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Abstract
In view of the trend towards Industry 4.0, intelligent predictive monitoring and decision-making processes have become
a crucial requirement in today’s manufacturing industries to safeguard data exchange and industrial assets from damage
that would thus prevent the achievement of overall company goals. For enhanced reliability and safe operation of
machines, frequent maintenance of the process equipment and the linked auxiliaries in a plant is highly desirable. Poor
maintenance of assets can add to downtime, which can in turn affect the overall cost-effectiveness of the plant. With tra-
ditional maintenance strategies and planned or timed-based maintenance, one replaces the faulty systems when they are
found to be damaged or broken. However, an early and proactive prediction of machine or equipment fault and failure
state enables the industry to take the necessary action to replace the faulty system well before it stops operating
entirely. This paper briefly reviews the available predictive maintenance techniques for different applications from the
perspective of Industry 4.0. Furthermore, the associated challenges and opportunities are identified and discussed.
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Introduction

Industrial revolution is currently in its so-called fourth
generation (also referred to as ‘Industry 4.0’). From its
inception in the mid-18th century, the revolution has
been gaining strength and has now spread worldwide.
Industry 1.0, or the first industrial revolution, resulted
in the transition of manual labour to mechanisation
through the usage of water and steam power. Textile
industries were the first to implement this strategy, and
this transformation spread throughout Europe (includ-
ing British industries) and the United States. The suc-
cessful handling of machine works prompted other
industries such as agriculture, mining, and the iron
industry to adopt these strategies, thus resulting in a
greater extent of machine usage.1

Industry 2.0, or the second industrial revolution,
extended from the late 19th century to the beginning of

the 20th century. This revolution was marked by tech-
nological advancements in the field of telegraph and
transportation, which facilitated easy movement of the
masses. Electricity was introduced for use in production
lines. Mass production strategies were implemented,
which boosted the industrial economy and productiv-
ity. The only major drawback was that unemployment
was at its peak as many manual labour jobs became
mechanised.1,2

Industry 3.0, or the third industrial revolution,
showed its importance in the post-war scenario of the
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late 20th century. This era marked the beginning of
digitisation. Automation, supercomputers, and wireless
communication technologies were employed in produc-
tion lines, which had a dynamic role in an increased
overall productivity and efficacy of machines and their
components. Machines dominated production lines,
performing menial and repetitive jobs with extremely
low error rates.2

Industry 4.0 (IR4.0), or the current fourth industrial
revolution, perceives the extensive employment of
cyber-physical systems to monitor the working of vir-
tual systems in line with physical ones. These systems
are capable of decision making and prediction, taking
an autonomous approach to efficiently deliver highly
scalable, valuable, and optimised products.3

IR4.0 system, comprises of four main components4

� Internet-of-Things (IoT) or Industrial Internet of
Things (IIoT)

� Cognitive computerised systems
� Cyber-physical system
� Cloud-based system

Subsets of the above-listed systems include mobile or
handheld devices, GPS or location-tracking systems,
human-machine interfaces, robots, cybersecurity, 3D
printing, analytic and advanced computer algorithms,
remote monitoring, augmented reality, visualisation,
fault detection, etc.5,6

The core functioning of IR 4.0 can be classified as:

� Digitisation of industrial assets.
� Digitisation of product- and service-centric

markets.
� Digitisation of client/consumer systems.7

In a nutshell, Industry 4.0 is intended to ensure the
smooth transition of data and automation among the
systems in the manufacturing processes through the use
of major technological components, as mentioned pre-
viously. In the present era, artificial intelligence has
played a hugely significant role in leveraging the ‘smart
factory’, which efficiently takes decentralised decisions.
Predictive maintenance equipped with advanced tech-
nologies and smart sensor networks, which can predict
faults and failures while machines are in operation, has
also been made possible because of Industry 4.0.
Employing such a technology helps to provide cost-
effective and optimised methods for detecting failures
well before the machine or system failure occurs.
Figure 1 outlines the Industry 4.0 usage.

Building such an advantageous system in the manu-
facturing industries is also fraught with challenges.
High maintenance costs, adaptability of business mod-
els, unemployment, lack of certification and regula-
tions, reliability issues and deficient skills amongst

operators are just some of the challenges that the
researchers and technologists from all walks of life are
attempting to resolve. One of the sectors that has wit-
nessed all the transitions of the industrial revolution is
the manufacturing or production industry. With
advancements in the usage of machines in the produc-
tion lines, there is an urgent need for their proper main-
tenance to ensure smooth operation, efficiency of the
machines, on-demand and continuous manufacturing,
and a low-cost impact of undesirable downtime.8

Maintenance costs make up between 15% and 60%
of the manufacturing cost of the finished product. For
heavy industries, this cost is even greater and can be as
high as 50% of the total production cost. This data
helps us to understand why there is the utmost need to
maintain the machines and their components used in
the production line. For example, a bench press
machine having a stoppage time of 5min/h leads to a
downtime of 40min in an 8-h shift. For a production at
the rate of 14 units/min, this amounts to 560 pieces in
loss of production for a short stoppage of 5min in a
day shift. This number gives a glimpse of how produc-
tion downtime can lead to a disastrous number of unit
losses to the production company, thereby adding to
the direct cost of the production of finished products.9

Ineffective maintenance management strategies
result in undesirable losses that lead to unreliability
and the inability to provide quality finished products.
One of the major reasons for this issue is incorrect or
missing data on running conditions, stability, trouble-
shooting, and maintenance of the plants and the pro-
vided machinery.10

Figure 1. Typical technologies linked with IR 4.0.
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Search strategy

In this review paper, the authors have investigated dif-
ferent predictive maintenance strategies along with the
usage of technologies. Different state-of-the-art systems
were studied looking through journals available online.
‘Web of Science’, ‘Google Scholar’, ‘Scopus’ and
‘IEEE’ were the main platforms through which the
review was conducted. Different search strings such as
‘predictive+maintenance’, ‘vibration+monitoring’,
‘predictive+analysis’, ‘Industry+4.0’ were passed to
find the most relevant papers. Over 200 papers from
1996 onwards were considered in the selection process.
The emphasis was placed on papers which were pub-
lished in the last 5 years. 100 relevant papers were fil-
tered to match additional keywords with
‘Machine+ learning’, ‘Artificial+Neural+Network’,
‘Thermography’, ‘Deep+Learning’. Further analysis
of these papers yielded 65 potential articles. On detailed
reading, these papers became the basis of this review
article to determine the challenges and future scope for
researchers. Figure 2 represents the filtration process of
the relevant articles for review.

In this paper, section 3 reviews the different mainte-
nance strategies, both past and present, employed by
manufacturing and production lines. Section 4 describes
the various techniques used to perform efficient mainte-
nance. Section 5 presents the challenges faced and the
solutions provided by researchers for different model-
ling frameworks. Section 6 summarises the major chal-
lenges and presents the conclusions.

Maintenance strategies

The development and implementation of
predictive maintenance is not a new concept but is
often complicated by the challenges faced by the vari-
ous widely used maintenance management strategies.
Typical maintenance strategies are broadly described in
Figure 3.

Run-to-failure management

This management strategy basically means that as long
as the machine keeps running, there is no need to fix it.
This method is simple and reasonable as the manage-
ment does not have to invest anything until a produc-
tive machine stops completely. The only exceptions are
certain basic precautions such as oil lubrication and
minor operational adjustments that are performed in a
proactive manner. This strategy falls under the reactive
type, which is also considered a ‘no-maintenance’ policy
form of management. Reactive maintenance is the strat-
egy in which maintenance-related decisions are taken
after a breakdown occurs. On further consideration of
this tactic, it is evident that the management waits to
perform maintenance until a failure of a components,
or components, arises. However, this is the costliest
maintenance strategy, where these costs are attributed
to the spare parts inventory, overtime costs to fix the
issue, and associated low production output.9,10

Preventive maintenance

The challenges faced in the run-to-failure type of main-
tenance led to the refinement of the strategy to encom-
pass time-based or time-driven maintenance. These
refer to maintenance activities scheduled in a timely
manner based on the operational complexities and total
cycle time of the equipment that has been running since
the inception of the overall process. The bathtub curve
or the mean-time-to-failure (MTTF) in Figure 4 depicts
the performance of a machine during its lifetime.

From the graph, it is evident that the probability of
equipment failing is the highest at the start of the oper-
ating cycle because numerous adjustments, rearrange-
ments, and fine-tuning of the equipment will be carried
out during this period. As the phase of initial arrange-
ment passes, the probability of failure decreases with
time, and the machine or equipment tends to perform

Figure 2. Filtering process of relevant articles.

Figure 3. Different maintenance strategies.
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in a stable manner until it reaches the end of its normal
lifecycle. However, once the normal phase is exceeded,
the probability of equipment failure starts to increase.
In this phase, the equipment or the sub-components
start to degrade and thus fail to operate.

With the preventive maintenance strategy, the
machine or equipment is taken offline and under main-
tenance before the probability of its failure becomes
too likely. This scenario could be understood using a
similar graph for the equipment drawn to the chart
given in Figure 4. The only challenge here is that the
graphs are drawn with the assumption that the machine
will only fail after a certain timeframe. However, many
dynamics, such as the actual manner of operation and
maintenance activities performed over the lifetime, can
alter the true performance of the equipment and result
in its failure before the highest probability of the occur-
rence of a failure is reached.9,10

Among all the preventive maintenance strategies,
Condition-Based Maintenance (CBM) is the most
widely used tactic. As the name suggests, this mainte-
nance activity involves monitoring different real-time
parameters of the process conditions over a period of
time in terms of events and alarm situations. By mea-
suring the wear and tear of the system components and
measuring the failure states exceeding the permissible
engineering limits, potential failure conditions can be
diagnosed and sent to the supervisory or decision-
making team for record purposes.11

Predictive maintenance

In contrast to the preventive maintenance strategy,
which relies on statistical data, predictive maintenance
monitors factual data from the plant assets, their over-
all health conditions, efficiency, capacity and optimum
policies so as to decide when the machine or system will
fail. These data are monitored by operators, supervi-
sors and management, where action taken in a timely
manner helps minimise unscheduled breakdowns of
overall plant assets. This tactic provides a platform for

the management to detect and predict failure states
before the associated issues become serious.

For instance, in a mechanical system, monitoring
vibrations is crucial to the recognition of common fail-
ures since all components within the system have their
unique vibration frequency patterns which can be easily
isolated and then examined. Additionally, the individ-
ual amplitudes of these vibrating components will
remain constant until and unless there is a change in
the total operating dynamics of a particular component
present within that system. These data are crucial to
root cause analysis and deriving failure modes accord-
ing to the cause and effect of these components.

As seen in Figure 5, predictive maintenance helps to
establish a maintenance requirement only when a
breakdown of the system occurs. This approach results
in optimum maintenance policies and helps industries
to sustain the overall health of their assets with mini-
mal downtime.10,12

In general, five non-destructive techniques have his-
torically been employed for predictive maintenance,
which include machine or system vibration monitoring,
monitoring of plant parameters, tribology, thermogra-
phy and visual inspection. These techniques are unique
in the sense that each one provides sufficient data to
address any maintenance requirements through notify-
ing the maintenance supervisor and the management
board.

Prescriptive maintenance

Prescriptive maintenance is an evolving strategy that
has gained in importance in recent business value tech-
nology and can be described in many ways. It operates
in such a way as to progress to predictive maintenance
to forecast a failure in a system or an asset, and pro-
vides details to technicians about how to organise the
information and control the detected faults or failures.
This type of maintenance is based on the incorporation
of an intelligent framework that helps to define and

Figure 4. Bathtub curve of a machine train.

Figure 5. Predictive maintenance – event criticality.
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organise solutions for managing faults. However, it is
not an end-to-end maintenance solution, but rather
only a part of such.

According to Miklovic, in prescriptive maintenance
the system itself informs the operators when it needs to
be fixed rather than experts deciding when such assets
must be maintained. The operators are guided by the
prescriptive analytics, which are developed by exploit-
ing various machine learning tools, with regard to the
procedures to be followed for effect repairs. The most
important aspect of this tool is its unique capability to
access various data sources and make predictions with
the help of visualisation. With the use of data analytics,
by analysing multiple historical trending data and
understanding the root cause of an issue, the prescrip-
tion generated from the diagnosis should help to con-
trol any failures.13,14

Various predictive maintenance
techniques

Vibration monitoring

Most components under inspection or maintenance are
mechanical in nature. Vibration monitoring is the most
generic methodology used for analysis. Monitoring the

vibrations of machines can help in root cause analysis
of probable failures. Rotating equipment usually oper-
ates at a very high frequency, and these systems are fre-
quently subjected to extensive wear and tear. During
machine operation, heavily vibrating components face
direct impacts such as damage, misalignment, and loos-
ening of parts, thereby causing eccentricity in connected
systems. Analysing the vibration amplitude in different
frequency ranges can help in fault diagnosis. The allow-
able tolerance range of vibrations with increasing run-
ning speed of a shaft in a piece of rotating equipment,
as per ISO 2372 standards, is shown in Figure 6.15,16

In 2013,17 discussed vibration analysis using the clas-
sical Fast Fourier Transform (FFT) method. In their
analysis, the authors have taken defects such as unba-
lanced rotary parts, loosened machine components,
gear defects, and misaligned gear coupling into consid-
eration, and indeed their results were subsequently vali-
dated. In 2016,18 employed vibration signal analysis,
behavioural patterns of bearings in wind turbines have
been studied with machine learning models that
included the Support Vector Machine (SVM) and k-
Nearest Neighbour (k-NN). In 2019,19 assumed an
advancement approach to smart maintenance and
applied IoT-enabled sensors to overcome some gaps in
the methods that are commonly used for condition

Figure 6. Vibration standard – ISO 2372.

Shukla et al. 5



monitoring of rotating machinery. The researchers
effectively demonstrated the usage of predictive mainte-
nance in their study. Along with the Backpropagation
Neural Network models discussed in 2020,20 advanced
neural network methodologies such as the
Convolutional Neural Network (CNN) have also been
implemented for Assets Predictive Maintenance.21

Some of the listed references related to the architecture
of smart and predictive maintenance systems are well
aligned with IR 4.0 principles. In 2020,22 which consid-
ered the shipping industry, a model that employed
monitoring data from a real-time system grounded on
computational machine learning methodology was
explored, and the advancement of a predictive mainte-
nance resolution to this challenge was presented.

Vibration analysis has been proven to be the most
effective and powerful predictive maintenance metho-
dology, also in terms of return of investment (ROI), in
particular when used with a diagnostic decision-making
system focussed on both system operation and process
criticality.

Thermography

Thermography is another widely used predictive main-
tenance methodology. Instruments such as infrared
sensors for temperature measurement, line scanners,
and infrared imaging methods are employed to monitor
the overall health condition and events in equipment.
Infrared servicing is based on the principle that all
objects emit energy or radiation within the condition
that the temperature is above absolute zero
(2273.15�C). Infrared radiation is a part of this dis-
charged energy. According to our understanding of
radiated energy, infrared radiation have the shortest
wavelength and their visualisation is possible only with
special instrumentation.15

Owing to its high precision and the ability to
execute non-contact analysis and diagnostics, infrared
thermography has become one of the most sought-
after tools in electrical maintenance programmes.23

Figure 7 depicts the spectrum of electromagnetic waves.
The infrared band is separated into two parts: short-
wave infrared (\5mm) and long-wave infrared
(\12mm).

In 2019,25 the analysis based on the temperature dif-
ferences in the thermographic images of an induction
motor to detect bearing damage coupled with thermo-
graphic camera has been discussed. This method
proved to be beneficial as it eliminated the need for
additional sensors and the application of algorithms
that would otherwise require extensive computational
resources. In 2019,26 the application of thermography
for detecting the failure states of photovoltaic modules
was examined. Detecting faults in the inner construc-
tions of wind turbine rotor blades using active thermo-
graphic inspection was also discussed in Schwahlen and
Handmann.27

Apart from the conditioning monitoring of electrical
systems, other applications28 in which thermography
has been successfully employed include gas detection,
civil infrastructure inspection, surveillance, agriculture,
aviation and the nuclear industries.

Thermography, when used correctly, is a valuable
predictive maintenance methodology. In instances
where the annual surveying of roofs or the trimestral
reviews of electro-mechanical systems is inadequate,
the paybacks are restricted. When critical plant or asset
performance is regularly supervised and surface tem-
perature or temperature circulation indicating reliabil-
ity or operational condition is regularly measured, this
method can yield significant benefits. To maximise the
profits from the investment in IR systems, one must
use them to full capacity.

Figure 7. The electromagnetic spectrum.24
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Tribology

Tribology, in its simplest form, refers to the interaction
and behaviour of relative motion with the operating
dynamics and design of bearings and other lubrication-
rotor support assemblies typically used in machine-
train systems. Many tribology practices that can be
applied for predictive maintenance exist, some exam-
ples of which are lubricating oil analysis, ferrography,
spectrographic evaluation, and wear particle analysis.
Lubricating oil analysis is a technique for analysing
and defining the condition of the lubricants used in dif-
ferent parts of electrical or mechanical systems.
However, the process is not used to help regulate the
operating conditions of a system. In a secondary form,
oil analysis provides a true quantifiable breakdown of
each element present in a chemical, together with the
contaminants and oil additives found in the sample oil.
Hence, evaluating the volume of contaminated trace
metals in oil samples proves to be a reliable way of
detecting impending machine failures, such as wear
particle patterns of oil-moistened lubricated parts in
equipment assets.

Generally, the following examinations are commonly
conducted during lube oil analysis15:

� Viscosity
� Contamination
� Dilution of fuel
� Solids contents
� Fuel soot
� Oxidation
� Nitration
� Particle counts
� Spectrographic analysis

Wear particle analysis is analogous to the study of
oil; however, here, the wear particles under examina-
tion are gathered by taking a test specimen of lubricat-
ing oil from the operational machine train. While oil
analysis provides only the absolute state of the oil sam-
ple, particle analysis gives thorough evidence of the
condition of wear of the machine train. The contami-
nated particulates in the oil lubricants of a machine can
provide useful data on the health of the equipment. The
shape and structure of a particle, its composition, size
and amounts in which it is present are studied, and
information is extracted for further analysis. Wear par-
ticle analysis can be conducted in two ways. The pri-
mary technique is frequent monitoring along with trend
analysis of the solid particles present in the lubricant of
the system being inspected. The information on the
number, structure and size of particles from the lubri-
cant specifies the actual machine condition.

Usually, a train is capable of inhibiting small solid
particles that are less than 10mm in size. However,

when the machine progressively degrades, there is a
surge in the amount and size of the solid particles pres-
ent. Unlike the primary method in which frequent mon-
itoring is required, the secondary wear particle method
directly accesses and analyses the oil particulates in
each lubricant sample.

Generally, there are five forms of wear found10:

� Wear due to rubbing
� Wear due to cutting
� Fatigue due to rolling
� Rolling and sliding wear
� Extreme sliding wear

General spectrographic examination is restricted to
the contamination of oil with particulates that are 10
microns or less in size. Larger contaminants are
ignored, thus limiting the benefits of this technique.

Ferrography is analogous to spectrographic exami-
nation, but has two key drawbacks. First, in ferrogra-
phy, the particulate contaminants are separated using a
magnetic field, which is in contrast to the sample burn-
ing employed in spectrography. Since the electromag-
netic field is used to isolate contaminants, this
procedure could be used in applications involving fer-
rous or magnetic particles only.

In 2020,29 the researchers used oil analysis data to
classify machine conditions to investigate failures such
as overheating, water leakage, dust accumulation, com-
ponent wear, oil, and other problems with the use of
different machine or neural learning methods such as
random forests, feed-forward neural networks, and the
logistic regression model. In Jimenez et al.,30 transfor-
mers based on the entropy quality of oil have been dis-
cussed while using distinct deep convolutional learning
methods and residual neural networks. In 2019,31 the
analysis of insoluble substances present in in-service
wind turbine gear oil by means of infrared spectroscopy
is discussed. In Raposo et al.,32 predictive maintenance
policy based on a degradation model involving oil
exchange for condition monitoring has been investi-
gated by obtaining lubricant data from a fleet of diesel
engines used in urban buses. In 1996,33 contaminant
examination of oil lubricants used in a local power
plant for a turbine-generator system has been per-
formed by assessing the state of tribo-components,
such as bearing deflectors and gears, using statistical
analysis. The modelling of a hard and a soft failure that
might arise when the concentration of solid particles
reaches its critical value in a piston combustion engine
is discussed in Vališ and Žák.34 Tribo-diagnostics such
as the Wiener and Ornstein-Uhlnbeck methods were
used to analyse certain processes such as stochastic
diffusion.

Of late, tribology analysis has come to be viewed as
a sluggish and exorbitant process. The analysis involves
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obsolete laboratory-based techniques, and enormous
trained labour is required. To mechanise most of the
analyses of oil lubricants, versatile microprocessor sys-
tems are now being employed to reduce the efforts
related to manual lubrication.

Visual inspection

To maintain the qualitative aspects of industrial
machines and assets, visual inspection (VI) is one of the
oldest and most widely applied methods that constitute
a part of the maintenance strategy. This technique is
also advantageous if defects are missed or discarded by
other predictive analytics. VI is one of the most modest
techniques for structured inspection, which is some-
times performed as part of daily practices as an uncon-
scious activity.10

By considering the human-in-loop approach, defects
such as stains, dirt accumulation, scratches, cracks, sur-
face dents, and patchiness of the colour and material
coated on the surface of the parts are inspected and
corrected. One of the key requirements of VI is that the
devices or tools used to detect the fault should not
directly interact with the machines. Thus, non-
destructive techniques (NDT) are popularly applied
during inspections. The following are some of the more
frequently used NDT methods 35:

� Body Senses: Smell, Sound, Sight, Taste, Touch.
� Temperature: Thermocouple, Thermometer,

Infrared, Radiation, Heat flow.
� Vibration Wear: Accelerometer, Ultrasonic

Listening, Stethoscope, Laser Alignment.
� Materials Defects: Eddy currents, Magnetics,

Radiographs, Penetrating Dyes, Ultrasonic.
� Deposits, Corrosion, and Erosion: Ultrasonic,

Radiography, Weight.
� Flow: Manometer, Gas sensor, Quick-closing

Gauges.
� Electrical: Cable fault sensor, Multimeter,

Oscilloscope, Circuit-breaker Tester, Frequency
Recorder, Phase Angle Meter, Transient Voltage
Check.

� Chemical/Physical: Humidity, Spectrographic
Analysis of Oil, Presence of Water Particles or
Moisture in Gases/Liquids, pH, O2.

In 2019,36 the researchers studied the different defect
shapes on a surface to be inspected and derived the rela-
tionship between defect profile and defect detection rate
by employing peripheral vision (luminance). The shapes
of defects, their locations, and the characteristics of 12
objects were considered as the experimental data. The
researchers concluded that the line defect rate was less
than that of other geometrical shapes irrespective of the
contrast of luminance between the surface size and the

defect. The findings reported in Charles et al.37 suggest
that experience and knowledge of the past are crucial to
easy and efficient design processes that incorporate pic-
torial examples for visual comparison of defects.

In 2017,38 with an aircraft preflight maintenance
strategy in place, robot-installed pan-tilt-zoom cameras
were employed to perform visual inspections. This
autonomous robot was capable of identifying discre-
pancies in the air-flight by comparing the images
obtained with those stored in its database. Zheng
et al.39 proposed the usability of smart technology-
based applications in wearable augmented reality
devices for cable assemblies for aircraft maintenance.
To detect the type of cable brackets and their quality,
the convolutional neural network technique was
applied to quickly read the texts on the cable. The
images obtained via a wearable augmented reality (AR)
device mounted on a camera was fed to this network.
In 2019,40 the visual inspection feasibility approach
embedded in an unmanned aerial vehicle was applied
to determine the defects in the blade of a wind turbine
system using different image processing methodologies.

Ultrasonic

The ultrasonic testing method is quite similar to vibra-
tion monitoring except that it is applied in the high fre-
quency range of .20kHz. Ultrasonic monitoring is
primarily used for leak detection, noise-frequency anal-
ysis, and component testing. Since most ultrasonic
instruments use a frequency bandwidth similar to the
natural frequency of a rolling bearing, there is a prob-
ability of getting false positives for recognition during
the measurement phase. Hence, the ultrasonic method
is highly avoided while monitoring bearing compo-
nents. One of the major limitations of this monitoring
technique is that the sensitivity of the data stored corre-
sponding to the machine conditions and parameters
cannot always be separated.10

In 2019,41 a solution was proposed for wind turbines
to bridge the data gap between the ultrasonic monitor-
ing technique with other process and load parameters.
A pattern recognition algorithm was built to create a
dynamic alarm threshold by the meshing of different
frequencies. This approach augments the overall pro-
ductivity and health of the equipment. In 2017,42 the
application of an ultrasonic transducer for removal of
fouling in a submerged/marine structure was discussed.
In 2019,43 Root Cause Analysis (RCA) was applied to
a monitoring system based on ultrasonic inspection,
rather than relying on the use of an autonomous sys-
tem, in order to increase the turbine shaft’s remaining
useful lifetime while using ultrasonic inspection. Failure
is alarmed when the shaft’s useful lifespan falls below
96%. Surface layer cracking from the main rotating
shaft of a wind turbine was monitored using the
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ultrasonic method in Cheng et al.44 Analysis using
Finite Elements (FE) was applied to simulate the pro-
pagation of an ultrasonic wave to detect the axial posi-
tion of cracks. However, the model does not help to
quantify cracks or determine their directions.

Other testing

Apart from the techniques mentioned above, predictive
maintenance also includes other methods such as acous-
tic emissions, eddy currents, electrical resistance, mag-
netic resonance testing, X-ray inspection, load tension
and widely used classical non-destructive methods. A
summary of different methodologies used in this paper
is outlined in Table 1.45

Predictive maintenance and analysis
models

Fault is basically a state of deviation within a system, and
failure is an event, usually permanent disruption, caused
by a fault. With fault detection, evidently, one can predict
the failures that might otherwise disrupt the operation of
a machine or component. The prediction of a fault or
failure depends on the data acquired from the process or
the system. This data is processed and fed to the different
analysis models. Different modelling techniques are

available for processing the data from real-time networks,
which are raw and abstract in nature. These techniques
are quite similar in the process. With feature construc-
tion, the missing or abstract data is initially constructed
to reduce the input dimensionality and enhance predic-
tion capability to effectively manage a large set of inputs
by transforming them into a completely new feature. This
goal is achieved by performing feature extraction, which
is yet another process whose aim is to reduce the redun-
dancy of the features. This method ensures that the data
relevant to the prediction are considered and other less
important features are removed.46

Knowledge based models

Heuristic knowledge from the process and subject mat-
ter knowledge can play a vital role in predicting faults.
Mathematical or physics-based modelling is not avail-
able for this method, and it solely depends on the
domain knowledge of the experts. Fuzzy logic and logi-
cal condition/rule based (IF, THEN or ELSE) are the
most common methods for deriving this model. Owing
to the high complexity in transforming the expert
knowledge into logical conditions, this method cannot
be used alone. Typically, with the help of data from a
physics-based approach, this complexity can be reduced
considerably.47,48

Table 1. Summary table of different methodologies of predictive maintenance.

Type Year References Methodology

Vibration 2013 Patil17 Fast Fourier transform
2016 Durbhaka and Selvaraj18 Support vector machine and k-nearest neighbour
2019 Khademi et al.19 IoT-enabled sensors
2020 Kuspijani20 Backpropagation neural network models
2019 Silva and Capretz21 Convolutional neural network

Thermography 2019 Morales-Perez et al.25 Thermographic images with thermographic
camera

2019 Cipriani et al.26 Thermography for detecting the failure states of
photovoltaic modules

2018 Schwahlen and Handmann27 Active thermographic inspection
Tribology 2020 Sarawade and Charniya29 Random forests, feed-forward neural networks

and logistic regression model
2019 Alam30 Deep convolutional learning methods and

residual neural networks
2019 Zhang31 Infrared spectroscopy
2019 Raposo et al.32 Degradation model
1996 Ahn et al.33 Wiener and Ornstein-Uhlnbeck
2017 Vališ and Žák34 Statistical analysis

Visual Inspection 2019 Nakajimaet al.36 Peripheral vision (luminance)
2015 Charleset al.37 Pictorial examples for visual comparison
2017 Leivaet al.38 Pan-tilt-zoom cameras
2020 Zhenget al.39 Wearable augmented reality devices
2019 Raoet al.40 Image processing methodologies

Ultrasonic 2019 Tareenet al.41 Pattern recognition algorithm
2017 Laiset al.42 Ultrasonic transducer
2019 Galarza-Urigoitiaet al.43 Root cause analysis
2020 Chenget al.44 Finite element analysis
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In 2017,49 the researchers developed a fault detection
method that relies on an ontology-based integration
outline for the computerised knowledge-based fault
diagnostics of a conveyor system in an industrial appli-
cation. Delgoshaei and Austin,50 developed a scalable
and comprehensive knowledge-based framework for a
heating ventilation and air conditioning system over a
reasoning based on inference to derive information on
the anomalies in the process. In 2020,51 for an electric
railway system, a fuzzy-based complex approach with
thermography was posited for prognostic maintenance
activities.

Data-based models

Data-driven approaches have been well used, consider-
ing the different statistical and machine learning meth-
ods achieved via the vast pool of historical trend data
from various sensors. With past information and states
from this trending data, it is possible to predict failures
in the current state. Since it is quite possible to have
machine learning libraries and real-time sensor data,
data-driven methods and the algorithms derived from
them have gained more popularity than other methods
for predictive maintenance. However, since this method
does not integrate knowledge or the actual physical
implementation of the process, the accuracy achieved
with this model cannot be fully determined in the best
possible way. Furthermore, the actual failure mode at
its root cannot be fully recognised with just a black box
approach. Most of the research has been performed
with open-source data, and very little has been taken
directly from the mechanical or electrical equipment in
actual usage. This aspect makes it challenging to deter-
mine the reliability of reusing these models for other
equipment in the instance of manufacturers providing
custom-made machines. This leads to immense fine-
tuning and parameterisation of the model when used
for other customised equipment.52

In aircraft maintenance, the components which are
in the out-of-service zone of operation are at times not
discarded, thus leading to potential failure. In 2018,53 a
framework with data-driven approaches involving an
autoregressive moving average model (ARMA) was
proposed. The predominant health indicators of a
battery, the remaining useful life (RUL) and state-of-
health (SOH) of a lithium-ion battery are widely moni-
tored. In 2019,54 using a data-driven approach with the
Deep Neural Networks (DNN) method, a predictive
model (e SoH and the RUL of the lithium-ion battery)
was developed. Using advanced big data and the ran-
dom forest algorithm. In 2017,55 researchers developed
a platform with a dashboard which shows the predicted
failures in a wind turbine. With the usage of a Gaussian
hidden Markov model and the Wavelet Packet
Decomposition technique, the remaining useful life of a

wind turbine bearing has been discussed in Tobon-
Mejia et al.56 Different machine learning methods, such
as supervised, unsupervised, reinforcement and deep
neural network-based algorithms, are widely employed
to predict failures using the vast pool of data from
machines or systems.

Physics-based models

Mathematical models of pieces of equipment or a pro-
cess that involve numerous differential equations are
realised to form physics-based models from first princi-
ples. With accurate models, predictive models can be
designed to provide reliable predictions. These models
are implemented using various experimental and
empirical data, and they require a thorough knowledge
of a system and the associated failure modes.
Degradation models are designed to forecast the
remaining useful life of the machine. Different statisti-
cal methods are used to update the constraints of the
model. Having a rigorous knowledge of the system,
and building an accurate model from them is a tedious
task that is not, in any case, always achievable.
Parameter identification also requires exhaustive
experimentation. Not all failure modes can be consid-
ered while building such models, making it a not-so-
obvious method for complex system architecture.57

In 2012,58 the degradation model of a rolling ele-
ment bearing that relies on physics-based modelling
was simulated, and a health-monitoring system was dis-
cussed. The remaining useful life of a component in a
multiple operational mode that depends on a physics-
based prognostic method was suggested in Namburu
et al.59 Using advanced physics-based predictive main-
tenance with digital-twin implementation, the digital
image of an industrial robot and its methodology were
discussed in Aivaliotis et al.60 Reliability is a factor
which is more important in the tidal power sector than
in conventional wind power systems. For tidal stream
turbines, to forecast the remaining useful life of the
bearing of a pitch system, a reliability-focussed physics-
based model was employed.61

Hybrid models

Today, to overcome the complexities of other models
and to achieve a certain betterment, hybrid models are
extensively used. Such models combine knowledge,
data, and physics-based models to achieve a better
trade-off between these models, offering more reliable
and accurate predictive and degradation models.

The usage of hybrid models in the remaining life
estimation of a lithium-ion battery while incorporat-
ing a particle filter and other techniques was dis-
cussed in Liao and Köttig.62 In 2009,63 the summary
of a hybrid system using both physics- and data-
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based approaches to condition-based monitoring was
discussed. A hybrid technique based on adaptive
mode with regression-based predictive models for
health monitoring of a rolling element bearing was
discussed in Ahmad et al.64 A digital-twin powered
hybrid model for a CNC machine tool was implemen-
ted and discussed in Luo et al.65

Challenges and opportunities

Evidently, many programmes have been built on pre-
dictive maintenance strategies, but have otherwise failed
to yield productive results. Technologies, although
advanced, have limitations in terms of predicting failure
states in order to make necessary changes. For instance,
industries undergo cultural changes. There is an immi-
nent need to alter the perceived notion that predictive
maintenance technologies have only been formed for
maintenance management. The company’s manage-
ment should understand the importance of these tools
since those at higher management levels are often quite
oblivious, with little or no knowledge, about the need
for maintenance. Poor maintenance strategies can cause
unnecessary downtime, and delays in production out-
put are purely the result of poor maintenance of the
machines and their components.

Predictive technology should be used as an optimisa-
tion tool for the plant. It must be employed to sense,
segregate, and offer resolutions for non-conformities
with the appropriate overall performance, which results
in improper measurements, bad values, extraordinary
expenses, or safety hazards to workers. Extensive use of
technologies must be enabled to cover this important
role; however, this strength is no longer being exploited.
To accomplish this revolution of changes within pro-
duction companies, the usage of predictive technology
needs to be exchanged between the department of main-
tenance and the reliability group charged with account-
ability and responsibility for asset optimisation. Such a
group needs to have authority over all functional
groups and should attempt to implement alterations
that mitigate the issues exposed through continuous
evaluations.

Additionally, there are other challenges as the
research developed to date emphasises theoretical
assumptions; thus, its applicability in solving real-time
process issues in an industry is somewhat limited. The
models are created using a fixed amount of data by
considering limited scenarios and hence cannot be eas-
ily transferred, even to solve similar challenges. A lot of
rework involving the parametrisation and retraining of
the models needs to be performed from scratch. For
instance, a model based on single component and
single-state optimisation cannot be transferred to a
multicomponent system. The latter system is usually

dependent on the cost of the components with which
the system is interacting, and is quite complex.

Moreover, physics-based models alone are used for
failure prediction, and data-driven methods are usually
neglected. Thorough data analytics can provide useful
information and recognise data that is more relevant to
predicting a particular fault. It is vital to consider both
data-driven and physics-based models to arrive at a bet-
ter solution, particularly, for instance, for stochastic
systems.

Generic pyramid flow for a predictive maintenance
and the analytic is outlined in the Figure 8.66 This helps
to understand how to optimise the current assets.

In the future, prescriptive analysis is likely to gain
popularity amongst researchers. Creating an opportu-
nity for prescriptive analysis of the ongoing predictive
maintenance research will be beneficial to many investi-
gators, and has the potential to unearth great capabil-
ities with regard to future research contributions.

Conclusion

Industry 4.0 has resulted in the favourable usage of pre-
dictive maintenance for manufacturing processes. With
the advancements in sensing techniques, data for such
is easily available. Exploiting this information from a
plant or asset is crucial to providing cost-effective pre-
diction results. This paper has presented the opportuni-
ties one might expect from predictive maintenance,
along with the different techniques that are available to
improve associated decision-making capabilities.
Currently, most of the available review papers focus on
one or, at best, a few predictive maintenance tech-
niques. On the other hand, this paper has presented
most of the available techniques for data capacities and

Figure 8. Typical Predictive maintenance and analytic pyramid.
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has summarised the challenges inherent to each.
Selected investigations on different predictive mainte-
nance and modelling techniques along with the chal-
lenges and opportunities have been discussed, which
could provide a clear future direction as well as novel
ideas for other researches.
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