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Abstract: Speaker identification systems perform almost ideally in neutral talking environments.
However, these systems perform poorly in stressful talking environments. In this paper, we present
an effective approach for enhancing the performance of speaker identification in stressful talking
environments based on a novel radial basis function neural network-convolutional neural network
(RBFNN-CNN) model. In this research, we applied our approach to two distinct speech databases: a
local Arabic Emirati-accent dataset and a global English Speech Under Simulated and Actual Stress
(SUSAS) corpus. To the best of our knowledge, this is the first work that addresses the use of an
RBFNN-CNN model in speaker identification under stressful talking environments. Our speech
identification models select the finest speech signal representation through the use of Mel-frequency
cepstral coefficients (MFCCs) as a feature extraction method. A comparison among traditional
classifiers such as support vector machine (SVM), multilayer perceptron (MLP), k-nearest neighbors
algorithm (KNN) and deep learning models, such as convolutional neural network (CNN) and
recurrent neural network (RNN), was conducted. The results of our experiments show that speaker
identification performance in stressful environments based on the RBFNN-CNN model is higher than
that with the classical and deep machine learning models.

Keywords: Mel-frequency cepstral coefficients; shallow and deep learning models; speaker identification;
stressful talking environments

1. Introduction

Human beings are able to recognize known voices in a very short time [1]. The voice
of an individual is unique, which is due mainly to their developed and physical features.
There are physical variations amongst human beings, due to the unique voice-producing
organs and the sizes and shapes of their articulators. The larynx (most importantly the
vocal folds) is voice-producing, and the rest, including the nose, are mostly responsible for
resonances, i.e., articulation [2]. In addition to anatomical features, speech rate, vocabulary,
accent, and other personal behaviors taking shape over time are also responsible for the dif-
ferent speech patterns found in individuals These features are exploited by state-of-the-art
speaker recognition systems in a way that makes it possible to attain significant recognition
accuracy [3]. There are two broad categories of speaker recognition (SR): speaker identifica-
tion (SI), and speaker verification (SV) [4]. The process of speaker identification involves
automatic detection of the speaking person from a set of specific speakers. Conversely,
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speaker verification involves automatic detection of whether the speaker is a specific person
or not. Speaker identification can be used for various purposes. For instance, applications
such as credit card security, confidential data safety, client identity and verification are
some examples of broad speaker recognition applications. The functioning of speaker
identification is either text-dependent [5–7] or text-independent [8–12].

Many circumstances can cause stress, including noisy backgrounds, emergencies such
as aircraft pilot communications, high workloads, physical environmental factors, and
multitasking [13]. There are several applications of speech recognition under stressful
conditions in real life. This includes emergency call centers, telephone banking and military
voice communications applications.

An emotional talking environment occurs when the speaker speaks his or her language
under the influence of emotional conditions such as anger, happiness, and sadness. Emotion
recognition applications are found in telecommunications, human–robot interfaces, and
intelligent call centers. Emotion recognition can be used in intelligent language education
systems to sense and adapt to student emotions when they reach a state of boredom during
a tutoring session [14,15].

Speaker identification in emotional and stressful conditions is challenging because of
the mismatch between training and testing. In the training stage, the models are trained
using neutral conditions; however, in the testing phase, models are tested using neutral, as
well as emotional and stressful, conditions. This why models perform better when they are
tested under neutral conditions.

Speaker identification also has various applications in civil cases and the media. This
includes applications in recorded discussions and phone calls made to radio stations or
other state and local departments and insurance companies [16]. It is important that the
speaker be identified in such cases, since some people tend to disguise their voices to
imitate famous people in the media, which may affect their reputation.

The main aim of this research was to further enhance speaker identification perfor-
mance in stressful talking environments using a novel RBFNN-CNN model. In this research,
we evaluated our approach with two distinct speech databases: a local Arabic Emirati-
accent dataset and a global English Speech Under Simulated and Actual Stress (SUSAS)
corpus. Our speech identification models selected the finest speech signal representation
by feature extraction such as Mel-frequency cepstral coefficients (MFCCs), after having
been processed. We evaluated our proposed model against different classical classifiers
such as support vector machine (SVM), multilayer perceptron (MLP), k-nearest neighbors
algorithm (KNN), and different deep learning models such as convolutional neural net-
work (CNN) and recurrent neural network (RNN). Results show that the proposed model
outperforms all other models.

The remaining sections are organized as follows: Section 2 presents related work.
Section 3 describes the datasets used in this research, while the model architecture and
methodology are explained in Section 4. The results of the models are presented in Section 5.
Section 6 concludes the paper.

2. Related Work

The performance of speaker identification is exceptionally high in a neutral talking en-
vironment compared to other talking environments such as emotional and stressful [16–18].
Conversely, its performance is lower in the case of a stressful talking environment [19–21].
A neutral talking environment is the kind of talking environment whereby the speaker
utters the speech without any stressful or emotional talking condition. On the other hand,
a stressful talking environment is different from neutral talking conditions in the sense that
the speakers deliver their speech under stressful talking conditions, such as shouting or
speaking loudly, and quickly.

The authors in [19] investigated “talker-stress-induced intra-word variability”, and
the algorithm meant to counter these systematic changes, based on “hidden Markov
models (HMMs)” as classifiers that had been trained with the help of speech indications
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under different types of talking conditions. By using the hypothesis-driven compensation
technique, the error rate was reduced from 13.9% to 6.2%.

Raja and Dandapat [20] focused on studying speaker recognition in stressed conditions
with the aim of improving the decline in performance usually observed in these conditions.
They made use of four types of stressed conditions of the SUSAS database [22,23], including
neutral, angry, Lombard, and question conditions. The study revealed that speech uttered
by speakers under angry conditions exhibited the lowest speaker identification perfor-
mance [20]. The average speaker identification rate using the SUSAS database (stressed
condition) was about 57%.

Zhang and Hansen [24] examined five different vocal modes, including whispered,
soft, neutral, loud, and shouted, with the aim of studying various aspects of speech. They
intended to identify distinguishing features of speech modes. The average accuracy rate
was about 96%. Chatzis [25] tried to learn through the use of data with sequential dynamics
and put forward infinite-order HMM models that were based on the assumption that
first-order Markovian dependencies existed among the successive label values denoted
by y. The models that were designed were better than other techniques, for a couple of
reasons. First, extended and complex temporal dependencies can be captured by these
models. Second, margin maximization paradigms are employed for performing model
training in these models, ultimately leading to a convex optimization design [25]. The
highest average accuracy obtained was 71.68% for the iMMS model.

In another work, Prasetio et al. (2020) [26] proposed a method using the deep time-
delay Markov network (DTMN) to predict emotions by studying earlier emotional states.
The novel approach has been evaluated on the English SUSAS database. They concluded
in that study that the proposed DTMN outperformed the baseline systems. TDNN-4 was
the optimal temporal context for predicting the emotional state of 8.31% PER.

There are very few research studies that focus on the spoken Arabic language as
speech [27,28]. This is mainly because Arabic speech databases are quite limited with
reference to the speaker recognition area. There are four main regional dialects of the Arabic
language. They include “Egyptian, Levantine (e.g., Jordan), North African (e.g., Tunisian),
and Gulf Arabic (e.g., Emirati)” [29].

There is currently no published work dealing with speaker identification in stressful
talking environments using the RBFNN-CNN model. In this paper, a significant con-
tribution has been made for enhancing speaker identification within stressful talking
environments. For this purpose, two speech databases were applied for model testing of
speaker identification within stressful talking environments. “Speech Under Simulated
and Actual Stress (SUSAS)” is the first database that has been recorded using stressful and
neutral talking [22]. The “Emirati speech database” [30] is the second database, in which
30 Emirati speakers (15 males and 15 females) were used as respondents and subjected to
neutral, shouted, slow, loud, soft and fast talking conditions.

Results based on different classifiers and compensators as reported in our previous
results, Refs. [31–33] reported speaker identification performance under shouted/stressful
talking conditions using the Emirati accent dataset. Their reported speaker identifica-
tion performance in shouted/stressful talking conditions was 58.6%, 61.1%, 65.0%, 68%,
74.6%, 75%, 78.4%, 81.7%, 78.7%, 83.4%, and 85.8% based, respectively, on “First-Order
Hidden Markov Models (HMM1s), Second-Order Hidden Markov Models (HMM2s), Third-
Order Hidden Markov Models (HMM3s), Second-Order Circular Hidden Markov Mod-
els (CHMM2s), First-Order Left-to-Right Suprasegmental Hidden Markov Models (LTR-
SPHMM1s), Suprasegmental Hidden Markov Models (SPHMMs), Second-Order Left-to-
Right Suprasegmental Hidden Markov Models (LTRSPHMM2s), Third-Order Left-to-Right
Suprasegmental Hidden Markov Models (LTRSPHMM3s), First-Order Circular Supraseg-
mental Hidden Markov Models (CSPHMM1s), Second-Order Circular Suprasegmental
Hidden Markov Models (CSPHMM2s), and third-order circular suprasegmental hidden
Markov models (CSPHMM3s)”. Table 1 shows more comparison with previous studies.
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Table 1. Comparison with previous studies.

Prior Work Classifier Accuracy

[31–33] CSPHMM2s 85.8%

[20]
Speaker and Stress

Information based on
Compensation (SSIC)

56.74%

[24] Gaussian Mixture Model
(GMM) 97.62%

[26] Deep Time-delay Markov
Network (DTMN) 8.55 PER *

* PER refers to prediction error rate.

The main contributions of this study are as follows:

• To the best of our knowledge, this is the first work that uses and evaluates an RBFNN-
CNN model for speaker identification under stressful/emotional conditions.

• We conduct extensive comparisons between traditional classifiers and deep learning
models to predict the model that yields the highest performance.

• We showed that the proposed RBFNN-CNN model outperforms other models.

3. Speech Databases and the Extraction of Features
3.1. Captured Emirati-Accent Speech Corpus

This task involved the communication of the Emirati-emphasized speech database
(Arabic database) by 30 local Emirati speakers from each gender, between the ages of
14 and 55 years. Eight Emirati expressions, which are widely spoken by the UAE public,
were uttered by speakers. Eight sentences that would be spoken in six stressful talking con-
ditions were used. These talking conditions were “neutral, angry, slow, loud, soft, and fast”.
The tone of each talking condition was expressed nine times, inserting 2 to 5 s gaps between
utterances. The speakers were asked to speak these sentences on the spot, not giving them
the chance to practice the sentences, in order to prevent fake outcomes. The overall number
of recorded utterances was 7560 ((15 speakers× 2 genders× first 4 sentences× 9 duplicate
sentences in the neutral environment for the training session) + (15 speakers × 2 genders
× last 4 sentences × 9 replications/sentence × 6 talking conditions for the testing session)).
For more details, please check Section 4.1 [30].

3.2. Speech under Simulated and Actual Stress (SUSAS) Database

A wide variety of emotions and stresses are part of the five domains present within the
SUSAS database. Actual domain (actual speech when stressed) and simulated domain (sim-
ulated speech when stressed) are part of the database. There were close to 16,000 utterances
by 32 speakers (from 22–76 years of age), of which 19 were men and 13 were women [22].
To conduct fair comparisons with other studies, the Lombard condition was removed.
This research took into consideration 13,890 records uttered by eight speakers (training
considered five, and testing was conducted on the others) two times (each word repeated
twice), who talked in 6 stressful talking conditions, which included fast, soft, low, slow,
angry, and neutral.

3.3. Extraction of Features

Our speech identification models selected the finest speech signal representation by
feature extraction, such as Mel-frequency cepstral coefficients (MFCCs), after having been
processed. The most extensively used feature of the speech was the Mel frequency scale,
which involved easy calculation, suitable potential for the distinction, anti-noise, as well
as other benefits [34,35]. Sound processing also made use of MFCC as a feature extraction
technique. It has been found that MFCCs function better than other coefficients in the two
areas and award a high-level approximation of auditory perception of individuals [36,37].
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We used the Python library (python_speech_features), and both (mfcc) and (logfbank)
were imported. The used parameters were: n_mfcc = 96, n_fft = 1024, win_length =
int(0.025 ∗ rate), hop_length = int(0.01 ∗ rate).

The used filter bank was the Mel filter bank that was introduced by the library.

4. Model Architecture

Generally, the speaker identification process may be categorized into two crucial parts:
feature extraction and classification. Figure 1 shows the speaker identification process.
Speakers may be distinguished on the basis of some exceptional characteristics that are
typical to a particular speaker by using the extracted features. Feature extraction is an
important part of speaker identification; hence, features call for additional fine-tuning
and use of appropriate approaches to come up with the ultimate identity of a speaker.
Individual speaker models are formulated for each and every speaker by making use of
these feature sets. All of the developed speaker models are stored. The features of the
speech uttered by the unidentified speaker are extracted and compared with the developed
speaker models using a speaker identification classifier, which checks if the features of
the unknown speaker match with those in the developed speaker models. This leads to
the identification of the unknown speaker. The speaker identification process explained
in the current study uses a machine learning approach, whereby speakers are identified
by considering the features extracted from the speaker’s recorded speech. The features
out of Mel-frequency cepstrum coefficients (MFCC) were used for classifier training. A
96-dimension feature of MFCCs was used to determine the observation vectors in all deep
learning and classical techniques. A “continuous mixture observation density” was selected
in each classifier with six states. MFCC determines the change in the straight cosine in
the range of log control related to the direct Mel recurrence size. The human voice can be
represented with high precision in Mel recurrence, due to uniform or similar dispersion of
recurrence groups therein. The models are fed by an array of MFCCs of each time frame.
Closed-set speaker identification is presented as follows: The words spoken by the given
speaker are recorded, and the recording is compared with the developed speaker models
(a finite set). The developed model that shows the most resemblance with the recording
is considered. The recorded speech signals of the given speaker are used for extraction
of MFCC. Overall, the MFCC technique will generate features from the inserted audio
signal samples that are used as input for the speech recognition model. This is followed by
classifier training with these features. The feature extraction process is also followed for
the new speech signals we want to classify. The speaker with the closest resemblance is
predicted by the trained classifiers. Figure 1 depicts the speaker identification approach
employed in the current study.
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4.1. RBFNN-CNN Model

RBFNN is a feedforward neural network model that is relatively fast in comparison
with other machine learning models such as multilayer perceptron [38]. Figure 2 shows
how the RBFNN layers are comprised [39], where the input vector is represented by the
first layer. The second layer, which is also called the hidden layer, is where the RBFs of all
input data are stored. For example, the node RBF1 is the vector with the length of n where
the RBF of X ([x1, x2, . . . , xn]) and C1 (first centroid vector) is described. The RBF1 vector
is a measure of how the distance between the first centroid and data X is related to other
vectors. Eventually, through utilizing the theory described above, the resulting prediction
of the unknown point’s class can be made by calculating the RBF of an unidentified data
point x in terms of all centroids. Additionally, we calculate the dot product of RBF and W
(the weight) and choose the index with the highest value. RBFNN models use a Gaussian
function as an activation function in the hidden layer. In this article, the implementation of
SUSAS and Arabic Emirati-accent dataset classifications are described.
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The RBFNN is followed by CNN, in which the final model is the result of cascading
RBFNN with CNN (RBFNN-CNN). In the CNN model design, five hidden layers have
been used due to the significant outcome in accuracy. The number of input neurons is 957,
which represent the features, while the number of output neurons is 50, which represent
the classes after categorizing the testing labels, knowing that the output layer is known
since the dataset is labeled. Figure 3 illustrates the block diagram of the CNN model
that is cascaded with RBFNN, where the output of RBFNN is the input for the CNN
model. The block diagram of the RBFNN-CNN model is shown in Figure 4. The activation
function that has been applied in this work is “Softmax”. The standard (unit) Softmax
function σ : RK → RK {\displaystyle \sigma:\mathbb {R} ˆ{K}\to \mathbb {R} ˆ{K}} is
characterized by the following equation [40].

σ(z)i =
ezi

∑K
j=1 ezj

f or i = 1, . . . , K and z = (z1, . . . , zk) ∈ RK (1)

The exponential function is applied to all input vector features and then normalizes
the values. At first, audio signals are inserted into the model with zero manipulations.
The inserted audios are the input for the next step, named “preprocessing step”, that is
applied to each audio. In addition, this step involves the labeling process for each audio
file. The labeling process is where the naming of each sound file is accomplished, e.g., the
first sound corresponds to speaker X, etc.
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talking conditions.

The output of the preprocessing step includes all of the files along with their labels.
This output is the input to the feature extraction process, where each audio file contains
special characteristics recognized by the presented MFCC feature extraction method. The
output of the feature extraction method entails the essential features as a matrix having
feature vectors for each audio. The output encounters all of the matrices that should be
used in the classification. Before applying the classification method, we first split the data
into training and testing datasets. The next step was to start classifying our data using
the proposed model, RBFNN-CNN. RBFNN addresses the theoretical gap in the original
RBF and solves the ambiguity regarding the class of the data. Inside the RBFNN, in the
hidden layers, each node represents a vector that is stored with its centroid vector. Each
node vector represents the distance between first centroid and data X, which are associated
with one another. The output of RBFNN is an array of features that contain weights that
best estimate the linear relationship among RBFs and the output. This is considered as
the input to CNN, where the “Softmax” activation layer was used to normalize it into a
probability distribution containing K probabilities, ending up with the identified speaker.

RBFNN is an unconventional machine learning method that is also incredibly fast,
effective, and straightforward. RBFNN models the data using smooth transitioning circular
shapes rather than harsh cut-off circles, creating a pattern that best approximates the
position of the clusters (features of speaker x). It also provides information on the prediction
confidence rate, which is the core use of RBFNN as a deep feature match/robust for
stressed conditions. The color intensity gradually lowers as you move away from the
cluster centroids. An exponential function with a negative power of distance can be utilized
to achieve such a smooth transition. We can regulate how fast the function decays by
multiplying the distance with a scalar coefficient “Beta.” As a result, a larger Beta indicates
a more rapid drop. RBFNN is, in general, one of the most powerful models for classification
and regression applications. Using a large number of RBF curves, RBF nets can learn to
approximate the underlying patterns. In comparison to MLP structured networks, the use
of a statistical equation for the optimization process makes the method more conducive
and faster.

4.2. Traditional Classifier Experiments

In this section, we discuss the traditional machine learning algorithms that were
evaluated for speaker identification using the Emirati speech database and the global
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English SUSAS database in stressful talking environments. In this study, we used the KNN,
SVM and MLP classifiers. Within each model, there is one classifier, where 80% of utterance
for the individual speaker has been used for training. Testing and evaluation include 20%
of utterances.

4.2.1. Support Vector Machines (SVM)

A multi-class support vector machine (SVM) classifier was trained by applying the
linear function. As the SVM is considered to be simple as well as competent for machine
learning algorithm computation, it was applied for pattern recognition and classification
issues. Since the training data were limited, the classification performance was quite
efficient when compared to other classifiers. Hence, in the current research, the speech data
were classified using the support vector machine, and the following parameters were used.

• SVC: C = 1.0
• Kernel = linear
• decision_function_shape = ovr

4.2.2. Multilayer Perceptron (MLP)

With the help of the MLP, it was possible to minimize the system’s expected and
real output differences. For the current model, the MLP topology design included the
following parameters:

• activation = ‘tanh’
• hidden_layer_sizes = 100
• activation = ‘relu’, solver = ‘adam’
• validation_fraction = 0.1
• learning_rate_init = 0.001
• max_iter = 200

The hyperbolic tangent activation function was applied for all hidden layer neurons.
For the output layer neurons, the linear ones were applied.

4.2.3. The K-Nearest Neighbors Algorithm (KNN)

KNN is the simplest classification algorithm, as it assumes that instances that are
close to the instance space will have similar class values. Currently, the KNN classifier is
usually adopted by researchers, since it is simple, refined, and direct. If new sample data x
arrive, KNN will search for the k neighbors nearest to the unlabeled data initiating from
the training space with reference to some distance measure. In the current research, the
following parameters were applied:

• KNN: n_neighbors = 25
• weights = ‘uniform’
• algorithm = ‘auto’
• max_iter = 200

4.3. Deep Learning Experiments

In this research, we implemented CNN and RNN models. There are many re-
searchers [41,42] who have experimented using a combination of RNN and CNN. They
have clearly indicated that as compared to the machine learning models, this mixture is
much more effective.

4.3.1. Convolutional Neural Network (CNN)

In this paper, the CNN model was developed through the integration of five convo-
lutional layers, each followed by a max-pooling layer and a dropout layer. The input of
the neural network was a vector of 96 MFCC features. Each of these five CNN layers had
64 filters, with a kernel size of 3 × 3, that were applied at a stride setting of three pixels.
We used the RELU activation function instead of the typical sigmoid functions, which
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improved the efficiency of the training process. The max-pooling layer generates a lower
resolution version of the convolution layer; we applied a pool size of 2 × 2. Later, we
added a dropout layer, which helped in avoiding overfitting; we set the dropout ratio at
20%. Finally, we added a fully connected layer and a dense layer that had 30 neurons; each
represented one speaker in the dataset.

4.3.2. Recurrent Neural Networks (LSTM)

Due to the effectiveness of deep learning techniques, we also adopted an RNN model
consisting of three LSTM layers. The input of the neural network was a vector of 96 MFCC
features. Each of these three LSTM layers had 64 filters. We added a fully connected layer
and a dense layer of 16 nodes that had an activation function, Softmax.

4.3.3. Bidirectional LSTM (BILSTM)

There are three LSTM layers present within the proposed BILSTM model. The neural
network input contained a vector of 96 MFCC features. There were 64 filters present within
each of the three LSTM layers. A fully connected layer and dense layer were included,
which attained an activation function Softmax with 16 nodes.

4.3.4. CNN-BiLSTM

There are four convolutional layers present within the proposed CNN-BILSTM model.
The max-pooling layer and a dropout layer follow each of these layers. The neural network
input is a vector of 96 MFCC features. There are 64 filters present within the four CNN
layers along with a kernel size of 3 × 3 that are included in a 3-pixel stride setting. For the
convolution layer, a lower resolution version was generated by the max-pooling layer, and
2 × 2 pool size was applied. A dropout layer, of ratio 20%, was also included later, helping
to avoid overfitting. Lastly, an entirely connected layer was included, along with a dense
layer that maintained an activation function, Softmax.

4.3.5. Gated Recurrent Units (GRU)

The proposed GRU model consists of three GRU layers. Each of these three GRU
layers has 32 filters. We added a fully connected layer and a dense layer that has activation
function Softmax with 16 nodes. Finally, we added a dropout layer, which helps in avoiding
overfitting; we set the dropout ratio at 20%.

4.3.6. BI-GRU

There are three GRU layers present within the proposed BI-GRU model. Each of these
three GRU layers has 32 filters. We added two dropout layers, which help in avoiding
overfitting; we set a dropout ratio of 20%. Finally, we added a fully connected layer and two
dense layers that have activation functions Softmax and RELU, respectively, with 16 nodes.

4.3.7. Attention-BILSTM BI-GRU

The proposed Attention-BILSTM model consists of three BI-GRU layers. Each of
these three GRU layers has 32 filters. We added a dropout layer, which helps in avoiding
overfitting; we set a dropout ratio of 30%. Finally, we added a fully connected layer and a
dense layer that has activation function Softmax with 16 nodes.

5. Results and Discussion
Experimental Results and Evaluation

The measurement of classifiers in terms of quality involves the use of accuracy, preci-
sion, recall, and F1-measure.

One of the most crucial performance measures is accuracy. It is defined as the ratio of
observation predicted accurately to all of the observations predicted. It is usually believed
that the model with the highest accuracy is best. While the significance of accuracy as an
important measure cannot be denied, measuring performance also calls for the availability
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of symmetric datasets having close or similar values for false positives and false negatives.
Hence, a model’s performance evaluation must involve additional parameters. The ratio
of the predicted positive observations that are accurate to the overall predicted positive
observations is referred to as the precision. High precision is associated with a low false
positive rate.

Recall (sensitivity)—Recall refers to the ratio of predicted positive observations that are
accurate to the overall observations with respect to actual class-yes. Any value exceeding
0.5 is considered as appropriate. F1 score—Computation of the weighted average of
precision and recall yields the F1 score. This implies the inclusion of false positives as well
as false negatives in the F1 score. This concept involves more complexity as compared to
accuracy; however, F1 outshines accuracy when it comes to usefulness, particularly in the
case of irregular class distribution. The higher the similarity of costs of false positives and
false negatives, the higher the accuracy will be. We must consider precision as well as recall
in the case of high diversity in the cost of false positives and false negatives.

This research employed a novel RBFNN-CNN that was evaluated against multiple
machine learning algorithms using the Emirati speech database and global English SUSAS
database in stressful talking environments. The stressful talking environments included
“neutral, shouted, slow, loud, soft, and fast-talking conditions”.

Tables 2 and 3 demonstrate average speaker identification performance in stressful
talking conditions using the Emirati and SUSAS datasets, respectively. In Table 2, the
standard deviation is added as one of the measurements. A large standard deviation indi-
cates that the data are dispersed, which is unreliable. However, a low standard deviation
indicates that the data are tightly grouped around the mean, which is more reliable. The
conducted results show that the standard deviation outcomes were relatively small; thus,
the data were reliable.

Table 2. Average speaker identification performance using Emirati accent dataset.

Best Test
Accuracy

Standard
Deviation

Precision Recall F1

Weighted Weighted Weighted

SVM 87% 3.01 97% 87% 0.87
MLP 69% 3.51 74% 69% 0.69
KNN 62% 3.60 63% 63% 0.62

CNN_BILSTM 88% 2.90 89% 88% 0.87
Att-BILSTM 79% 3.24 82% 79% 0.77

BI-LSTM 78% 3.36 81% 78% 0.78
BIGRU 73% 3.44 76% 73% 0.73
GRU 70% 3.49 72% 70% 0.69
LSTM 62% 3.57 64% 62% 0.62

Proposed
RBFNN-CNN 98% 1.80 98% 98% 0.98

Table 3. Average speaker identification performance using SUSAS dataset.

Best Test
Accuracy

Precision Recall F1

Weighted Weighted Weighted

SVM 90% 90% 90% 0.90
MLP 91% 92% 92% 0.92
KNN 70% 71% 70% 0.70

CNN_BILSTM 92% 93% 92% 0.92
Att-BILSTM 84% 84% 84% 0.84

BI-LSTM 80% 81% 80% 0.81
BIGRU 77% 78% 77% 0.77
GRU 73% 74% 73% 0.73
LSTM 63% 65% 63% 0.63

Proposed
RBFNN-CNN 98% 98% 98% 0.98
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Results in the above tables show that the proposed RBFNN-CNN outperformed all
classical and deep learning models in both Emirati and SUSAS datasets. To prove that the
proposed model is significantly better than other models, we conducted a statistical test
between the proposed model and other models. We chose the non-parametric Wilcoxon
test [43] because data were not normally distributed. The reported p-values were less than
0.05, which indicated that the proposed model was statistically significant. On the other
hand, based on classical classifiers only, SVM surpassed other classifiers using the Emirati
dataset; while MLP was the winning model with the SUSAS dataset. Furthermore, the
CNN_BILSTM model proved to be the winning model in both datasets after the proposed
RBFNN-CNN model. Based on these results, MLP had better performance as compared to
the other classifiers using the SUSAS speech corpus. However, the results attained based on
SVM were better than those achieved based on each of the MLP and KNN classifiers using
the Emirati-accent dataset. Therefore, we can conclude that there is no rule that states the
superiority of a specific classifier over another in any classification problem. Furthermore,
the neutral talking environment was noted for the best accuracy followed by slow, soft, fast,
loud, and shout, respectively. Based on Tables 1–3, it is evident that our proposed model
outperformed the models in previous studies.

6. Conclusions

In this paper, we focused on improving speaker identification performance in stressful
talking environments by introducing a novel RBFNN-CNN model. The proposed model
was compared against shallow and deep learning models using a local Arabic Emirati-
accent dataset and a global English Speech Under Simulated and Actual Stress (SUSAS)
corpus. MFCCs were used as the extracted features of the database based on classical
machine learning algorithms SVM, MLP, and KNN as classifiers, as well as deep learning
techniques, such as RBFNN-CNN, CNN, and RNN in stressful talking conditions. Some
conclusions can be presented. First, the proposed RBFNN-CNN model outperformed all
other models based on both datasets. Second, the results attained based on SVM were better
than those achieved based on each of the MLP and KNN classifiers using the Emirati-accent
dataset. Third, the MLP had better performance as compared to the other classifiers using
the SUSAS speech corpus. Fourth, the CNN_BILSTM classifier came second in terms of
performance after the proposed model using both datasets. Furthermore, the proposed
model surpassed the models used in studies in related work based on the same datasets.

The main limitation in our study is that we used two different datasets for model
evaluation. In the future, we plan to extend the Emirati-accent speech dataset to include
more speakers from different emirates and genders.
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