effects of non-Newtonian parameters. The use of elec-
tromagnetohydrodynamic (EMHD) in precisely controlling peristaltic
microflows has been demonstrated in these studies with applications,
including limited dilution of samples, improved processing capabilities for
separation purposes, etc. Most of the above-mentioned literature are based
on the continuous-scheme PMP.

However, the discrete-scheme PMP can achieve greater reliability
via microscale fabrication processes. In response to this essential
mechanism, Aboelkassem and Staple32 have proposed a bioinspired
membrane pumping mechanism (“non-propagative” where at least
two membranes that operate with time-lag) based on insect respiratory
phenomena at the microscale. This bio-inspired mechanism has the
potential for pumping the fluid more efficiently with high pressure
generated via the periodic membrane motion. In another membrane
model, Aboelkassem33 proposed a single membrane contraction that
operates in a “propagative” mode. Furthermore, Bhandari et al.34

extended Aboelkassem’s33 model to consider couple stress fluids flow
under active membrane propulsion. When working fluids are electro-
conductive, the characteristics of membrane pumping may further be
enhanced via an external electric field. Tripathi et al.35 applied electro-
osmosis in the membrane-based pumping model and analyzed the
effects of zeta potential and EDL thickness. Heat transfer analysis with
pressure and buoyancy forces for the membrane-based pumping flow
model was investigated by Bhandari et al.36 Thus far, the combined
influence of electro-osmotic and magnetohydrodynamics in electro-
conductive membrane pumping has not been examined.

In this paper, a novel mathematical model is developed to exam-
ine the unsteady flow of electroconductive fluids in a microchannel
with periodic membrane pumping under the effects of magnetic and
electric forces. Although some previous studies have considered the
fluids flow in the microchannel under the combined effects of a trans-
verse magnetic field and an axial electrical field,26,27 but they have not
addressed the discrete scheme PMP, i.e., the periodic membrane
pumping mechanism. This is the main objective and novelty of the
present investigation. The influences of key control parameters, i.e.,
the Hartmann number, EDL thickness, electric field parameter, etc.,
are presented graphically. Additionally, fluid particle trajectories inside
the microchannel through the periodic membrane contractions are
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also computed via a particle tracking simulation method. This study
finds applications in hybrid lab-on-chip for an electro-magnetic
microscale pumping process in biomedical sciences and health care.

II. PROBLEM FORMULATION
A. Geometric model of membrane pumping

The membrane pumping based flow regime is illustrated in
Fig. 1, where the transverse magnetic field and applied electrical field

are also considered to regulate the transient viscous flow in the micro-
channel. Membrane pumping is generated on the upper and lower
walls of the microchannel. The membrane is periodically propagating
over a complete contraction (compression and expansion phases)
cycle. The membrane resumes the initial position after completing the
contraction cycle and repeats the process without any external force.
The mechanism of periodic membrane pumping is mathematically
expressed in a cartesian coordinate system as (see Ref. 33)

h� x�; t�ð Þ ¼

k
2

; if x� 2 � L
2
;�a�

� �S
a�;

L
2

� �
;

k
2
þ A

x�

a�

� �2M

� 1

 !3

1� k�ox
� cos pf t�ð Þ

� �
sin2 pf t�ð Þ; if x� 2 ½�a�; a��;

8>>>><
>>>>:

(1)

where h� x�; t�ð Þ is the function of axial coordinate (x�) and time (t�),
which represents the walls of the microchannel with amplitude of
membrane contraction (A), k�o is optimized for the membrane profile,
M is the shape of the membrane profile, and f ¼ ðUe0=LÞ is the fre-
quency, where, and Ue0 is the reference electro-osmotic velocity. The
length of the membrane ranges in a� 2 � L

2 ;
L
2

� 	
based on the model

of Aboelkassem,33 where the length (L) of the microchannel is signifi-
cantly larger than the width (k).

B. Theory of an electromagnetic field

The Maxwell equation is composed of the electrical and magnetic
effects, which is used to derive the Lorentz force charge per unit vol-
ume, and the local ion current density is expressed as

J ¼ r E þ U�i � B
� �� �

Local ion current densityð Þ; (2)

where r is the electrical conductivity that quantifies the magnitude of the
electrical field E and the flow velocity U�i with the transverse magnetic
field B ¼ ð0;B0; 0Þ that are proportional to the current density. The
flow is simultaneously acted upon by a transverse magnetic field and an
applied lateral electric field (out of the channel of flow) of strength EZ .
The body force J � B can be derived with the help of Ohm’s law as

J � B ¼ r E þ U�i � B
� �

� B

¼ r E þ u�iþ v�jþ 0kð Þ � Bð Þ � B;

J � B ¼ rB0Ez � rB2
0u
�:

(3)

Additional forces are exerted along with the driving axial pressure gra-
dient as a result of the electromagnetic volumetric force rB0Ez and a
retarding magnetohydrodynamic volumetric force rB2

0u
�. It is impor-

tant to note that despite there is no electric field applied along the axis

FIG. 1. Schematic diagram of the
membrane-based pumping flow model
modulated by electro-osmosis and
magnetohydrodynamics.
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of the channel, an electric field, specifically the streaming/electric
potential field Ex ¼ rU� is inherently induced by the advection of
ionic species with the flow in the microchannel using the electrokinetic
phenomenon.21

C. Electro-osmosis

In order to assess the electrokinetic phenomena in the microfluidic
system, the attribute of the induced electric field is taken in terms of the
electric potential (U�). The advection of counter-ionic concentration
with the flow due to the influence of an EDL forms near the liquid–wall
interface, and an electric charge is deposited in the vicinity of the micro-
channel wall to enhance the potential at the walls. The charge density is
measured by howmuch electric charge is accumulated in relation to the
electric potential via the Poisson equation as

r2U� ¼ � qe

e
: (4)

Here, e is the permittivity of the electromagnetic fluid, and
qe ¼ ezðnþ � n�Þ is the density of charged ions. e is the protonic
charge, z is the valence of the ions, and n6 are the number of cations
and anions, respectively, which can be quantified by the Boltzmann
distribution as n6 ¼ n0 exp 7 zeU�=kBTað Þ and it is valid when the
flow of the Peclet number is sufficiently small.26 In such a case, the net
charge density in a unit volume of the fluid is expressed as

qe ¼ 2n0ez sinh
ezU�

KBTa

� �
; (5)

where n0 represents the concentration of ions in the bulk flow. KB is
the Boltzmann constant, and Ta is the average temperature of the elec-
trolyte solution.

The parallel walls are assumed to be charged and bear a uniform
zeta potential of U0 at the wall, which is smaller than the thermal
potential, i.e., zeU�j j < kBTaj j ! U� � 1. Using the linear

Debye–H€uckel approximation, viz., sinh ezU�

KBTa


 �
� ezU�

KBTa
, the electric

potential due to the presence of the EDL is described by the
Poisson–Boltzmann equation that can be expressed as

@2U�

@x�2
þ @

2U�

@y�2
¼ �2n0ez

ezU�

eKBTa

� �
; (6)

subjected to the following boundary condition:

U�jy�¼h� ¼ U0;
@U�

@y�

����
y�¼0
¼ 0: (7)

D. Governing equations of the problem

The basic equations governed the electro-magneto-hydrody-
namic (EMHD) flow driven by membrane-based pumping are
expressed as

r � U�i ¼ 0; (8)

q
@

@t
þ U�i � r

� �
U�i ¼ �rpþ lr2U�i þ F; (9)

where F ¼ qeEx þ J � B is the body force (combined effects of elec-
tric and magnetic cross fields acting on the fluids) and p is the fluid

pressure. q and l represent the density and kinematic viscosity of the
fluid, respectively. The continuity, axial, and transverse momentum
equations are expressed in the Cartesian coordinate system as

@u�

@x�
þ @v

�

@y�
¼ 0; (10)

q
@u�

@t�
þ u�

@u�

@x�
þ v�

@u�

@y�

� �

¼ � @p
�

@x�
þ l

@2u�

@x�2
þ @2u�

@y�2

 !
þ qeEx þ rB0Ez � rB2

0u; (11)

q
@v�

@t�
þ u�

@v�

@x�
þ v�

@v�

@y�

� �
¼ � @p

�

@y�
þ l

@2v�

@x�2
þ @2v�

@y�2

 !
; (12)

subjected to the following boundary conditions:

u�jy�¼h� ¼ 0; v�jy�¼h� ¼
@h�

@t�
; p�jx�¼L ¼ pL;

@u�

@y�

����
y�¼0
¼ 0; v�jy�¼0 ¼ 0; p�jx�¼0 ¼ P0:

(13)

E. The non-dimensional variables

The Reynolds number is the ratio of the inertia force to the
viscous force, and it can be defined as Re ¼ Ue0qk=l, where
Ue0 ¼ � eU0Ex

l is the reference electro-osmotic velocity. Introducing

the following non-dimensional variables: x ¼ x�
L ; y ¼

y�

k ; t ¼
t�Ue0
L ;

h ¼ h�
k ; u ¼ u�

Ue0
; v ¼ v�

dUe0
; p ¼ p�k2

lUe0L
; U ¼ zeU�

kBT
; d ¼ k

L ; a ¼ a�
L ; and

a0 ¼ A
k. The Poisson–Boltzmann Eq. (6) can be written as

@2U
@y2
¼ j2U yð Þ; j ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n0e2z2

KBTae

s
; (14)

where 1=j represents the EDL thickness where j is the ratio of the
characteristic transverse length to the Debye length. With associative
electric potential boundary condition Ujy¼h ¼ U0;

@U
@y jy¼0 ¼ 0, the

general closed-form analytical solution of Eq. (14) can be derived as

U ¼ U0
cosh jyð Þ
cosh jhð Þ

: (15)

The volumetric net charge density qe can be obtained in the form as

qe ¼ �ej2U0
cosh jyð Þ
cosh jhð Þ

: (16)

Introducing the non-dimensional variables in Eqs. (10)–(12) and
employing the lubrication approximation, i.e., low Reynolds number
(Re� 1) and width of the microchannel is much less than the charac-
teristic length (k� L), neglecting the nonlinear terms in the limits
d� 1, and further substituting the expression for volumetric net
charge density from Eq. (16), the reduced continuity and momentum
equations are rewritten as

@u
@x
þ @v
@y
¼ 0; (17)
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@p
@x
¼ @

2u
@y2
þ j2 cosh jyð Þ

cosh jhð Þ
þH2

aET �H2
au;

@p
@y
¼ 0: (18)

The electromagnetic parameters arising in Eqs. (17) and (18) are as

follows: Ha ¼ B0 k
ffiffi
r
l

q
is the Hartmann number, and ET ¼ � Ez

Ue0B0
is

the electric field parameter. In the axial momentum equation (18), the
second term on the right-hand side represents the volumetric momen-
tum generation caused by the electric potential, which is induced by
the electro-osmotic flow. The third term represents the combined
effect of the electrical and magnetic body forces, and the last term is
the Lorentzian magnetic drag generated by the transverse magnetic
field. From Eq. (18), it is inferred that the pressure is an independent

function of y (i.e., @p=@y ¼ 0) since terms of OðRedÞ and higher-
order are neglected. The associated boundary conditions are reduced
to the following forms:

ujy¼h ¼ 0; vjy¼h ¼
@h
@t
; pjx¼L ¼ p1;

@u
@y

����
y¼0
¼ 0; vjy¼0 ¼ 0; pjx¼0 ¼ p0:

(19)

Equation (1) demonstrates the mechanism of periodically membrane
propagation, i.e., compression and expansion phases of the membrane
with spatial and temporal, respectively, are further represented in the
non-dimensional form as

h x; tð Þ ¼

1
2

; if x 2 � 1
2
;�a

� �S
a;
1
2

� �

1
2
þ a0

x
a

� �2M

� 1

 !3

1� k0x cos ptð Þð Þsin2 ptð Þ; if x 2 �a; a½ �:

8>>>>><
>>>>>:

(20)

F. Analytical solutions

Solving the boundary value problem defined in Eqs. (17) and
(18), the solution for the axial velocity is obtained as

u ¼ 1

H2
a

H2
aET �

@p
@x

� �
1� cosh Hay½ �

cosh Hah½ �

� �

þ j2

H2
a � j2

cosh jy½ �
cosh jh½ �

� cosh Hay½ �
cosh Hah½ �

 !
: (21)

By considering the continuity equation (17) and the axial velocity (21),
the transverse velocity is derived as

v ¼ 1

H2
a

@2p
@x2

y � sinh Hay½ �
Hacosh Hah½ �

� �

� ET �
1

H2
a

@p
@x

� �
sinh Hay½ �tanh Hah½ �

cosh Hah½ �

� �
@h
@x

þ j2

H2
a � j2

sinh jy½ �tanh jy½ �
cosh jh½ �

� sinh Hay½ �tanh Hay½ �
cosh Hah½ �

 !
@h
@x
:

(22)

Considering the transverse velocity subjected to the boundary condi-
tion (i.e., vjy¼h ¼ @h

@t), a correlation between the membrane motion

and the axial pressure gradient can also be obtained as follows:

@h
@t
¼ 1

H2
a

@2p
@x2

Hah� tanh Hah½ �
Ha

� �
� @h
@x

ET �
1

H2
a

@p
@x

� �

� tanh2 Hah½ � � j2

H2
a � j2

tanh2 Hah½ � � tanh2 jh½ �
� � @h

@x
:

(23)

Integration of Eq. (23) with respect to x, the pressure gradient is
derived as

@p
@x
¼ G0 tð Þ þ

ðx
0

@h s; tð Þ
@t

ds� j2

H2
a � j2

tanh Hah½ �
Ha

� tanh jh½ �
j

� �8<
:
þET

Hah� tanh Hah½ �
Ha

� �9=
; H3

a

Hah� tanh Hah½ �

 !
: (24)

The pressure gradient is a function of both temporal coordinate (t)
and axial coordinate (x), and G0 tð Þ is calculated over the finite length
of the microchannel as

G0 tð Þ ¼
ð1
0

Hah� tanh Hah½ �
H3

a

dx p1 � p0ð Þ �
ð1
0

H3
a

Hah� tanh Hah½ �

0
@

�
ðx
0

@h s; tð Þ
@t

ds� j2

H2
a � j2

tanh Hah½ �
Ha

� tanh jh½ �
j

� �0
B@

þET
Hah� tanh Hah½ �

Ha

� �1Adx

1
A: (25)

The pressure distribution is evaluated as

p ¼ p0 þ
ðx
0

@p s; tð Þ
@x

ds: (26)

The dimensionless stream function (w ¼
Ð
udy �

Ð
vdx) is computed

as

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 092014 (2022); doi: 10.1063/5.0111050 34, 092014-5

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


w ¼ H2
aET �

@p
@x

� �
1

H2
a

y � sinh Hay½ �
Ha cosh Hah½ �

� �

þ j2

H2
a � j2

sinh jy½ �
j cosh jh½ �

� sinh Hay½ �
Ha cosh Hah½ �

 !
: (27)

The pumping flow is characterized by a volumetric flow rate Qðx; tÞ,
which is a function of the pressure gradient. Qðx; tÞ is calculated by
integrating the axial velocity over the half width of the microchannel
(y ¼ 0 to y ¼ h), which yields

Q ¼ H2
aET �

@p
@x

� �
1

H2
a

h� tanh Hah½ �
Ha

� �

þ j2

H2
a � j2

tanh jh½ �
j

� tanh Hah½ �
Ha

� �
: (28)

III. RESULTS AND DISCUSSSION
A. Parameter selection

The expressions derived for the flow characteristics in Sec. II are
used to compute the axial velocity profile, pressure distribution,
volumetric flow rate, and pumping characteristics at a fixed value of
M ¼ 2; a ¼ 0:2; a0 ¼ 0:2; and k0 ¼ 1:95 and t ¼ T=4 and 3T=4:
The influence of various parameters, such as the Hartmann number
(Ha), electrical field parameter (ET ), inverse EDL thickness (j), and
membrane shape parameter (M) on the above physical quantities, are
visualized graphically by using MATLAB software. First, the permissible
ranges of relevant physical parameters are defined. Here, the typical values
of the sundry parameters for the microscale fluid flow with dynamic vis-
cosity l 	 10�3 Pa s, the electric conductivity r 	 2:2� 10�4 Sm�1,
the applied magnetic field B 	 0:018–0:44T;28 and the range of
Hartmann numbers, i.e., Ha 	 0–8 are considered.29 The potential of
the applied electric field ranges as E 	 0–20V=m, and the electro-
osmotic velocity is taken asUeo 	 100 lm=s. For the length L	 300lm
and width k 	 100 lm, the value of the inverse EDL thickness is consid-
ered as j 	 1; 5; 10; and1:27 An important limitation for microchan-
nel flow is that the magnitude of the lateral electric field should not be too
large, otherwise the induced transverse flow will not be neglected, which
will contradict the assumption of unidirectional flow.35 Therefore, the
maximummagnitude of the electric field is taken up to 2.

B. Electric potential

The electric potential is crucial in diverse fields, including MEMS
and technological processes at the microscale. The electric double layer
(EDL) thickness is one of the most important characteristics of
electro-osmotic flow, which affects the electric potential, physicochem-
ical properties of electrolyte solutions, the extent of stability of colloidal
systems, etc. The Poisson–Boltzmann theory helps us to understand
the significance of the colloidal dispersions (i.e., zeta potential) and
EDL thickness for the dispersion of the electric field. Figure 2(a) repre-
sents the influence of inverse EDL thickness (j) on the electric poten-
tial. The electric potential (U) is slightly ascent with the order of j, i.e.,
surface potential, which may cause either a decrease or an increase in

the effective EDL thickness. However, j ¼ k 2n0e2z
2

KBTae


 �1=2
increases the

physical properties of the particle in the interfacial layer, which leads
to the enhancement in the electric potential as shown in Fig. 2(a).

Furthermore, the distribution of the electric potential across the micro-
channel for different values of zeta potential is sketched in Fig. 2(b).
The uniform electric field is regulated in the microchannel except in
the membrane region. This means that the electric potential increases
as the wall surface interacts with the charged particles due to the mem-
brane compression. On the other hand, the zeta potential provides
excess charge due to the colloidal dispersion at the wall surface.

C. Pressure distribution in the membrane based
microchannel

The contraction of the membrane in the upper half microchannel
at fixed times t ¼ T=4 is presented in Fig. 3. This membrane contrac-
tion profile generates the pressure (p) inside the microchannel in the
range of x 2 ½�0:2; 0:2�, which can effectively propagate fluids in the
microchannel. Corresponding to the membrane motion, the spatial
variation in the fluid pressure (p) during the contraction phase
(t ¼ T=4) for different values of the sundry parameters is discussed
through contour plots in Figs. 3 and 4. Moreover, the corresponding
flow field of the velocity vector throughout the microchannel repre-
sents the direction of the flow. Here, it is observed that the fluid pres-
sure is constant at each cross-sectional region within the
microchannel. However, the kinematics of the periodic membrane
generates uniform pressure distribution on both sides of the contrac-
tion region as shown in Fig. 3(a). The flow field of the velocity vector
is stagnated at the center, which bifurcates the fluid in both direc-
tions.34 In addition to the magnetic force, there is an opposing volu-
metric force of magnitude rB2

0u
�, which acts to retard the axial

pressure gradient. In Fig. 3(a), the Hartmann number (Ha ¼ 5) cre-
ates a strong Lorentzian force that controls the direction of the fluid
velocity. Although the magnitude of the fluid pressure remains the
same for the j ¼ 3 as presented in Fig. 3(b), the distribution of the
fluid pressure is affected by the EDL thickness i.e., the axial pressure
gradient is decreasing with the increase in the j (i.e., reduction in
the EDL thickness). The electrical field parameter (ET ¼ 2) enhances
the velocity of the fluid, resulting in the decrease in the pressure
after the mid-region. Physically, the influence of the magnetic force
controls the strength of the flow, while the electric field enforces the
direction of the flow field as shown in Fig. 4(a). The effect of the
electric-magnetic fields in the thinner electric double layer is observed,
mobilizing greater ionic diffusion, accelerating the pressure, and
reducing the flow field as shown in Fig. 4(b). From this result, it is
noted here that the membrane kinematics generates pressure inside
the microchannel, while the Hartmann number controls the velocity

FIG. 2. The variation in the electric potential for different values of wall zeta poten-
tial with (a) the inverse EDL thickness and (b) the microchannel length.
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of the fluid uniformly and the electric field enforces the direction of
the flow while the EDL parameter improves the pressure-driven flow.

Figures 5(a) and 5(b) visualize the pressure distributions along
the microchannel with different Hartmann numbers (Ha) and electric
field parameter (ET) at time t ¼ T=4. The pressure at the inlet and
outlet of the microchannel is zero, and the maximum in the contrac-
tion region, i.e., x 2 ½�0:2; 0:2� due to the membrane compression. In
Fig. 5(a), the large value of the Hartmann number has raised the fluid
pressure, particularly in the contraction domain as the magnetic force

is maximum in this region. For the electric field (ET ¼ 2), the static
pressure distribution is accumulated within the half region (i.e.,
x 2 ½�0:5; 0�). It suddenly decreases and attains the lowest value in
the region x 2 ½0; 0:5� as shown in Fig. 5(b). In addition, the
Hartmann number increases the fluid pressure, i.e., a stronger mag-
netic field produces an accentuation in the magnetic pressure and dis-
tributes the uniform pressure throughout the microchannel. On the
contrary, the transverse magnetic field regulates the pressure-driven
flow and improves the efficiency of the mechanical system.

FIG. 3. The contour plot for distribution of pressure through the microchannel with a velocity vector flow field without the electric field: (a) k ¼ 1 and (b) k ¼ 3 at fixed values
of Ha ¼ 5 and M ¼ 2.

FIG. 4. The contour plot for distribution of pressure through the microchannel with a velocity vector flow field with the electric field: (a) k ¼ 1 and (b) k ¼ 3 at fixed values of
Ha ¼ 5 and M ¼ 2.

FIG. 5. The pressure distribution along the microchannel for different values of the (a) Hartmann number and (b) electric field parameter at fixed values of
t ¼ T=4; j ¼ 1; andM ¼ 2.
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D. Pumping characteristics

Figures 6(a) and 6(b) depict the profiles for the time-averaged
volumetric flow rate at the inlet and outlet positions for different val-
ues of the (a) electric field parameter and (b) membrane shape param-
eter with Ha ¼ 3 and j ¼ 1. In the microchannel, as noted earlier, the
periodic membrane motion produces the net flow, whereas the mag-
netic and electric parameters regulate the net flow. The result shown
in Fig. 6 represents the time average flow rate (QT) at the inlet position
x ¼ �0:5 via the solid line and at the outlet position x ¼ 0:5 via the
dotted line. Identical results are attained at the inlet and outlet position
over a complete contraction cycle in the opposite direction i.e.,
QT inlet position; t ¼ T=4ð Þ ¼ QT outlet position; t ¼ T=4ð Þ. Higher
magnitudes of the flow rate are produced consistently at the outlet
(dotted lines) in both plots. Figure 6(a) shows that with an increase in
the electric field parameter, there is a consistent augmentation in the
flow rate. This is explained by the fact that larger values of ET corre-
spond to higher magnitudes of the axial driving force (rB0Ez).
However, an inspection of Fig. 6(b) indicates that greater values of the
membrane shape parameter (M) increase the net flow rate only at the
outlet, whereas at the inlet the opposite effect is generated, i.e., the flow

rate is suppressed with increasing membrane shape parameter.
Therefore, the membrane parameter exerts a very different effect on
the transport phenomena depending on the location in the
microchannel.

Figures 7(a) and 7(b) depict the time-averaged flow rate vs
pressure gradient across the microchannel under the influence of the
electric field parameter and the inverse EDL thickness at t ¼ T=4
(compression phase). The plots indicate that the flow rate is
inversely proportional to the pressure gradient, i.e., a high volumet-
ric flow rate is attained for a small pressure gradient. From Fig. 7(a),
it is evident that the QT is decreasing and becomes negative as the
pressure gradient is increasing for ET ¼ 1; 2; and 3 (i.e., backward
pumping flow can be possible due to the large pressure difference).
However, the positive pumping ðQT > 0Þ is enhanced and corre-
sponds to the strongest electric field. In addition, the variation in the
time-averaged flow rate as a function of the pressure gradient for
three different cases (such as j ¼ 1; 5; 10) is shown in Fig. 7(b). It is
noticed that the time averaged flow rate is increased with an increase
in j. A positive flow rate is only guaranteed for lower pressure gradi-
ent values at any value of j.

FIG. 6. Variation of the time-average flow rate across the length of the microchannel for different (a) electric field parameters and (b) membrane shape parameters at fixed val-
ues of Ha ¼ 3 and j ¼ 1.

FIG. 7. Variation of the time-averaged flow rate for different (a) ET ¼ 1; 2; 3ð Þ and (b) jð¼ 1; 5; 10Þ at fixed value of Ha ¼ 3 and M ¼ 2.
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E. Velocity profile and flow field

Figures 8(a) and 8(b) represent the impact of the electric field
parameter and inverse EDL thickness on the axial velocity profiles dur-
ing the compression phase (t ¼ T=4) at position x ¼ �0:1. At the
walls, the axial velocity is zero due to the no-slip boundary condition,
and the maximum axial velocity of the fluid is achieved at the center of
the microchannel. In addition, the electric field parameter enhances
the movement of the fluid so that the axial velocity profile is increasing
with the ET as presented in Fig. 8(a). Here, the positive value of the
axial velocity component indicates that the fluid is propelled in the for-
ward direction. The j changes the shape of the axial velocity compo-
nent inside the microchannel (i.e., the aqueous fluid is inversely
affected by the surface charge density of the EDL) as presented in
Fig. 8(b). The high EDL thickness (j ¼ 2) ensures negligible electro-
viscous effects, which lead to the axial velocity profile to remain para-
bolic. With reducing the EDL thickness, the shape of the velocity
profile is shifting from parabolic to trapezoidal, and further, the mag-
nitude of velocity is closer to the walls of the microchannel, which is
distributed more uniform throughout the channel to maintain the
controlled movement. When the EDL thickness is minimum
(j !1), the trend of the velocity profile is further shifting from
upward parabolic to downward parabolic since the electro-viscous
effects are dominating as compared to the pressure force. It is also
noteworthy that the axial velocity topology is the classical parabolic
profile for j ¼ 2; whereas it evolves into a flattened plug-like profile

for j ¼ 5, and thereafter for j ¼ 10; !1 a sharp inverse parabola is
computed in the core region, although the peak velocities for these two
scenarios are indistinguishable at the central section of the microchan-
nel, whereas slightly higher axial velocity is computed near the walls
for!1.

Physically, the magnetic force is proportional to J � B, which
clearly highlights the Lorentz force effect that resists the motion of
fluid. For the large value of the Hartman number, the magnitude of
the Lorentz force is high, and it leads to a small velocity in the micro-
channel. The minimum axial and transverse velocities magnitudes are
attained for Ha ¼ 3 as shown in Figs. 9(a) and 9(b). The membrane
propagation bifurcates the axial velocity in both left and right direc-
tions, while the transverse velocity is achieved near by the membrane
domain. On the other hand, the thin EDL generates the high bulk con-
centration that permits a robust screening of the surface charge. From
Fig. 10, it is observed that the electric potential is strong in the region
near the wall, which leads to the increase in the axial velocity. The
bolus is generated in the transverse velocity, which controls the move-
ment of the fluid as sketched in Figs. 10(a) and 10(b). The electric
body force is accumulated the axial velocity in the membrane domain
with large magnitude. Furthermore, the nature of axial velocity
remains consistent with the outward direction as presented in
Fig. 11(a). Two positive and negative boluses are computed at the end
of the membrane position as shown in Fig. 11(b). These results indi-
cate that the dependence of the axial and transverse velocities on the
value of ET is much stronger than on the value of Ha and j.

FIG. 8. The axial velocity throughout the microchannel for different values of (a) electric field parameter with j ¼ 2 and (b) inverse EDL thickness with ET ¼ 2 at fixed values
of Ha ¼ 3; M ¼ 2, and t ¼ 3T=4:

FIG. 9. The contour plot of the (a) axial velocity and (b) transverse velocity without the electric field for high EDL thickness (j ¼ 1).
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F. Particle tracking simulation

The particle tracking simulation method is applied based on the
Lagrangian frame of reference as given in Eq. (29) to understand the
instantaneous flow developed by the periodic membrane contractions
inside the microchannel as depicted in Fig. 12 and mathematically
defined as

d
dt

Xp ¼ U i; Xp 0ð Þ ¼ x0; (29)

where Xp is the particle position vector and x0 describes the initial
position of the particle. Here, it can be seen how the particle is propa-
gated in the microchannel with rhythmic membrane contraction. In
the case of no electric field, initially, the particle is constantly moving
as shown in Fig. 12(a). However, the wave like movement in the parti-
cle is captured due to the membrane kinematics. This result illustrates

that all the variables are linearly dependent on the applied pressure by
membrane kinematics; however, the thin EDL thickness ðj ¼ 3Þ is
responsible for the small increment of the transverse direction as pre-
sented in Fig. 12(b). In order to highlight the combined effects of mag-
netohydrodynamic and electro-osmosis, the particle tracking results
are plotted in Fig. 12(c). It is seen that the particle ascends rapidly and
progresses as high up in the transverse direction.

IV. CONCLUSIONS

A mathematical model is presented for the viscous flow of elec-
troconductive fluid in a microchannel, where the pressure is generated
by periodic membrane pumping and further amplified by both mag-
netohydrodynamic and electro-osmotic effects. The discrete scheme
PMP, i.e., the periodic membrane pumping mechanism, has been
studied. The governing equations are derived for axial and transverse
velocities, axial pressure gradient, and volumetric flow rate. The influ-
ence of key control parameters, i.e., Hartmann number (transverse
magnetic field), inverse EDL thickness, and electrical field parameter
are visualized graphically using MATLAB software. A particle tracking
simulation method is also used to compute the instantaneous flow
developed by the periodic membrane contractions inside the micro-
channel. The key findings of the present analysis are summarized as:

(i) The greater strength of the electric field elevates the net flow
rate in the microchannel.

(ii) Time-averaged flow rate is increased with a decrease in the
EDL thickness. A positive flow rate is only guaranteed for
lower pressure gradient values at any value of j.

(iii) The electric field has much efficiency to accelerate the fluid
velocity rather than the inverse EDL thickness.

FIG. 10. The contour plot of the (a) axial velocity and (b) transverse velocity component without the electric field for low EDL thickness (j ¼ 5).

FIG. 11. The contour plot of the (a) axial velocity and (b) transverse velocity with the electric field for high EDL thickness (j ¼ 1).

FIG. 12. Trajectory of a particle from an initial point for (a) j ¼ 1; Ha ¼ 5;ET ¼ 0,
(b) j ¼ 3; Ha ¼ 5;ET ¼ 0, and (c) j ¼ 3; Ha ¼ 5; ET ¼ 2:
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(iv) The magnetic parameter (Ha) enhances the fluid pressure
uniformly throughout the microchannel, while the electric
field parameter (ET) enforces the direction of pressure-
driven flow.

(v) The electric potential is strong in the region near the wall,
which leads for the increase in the axial velocity.

(vi) The combined effect of electro-osmotic and magnetohydro-
dynamic elevates the particle to the transverse direction and
moves forward.

This study has revealed some interesting insight into membrane
pumping microsystems combined with the electromagnetohydrody-
namic framework. However, attention has been confined to
Newtonian ionic magnetic liquids. Future investigations may address
non-Newtonian ionic magnetic liquid flow in the microchannel driven
by periodic membrane pumping with thermal properties.

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

D. S. Bhandari: Conceptualization (equal); Methodology (equal);
Software (equal); Writing – original draft (equal). Dharmendra
Tripathi: Conceptualization (equal); Supervision (equal); Writing –
review & editing (equal). O. Anwar B�eg: Writing – original draft
(equal); Writing – review & editing (equal).

REFERENCES
1O. C. Jeong, S. W. Park, S. S. Yang, and J. J. Pak, “Fabrication of a peristaltic
PDMS micropump,” Sens. Actuators, A 123–124, 453–458 (2005).

2M. T. Taylor, P. Nguyen, J. Ching, and K. E. Petersen, “Simulation of micro-
fluidic pumping in a genomic DNA blood-processing cassette,” J. Micromech.
Microeng. 13(2), 201 (2003).

3M. Gong, N. Zhang, and N. Maddukuri, “Flow-gated capillary electrophoresis:
A powerful technique for rapid and efficient chemical separation,” Anal.
Methods 10(26), 3131–3143 (2018).

4F. Forouzandeh, A. Arevalo, A. Alfadhel, and D. A. Borkholder, “A review of
peristaltic micropumps,” Sens. Actuators, A 326, 112602 (2021).

5T. Ma, S. Sun, B. Li, and J. Chu, “Piezoelectric peristaltic micropump integrated
on a microfluidic chip,” Sens. Actuators, A 292, 90–96 (2019).

6V. Singhal, S. V. Garimella, and A. Raman, “Microscale pumping technologies
for microchannel cooling systems,” Appl. Mech. Rev. 57(3), 191–221 (2004).

7D. Li, Electrokinetics in Microfluidics (Elsevier, 2004).
8N. A. Patankar and H. H. Hu, “Numerical simulation of electroosmotic flow,”
Anal. Chem. 70(9), 1870–1881 (1998).

9N.-T. Nguyen, S. T. Wereley, and S. A. M. Shaegh, Fundamentals and
Applications of Microfluidics (Artech House, 2019).

10K. N. Vasista, S. K. Mehta, S. Pati, and S. Sarkar, “Electroosmotic flow of visco-
elastic fluid through a microchannel with slip-dependent zeta potential,” Phys.
Fluids 33(12), 123110 (2021).

11Z. Hu, T. Zhao, W. Zhao, F. Yang, H. Wang, K. Wang, J. Bai, and G. Wang,
“Transition from periodic to chaotic AC electroosmotic flows near electric dou-
ble layer,” AIChE J. 67(4), e17148 (2021).

12B. Mahapatra and A. Bandopadhyay, “Efficacy of microconfined fluid mixing
in a combined electroosmotic and pressure driven transport of complex fluid
over discrete electrodes,” Phys. Fluids 34(4), 042012 (2022).

13X. Yang, S. Wang, M. Zhao, and Y. Xiao, “Electroosmotic flow of Maxwell fluid
in a microchannel of isosceles right triangular cross section,” Phys. Fluids
33(12), 123113 (2021).

14B. Mahapatra and A. Bandopadhyay, “Numerical analysis of combined
electroosmotic-pressure driven flow of a viscoelastic fluid over high zeta poten-
tial modulated surfaces,” Phys. Fluids 33(1), 012001 (2021).

15H.-F. Huang and K.-H. Huang, “Energy efficiency analysis of mass transport
enhancement in time-periodic oscillatory electroosmosis,” Phys. Fluids 33(3),
032021 (2021).

16N. Pamme, “Magnetism and microfluidics,” Lab Chip 6(1), 24–38 (2006).
17A. Andreozzi et al., “Modeling heat transfer in tumors: A review of thermal
therapies,” Ann. Biomed. Eng. 47(3), 676–693 (2019).

18M. Suleman and S. Riaz, “3D in silico study of magnetic fluid hyperthermia of
breast tumor using Fe3O4 magnetic nanoparticles,” J. Therm. Biol. 91, 102635
(2020).

19R. S. Chouhan et al., “Magnetic nanoparticles—A multifunctional potential
agent for diagnosis and therapy,” Cancers 13(9), 2213 (2021).

20S. Das, S. Chakraborty, and S. K. Mitra, “Magnetohydrodynamics in narrow
fluidic channels in presence of spatially non-uniform magnetic fields:
Framework for combined magnetohydrodynamic and magnetophoretic parti-
cle transport,” Microfluid. Nanofluid. 13(5), 799–807 (2012).

21S. Chakraborty and D. Paul, “Microchannel flow control through a com-
bined electromagnetohydrodynamic transport,” J. Phys. D 39(24), 5364
(2006).

22D. S. Bhandari, D. Tripathi, and V. K. Narla, “Magnetohydrodynamics-based
pumping flow model with propagative rhythmic membrane contraction,” Eur.
Phys. J. Plus 135(11), 890 (2020).

23M. M. Bhatti, A. Zeeshan, and R. Ellahi, “Electromagnetohydrodynamic
(EMHD) peristaltic flow of solid particles in a third-grade fluid with heat trans-
fer,” Mech. Ind. 18(3), 314 (2017).

24K. S. Mekheimer, “Effect of the induced magnetic field on peristaltic flow of a
couple stress fluid,” Phys. Lett. A 372(23), 4271–4278 (2008).

25N. S. Akbar, M. Raza, and R. Ellahi, “Influence of induced magnetic field and
heat flux with the suspension of carbon nanotubes for the peristaltic flow in a
permeable channel,” J. Magn. Magn. Mater. 381, 405–415 (2015).

26S. Sarkar, S. Ganguly, and S. Chakraborty, “Influence of combined electromag-
netohydrodynamics on microchannel flow with electrokinetic effect and inter-
facial slip,” Microfluid. Nanofluid. 21(3), 56 (2017).

27D. Tripathi et al., “Electro-magneto-hydrodynamic peristaltic pumping of cou-
ple stress biofluids through a complex wavy micro-channel,” J. Mol. Liq. 236,
358–367 (2017).

28K. Saha, P. V. S. N. Murthy, and S. Chakraborty, “Rheology-modulated altera-
tions in electro-magneto-hydrodynamic flows in a narrow cylindrical capillary:
Contrasting trends in high and low surface charge limits,” Electrophoresis
43(5–6), 732–740 (2022).

29A. Moradmand, M. Saghafian, and B. Moghimi Mofrad, “Electroosmotic
pressure-driven flow through a slit micro-channel with electric and magnetic
transverse field,” J. Appl. Fluid Mech. 12(3), 961–969 (2019).

30K. Ramesh, D. Tripathi, M. M. Bhatti, and C. M. Khalique, “Electro-osmotic
flow of hydromagnetic dusty viscoelastic fluids in a microchannel propagated
by peristalsis,” J. Mol. Liq. 314, 113568 (2020).

31J. Prakash, A. K. Ansu, and D. Tripathi, “Alterations in peristaltic pumping of
Jeffery nanoliquids with electric and magnetic fields,” Meccanica 53(15),
3719–3738 (2018).

32Y. Aboelkassem and A. E. Staples, “A bioinspired pumping model for flow in a
microtube with rhythmic wall contractions,” J. Fluids Struct. 42, 187–204
(2013).

33Y. Aboelkassem, “Pumping flow model in a microchannel with propaga-
tive rhythmic membrane contraction,” Phys. Fluids 31(5), 051902
(2019).

34D. S. Bhandari, D. Tripathi, and V. K. Narla, “Pumping flow model for couple
stress fluids with a propagative membrane contraction,” Int. J. Mech. Sci. 188,
105949 (2020).

35D. Tripathi, V. K. Narla, and Y. Aboelkassem, “Electrokinetic membrane
pumping flow model in a microchannel,” Phys. Fluids 32(8), 082004
(2020).

36D. S. Bhandari, D. Tripathi, and J. Prakash, “Insight into Newtonian fluid flow
and heat transfer in vertical microchannel subject to rhythmic membrane con-
traction due to pressure gradient and buoyancy forces,” Int. J. Heat Mass
Transfer 184, 122249 (2022).

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 092014 (2022); doi: 10.1063/5.0111050 34, 092014-11

Published under an exclusive license by AIP Publishing

https://doi.org/10.1016/j.sna.2005.01.035
https://doi.org/10.1088/0960-1317/13/2/306
https://doi.org/10.1088/0960-1317/13/2/306
https://doi.org/10.1039/C8AY00979A
https://doi.org/10.1039/C8AY00979A
https://doi.org/10.1016/j.sna.2021.112602
https://doi.org/10.1016/j.sna.2019.04.005
https://doi.org/10.1115/1.1695401
https://doi.org/10.1021/ac970846u
https://doi.org/10.1063/5.0073367
https://doi.org/10.1063/5.0073367
https://doi.org/10.1002/aic.17148
https://doi.org/10.1063/5.0086541
https://doi.org/10.1063/5.0076425
https://doi.org/10.1063/5.0033088
https://doi.org/10.1063/5.0041229
https://doi.org/10.1039/B513005K
https://doi.org/10.1007/s10439-018-02177-x
https://doi.org/10.1016/j.jtherbio.2020.102635
https://doi.org/10.3390/cancers13092213
https://doi.org/10.1007/s10404-012-1001-z
https://doi.org/10.1088/0022-3727/39/24/038
https://doi.org/10.1140/epjp/s13360-020-00889-5
https://doi.org/10.1140/epjp/s13360-020-00889-5
https://doi.org/10.1051/meca/2016061
https://doi.org/10.1016/j.physleta.2008.03.059
https://doi.org/10.1016/j.jmmm.2014.12.087
https://doi.org/10.1007/s10404-017-1894-7
https://doi.org/10.1016/j.molliq.2017.04.037
https://doi.org/10.1002/elps.202100105
https://doi.org/10.29252/jafm.12.03.28816
https://doi.org/10.1016/j.molliq.2020.113568
https://doi.org/10.1007/s11012-018-0910-7
https://doi.org/10.1016/j.jfluidstructs.2013.06.003
https://doi.org/10.1063/1.5092295
https://doi.org/10.1016/j.ijmecsci.2020.105949
https://doi.org/10.1063/5.0015451
https://doi.org/10.1016/j.ijheatmasstransfer.2021.122249
https://doi.org/10.1016/j.ijheatmasstransfer.2021.122249
https://scitation.org/journal/phf

	s1a
	s1
	s2
	s2A
	d1
	s2B
	d2
	d3
	s2C
	d4
	d5
	d6
	d7
	s2D
	d8
	d9
	d10
	d11
	d12
	d13
	s2E
	d14
	d15
	d16
	d17
	d18
	d19
	d20
	s2F
	d21
	d22
	d23
	d24
	d25
	d26
	d27
	d28
	s3
	s3A
	s3B
	s3C
	f2
	f3
	f4
	f5
	s3D
	f6
	f7
	s3E
	f8
	f9
	s3F
	d29
	s4
	f10
	f11
	f12
	l
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36

