
PROC. IMECHE- PART H- JOURNAL OF ENGINEERING IN MEDICINE 

 

Accepted April 10th 2022  

 
Thermal entrance problem for blood flow inside an axisymmetric tube: The classical 

Graetz problem extended for Quemada’s bio-rheological fluid with axial conduction.  

Muhammad Waris Saeed Khan*a, Nasir Ali a and  O. Anwar Bég b 
*a

Department of Mathematics and Statistics, International Islamic University, Islamabad 44000, Pakistan 

bProfessor and Director -Multiphysical Engineering Sciences Group (MPESG), Aeronautical and Mechanical 

Engineering Department, Salford University, UK 

*Corresponding author, email: waris.saeed88@gmail.com 

 

Abstract: The heat-conducting nature of blood is critical in the human circulatory system and 

features also in important thermal regulation and blood processing systems in biomedicine. 

Motivated by these applications, in the present investigation, the classical Graetz problem in 

heat transfer is extended to the case of a bio-rheological fluid model. The Quemada bio-

rheological fluid model is selected since it has been shown to be accurate in mimicking 

physiological flows (blood) at different shear rates and hematocrits. The two-dimensional 

energy equation is tackled via a separation of variables approach for the uniform surface 

temperature case. Following the introduction of transformation variables, the ensuing 

dimensionless boundary value problem is solved numerically via MATLAB based algorithm 

known as Bvp5c (a finite difference code that implements the four-stage Lobatto IIIa 

collocation formula). Numerical validation is also presented against two analytical approaches 

namely, series solutions and Kummer function techniques. Axial conduction in terms of Péclet 

number is also considered. Typical values of Reynolds number and Prandtl number are used to 

categorize the vascular regions. The graphical representation of mean temperature, temperature 

gradient and Nusselt numbers along with detail discussions are presented for the effects of 

Quemada non-Newtonian parameters and Péclet number. The current analysis may also have 

potential applications for the development of microfluidic and biofluidic devices particularly 

which are used in the diagnosis of disease in addition to blood oxygenation technologies. 
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Nomenclature 

𝜌                      Fluid density 

𝑑/𝑑𝑡                Material derivative 

𝑟                      Radial coordinate 

𝐷ℎ                    Hydraulic diameter 
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𝑉̅               Mean velocity 

𝑉𝑁,𝑚                 Newtonian mean velocity 

𝑃𝑟                    Prandtl number 

𝜃𝑚                   Bulk temperature 

𝑁𝑢                   Local Nusselt number 

𝜏𝑟𝑧                    Shear stress 

∇                      Gradient operator 

𝑇                      Temperature 

Φ     Viscous dissipation 

α =k/ρcp           Thermal diffusivity 

 𝑧                       Axial coordinate 

𝛽∗, 𝑞          Quemada rheological parameters 

𝑅𝑒𝐷                     Reynolds number 

𝑟0                        Half width  

λ                          Eigenvalue 

cp                        Specific heat 

𝑘∗                        Thermal conductivity 

θ                          Non-dimensional temperature 

𝑃𝑒                        Péclet number 

τ                          Extra stress tensor 

𝑉                         Velocity profile 

Num                    Average Nusselt number 

𝑆                          Eigenfunction 

𝑛                          1, 2, 3… 
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∗                            Non-dimensional quantities 

∆𝑇                         Temperature difference 

𝑇𝑠                          Surface temperature 

𝑇𝑖        Inlet temperature 

 

1. Introduction 

The non-Newtonian nature of blood as manifested in its shear-thinning and stress relaxation 

characteristics is well documented. In view of growing evidence that many pathological 

conditions in the cardiovascular system are influenced in their development and advancement 

by the flow properties of blood, mathematical and numerical simulation of blood transport 

phenomena have taken on significant importance [1-3]. The complexity of the blood is due to 

a non-trivial coupling between constantly moving and deforming red blood cells (RBCs, the 

majority of blood components) and the fluid carrier. In essence, the movement of blood cells 

has a strong impact on the global flow of blood, and it is important to understand the movement 

of cells in various flows and geometries which in turn provides a deeper insight into the 

elucidation of for example cardiovascular disease (the world's leading cause of death). Recent 

interest in advancement of membrane oxygenators and extra-corporeal circulation devices has 

also mobilized interest in for example regulating the temperature of blood. An exact prediction 

of temperature profile is, therefore, of paramount interest.  

The analysis of thermal entry flow phenomenon inside a circular tube in conjunction with 

hydrodynamically developed velocity is known as the classical Graetz problem. In 1883, 

Graetz [4] studied this problem for slug flow and later, in 1885 for a parabolic flow field. In 

his analysis he solved the simplified Graetz problem (without axial conduction and dissipation 

function) with the help of separation of variable method and converted two-dimensional energy 

equation into an eigenvalue problem. Nusselt [5] adopted the same approach of Graetz and 

refined the analysis elegantly, leading to the Graetz-Nusselt problem. Siegel et al. [6] 

analytically studied the extended Graetz problem for a prescribed heat flux boundary condition. 

Hsu [7-9] presented a detail review of the Graetz problem with axial conduction terms in the 

energy equation, in which he claimed that the axial conduction term could not be ignored for 

Péclet number <100, for which a more accurate heat transfer analysis is required. He also 

emphasized that as the typical values of Péclet number are reduced below 100, one notices that 
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the calculated eigenvalues and corresponding coefficient of solution series tend to diverge 

considerably more than those that are obtained for the negligible conduction scenario. In 

general, as the Péclet number is decreased, the magnitude of the corresponding eigenvalues 

decreases, suggesting that the axial conduction effect becomes increasingly influential as the 

Peclet number becomes smaller. In fact, when the Péclet number is reduced from 5 to 1 the rate 

of decrease of the eigenfunctions is seen to be markedly significant. The reduction in the 

magnitude of the eigenvalues, from a computational point of view, allows further eigenvalues 

to be determined in order to achieve a converged temperature solution. This is the main reason 

of calculation of the first fifty eigenvalues in these theoretical study [7-9]. Shah and London 

[10] presented an excellent review of internal flows and heat transfer in ducts with various 

cross-sections. In recent years, many researchers have extended the Graetz problem to non-

Newtonian fluids, owing to significant emerging areas in hemodynamics, chemical 

engineering, materials processing etc. Johnston [11] studied the Graetz problem inside a 

circular tube for Bingham plastic (yield stress) fluid including the axial conduction term, with 

an integral transform approach. Johnston [12] investigated the Graetz problem for power-law 

fluids with longitudinal conduction, deriving the temperature profile for both shear-thinning i. 

e. pseudoplastic (𝑛 < 1) and shear-thickening i. e. dilatant (𝑛 > 1) fluids by employing an 

integral transform technique. Lahjomeri et al. [13] studied the Graetz-Nusselt problem with 

axial conduction effect and derived analytical expressions for the calculation of eigenfunctions 

and constants in both upstream and downstream regions with a modified Gram-Schmidt 

orthonormal procedure. The classical Graetz problem for viscoelastic effects was first reported 

by Coelho et al. [14], who used a simplified PTT fluid model for both a circular tube and a flat 

channel under imposed surface temperature and prescribed heat flux cases, respectively. Later, 

Oliveria et al. [15] revisited the analysis in [14] for FENE-P fluid model with the same 

methodology. Filali et al. [16] solved the Graetz-Nusselt problem numerically for FENE-P 

liquids for non-circular (e. g. elliptic) cross-sections using computational fluid dynamics 

(CFD). Recently, Ali and Khan [17] presented an analytical treatment of the Graetz-Nusselt 

problem for Ellis fluids with both prescribed heat flux and imposed constant wall temperature 

boundary conditions. Blood flow analysis in entrance regions of both tube and channel 

confinements was investigated for a Casson viscoplastic fluid with isothermal wall conditions 

by Khan and Ali [18]. Khan et al. [19] studied the Graetz problem with a Robertson-Stiff fluid 

model for both tube and channel geometries again under constant wall temperature boundary 

condition. 
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An alternative rheological model to those described thus far, is the Quemada model [20] which 

belongs to the class of generalized Newtonian fluid models. This model successfully predicts 

the shear-thinning behaviour of physiological liquids e. g. blood. Generally, the Quemada fluid 

model is based on an intrinsic viscosity which is governed by a kinetic equation. In simple 

shear flows, the intrinsic viscosity becomes a function of the local shear rate and suspension of 

particles. This fluid model basically is an extension of Casson’s viscoplastic (yield stress) fluid 

model but contains three parameters. This model explicitly describes also the kinetics of RBC 

aggregation and approximates the bulk rheology of real blood quite well. The viscosity is not 

infinite at zero shear rates in the Quemada model and it is therefore also popular for analysing 

blood flow in microvessels. Furthermore, it accurately fits experimental viscometric data for 

small diameter vessels (above 12 m diameter) as noted in Das et al. [21].  The Quemada 

viscosity results for this model fall in the range between in vitro and in vivo values and it is a 

robust approach for modelling RBC suspensions. It is therefore one of the very best 

hemorheological models since it is in excellent agreement with experimental observations. The 

applications of this fluid model are quite broad and relevant studies include [22]-[25] in a range 

of clinical situations. However very few studies have presented analytical solution for velocity 

field and mean flow rate. From an inspection of the literature, no work has so far been reported 

on the Graetz problem for a Quemada fluid. This is therefore the focus of the current study. 

Practically this problem models the thermal entrance flow of blood in a circular tube. 

Moreover, the axial conduction effects for three vascular regions, namely, core vascular, 

subcutaneous vascular and microvascular regions are also taken into account.    

In order to address in detail, the effects of non-Newtonian Quemada fluid characteristics on the 

heat transfer properties, the remainder of this article is categorized as follows. The analytical 

expression for velocity profile, a schematic sketch of flow problem and formulation of energy 

equation and the corresponding solution are reported in section 2. Validation of numeral results 

with analytical approaches is presented in section 3. The detailed discussions through graphs 

and tables are provided in section 4. Lastly, some conclusions are drawn in section 5. 

 2. Mathematical Model 

Consider the entry flow of Quemada bio-rheological fluid in a duct with circular cross-section 

with a hydrodynamically developed velocity field and specified inlet temperature  (𝑇𝑖) as 

displayed in Fig. 1. The tube wall is specified at imposed uniform surface temperature (𝑇𝑠). 
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The objective is to compute the thermally developing temperature field in term of Nusselt 

number for Quemada bio-rheological fluid with axial conduction.   

 

For this analysis, we shall apply the basic conservation laws as given below. 

. 0V = ,   (Continuity equation)      (1) 

.
Vd

P
dt

 = − +  ,  (Momentum equation)    (2) 

*
2

p

dT
c k T

dt
 =  + ,  (Energy equation)     (3) 

The constitutive relation for Quemada bio-rheological fluid is [26]: 

0 •

•
rz


  

 


 
= + 

+  

,       (4) 

where  ,   and 0  are expressed as 

2
1

1
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p

k H






=
 
− 

 

 ,         (5) 
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2
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1
2

11
2
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H k k

k H
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 
     

 

 
 

 
 

−

=

−

 .         (7) 

In the above equation H is particle (e. g. red blood cell) concentration and 0k , k , c  are 

Quemada parameters respectively. It is important to mention that when we take 0 → in Eqn. 

(4) then it reduces to Casson bio-rheological fluid model. For simple shear flow, the z - 

component of momentum equation can be expressed as a linear function of r . 

2
rz

r
P =  ,             (8) 

where 

( )in outp p
P

L

−
= .             (9) 

In Eq. (9) inp  is the inlet pressure, outp  denotes the outlet pressure and L  is the tube (blood 

vessel) length. Beside that the shear stress at the wall is  0

2w

r
P =  and dV

dr

•

= . Now 

introducing the following dimensionless parameters: 

 

0 0*

0 0

, , ,
w

r
r q

r

     


   

 



+ −
= = =

+
,

eD h

z
z

R Pr D
=  ,m h

eD

V D
R


=  ,sT T

T


−
=


 

2 eDPe R Pr=            (10) 

 

Using Eqn. (10) into Eqn. (4) the expression for shear stress can be presented as: 

 

( ) ( )
2 2* * * * *0r 1 2

4

PdV
r q r r r q r

dr
     



•



 = − = − + + + − − +
  

     (11) 

 

The final expression for velocity field satisfying the condition ( )1 0V = can be read as [27] 
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )( ) ( )( )
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2 4 34 3 2* * * * * *20
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* * *3 * * *2

3
2* * *2 *2 * * *2

r 1 2
1 2 1 1 1

4 2 3

1 1
1 2 1 1 1 5 4 1 2

2 3

1 1
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3 4

P
V q r q q q r q q
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r q r q r q q q q

     


     

      



    = − − − + − − − − + −       

  − − − − − − + + − − +     

  − + − − + + − + − − +    

( )( ) ( )( ) ( ) ( )
1 1
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2 2 1 1

4
r q r q r r q r q r q q      − − − + − − − + − − +



 

( )
( )

( )

1
2

1
2

* *2 *

* *2 *

1 2 1
5 1 ln , 0 1.

2

q q
q r

r q r r q

  

  

 
− + + −  +   

− + + −   

    (12) 

The parameters *  and q  must satisfy the condition 
* 0   and 1 1q−   . It is important to note 

that Eqn. (12) represents the velocity for Hagen-Poiseuille flow of Casson bio-rheological fluid 

in a tube for 1q = i.e., 0 →  while it reduces to the Newtonian fluid velocity profile for 

1q = − and
* 0 = . The mean velocity can be calculated using the following relation [27]: 

( )
0

20

2 3
0 00

2 w

m rz

w

r
r

V rVdr f dr
r


 

 
= =  ,      (13) 

where ( )f 
•

= . 

Employing (13), we get: 

( )
2

*0Pr
,

8
mV F q



 =
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               (14) 
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


=

  
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  
=

 
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 
−  


,    (15)  

where , 1 8iA i = −  are polynomials in terms of q  and are listed in Appendix 1. When 1q → ,  

Eqn. (15) reduces to the expression for the mean velocity of a Casson bio-rheological fluid 

which is given by: 

* *2 *816 4 1
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 
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 
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 
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The non-dimensional energy equation needed for thermal analysis may be written as:  

( )
( ) ( ) ( ) ( )2 2

2 2 2

z, z, z, z,1 1
4

z

r r r r
U r

r r r Pe z

       
= + + 

    

,   (17) 

where ,N mU V V=  and ,N mV  represents the Newtonian mean velocity. The non-dimensional 

boundary conditions for the constant temperature case are: 

( )

( )

( )

0, 1

z,1 0

z,0
0

r

r








=


= 


 =
 

.          (18) 

The solution of the elliptic energy equation is obtained with the famous separation of variable 

approach. The resulting equations and the boundary condition after substituting the separable 

relation ( ) ( ) ( ),r z S r N z = into Eqns. (17) and (18) then read: 

22 0n

dN
N

dz
+ = ,           (19) 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )( ) ( )

3
2

2

2 4 34 3 2* * * * * *2

2

22
* * *3 * * *2

3
2* * *2 *2 *

1'' '

1 2
1 2 1 1 1

2 3

1 1
1 2 1 1 1 5 4 1 2

2 3

1 1
5 4 2 1 5 1 1

3 4

n

n

S r S r
r

q r q q q r q q
Pe

q r q q q r q q

r q r q r q q q




     

     

    

+ +

      − − − + − − − − + −        

  − − − − − − + + − − +     

 
− + − − + + − + − 
  

( )

( )( ) ( )( ) ( ) ( )

1
2

1 1
2 2

* *2

2* * *2 * * *2 *4

1 2

1
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4

q

r q r q r r q r q r q q

 

      

 − +

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

( )
( )

( )
( )

1
2

1
2

* *2 *

* *2 *

1 2 1
5 1 ln 0

2

q q
q S r

r q r r q

  

  

 
− + + −  + = 

− + + −   

    (20) 

( )

( )

' 0 0

1 0

S

S

= 


= 
 .           (21) 
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Eqn. (20) is not a regular Sturm-Liouville boundary value problem (SLBVP) – see Kreyzig 

[28] - and therefore, the eigenfunctions are not orthogonal with respect to the following 

weighting function: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )( ) ( )( )

( )

3
2

1
2

4 34 3 2* * * * * *2

22
* * *3 * * *2

3
2* * *2 *2 * * *2

*

1 2
1 2 1 1 1

2 3

1 1
1 2 1 1 1 5 4 1 2

2 3

1 1
5 4 2 1 5 1 1 1 2

3 4

2

q r q q q r q q

q r q q q r q q

r q r q r q q q q

r q r

     

     

      



    − − − + − − − − + −       

  − − − − − − + + − − +     

  − + − − + + − + − − +    

− − −( ) ( )( ) ( ) ( )

( )
( )

( )

1 1
2 2

1
2

1
2

2* *2 * * *2 *4

* *2 *

* *2 *

1
2 1 1

4

1 2 1
5 1 ln

2

q r r q r q r q q

q q
q

r q r r q

     

  

  

+ − − − + − − +


 
− + + −  +  

− + + −   

  (22) 

 

To overcome this difficulty, we first employ the Bvp5c algorithm available in MATLAB 

symbolic software for the solution of Eqn. (20) in terms of the eigenvalues n  and the related 

eigenfunctions ( )nS r . Next, a modified Gram Schmidt process [29, 30] is implemented for 

computation of the coefficients of the solution series and is given by: 

 

( ) ( )2

0

exp 2
n

n n nD S r z = − .         (23)  

 

The integrals arising in the computation of nD  are determined via Simpson’s rule. The average 

temperature and Nusselt numbers can be achieved by employing the following relations.  

 

    ( )
( )

1

0

1

0

,

m

U r z r d r

z

U r d r






=



,       (24) 

( )
( )

( )

( )2 z,1

m

Nu z
z r





− 
=


,      (25)

( ) ( )
0

1 z

mNu z Nu z d z
z

=  .       (26)  
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3. Test case for Numerical algorithm 

It is remarked that an analytical solution of Eqn. (17) is only possible for the Newtonian case. 

The governing equation for the Newtonian case without axial conduction assumes the 

following form: 

( ) ( ) ( )2 21'' ' 1 0nS r S r r S r
r

  + + − = 
       (27) 

This is the classical equation obtained by Graetz for determination of the eigenfunction in the 

case of Poiseuille flow of a Newtonian fluid through a circular duct. The solution of Eqn. (26) 

can be obtained via an appropriate numerical technique [31] or by converting it into a confluent 

hypergeometric equation [32]. Another approach is to use the power-series method. 

Accordingly, we assume the solution of Eqn. (27) in the form: 

0

j

j

j

S E r


=

=           (28) 

Now taking the derivative of the above equation and then plugging into the original Eqn. (27), 

one can obtain: 

1
2 3 2 2 3

1 2 2 2 2 2

1 2 0 2 2

2 2 2 3 2 4 2 2

0 1 2

2 3.2 .......... ( 2)( 1) 2 3 .......

(j 1) E ( 2) ............

................

j

j

j j j

j j j

j

n

E
E E r j j E r E E r

r

r j E r E E r E r E r

E r E r E r E r

   

   

+

−

+ +

+


+ + + + + + + + + 


+ + + + + + + + + 


= + + + + 



 (29) 

Equating the powers of r on both sides of Eqn. (29) yields the following hierarchy of 

equations: 

1

2

2 2 0

2

3 3 1

2 2

4 4 2 0

2 2

5 5 3 1

0

2.1 2 0

3.2 3 0

4.3 4

5.4 5

. . . . . .

. . . . . .

E

E E E

E E E

E E E E

E E E E





 

 

= 


+ + = 
+ + =



+ + = 


+ + = 




       (30) 

and so on. 

In general, the coefficients nE  satisfy the relation: 

2 2

2 2 2( 2)( 1) ( 2)j j j jj j E j E E E + + −+ + + + + =      for     2j     (31) 

Note that all odd coefficients are zero since 1 0E = .  Substituting 2j m=  in Eqn. (31) yields the 

following recurrence relation for even coefficients. 
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( )
2

2 2 4 2 22(2 )
m m mE E E

m


− −= −          (32) 

Therefore, we can write: 

2

2

0

j

j

j

S E r


=

= ,          (33) 

Here: 

( )

2

2 2 4 2 22
2

2
j j jE E E for j

j


− −

 = −   .         (34) 

Expanding Eqn. (32), one may write: 

 

2 4

0 2 4 .................S E E r E r= + + +         (35) 

 

The boundary condition ( )' 0 0S =  is automatically satisfied while the auxiliary condition 

( )0 1S =  gives 0 1E = . Employing the remaining boundary condition ( )1 0S =  and retaining 

the first five terms in the above series yields the following equation for determination of the 

first four eigenvalues: 

 

4 227 144 0 − + =            (36) 

 

Table 1: Comparison of the first four eigenvalues computed with both numerical and 

analytical approaches  

𝝀𝒏 Analytical results 

(series solution) 

Analytical results 

(Kummer function 

approach) [25] 

Numerical results 

(Bvp5c) 

𝝀𝟏 2.70436 2.70436 2.70436 

𝝀𝟐 6.6790 6.6790 6.6790 

𝝀𝟑 10.6734 10.6734 10.6734 

𝝀𝟒 14.6711 14.6711 14.6711 

 

The solution of Eqn. (35) obtained via the Newton-Raphson method for eigenvalues is depicted 

in Table 1. Now in order to check the accuracy of the numerical approach Eqn. (20) is solved 
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with the aid of Matlab software (Bvp5c) for the Newtonian case with negligible axial 

conduction. Appendix 2 gives some details on the Bvp5c algorithm. The eigenvalues obtained 

are listed in third column of Table 1. For completeness the eigenvalues obtained via the 

Kummer function approach [32] are also listed in column two of Table 1. A perfect match is 

observed in all the three cases. This corroborates the Bvp5c approach and therefore, one can 

confidently apply this numerical scheme for further analysis and capture the non-Newtonian 

effect in this classical problem of fluid dynamics.  

3.1 Experimental validation  

Before advancing towards the numerical and graphical results of the considered problem, it is 

judicious to validate the numerical results, where possible, with available experimental data. 

For this purpose, we compare the numerical results for fully developed Nusselt numbers with 

β*=0.0001 and q= -1 with the experimental data for fully developed Nusselt numbers for the 

classical Graetz problem in a tube as illustrated in Figure 1(b). Inspection of the graph reveals 

that the theoretical results achieve excellent agreement with the experimental observations 

reported in Hemadria et al. [33] for all axial locations in the tube.  

 

 

 

 

 

 

 

 

 

 

4. Results and Discussion 

The Graetz problem is elaborated for Quemada bio-rheological fluid by solving the energy 

equation based on Fourier’s law (Eqn. (3)) with the help of the method of separation of 

Figure 1(b): Experimental validation of local Nusselt number with axial distance 
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variables. A complete analytical solution is not possible due to the non-availability of the exact 

solution of Eqn. (20). Therefore, the eigenvalues and eigenfunctions associated with Eqn. (20) 

are computed with the Matlab built-in solver, Bvp5c [See Appendix 2]. The coefficient of 

solution series in Eqn. (22) are computed through numerical integration. The solution ( ),r z  

thus obtained is further employed in the evaluation of the average temperature and Nusselt 

numbers. The relevant literature – see Victor and Shah [34]- shows that the typical value of 

Prandtl number for streaming blood is 25. Additional properties of blood are reported in Table 

2. Therefore, all our analysis is carried out for  𝑃𝑟 = 25. On the basis of the information 

reported in Table 2 the plausible ranges for Reynolds number and Péclet number for the core 

vascular, subcutaneous vascular and microvascular regions are given in Table 3.  

 

Table 2: Properties of blood [34] 

       Value          Physiological Solution 

Specific heat 

0.94 cal/𝒈°C        

0.77                       

0.87            

0.92            

0.94           

 Relative viscosity (ratio to water) 

3.54.0       

2.54.0      

4.71     

3.00     

1.32-1.22     

3.5-5.4       

Apparent viscosity 

0.012 P 

0.035 P 

Thermal conductivity 

0.5 w/𝒎°K 

0.506 w/𝒎°K 

0.582 w/𝒎°K 

0.48 1 w/𝒎°K 

1.365 Cal/cm 𝒔°C * 𝟏𝟎𝟑 

1.265 Cal/cm 𝒔°C * 𝟏𝟎𝟑 

 

 

Plasma 

RBC 

Plasma and RBC 

Whole blood 

Plasma 

 

Whole blood 

Whole blood 

Whole blood at 20°C 

Whole blood at 37°C 

Plasma 

Whole blood 

 

Plasma 

Whole blood 

 

Whole blood 

Whole blood 

Plasma 

Corpuscles 

Plasma 

Blood 43%, hemocrit 
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Table 3: Reynolds and Péclet number ranges for blood  

 

Blood vessel region Reynolds number Péclet number 
Core vascular 

Subcutaneous vascular 

Microvascular 

100-1000 

1-10 

0.001 

2500-25000 

25-250 

0.025 
 

4.1 Physical significance 

 

Consider a tube having an insulated region confined to the upstream domain 0z  , followed 

by a region of heat transfer in the downstream domain 0z  . A significant amount of heat 

transfer is expected between these two regions due to axial conduction in the fluid via the cross-

section at axial station 0z =  for low Péclet numbers. Therefore, the temperature of the fluid 

flowing through the heat transfer region is unknown i.e., to be computed. The present model 

assumes that the fluid inlet temperature is iT  and inlet axial location is sufficiently far away 

from the cross-section at 0z =  from where the region of the applied heat transfer begins. The 

boundary condition implies that at the start of the heat transfer region 0z = there is a sudden 

change in the wall temperature from iT  to sT . The above model may also find applications in 

thermoregulation of blood via thermal biomedical devices such as blood temperature monitors 

Figure 2: Mean temperature for various values of Péclet number in the presence of Quemada parameters 
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[35, 36] used in dialysis and cancer treatment where hypovolaemia, hyperthermia (excessive 

heat removal due to reduced vascular resistance which increases blood perfusion in the 

capillary regions of the skin), hypothermia (excessive heat release due to increased peripheral 

resistance which reduces blood perfusion in the capillary regions of the skin) are key 

considerations. The sustaining of a comfortable core body temperature is therefore achieved 

via thermoregulation. In particular the thermoregulation of blood is strongly influenced by 

viscosity which is in turn influenced by rheology [36].  For more accurate predictions of actual 

blood thermal characteristics therefore a good non-Newtonian model is essential.  

4.2 Mean temperature 

Figure 2 and 3 depict the influence of Péclet number on the mean temperature in the presence 

of Quemada parameters under uniform wall temperature boundary condition. As expected, the 

influence of Péclet number is strongly pronounced near the thermal entrance region – here 

decreasing the Péclet number results in higher mean temperatures. Further, the mean 

temperature is higher for microvascular region in comparison with subcutaneous vascular and 

core vascular regions. It is also observed that mean temperature decreases gradually and 

approaches to zero in the downstream region. Thus, axial conduction delays the prevalence of 

fully developed conditions in the downstream region. Figure 4 displays the behaviour of 

temperature gradient for various values of Péclet numbers in the presence of Quemada 

parameters. Temperature gradient exhibits similar trend with respect to Péclet number which 

has been observed for mean temperature. However, the temperature gradient curves are much 

steeper than the corresponding curves of mean temperature and that is why they achieve the 

fully developed conditions in the vicinity of the entrance region.    

4.3 Local Nusselt number  

Figure 5 shows the behaviour of local Nusselt number for various values of Péclet number for 

three regions namely, microvascular, subcutaneous and core regions under the influence of 

Quemada parameters. It is emphasized that local Nusselt number in the microvascular region 

for the fully developed case is higher than the corresponding Nusselt numbers in fully 

developed case for subcutaneous and core regions. This is expected since Péclet number in 

microvascular region is substantially lower than the Péclet number in subcutaneous vascular 

and core vascular regions. As a result, greater heat transfer is expected in micro vessels 

resulting in a higher fully developed Nusselt number. 
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Figure 6 displays the variation of local Nusselt number at 𝑃𝑒 = 1 for different values of 

Quemada parameters. Péclet number expresses the ratio of the rate of advection of a physical 

quantity by the flow to the rate of diffusion (e. g. species or heat). For the value of unity 

considered both momentum advection rate and heat diffusion rate are equal. It is apparent that 

local Nusselt number is higher for greater values of Quemada parameters i. e. stronger 

rheological effects. The effects are more pronounced in the entrance region and they gradually 

diminish with advancement toward the downstream region. Nevertheless, though diminishing, 

these effects still manifest themselves in the form of higher local Nusselt number in the fully 

developed region. It is important to mention that both parameters *  and q characterize the 

shear-thinning (pseudoplastic) nature of the fluid. In this context, it may be concluded that 

shear-thinning character of the fluid results in the enhancement of local Nusselt number from 

its Newtonian value in both entrance and fully developed regions. Blood rheology therefore 

clearly strongly influences heat transfer behaviour [37, 38].  

 

Figure 7 presents the comparison between the local Nusselt number for Newtonian fluid 

without axial conduction and the local Nusselt number for Quemada fluid (blood) with strong 

Figure 4: Temperature gradient for various values of Péclet numbers 

Figure 3: Mean temperature for various values of Péclet number with Quemada parameter effects 
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axial conduction effect at different axial locations. It is apparent that local Nusselt number for 

Quemada fluid model with longitudinal conduction attains higher numerical values than the 

corresponding Nusselt number for Newtonian fluid with no axial conduction effect. From the 

proceeding discussion, it may be concluded that both mean temperature and local Nusselt 

number are highly sensitive to Péclet number and Quemada parameters. In facts, both of these 

parameters significantly influence the heat transfer in the thermal entrance region of the circular 

tube.  

Table 4 represents the numerical values for fully developed local Nusselt number for different 

values of Péclet number for both Newtonian and Quemada fluids. Again, it is clearly seen that 

fully developed local Nusselt number achieves higher numerical values for smaller values of 

Péclet number. In addition, it is shown that the numerical values of fully developed local 

Nusselt number for shear-thinning Quemada fluid are higher than their counterparts for 

Newtonian model. Thus shear-thinning characteristics enhance the heat transfer in both thermal 

entrance and fully developed regions. 

 

Figure 5: Local Nusselt number for various values of Péclet number in the presence of Quemada parameters 
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Figure 6: Local Nusselt number for various values of Quemada parameters at 𝑃𝑒 = 1 
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Table 4 Numerical values of fully developed local Nusselt number for different values of 

Quemada parameters and Péclet numbers. 

𝑷𝒆 𝑵𝒖 (𝒛̅) 𝑵𝒖 (𝒛̅) 

 (β*=0.0001, q= -1) (β*=5, q= -0.1) 

1000 3.657 3.67 

10 3.67 3.84 

5 3.76 3.96 

3 3.85 4.03 

1 4.03 4.13 

0.7 4.07 4.15 

0.1 4.167 4.18 

0.025 4.17 4.21 

0.001 4.182 - 

 

Figure 7: Local Nusselt number for various values of Quemada parameters 
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Lastly, Figure 8 depicts both local and mean Nusselt numbers at different axial location for 

Quemada parameters corresponding to the Newtonian case. As expected, mean Nusselt number 

is higher in comparison with local Nusselt number at each axial station. A further increase in 

both local and mean Nusselt numbers is anticipated with an increase in the Quemada 

parameters.  

 

5.  Conclusions 

In the present investigation the classical Graetz problem has been extended for Quemada bio-

rheological fluid model. The two-dimensional energy equation is tackled via the method of 

separation of variables. The Matlab solver Bvp5c is used to compute numerical solution of the 

eigenvalue problem. Coefficients of solution series are computed via numerical integration. 

Numerical validation is presented with a power series solution and via benchmarking with 

available exact solutions in the literature. To provide an insight into the mathematical relevance 

of the mathematical model to clinical situations involving heat transfer in blood flows (for e.g. 

thermoregulation devices), the results for mean temperature and local Nusselt number are 

Figure 8: Local and Mean Nusselt number at 𝑃𝑒 = 1000 and 𝛽∗ = 0.0001, 𝑞 = −1 
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presented based on the data of Péclet number for blood in different regimes. In particular, the 

influence of Péclet number on mean temperature and local Nusselt number for three vascular 

regions namely, core vascular, subcutaneous vascular and microvascular regions is thoroughly 

studied. The following observations are made.   

• Enhancing the shear-thinning nature of the Quemada fluid increases the local Nusselt 

number.  

• Local Nusselt number increases for the smaller values of Péclet number. 

• Fully developed Nusselt number is an increasing function of the Quemada rheological 

model parameters. 

• Mean Nusselt number is always higher than local Nusselt number under similar 

conditions.  

• Mean temperature distribution significantly depends on Péclet number and it achieves 

higher values in thermal entrance region for lower Péclet numbers. 

• Péclet number has a strong impact in microvascular region as compared with 

subcutaneous vascular. 

• Core vascular region is almost independent of Péclet number. 

• For both microvascular and subcutaneous regions, the fully developed condition is 

acquired earlier either by raising the Péclet number or by tuning the properties of 

Quemada fluid model.  

• In the core vascular region, the fully developed condition can be attained earlier only 

by tuning the mechanical properties of the non-Newtonian Quemada fluid. 
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Appendix 1: Coefficients in polynomials in terms of q  
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Appendix 2: MATLAB bvp5c solver 

The MATLAB bvp5c solver is a superior algorithm to the more customary bvp4c solver, and 

directly controls the true error in the calculation, while bvp4c controls it only indirectly. At 

more stringent error tolerances, this difference between the solvers is not as apparent as noted 

by Shampine and Kierzenka [A1].  bvp5c is a finite difference code that implements the four-

stage Lobatto IIIa formula which is a collocation formula and the collocation polynomial 

provides a C1-continuous solution that is fifth-order accurate uniformly in [a,b]. The formula 

is implemented as an implicit Runge-Kutta formula. bvp5c does not utilize analytical 

condensation which is present in bvp4c. Unlike bvp4c which handles unknown parameters 

directly, bvp5c augments the system with trivial differential equations for the unknown 

parameters. For robustness the new solver is based on control of a residual. The residual is 

scaled so that it has the same order of convergence as the true error. For a large class of 

methods, bvp5c [A2] has been verified to confirm that if this scaled residual is less than a given 

tolerance, then asymptotically the true error is also less than the tolerance. Bvp5c interpolates 

the value and gradient at both ends of the subinterval and the value of ymid at the midpoint. The 

following stepping formula is used as elaborated by Russel and Christansen [A3]:  

𝑌𝑀𝐼𝐷 = 𝑌1+ [
17

192
𝐾1 +  

40+155

192
𝐾2 +

40−155

192
𝐾3 −

1

192
𝐾4]  (A2) 
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Here Y1 is the initial guess and K1, K2, K3, K4 are the approximations with a stepping distance 

of . The algorithm is very efficient, unconditionally stable and produces excellent accuracy 

with fast compilation times.  
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