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Abstract: Motivated by exploring the fluid dynamics of dual drug delivery systems in 

biomedicine, a mathematical analysis of the bi-component species transport (convective-

diffusion) in rheological blood flow with bulk chemical reaction through a two-dimensional 

rigid vessel is presented. Two different bulk degradation reaction rates are included for the dual 

species (pharmacological agents, A, B). An analytical expression for axial velocity is derived 

using a perturbation method. The decoupled convection-diffusion equations are then analysed 

with the Aris – Barton approach. The mean concentration of the species is estimated using the 

first five concentration moments with the aid of fourth order Hermite polynomials. A finite 

difference technique based on the Crank Nicholson implicit scheme is employed to handle the 

pth order moment of the general concentration. The analysis reveals that increasing reversible 

transfer rate and irreversible bulk degradation result in a reduction in the total mass of the 

species over time. The mass of both species decreases with an increase in reversible transfer 

rate, even though the mass of species A depletes faster than the mass of species B. The skewness 

of the concentration distribution decreases as yield stress increases and the distributions in all 

scenarios are positively skewed and tend to zero over time, implying that the distribution tends 

to symmetry over time. The kurtosis decreases over time from positive to negative values and 

eventually approaches zero. Mean concentration peaks for both species A and B are elevated 

with increasing yield stress, although magnitudes are significantly higher for species A. With 

increasing values of the distribution coefficient between two species, mean concentration peaks 

are elevated  for species (component) A whereas they are depleted for species B, although 

substantially greater magnitudes are computed for species B. Good correlation of the skewness 

with earlier Newtonian results is achieved. The results provide some useful insight into the bi-

component drug transport in smaller vessel pharmacodynamics where hemorheology is 

important. 
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1.Introduction 

Hydrodynamic dispersion [1] is a fundamental area of modern fluid dynamics and arises in 

many areas of industrial technology, biomedicine and environmental sciences. It involves both 

molecular diffusion and convective dispersion (or mechanical dispersion). Important 

applications include chromatography, packed bed reactors and contaminant fate in geological 

transport. Another significant area of interest is drug delivery (pharmacodynamics) in which 

the fate of drugs introduced into the human body may be simulated with dispersion models. In 

recent years mathematical modelling of dispersion in medical fluid dynamics has received 

significant attention due to emerging applications in, for example, transport phenomena of 

therapeutic agents through neural tissues [2], nasal airway fluid dynamics [3], drug interaction 

with capillary blood flows [4], delivery of doxorubicin to hepatoma in pharmaceutical delivery 

[5], intercranial pharmacological flows [6] and tumour therapy [7,8]. Broneus et al. [9] reported 

on detailed experiments to determine the diffusivity of local anaesthetic drugs including  

hydrochloride salts of bupivacaine, etidocaine, lidocaine, mepivacaine, prilocaine and 

ropivacaine. Tripathi et al. [10] reviewed recent developments in computational hemodynamic 

models  of nanoparticle-based pharmacological agents dispersing in streaming blood. An 

excellent appraisal of convective-diffusive transport relevant to hydrodynamic dispersion in 

blood flows was presented by Aroesty and Gross [11].   

The above studies were generally confined to Newtonian blood flows especially in smaller 

vessels (at high shear rate blood typically acts like a Newtonian fluid as observed in large 

arteries). However the presence of numerous suspensions in blood including as erythrocytes 

(also known as RBC), leukocytes (WBC), thrombocytes, lymphocytes and lipoproteins 

suspended in a continuous saline plasma, render the nature of blood to be non-Newtonian [12]. 

Hemo-rheological models are therefore needed to correctly characterize blood in capillary 

transport and the rheological characteristics can have a dramatic effect on the efficacy of drug 

transport [13]. Many different non-Newtonian models have therefore been explored in 

hemodynamic transport (with and without drug dispersion) in recent years. Bég et al. [14] used 

a variational finite element code and the Nakamura-Sawada bi-viscosity model to simulate the 

drug diffusion in blood flow in tissue under an external magnetic field. Vita et al. [15] deployed 

a power-law (pseudoplastic/dilatant) model to compute 3-dimensional pulsatile blood flow in 

an aortic mechanical valve, also considering hemolysis. Antonova et al. [16] utilized both 

power law and Herschel-Bulkley (HB) yield stress non-Newtonian models to study 
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microvascular tone regulation in diabetes mellitus. Dubey et al. [17] used FREEFEM++ finite 

element software to analyze the two-dimensional nano-particle drug delivery in blood flow 

through a stenotic and aneurysmic arterial segment. They employed a Casson (viscoplastic) 

fluid model in the core region and the Sisko (viscoelastic) fluid model in the peripheral (porous) 

region. Chaturani and Palanisamy [18] used Eringen’s micropolar model to study the pulsatile 

blood flow in a stenosed vessel. They deployed finite Hankel and Laplace transforms to derive 

closed-form expressions for axial and particle angular velocities, wall shear stress, resistance 

to flow and apparent viscosity. They also showed both inverse Fahraeus-Lindqvist and 

Fahraeus-Lindqvist effects are correctly captured with the micropolar non-Newtonian model. 

Vasu et al. [19] also implemented the Eringen micropolar model to compute the time-

dependent nano-pharmacodynamic transport in a tapered stenotic vessel. Other non-Newtonian 

models which have been employed to analyse blood flow include Jeffery’s viscoelastic model 

[20], the generalized Oldroyd-B fluid model [21] and the modified Herschel-Bulkley model 

[18,22].   

As noted earlier, hydrodynamic dispersion is fundamental to drug delivery simulations. The 

original Taylor dispersion model [23] provides a robust platform for evaluating the  

longitudinal mean concentration (of, for example pharmacological agents) leading to a 

Gaussian distribution. In the Taylor approach, for large times, the mean concentration satisfies 

a one-dimensional diffusion-like equation. However, for evaluating the radial (transverse) 

concentration distribution, modified approaches are needed. Taylor’s model has therefore been 

extended and refined by Gill (method of mean concentration expansion) [24] and Gill and 

Sankarasubramanian [25] so that the entire dispersion process (transverse and longitudinal) 

may be described in terms of a simple diffusion process with the effective diffusion coefficient 

as a function of time. Grotberg et al. [26] examined gas contaminant movement in pulmonary 

respiratory flows. Cirpka et al. [27] applied a modified Taylor dispersion model to solute 

transport in unsaturated heterogenous porous geological media. In the context of non-

Newtonian blood flows, Dash et al. [28] used the  generalized Gill-Sankarasubramanian model 

to study solute dispersion in viscoplastic (Casson) blood flow in a tube. They showed that 

dispersion rate (and effective diffusivity) is decreased with increasing yield stress of the fluid. 

They further showed that effective diffusivity is enhanced with time, although it achieves the 

steady state value below a critical time. They also identified that the location of the center of 

mass of a passive species over a cross section is not affected during the course of dispersion 
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and for different values of the plug flow parameter (i.e., the yield stress of the fluid). Barik and 

Dalal [29] used a homogenization technique (with up to up to third-order approximation) to  

study the two-dimensional concentration distribution in an oscillatory Couette flow. They 

observed that concentration variation rate over the channel cross-section is greater for thicker 

Stokes boundary layers and the dispersion of solute is elevated with an increment in Stokes 

boundary layer thickness.  

The above studies generally ignored chemical reaction effects. These are known to be 

important in numerous haematological processes including coagulation [30,31], nitric oxide 

and S-nitrosohemoglobin interaction in hemo-regulation [32], venous flap flow regulation [33], 

multivalency counterbalancing in nano-drug delivery [34] and biochemistry of thrombosis 

[35,36]. Hathock [37] has identified that hemodynamic forces both control the predilection of 

specific anatomic sites to thrombosis and in addition greatly modify the biochemical reaction 

pathways involved in thrombus formation. Furthermore, thrombosis occurs in a dynamic non-

Newtonian environment where flow conditions strongly influence the transport of coagulation 

factors, inhibitors, and cells. These observations support the need for computational and 

analytical investigations of chemically reactive hemodynamic flow and dispersion with 

rheological models, as considered in the present study. Several investigators have also reported 

results concerning dispersion in Newtonian blood flow with wall reactions.  Lau and Ng [38] 

used a Flux Corrected Transport Algorithm (FCTA) and reactive boundary conditions  to 

investigate the combined effects of reversible and irreversible wall reactions on the early 

development of the dispersion coefficient in convection-diffusion transport of a chemical 

species in steady flow through a small-diameter tube. Other Newtonian studies include Ng [39] 

(oscillatory tube flow), Paul and Mazumder (transient flow in an annular  and tubular geometry) 

[40,41], Mazumder  and Paul [42]  and Roy et al. [43] (dispersion of reactive species in a non-

Darcy porous medium). More recently reactive dispersion in non-Newtonian blood flow has 

also been analyzed. Roy et al. [44] studied the time-dependent dispersion of a passive 

contaminant of solute released  in Casson viscoplastic tubular blood flow with a chemically 

active tube wall under a constant pressure gradient. They computed the transport coefficients, 

with the Aris-Barton moment technique and used a finite difference implicit scheme. They 

observed that convection coefficient and dispersion coefficient are inversely proportional to 

the yield stress, exchange coefficient is independent of yield stress and transport coefficients 

are significantly modified by wall absorption. Roy and Bég [45] used the Gill decomposition 
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method to compute the  concentration of a reactive diffusing species in two fluid (Newtonian 

peripheral layer/micropolar core) hemodynamics in a rigid artery under constant axial pressure 

gradient with first-order chemical reaction. They showed that transverse concentration is 

enhanced with greater micropolar coupling number and reaction rate whereas it is suppressed 

with greater micropolar material parameter and peripheral to core viscosity ratio. They also 

observed that axial mean concentration peaks are decreased and migrate further along with the 

arterial geometry with greater micropolar material parameter values, whereas the converse 

behaviour is computed with higher micropolar coupling number.  

Inspection of the literature has identified that the vast majority of studies communicated 

consider only a single diffusing agent. However increasingly pharmacological scientists are 

utilizing multiple drugs simultaneously. Therefore, it is important to extend previous studies of 

hydrodynamic dispersion in non-Newtonian blood flow with chemical reactions, to consider 

two species (two different pharmacological agents). This is the focus of the present study. Bi-

compnent species diffusion has been examined theoretically in environmental contamination 

by Zeng et al. [46] and Gjetvaj et al. [47] again for Newtonian liquids. Clinical studies of dual 

species drug diffusion have been presented by Ganesan et al. [48], Taylor and Zografi [49] (for 

poly(vinylpyrrolidone) and indomethacin),  Lloyd et al. [50] (for  paracetamol and 

polyethylene glycol 4000 interaction), and Berthold et al. [51] (for nitric oxide and endogenous 

vasoconstrictor chemical interaction in renal blood flow regulation).  

In the present article, bi-component species (dual drug) convective-diffusion transport in non-

Newtonian blood flow with bulk chemical reaction through a two-dimensional rigid vessel is 

studied theoretically and numerically. The robust yield stress Casson fluid model is utilized. 

Two different bulk degradation reaction rates are included for the dual species 

(pharmacological agents, A, B). The governing species concentration equations are transformed 

to non-dimensional form with appropriate boundary conditions. An analytical expression for 

axial velocity is derived using a perturbation method. The decoupled convection-diffusion 

equations are then analyzed with the Aris – Barton approach, in which the pth order moment of 

the general concentration is defined. The mean concentration of the species is estimated using 

the first five concentration moments with the aid of fourth order Hermite polynomials. A finite 

difference method based on the Crank Nicholson implicit scheme is employed to handle the pth 

order moment of the general concentration. A statistical analysis is also conducted on the 

species transport. Coefficients of skewness and kurtosis are computed to determine the 
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symmetry and peaks of the concentration distribution. The computations may provide a deeper 

insight into dual drug behaviour in coagulating hemodynamics.  

2.Reactive bi-component (dual drug) dispersion blood flow model 

Dispersion model 

Figure 1 illustrates the regime under consideration.  

 

Fig. 1. Reactive two-component species dispersion in non-Newtonian blood flow 

Two completely miscible and different reactive species (pharmacological agents, A, B) with 

concentration ( , , )AC z r t    . and ( , , )BC z r t      are injected in a fully developed unsteady 

incompressible blood flow in a rigid cylindrical vessel. Here blood is simulated by the Casson 

model [18], which is a popular and accurate yield stress non-Newtonian model in 

hemodynamics. The governing species conservation equations for the two pharmacological 

agents (solutes) A, B, with coupled competitive reactions are: 

( )
2

2
( , )   in  0 ,A A A A

A A d B A A

C C C CD
u r t D r r C k C k C r R

t z z r r r

        
           + = + − − −               

(1) 

( )
2

2
( , )  in  0 , B B B B B

A d B B B

d

C C C C rD
u r t D r C k C k C r R

t z z r r kr

         
          + = + + − −              

(2) 

here D  denotes constant molecular diffusivity of the species, 
Ar   is the transfer rate of species 

A , 
Br  is the transfer rate of the species B , dk  is the distribution of coefficient between two 

species, 
Ak   and 

Bk   are the bulk degradation rate of the species A  and B  in the blood flow. 
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It is assumed that both neither blood nor either of the two solutes, A, B cannot penetrate the 

blood vessel, therefore, 

0  at ,A BC C
r R

r r

  
 = = =

    
(3) 

Again, the symmetry condition at the center of the blood vessel is read as: 

0  at 0.A BC C
r

r r

  
= = =

    
(4) 

It is assumed that both the species of equal mass M are released instantaneously in the blood 

flow at a time  

2

( )
( , , ) ( , , ) ,A B

M z
C z r t C z r t

R






       = =

  
(5) 

The upstream and downstream conditions for both the species A and B are: 

( , , ) ( , , ) 0.A BC r t C r t      =  =  (6) 

Next the problem can be scaled using the following variables: 

3 3

2 2

2 2 2 2

, , , , ,

, , , , ,

A
A B

A B A B
A B

B

B A

R C R CD t r D z
t r z C C

R R R U M M

r R r R k R k R
r r k k u

D D D D U

u

       
= = = = =

  

       
= = = = =

  





 

 

(7) 

Introducing Eqn. (7) into Eqs. (1) – (6) the model reduces to: 

( )
2

2 2

1 1
 ( , )  in 0 1,

Pe

A A A A
A A d B A A

C C C C
u r t r r C k C k C r

t z z r r r

     
+ = + − − −   

       
(8) 

 

( )
2

2 2

1 1
( , ) in  , 

P
 0 1

e

B B B B B
A d B B B

d

C C C C r
u r t r C k C k C r

t z z r r r k

     
+ = + + − −   

        
(9) 

0  at 0,1,A BC C
r

r r

 
= = =

    
(10) 

( , ,0) ( , ,0) ( ) / Pe,A AC z r C z r z= =
  (11) 

( , , ) ( , , ) 0.A BC r t C r t =  =
 (12) 

Equation (8) and (9) are coupled equations, and in order to decouple them the following 

transformations are used.  

 2 1

1 2

( , , ) ( ) ( , , ) ( ) ( , , ) ,
( )

d
A A A A A A B

B

k
C z r t r k z r t r k z r t

r
 

 
= − + +  − + + 

−  
(13) 
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 
1 2

1
( , , ) ( , , ) ( , , ) ,B A BC z r t z r t z r t

 
=  −

−
 

(14) 

where, 

2

12 ( ) 4( ) ( ),A B A B A B B A A B A B A Br r k k r k r k k k r r k k = + + + − + + − + + +
 (15) 

2

22 ( ) 4( ) ( ),A B A B A B B A A B A B A Br r k k r k r k k k r r k k = − + + + − + + − + + +
 

(16) 

Using Eqs. (13) and (14), the convective-diffusive dispersion problem becomes: 

2

12

1
Pe ( , )  in 0 1,A A A A

Au r t r r
t z z r r r

      
+ = + +    

     


 
(17) 

2

22

1
Pe ( , )  in 0 1,B B B B

Bu r t r r
t z z r r r

      
+ = + +    

     


 
(18) 

0  at 0,1,A B r
r r

 
= = =

    
(19) 

1

( )
( , ,0) ,

Pe

B
A A A

d

rz
z r r k

k




 
 = + + + 

    

(20) 

2

( )
( , ,0) ,

Pe

B
B A A

d

rz
z r r k

k




 
 = + + + 

   

(21) 

( , , ) ( , , ) 0.A Br t r t  =  =
 (22) 

Further the following transformations are introduced: 

1 ,B
A A A A

d

r
r k

k


 
 = + + +  

   
(23) 

2 .B
B A A B

d

r
r k

k

 
 = + + +  

 


 
(24) 

The system of Eqs. (17) – (22) transform to: 

2

12 2

1 1
( , )  in 0 1,

Pe

A A A A
Au r t r r

t z z r r r

      
+ = + +    

     


 
(25) 

2

22 2

1 1
( , )  in 0 1,

Pe

B B B B
Bu r t r r

t z z r r r

      
+ = + +    

     


 
(26) 

0  at 0,1,A B r
r r

 
= = =

    
(27) 

( , ,0) ( , ,0) ( ) / Pe,A Bz r z r z = =
  (28) 
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( , , ) ( , , ) 0.A Br t r t  =  =
 (29) 

The moment analysis of the system (25)-(29) is addressed in due course. 

Velocity solution  

The constitute equation for Casson non-Newtonian fluid model is as follows: 

( )
2

/ | | for | |

0 for | |

y y

y

    

 

     = + 

  = 

τ γ

γ
  

(30) 

where, γ  and τ  denotes the strain rate and stress tensor respectively, whereas y   is the yield 

stress. The operator | |  used in Eq. (30) indicates the magnitude of the respective terms,   is 

the viscosity. 

For one dimension, shear flow is the constitutive Eq. (30) in non-dimensional form is: 

2

for 

0 f  
 

or

y y

y

u

r

   

 






 −   =
 

−

  

(31) 

where /u u U=  and ( , ) ( , ) / ( / )n

y y U R      = .  

The momentum equation in non-dimensional form with boundary conditions at the rigid wall 

and along the centreline of the tube are:  

( )
1 1

2 ( ) ,
Sc 

u
p t r

t r r

 
= −

 


  
(32) 

 is finite  at 0,r =  (33) 

0 at 1.u r= =  (34) 

Here, Sc / D =  is the Schmidt number and ( )2( ) 2 1 sin Sc p t e t= + ,   is known as 

Womersley frequency parameter (for pulsating blood flow). To solve the momentum equation, 

a perturbation method is utilized, considering 1/ Sc =ò [52] as a small parameter accordingly, 

we expand the velocity and the shear stress in the following manner: 

0 1( , ) ( , ) ( , )t r t r t r  = + +ò
 

(35) 

0 1( , ) ( , ) ( , )u t r u t r u t r= + +ò
 

(36) 
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where, 

0( , ) ( )p t rt r =
 

(37) 

/

1

3
2 5 2( ) 2 16

( , )
4

2 2 4 3 3 21
p p

p t r r
r r r r r rt r

     
= − − + − − −    

    
 (38) 

and 

( ) ( ) ( )2 3/2

0

( ) 8
1 1 2 1 ,

2
( , )

3
p p

p t
u r r r r rt r

 
= − − − + − 

 
 (39) 

22
2 3/2 7/2

3/2 2

1

3/

( ) 3 1144 16 424
(4 )  ( )

2 16 16 16 147 3 147

( ) 320 128 64
            .

32 63 63

( )

9

,
p

p

rp t r
u r r r r

p t
r r

t r

r

   
= − − − − − + +  

   

  
− + − 

 

 (40) 

Here, pr  is the plug flow radius. For the special case of  0pr = , then non-Newtonian Casson 

model [52] reduces to classical Newtonian model.  

Moment analysis of species concentration 

The decoupled Convection-diffusion for both the species have the same form (see Eqs. (25) and 

(26)), and thus we have dropped the subscript A and B for simplicity prior to applying the Aris 

– Barton [53] approach. The pth order moment of the general concentration ( , , )z r t  is defined 

as: 

( , ) ( , , )p

p t r z t r z dz
+

−
 =   

(41) 

Here p is the solution of the following partial differential equation: 

1 22

1 ( 1)
( )

Pe

p p

p p p

p p
r pu r

t r r r
 − −

   −
− −  =  +  

     
(42) 

0  at 0,1,
p

r
r


= =

  
(43) 

1/ Pe for 0
(0, )

0 for 0 

 
p

p
r

p

=
 = 

   
(44) 

For future reference, the pth moment about the mean of the species concentration is presented 

below 



11 

 

1

0

1

0

( ) d d

( )

d d

p

g

p

r z z r z

t

r r x



+

−

+

−

− 

=



 

 
 

(45) 

Where 

1

0 1

1

0

0

d d

d d

g

r z r z

z

r r z

+

−

+

−




= =




 

 
 

(46) 

Denotes the centroid of the solute and the over-bar denotes the sectional average. By simple 

manipulation, we get: 

22
2

0

( ) ,gt z


= −


 
(47) 

33
3 2

0

( ) 3 ,g gt z z 


= − −
  

(48) 

2 44
3 24

0

( ) 4 6 ,g g gt z z z 


= − − −


 
(49) 

By using the first five concentration moments, we can estimate the mean concentration of the 

species  , using the fourth-order Hermite polynomials – see [54,55] 

4

0

02 2

( , ) exp ( )
2 2

g g

n n

n

z z z z
z t c t H

 =

   − −
   
   



  





= 
 

(50) 

Where, 

0 2 0 3
0 1 2 3 4

2

21
, 0, 0, ,

24 962

a a
c c cc c

 


= = = = =

 

(51) 

and iH  is the Hermite polynomial satisfying following recurrence relation: 

1 1

0

( ) 2 ( ) 2 ( ), 0,1,2,
.

( ) 1.

i i iH H iH i

H

   



+ −= − = 


=   

(52) 

In the next section, we mainly investigate the various statistical parameters characterizing the 

solute transport. For this purpose, we define the following parameter /r B Ar r =  representing 

the ratio of the reversible transfer rate of species B to that of species A. In a similar fashion we 
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define /k B Ak k =  symbolising the ratio of irreversible degradation rate. First the mass 

residual in the flow is estimated and this is defined by the following relation: 

1

0 0

1

0 0

1

0 0

1

0 0

( , , )

for species A

( , ,0)

( )

( , , )

for species B

( , ,0)

A

A

A

A

C z r t dzdr

C z r dzdr

M t

C z r t dzdr

C z r dzdr
















= 







 

 

 

 
 

(53) 

The coefficients of skewness 2( )  and kurtosis 3( )  are critical determinants in the context of 

symmetry and peakedness of the concentration distribution.  In order to determine whether the 

concentration curve deviates from the normal curve, these two parameters are required. When 

these two parameters have zero values, the distribution becomes perfectly Gaussian. The 

coefficients of skewness 2( )  and kurtosis 3( )  are defined respectively as:  

3 4
2 21.5 2

2 2

   and  3 
 

 
 

= = −

 
(54) 

3.Numerical Solution of Pth Order Moment General Concentration Equation  

In order to solve Eq. (42) i.e., the pth order moment general concentration partial differential 

equation under boundary conditions (43) and (44), a finite difference method based on the 

Crank Nicholson implicit scheme is employed. Further details of numeric are given in [56,57]. 

In this technique, all the terms in Eq. (42) are defined at each node point ( , )i j , where i  

corresponds to time and j  corresponds to space. For the spatial derivative and time derivative 

in Eq. (42) the following approximations are used: 

( 1, ) ( , )p p pi j i j

t t

  + −
=

 
 (55) 

( 1, 1) ( 1, 1) ( , 1) ( , 1)

4

p p p p pi j i j i j i j

r r

  + + − + − + + − −
=

 
 (56) 
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2

2 2

( 1, 1) 2 ( 1, ) ( 1, 1)

( , 1) 2 ( , ) ( , 1)

2( )

p p p

p p p p

i j i j i j

i j i j i j

r r

 + + −  + + + − +

   + −  + −
=

 
 

(57) 

The resulting finite difference equation turns into a system of a linear algebraic equation with 

a tri-diagonal coefficient matrix,  

( 1, 1) ( 1, ) ( 1, 1)j p j p j p jP i j Q i j R i j S + + +  + +  + − =
 

(58) 

the associate initial and boundary condition becomes 

1 for 0
(1, )

0 for 0
p

p
j

p

=
 = 


 (59) 

( ,0) ( ,2)p pi i =
 

(60) 

( , 1) ( , 1)p pi M i M + = −
 

(61) 

The above tri-diagonal system is solved by the Thomas algorithm. In the present computations, 

201M =  and 0.00001t = . To select M, a mesh independence has been performed for steady 

dispersion coefficient (See Fig. 2). A MATLAB code has been prepared to solve Eq. (42) by 

using the above-mentioned method. 

 

 

Fig. 2. Grid independent study for steady dispersion coefficient and fixed 1,r k = =  0.5 =  

and 2dk = . 
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4.Result and discussion:  

Figs. 3-10 visualize the results. All default data prescribed in the analysis is given in the 

respective figure. The typical range of these parameter are taken from literature as given 

bellow: 

Parameter  Range  Reference  

dk  0.5 – 8 [46] 

r  0.25 – 8 [46] 

k  0.25 – 8 [46] 

y  0 – 0.05 [28] , [44], [55] 

  0.05 [55], [58] 

e  0 (steady) 1 (unsteady) [58] 
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Fig. 3. Temporal evolution of solute residual in the flow for both the species (a) variety of r  

and (b) for various k  with fixed 2dk = . 

Fig. 3 shows the evolution with time of the solute residual in the blood flow for both species 

for (a) various r  and (b) for various k  . In both plots the distribution of coefficient between 

two species A and B is set as 2dk = . As expected, reversible transfer rate and irreversible bulk 

degradation deplete the total mass of the species over time. Fig. 3a shows that the mass of both 

species decreases with an increase in reversible reaction rate r . In a similar fashion, mass 

decay happens rapidly with the increase of the ratio of irreversible degradation rate k  (Fig. 

3b). It is also noteworthy that the mass of species A depletes faster than the mass of species B 

and this is intimately associated with the transfer rates of both species (
Ar  , 

Br  ), bulk 

degradation rates of both species ( 
Ak  , 

Bk  ) and in particular the distribution of coefficient 

between two species, dk . 2dk =  indicating that species A dominates i.e., there is a faster 

conversion of this species compared with species B. The implication is that pharmacological 

agent reactions are controlled, among other factors by the relative rates of bulk degradation 

[48,49]. 
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Fig. 4. Time-dependent dispersion coefficient of species A with (a) small and (b) large time for 

fixed 1r k = = , 0.5, 0.5,0e = =  and different yield stress ( )y . 
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Fig. 4a, b visualizes the time-dependent dispersion coefficient of species A with (a) small and 

(b) large time for fixed 1r k = = , 0.5, 0.5,0e = =  and different yield stress (y). It is evident 

that the effective dispersion coefficient defined by 2 /0.5aD d dt=  , for both species are 

approximately equal. Therefore, we restrict attention to consider one species i.e., A. In 

consistency with the available literature [54,58], the dispersion coefficient of species A exhibits 

a pulsatile nature (see Fig 4a, b). At small times, the amplitude of the dispersion curve is not 

uniform and it exhibits a growth; however, at large time (t>0.4), the amplitude of the dispersion 

curve becomes stable. Also, Figs. 4a, b both demonstrate that a higher yield stress (y) 

suppresses the amplitude. This is attributable to the increase in plug radius with an increase in 

yield stress. This progressively reduces the shear flow regime (Stokes boundary layer) in the 

vicinity of the wall and hence decreases the effective dispersion coefficient.  

 

Fig. 5. Temporal evolution of skewness of the species for fixed 1r k = = , 2,  0dk e= =  and 

different yield stress ( )y . 

Figure 5.  displays the distribution over time of coefficient of skewness 2( )  of the species for 

fixed 1r k = = , 2,  0dk e= =  and different yield stress (y). As with dispersion coefficient, 

skewness exhibits a similar trend for both species A and B, and we confine ourselves to the 

species A. It is apparent that the parametric dependency of the dispersion coefficient remains 

the same regardless of the flow characteristics (steady, i.e., 0e = , or pulse, i.e., 0e  ). As a 
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result, we limit ourselves to the steady flow scenario hereafter. The temporal evolution of 

skewness for steady flow ( )0e = displayed in Fig. 5.  as a linear-log plot for all values of yield 

stress. The skewness topologies have a similar profile to the results of Wang and Chen [59], in 

the time range [0.1, 2] for the Newtonian case (zero yield stress). For t < 0.1, the skewness 

decreases and achieves its lowest value, subsequently increases then eventually decreases to 

zero with the progression of time. Additionally, the figure illustrates that with the increase of 

yield stress, skewness of the concentration distribution decreases. The rheology of blood 

therefore exerts a significant effect on the skewness which cannot be captured with Newtonian 

models. The Newtonian case (y = 0) clearly achieves the maximum skewness at all times, 

whereas the strongly non-Newtonian case (y = 0.05) produces the minimum skewness at any 

time.  It is also worth noting that the distributions in all scenarios are positively skewed and 

tend to zero over time, implying that the distribution tends to symmetry over time.  

 

Fig. 6. Temporal evolution of kurtosis of the species for fixed 1r k = = , 2,  0dk e= =  and 

different yield stress ( )y . 

Figure 6 depicts the temporal evolution of coefficient of kurtosis of the species, for fixed

1r k = = , 2,  0dk e= =  and different yield stress (y). While skewness quantifies the extent 

to which the concentration distribution is symmetrical, kurtosis is a measure of whether the 

distribution is too peaked (i.e., a very narrow distribution with the maximum concentrations in 
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in the centre). As noted earlier, kurtosis is a necessary complement to skewness. It is evident 

that kurtosis decreases over time from positive to negative values and eventually approaches 

zero. There is an initial critical time for each yield stress at which the kurtosis is zero; 

additionally, at large times, the kurtosis is also zero. This means that the distribution of the 

solute attains the Gaussian distribution at an initial critical time and also large time as well. 

The influence of yield stress is opposite to that computed for skewness. With increasing yield 

stress there is a distinct reduction in the coefficient of kurtosis. However, the effect is less 

prominent than for the skewness.  
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Fig. 7. mean concentration distributions for binary components at three different times and 

various yield stress (y) with  1r k = = , 2,  0dk e= = . 

Figure 7a, b, c illustrates the mean concentration distributions ( )C for species A, B i.e., the 

binary components at three different times and various yield stress (y) with 1r k = = , 

2,  0dk e= = . In all three figures it is evident that species A achieves significantly higher mean 

concentration ( )C  than species B. There is however a progressively greater lateral spreading 

of the profiles with increasing time. This implies that as time elapses the magnitude of 

concentration distribution for species A becomes exceeded by species B. All three figures also 

show that with increasing yield stress (y), generally the mean concentration ( )C  is increased. 

Clearly therefore the Newtonian case (y = 0) produces the minimal mean concentration 

whereas the strongly non-Newtonian case (y = 0.05) produces the maximum. The implication 

is therefore that a Newtonian model under-predicts the actual mean concentration in the 

reactive dispersion in blood flow. This justifies the adoption of a non-Newtonian model since 

rheological effects clearly produce non-trivial modifications in the mean concentration 

distributions. 
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Fig. 8. Mean concentration distribution for species A and B for various r  with fixed 2dk = . 

Figure 8a, b illustrates the mean concentration distribution for individual species A and B for 

various values of r i.e., the ratio of the reversible reaction rate of species B to that of species 

A. Again 2dk =  and non-Newtonian blood is considered. Significantly higher magnitudes of 

( )AC are observed in Fig. 8a compared with ( )BC   (Fig. 8b). With increasing r values there 

is a marked enhancement in ( )AC magnitudes; however, over the same increment in r there is 

a depletion in ( )BC  magnitudes. Clearly therefore the relative reaction rates of the two species 

exert a significant influence on the hydrodynamic dispersion phenomenon in blood flow. The 

efficacy of drugs (pharmacological agents) therefore can be manipulated with careful selection 

of  their reaction rates [49].  

 



23 

 

 

 

Fig. 9. Mean concentration distribution for species A and B for various k  with fixed 2dk = . 

Figure 9a, b illustrates the mean concentration distribution for individual species A and B for 

various values of k  i.e., the ratio of the ratio of irreversible degradation rate of species B to 
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that of species A. Again, distribution coefficient between the two species A and B, 2dk =  and 

non-Newtonian blood is considered. There is a substantial accentuation in 
AC   magnitudes 

(Fig. 9a) with increasing k  values whereas there is a noticeable reduction in 
BC  magnitudes 

(Fig. 9b). The topology of either set of plots however is not significantly altered at any value 

of k . 
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Fig. 10. Mean concentration distribution for species A and B for various dk  with fixed 

1r k = = . 

Finally, Fig. 10a, b visualizes the distributions for mean concentration distribution for species 

A and B for various dk  (distribution coefficient between two species) with fixed 1r k = =  

(i.e., reversible reaction rates and irreversible degradation rates are equal for both species A, 

B). Non-Newtonian blood flow is again considered. Much higher orders of magnitude are 

observed for AC  magnitudes (Fig. 10a) relative to BC  magnitudes (Fig. 10b) at the same time 

instant (t = 0.5). However, while there is a distinct elevation in AC  magnitudes (Fig. 10a) with 

increase in dk  there is a notable (although less dramatic) depletion in BC  magnitudes. 

5. Conclusions 

A mathematical and computational study of the bi-component species transport (convective-

diffusion) in Casson rheological blood flow with bulk chemical reaction through a two-

dimensional rigid vessel has been presented. Two different bulk degradation reaction rates have 

been included for the dual species (pharmacological agents, A, B). The governing species 

concentration equations have been transformed to non-dimensional form with appropriate 
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boundary conditions. An analytical expression for axial velocity has been derived using a 

perturbation method. The decoupled convection-diffusion equations have been analyzed with 

the Aris – Barton approach, in which the pth order moment of the general concentration is 

defined. The mean concentration of the species has been estimated using the first five 

concentration moments with the aid of fourth order Hermite polynomials. A finite difference 

method based on the Crank Nicholson implicit scheme has been adopted to solve numerically 

the nonlinear equation for the pth order moment of the general concentration. A statistical 

analysis has also been conducted wherein coefficients of skewness and kurtosis have been 

computed to determine the symmetry and peaks of the concentration distribution. The present 

study has shown that increasing reversible transfer rate and irreversible bulk degradation result 

in a reduction in the total mass of the species over time. The mass of both species decreases 

with the increase of reversible transfer rate, although the mass of species A depletes faster than 

the mass of species B. With an increase of yield stress, the coefficient of skewness for the 

concentration distribution decreases and the distributions in all scenarios are positively skewed 

and tend to zero over time, implying that the distribution tends to symmetry over time.  The 

kurtosis coefficient decreases over time from positive to negative values and eventually 

approaches zero. There is an initial critical time for each yield stress at which the kurtosis is 

zero; additionally, at large times, the kurtosis is also zero. The implication is that that the 

distribution of the species (drug) attains the Gaussian distribution at an initial critical time and 

also at large time. Mean concentration peaks for both species A and B are elevated with 

increasing yield stress, although magnitudes are significantly higher for species A. With 

increasing values of the distribution coefficient between two species, mean concentration peaks 

are elevated for species (component) A whereas they are depleted for species B, although 

substantially greater magnitudes are computed for species B. Good correlation of the skewness 

with earlier Newtonian results is achieved. The inclusion of non-Newtonian characteristics is 

generally demonstrated to substantially modify the mean concentration, skewness coefficient 

and kurtosis coefficient distributions compared with classical Newtonian models.  

The results provide some useful insight into the bi-component drug transport in smaller vessel 

pharmacodynamics where hemo-rheology is important. Future studies may consider porous 

media effects and alternative non-Newtonian models e.g. Maxwell viscoelastic [60], Oldroyd-

B [61] and Carreau [62] models and will be communicated imminently. 
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