
1 

 

THE EUROPEAN PHYSICAL JOURNAL PLUS  

Accepted  March 16th 2022 

www.springer.com/journal/13360 

Impact factor = 3.911 

Tangent Hyperbolic Non-Newtonian Radiative Bioconvection Nanofluid Flow 

from a Bi-Directional Stretching Surface with Electro-Magneto-

Hydrodynamic, Joule Heating and Modified Diffusion Effects 

 

1J. Prakash, *2Dharmendra Tripathi, 3Nevzat Akkurt and 4O. Anwar Bég 

1Department of Mathematics, Avvaiyar Government College for Women, Karaikal – 609 602, 

U.T of Puducherry, India. prakashjayavel@yahoo.co.in      

2Department of Mathematics, National Institute of Technology, Uttarakhand, Srinagar– 246174, India. 

dtripathi@nituk.ac.in     
3Department of Mechanical Engineering, Munzur University, Aktuluk street, Tunceli 62000, Tunceli, Turkey 

nakkurt@munzur.edu.tr   
4 Professor of Engineering Science and Director- Multi-Physical Engineering Sciences Group, Dept. Mechanical 

and Aeronautical Engineering, SEE, Salford University, Manchester, M54WT, UK. O.A.Beg@salford.ac.uk   

*Corresponding author: dtripathi@nituk.ac.in  (D. Tripathi) 

Abstract  

Motivated by bio-inspired nano-technological functional coating flows, in the current paper a 

theoretical study of laminar, steady, incompressible bioconvection flow of a tangential hyperbolic 

(non-Newtonian) nanofluid from a bi-directional stretching surface under mutually orthogonal 

electrical and magnetic fields is presented. Nonlinear thermal radiation, Joule heating and heat 

source/sink effects are included. Non-Fourier and non-Fickian models are also implemented which 

feature thermal and solutal relaxation. Buongiorno’s nanoscale model is adopted which features 

thermophoresis and Brownian motion effects. Rosseland’s model is employed for thermal 

radiation. The electro-viscous effects arising from the distortions of the double-capacitance electric 

flow field are addressed with a modified formulation of the Poisson-Boltzmann equation. Via 

appropriate similarity transformations, the coupled, nonlinear partial differential conservation 

boundary layer equations and wall and freestream boundary conditions are rendered into a 

nonlinear ordinary differential boundary value problem which is solved numerically with an 

efficient numerical Lobattao - IIIa collocation method available in the MATLAB bvp4c shooting 

solver. Validation with previous studies is included. Velocity is strongly damped with increasing 

buoyancy ratio and bioconvection Rayleigh number are generally greater with positive rather than 

negative electrical field parameter. Increasing the Eckert number reduces the density of motile 

microorganisms while raising the temperature. An increment in Brownian motion and radiative 

parameters strongly accentuates temperatures.  
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NOMENCLATURE 

(�̄�, �̄�, �̄�)- velocity (m s-1) in the direction of  (�̄�, �̄�, �̄�) (m) 

𝛽∗- thermal expansion coefficients (1/K) 

𝛾∗- average volume of a microorganism 

�̄��̄� - electric body force term (V m -1) 

e – electron charge (C) (𝑘𝑔1/2 𝑚𝛺−1/2 𝑠𝑒𝑐−1/2) 

𝑛0- ion density (m-3) 

𝜌𝑒 - net charge number density (C m-3)  

𝜀𝑒𝑓𝑓- electrical permittivity of the solution (C V-1 m-1) (𝑚−1 𝛺−1 𝑠𝑒𝑐) 

𝑘𝐵- Boltzmann constant (V m-1) (𝑘𝑔𝑚2 𝑠𝑒𝑐−2 𝐾𝑒𝑙𝑣𝑖𝑛−1) 

a, b – stretching rate (ms-1) 

𝑐𝑝- specific heat at constant pressure (J kg-1 K-1) 

𝜏 - ratio of the effective heat capacitance of nanoparticles to base fluid 

�̃� - chemotaxis constant for gyrotactic bioconvecting micro-organisms 

𝑊𝑐 - maximum cell swimming speed (m s-1) 

𝑽 - velocity vector (m s-1) 

𝜎∗- electrical conductivity (S m-1) (𝛺−1 𝑚−1) 

𝑄0- heat source (or sink) (W m-3) 

𝐵0 - Uniform magnetic field (𝑘𝑔1/2 𝑚−1 𝑠𝑒𝑐−1/2 𝛺1/2) 

𝛤 - time-dependent material constant in tangent hyperbolic model 

𝑔∗- gravitational acceleration (m s-2)   

𝜌𝑚- motile gyrotactic microorganism density (kg m-3) 

𝜌𝑝- nanoparticle density (kg m-3) 

𝜌𝑓- fluid density (kg m-3)  

𝜐𝑓- kinematic viscosity (𝑚2 𝑠𝑒𝑐−1) 

�̄�- thermal conductivity (W m -1 K-1
 ) 

𝛼 - thermal diffusivity (𝑚2𝑠−1) 

𝐷𝐵- Brownian diffusion (𝑚2𝑠−1) 

𝐷𝑇- thermophoresis diffusion coefficients (𝑚2𝑠−1) 

𝐷𝑚- microorganism diffusivity (𝑚2𝑠−1 )  

𝑇𝑤-nanoparticle temperature at the wall (K) 

𝐶𝑤-nanoparticle volume fraction (concentration) at the wall   

𝑁𝑤-motile microorganism at the wall 

𝑁∞-ambient value of motile microorganisms  

𝐶𝑓-average concentration of nanoparticles   

𝐶∞ -ambient i. e. free stream value of nanoparticle volume fraction (concentration) 

𝑇∞- ambient value of temperature (K) 

�̄�- dimensional temperature (K) 

�̄�- dimensional nanoparticle concentration 

�̄�- dimensional concentration (number density) of the microorganisms   

𝛤𝐸-relaxation time of heat flux (non-Fourier thermal relaxation time) 

𝛤𝐶-relaxation time of mass flux (non-Fickian solutal relaxation time) 

𝑛 -power law index parameter in tangent hyperbolic model 

𝑊𝑒1,𝑊𝑒2 - axial and transverse Weissenberg numbers  
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𝜆 - mixed convection parameter   

𝑁𝑟 - buoyancy ratio parameter 

𝑁𝑐 -  bioconvection Rayleigh number 

 𝑀 - magnetic interaction number   

𝛾 - axial to transverse stretching ratio (b/a)   

𝑈𝑒 - electric field parameter    

𝑈𝐻𝑆 - Helmholtz-Smoluchowski velocity  

𝜅 - electroosmosis parameter (inverse electrical double layer thickness) 

𝑚 - Debye-Hückel parameter 

𝑁𝑏 - Brownian parameter 

𝑁𝑡 - thermophoresis parameter  

𝑃𝑟 - Prandtl number 

𝐸𝑐 - Eckert number  

𝑅𝑑 - thermal radiation parameter  

𝛺𝑇- thermal relaxation parameter 

Q -  heat generation/absorption parameter  

𝐿𝑒 - Lewis number 

𝛺𝐶  - concentration relaxation parameter  

𝐿𝑏 - bioconvection Lewis number   

𝑃𝑒 - Péclet number  

𝛺 - Microorganism density number difference variable  

𝜉 - zeta potential parameter. 

 

1. INTRODUCTION  

Functional materials are growing in popularity in the 21st century. These complex materials are 

responsive to external stimuli such as magnetic and electrical fields and provide more robust 

performance in a variety of applications including coatings [1-5]. The manufacture of such 

materials which also include smart nanomaterials frequently features sheet stretching processes. 

Such fabrication technologies rely heavily on boundary layer flows [6–8].  From an energy 

conservation standpoint, improving heat transfer in coating material synthesis [9, 10] is a critical 

factor and operations may also utilize very high temperatures where thermal radiation in addition 

to thermal convection and conduction modes arises. Heat transfer can be improved in many ways, 

such as changing the flow pattern, modifying the boundary conditions (via surface patterning) or 

increasing the thermal conductivity of the coating material. Many theoretical and experimental 

studies have shown that the thermal conductivity of micron-sized solid particles suspended in a 

base fluid leads to significant improvement in thermal efficiency. However, microparticles can 

generate agglomeration, abrasion and degradation in coatings. To circumvent these issues, smaller 

particles engineered at the nanoscale i. e. nanoparticles have been proposed. The resulting 
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colloidal mixture of nanoparticles and base fluids are termed nanofluids. Choi [11] first 

successfully engineered these colloidal suspension of submicron solid particles (nanoparticles) 

with a variety of base fluids and metallic and carbon-based nanoparticles and demonstrated 

significant elevation in thermal conductivity achieved by nanofluids as compared to conventional 

working fluids. In general, nanoparticles have a size of 1-50 nm. Since the nanoparticles are so 

small, nanofluids behave more like a single-phase fluid than a solid-liquid (two-phase) 

combination. Since nanoparticles are so small, nanofluids behave more like a single-phase liquid 

than a solid-liquid combination. In general, nanofluids are composed of chemically stable metals, 

carbides (SiC), oxides, nitrides (AlN, SiN), or non-metals (graphite, carbon nanotubes) with a 

conductive base fluid such as ethylene glycol (or other coolants), oil (or lubricants), biofluids, 

polymer solutions, water, etc. The thermal conductivity of nanofluids depends on the nanoparticle 

material, volume fraction, spatial distribution, particle size, shape, type of base fluid, temperature 

and pH. Metallic nanoparticles improve the electrical and thermal conductivity of the base fluid as 

well as the overall rate of heat transfer compared to non-metallic [12-13]. The heat transfer rate of 

nanofluids increases with the volume fraction of nanoparticles. Due to this unique ability, 

nanofluids can be used to dissipate heat from microsystems such as micro-heat pipes and 

microchannel heat sinks. Furthermore, they permit improved manipulation of heat transfer rates in 

coating extrusion manufacturing operations. According to Buongiorno [14], Brownian diffusion 

and thermophoresis dominate convective transport in nanofluids, necessitating their inclusion in 

the mass and energy conservation equations. Convective transport in nanofluids using the 

Buongiorno nanoscale model has been extensively studied for stretching sheet, stagnation and 

other boundary layer regimes of interest in materials processing and coating dynamics [15-18]. 

Electroosmosis is a fundamental electrokinetic phenomenon in which a peripheral electric field 

applied between the inlet and outlet drives the flow of an electrolyte or ionic fluid along a surface 

or between surfaces. In contrast, the neutral core is pushed and moved by the electric force like a 

solid [19]. In 1809, Reuss [20] confirmed this hypothesis using porous clay and initiated studies 

on electroosmotic fluid mechanics. This was followed by Helmholtz's 1879 theoretical study on 

electrical double layer (EDL) effects which provided a solid analytical foundation for electro-

osmotic transport [21]; in this work the properties of electrical current potential and fluids for 

electrokinetically driven motion were established. In the early 1900s, Smoluchowski [22] made 

significant progress in understanding electrokinetically driven flows, especially when the EDL 
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thickness is smaller than the channel height. Burgreen and Nakache [23] studied the effect of 

electrical surface potential on fluid flow through ultrafine slits using the linear Debye-Hueckel 

technique. More recently several investigators have considered electro-osmotic effects in coating 

flows. Melanson et al. [24] investigated experimentally the effects of buffer additives such as 

Mg2+ and hexamethonium to regulate electro-osmotic flow in dynamic capillary coatings via ion 

exchange onto the surface silanols. They also studied cationic polyelectrolytes or cationic 

surfactants which enable reversal of electro-osmotic flows. Bekri et al. [25] investigated the 

deployment of polyelectrolytes as successive multiple ionic coating polymers for protein 

separation in volatile background electrolyte systems, observing that separation efficiency and 

stability can be successfully manipulated in electroosmotic coating flows via this approach. Further 

studies of electro-osmotic coating flows include Qiao et al. [26] (on EDL effects), Hickey et al. 

[27] who deployed molecular dynamics simulation to compute cationic charge variation in electro-

kinetic polymer coatings, Li et al. [28] who examined the combined effects of nanoparticles and 

electroosmotic body force on internal surface nanochannel coatings. Additionally, Cao et al. [29] 

have employed dissipative particle dynamics computational methods to simulate charged polymer 

functional coatings under electro-osmotic effects. All these studies have confirmed that 

electroosmotic potential may be exploited to produce more stable and homogenous coatings for a 

variety of practical applications including stretchable electronics, biomedical devices and 

microfluidic designs.  

Bioconvection is the movement of fluid due to a density gradient at the microscopic level, which 

is triggered by the self-propulsion of suspended motile organisms in the fluid. Bioconvection can 

be mobilized by different stimuli i. e. taxes including light, acidity, oxygen, magnetism, electrical 

field, chemical concentration etc. The taxes depend on the specific micro-organism under 

consideration. Bioconvection occurs via the collective behaviour of many micro-organisms 

swimming in the fluid and is observed as patterns [30-31]. Gyrotaxis is a common orientation 

mechanism observed in certain algae and bacteria and is generated from the balance of 

gravitational and viscous torques acting on bottom-heavy micro-organisms [32]. The continuum 

model for simulating bioconvection was introduced by Pedley and Kessler [33]. More recently 

doping coatings with micro-organisms has been explored by engineers as a bio-inspired design 

mechanism [34]. These new functional designs offer enhanced anti-bacterial properties and can be 

deployed in water-borne environments e. g. for marine engineering coating technologies, very 
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successfully. Several different bioconvection micro-organisms have also been explored in food 

safety [35] and bio-catalytic surface finishing for anti-microbial designs [36]. Mathematical 

models of bioconvection boundary layer flows have also been developed in recent years. Aneja et 

al. [37] used a finite element variational method to compute the effects of non-uniform magnetic 

field on hydromagnetic bioconvection boundary layer flow along an inclined stretching plane. 

Nima et al. [38] used finite difference methods to simulate the free/forced bioconvection flow with 

gyrotactic microorganisms along a fuel cell wall adjacent to a Darcian porous medium. Quite 

recently bioconvection in different micro-organisms has been combined with different 

nanoparticles (e. g. gold, silver) to achieve dual benefits in coating technologies [39, 40, 41].  

Kuznetsov [42-44] was the first to study bioconvection in nanofluids, assuming that the micro-

organisms and nanoparticles do not interact and that the nanofluid is a dilute suspension. Boundary 

layer coating models of bioconvection nanofluid transport were developed for slip effects and 

stretching/shrinking walls by Bég et al. [45]. Bég [46] examined the spin coating in Von Karman 

swirling gyrotactic bioconvection nanofluid flow from a rotating disc using numerical methods. 

Further studies include Qin [47] on nanomaterial irreversibility and convective transportation; 

Abdelkader et al. [48] on Al2O3-water-based nanofluid and cooling the glass cover and Sen [49] 

on Green nanofiber mat from HLM–PVA–Pectin using an electrospinning technique.  

The above studies were generally confined to Newtonian nanofluid bioconvection. Many smart 

coating materials however exhibit non-Newtonian characteristics.  These include shear-thinning, 

shear-thickening, viscoelasticity, stress relaxation and retardation. Robust rheological models are 

required to accurately simulate functional bio-nano-coatings. A number of such studies have 

therefore been communicated also including a spectrum of other multi-physical effects. In this 

context nanofluid bioconvection rheological flows have been addressed by Waqas et al. [50] who 

implemented the Reiner-Rivlin second order viscoelastic model). Khan et al. [51] deployed the 

Stokes polar couple stress model and also considered magnetic field and wall slip effects. Zaman 

et al. [52] applied the Williamson non-Newtonian model and furthermore included thermal 

radiative flux and hydromagnetic (Lorentz) body force effects. An alternative rheological model 

is the tangent hyperbolic model which can accurately predict shear thinning phenomena in non-

Newtonian nanofluids and also viscoelastic effects. This model has been utilized in several 

nanofluid coating flow studies. Bahsa et al. [53] used a Keller box finite difference code and the 

second law of thermodynamics to analyze the entropy production in tangent hyperbolic nanofluid 
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coating boundary layer flow external to a cylindrical body. Wang et al. [54] investigated 

microorganism doping in a tangential hyperbolic nanofluid flow with Wu slip and wall 

transpiration, noting that motile micro-organism density decreases with Péclet number. Kumaran 

et al. [55] used finite element and finite difference methods to compute the magneto-gyrotactic 

bioconvection tangent hyperbolic reactive nanofluid coating flow on a cylinder in porous media. 

They showed that increasing the power law index accelerates the flow whereas elevation in 

Weissenberg number boosts the heat transfer boundary layer thickness of tangent hyperbolic 

nanofluid. They also found that there is a depletion in microorganism density number with larger 

values of bioconvection Schmidt number and Peclet number. Further studies include Shafiq et al. 

[56] who examined the tangential hyperbolic magnetic nanofluid flow with gyrotactic 

microorganisms from an exponentially stretching surface. 

In many coating flows, the surface may be stretched in one dominant direction or two directions 

[57]. The latter is known as bi-directional stretching and permits enhanced control of material 

constitution during fabrication. Wang [58] was among the first researchers to analyze the bi-

directional stretching of a Newtonian coating sheet, for which he derived exact 

similarity solutions of the Navier–Stokes equations.  More recently Shahid et al. [59] have used a 

Chebychev spectral collocation method to compute the magnetic functional polymer flow from a 

bi-directional stretching parabolic surface in permeable media. Amirsom et al. [60] have used 

MAPLE quadrature to simulate the bioconvection nanofluid boundary layer flow from a bi-axial 

stretching sheet with multiple wall slip effects. These studies have shown that different stretching 

rates in orthogonal directions substantially influence heat, mass and momentum characteristics.  

In view of these studies, bioconvection in nanofluids achieves superior thermal performance 

compared with bioconvection in ordinary fluids. Engineering systems such as smart coatings can 

be better controlled and manipulated if electrical and magnetic fields are combined. According to 

a review of the scientific literature, the combined electroosmotic and magnetohydrodynamic 

(MHD) radiative nanofluid bioconvection (gyrotactic microorganism) flow from a bi-directional 

stretching surface has not yet been investigated. This is the focus of the present study which as 

elaborated earlier is motivated by studying emerging complex functional material manufacturing 

processes including electromagnetic hydrogels [61] and bio-nano-coatings [62]. To achieve more 

realistic results both non-Fourier thermal relaxation and non-Fickian solutal relaxation effects are 

included i. e. the Cattaneo-Christov laws are used to study the heat and mass transport. 
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Buongiorno’s nanoscale model is deployed which permits the inclusion of nanoparticle species 

diffusion. Furthermore, thermal radiative heat flux, viscous heating, Joule heating and heat 

source/sink effects are incorporated in the model developed. Rosseland’s model is employed for 

thermal radiation. The electro-viscous effects arising from the distortions of the double-

capacitance electric flow field are addressed with a modified formulation of the Poisson-

Boltzmann equation. The transformed, dimensionless, self-similar ordinary differential 

conservation boundary layer equations with associated wall and freestream boundary conditions 

are solved numerically with an efficient Lobattao - IIIa collocation method available in the 

MATLAB bvp4c shooting solver. Validation with previous studies is included. Extensive 

visualization of the effects of emerging parameters on velocity, temperature, nanoparticle 

concentration and motile micro-organism density is included. Tables for local Sherwood number 

(nanoparticle mass transfer rate) and local microorganism density number gradient are also 

provided. 

 

2. BI-DIRECTIONAL STRETCHING NANO-BIO COATING FLOW MODEL 

 

2.1 Flow modeling  

Consider the steady, incompressible, viscous, 3-dimensional bioconvective electromagnetic 

tangent hyperbolic nanofluid flow containing motile gyrotactic microorganisms on a bi-directional 

stretching surface as shown in Fig.1. Nonlinear thermal radiation, Joule heating and heat 

sink/source effects are included. Hall current effects are ignored.  The nanofluid is magnetic, ionic 

and also optically thick. A Cartesian coordinate system (𝑋,̄ �̄�, �̄�)  is adopted. The stretching motion 

is in the �̄� − �̄� plane and the �̄� axis is normal to this plane. The surface stretching velocities in the 

�̄�, �̄� directions are  𝑈𝑤(�̄�) = 𝑎�̄�, 𝑉𝑤(�̄�) = 𝑏�̄�, respectively. 

 

2.2 Governing equations  

For three-dimensional flow of an electromagnetic hyperbolic tangential nanofluid with 

microorganisms the boundary layer equations are developed below. 
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2.2.1 Continuity and momentum equations  

 

 

Fig. 1: Physical model for 3-dimensional bioconvective electromagnetic hyperbolic tangent 

nanofluid flow on a bi-directional stretching surface 

   

A transverse magnetic field acts normal to the stretching plane. The bi-directional stretching 

induces both a primary flow and a secondary flow and the regime is therefore 3-dimensional in 

nature. The tangent hyperbolic rheological model introduces a power law index and modified shear 

terms. The relevant conservation i. e. mass and momenta equations for tangent hyperbolic non-

Newtonian fluid following Wang et al. [54] can be written with magnetic and electrical body forces 

as: 

𝜕�̄�

𝜕�̄�
+

𝜕�̄�

𝜕�̄�
+

𝜕�̄�

𝜕�̄�
= 0,         (1) 

�̄�
𝜕�̄�

𝜕�̄�
+ �̄�

𝜕�̄�

𝜕�̄�
+ �̄�

𝜕�̄�

𝜕�̄�
= 𝜐𝑓(𝑛 − 1)

𝜕2�̄�

𝜕�̄�2
+ 𝜐𝑓𝑛√2𝛤

𝜕�̄�

𝜕�̄�
(
𝜕2�̄�

𝜕�̄�2
) + �̄�𝑒�̄��̄� −

𝜎∗𝐵0
2

𝜌𝑓
�̄� + �̄�, (2) 

�̄�
𝜕�̄�

𝜕�̄�
+ �̄�

𝜕�̄�

𝜕�̄�
+ �̄�

𝜕�̄�

𝜕�̄�
= 𝜐𝑓(𝑛 − 1)

𝜕2�̄�

𝜕�̄�2 + 𝜐𝑓𝑛√2𝛤
𝜕�̄�

𝜕�̄�
(
𝜕2�̄�

𝜕�̄�2) −
𝜎∗𝐵0

2

𝜌𝑓
�̄�,   (3) 

Where �̄� = (1 − 𝐶𝑓)𝛽
∗𝑔∗(�̄� − 𝑇∞) −

(𝜌𝑝−𝜌𝑓)𝑔∗(�̄�−𝐶∞)

𝜌𝑓
−

(𝜌𝑚−𝜌𝑓)𝑔∗𝛾∗(�̄�−𝑁∞)

𝜌𝑓
, is an effective body 

force with thermal, nanoparticle concentration and micro-organism buoyancy force contributions. 
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2.2.2 Energy equation  

Heat flux(�̄�) fulfills the subsequent expressions in terms of Cattaneo – Christov theory [55]: 

�̄� + 𝛤𝐸 [
𝜕�̄�

𝜕�̄�
+ 𝑽. 𝛻�̄� + (𝛻. 𝑽)�̄� − �̄�𝛻. 𝑽] = −�̅� 𝛻. �̄�,     (4) 

The Fourier’s theory of heat flux can be retrieved by setting thermal relaxation parameter, 𝛤𝑇 = 0 

and becomes parabolic rather than the non-Fourier theory which is hyperbolic. For an 

incompressible liquid, the above non-Fourier expression has the form: 

�̄� + 𝛤𝐸 [
𝜕�̄�

𝜕�̄�
+ 𝑽. 𝛻�̄�] = −�̅� 𝛻. �̄�,       (5) 

The energy conservation law can be written as:  

(𝜌𝑐)𝑝𝑽.𝛻�̄� = 𝛻. �̄�,         (6) 

Now eliminating �̄� from Eqns. (5) and (6), yields the energy equation in steady state form as 

follows: 

�̄�
𝜕�̄�

𝜕�̄�
+ �̄�

𝜕�̄�

𝜕�̄�
+ �̄�

𝜕�̄�

𝜕�̄�
+ 𝛤𝐸𝜆𝐸 = (𝛼 +

1

𝜌𝑓𝑐𝑝

16�̄�𝑇∞
3

3�̄�
)

𝜕2�̄�

𝜕�̄�2
+ 𝜏 {𝐷𝐵

𝜕�̄�

𝜕�̄�

𝜕�̄�

𝜕�̄�
+

𝐷𝑇

𝑇∞
(
𝜕�̄�

𝜕�̄�
)

2

} 

+
𝜎∗𝐵0

2

𝜌𝑓𝑐𝑝
𝑢2 +

𝑄0(�̄�−𝑇∞)

𝜌𝑓𝑐𝑝
+

𝜐𝑓

𝑐𝑝
(1 − 𝑛) (

𝜕�̄�

𝜕�̄�
)
2

,                                         (7) 

where 𝜆𝐸 = (�̄�
𝜕

𝜕�̄�
+ �̄�

𝜕

𝜕�̄�
+ �̄�

𝜕

𝜕�̄�
) (�̄�

𝜕�̄�

𝜕�̄�
+ �̄�

𝜕�̄�

𝜕�̄�
+ �̄�

𝜕�̄�

𝜕�̄�
). 

 

2.2.3 Nanoparticle concentration equation  

The nanoparticle mass flux(𝐽) in term of Cattaneo-Christov theory [63] is defined as follows:  

𝐽 + 𝛤𝐶 [
𝜕𝐽

𝜕�̄�
+ 𝑽. 𝛻𝐽 + (𝛻. 𝑽)𝐽 − 𝐽𝛻. 𝑽] = −𝐷𝐵𝛻. �̄�,     (8) 

The classical Fick’s law can be obtained by substituting 𝛤𝐶 = 0 in Eqn. (8). The above expression 

can be written as: 

𝐽 + 𝛤𝐶 [
𝜕𝐽

𝜕�̄�
+ 𝑽. 𝛻𝐽] = −𝐷𝐵𝛻. �̄�,       (9) 

The nanoparticle concentration equation in steady state form may be stated as:  

𝑽. 𝛻�̄� = 𝛻. 𝐽,          (10)  

Now eliminating 𝐽 from Eqns. (9) and (10), produces the nanoparticle concentration equation as 

follows: 

�̄�
𝜕�̄�

𝜕�̄�
+ �̄�

𝜕�̄�

𝜕�̄�
+ �̄�

𝜕�̄�

𝜕�̄�
+ 𝛤𝐶𝜆𝐶 = 𝐷𝐵

𝜕2�̄�

𝜕�̄�2 +
𝐷𝑇

𝑇∞
(
𝜕2�̄�

𝜕�̄�2),      (11) 
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where 𝜆𝐶 = (�̄�
𝜕

𝜕�̄�
+ �̄�

𝜕

𝜕�̄�
+ �̄�

𝜕

𝜕�̄�
) (�̄�

𝜕�̄�

𝜕�̄�
+ �̄�

𝜕�̄�

𝜕�̄�
+ �̄�

𝜕�̄�

𝜕�̄�
). 

 

2.2.4 Equation for motile micro-organisms transport (self-propulsion) 

Gyrotactic microorganism density number may be represented as follows: 

𝛻. �̄� = 0,         (12) 

�̄� flux can be extended according to Kuznetsov [42] as: 

�̄� = �̄��⃗⃗� + �̄��⃗̄� − 𝐷𝑛𝛻�̄�,       (13) 

Here �⃗̄� = (
𝑊𝐶�̃�

𝐶𝑤−𝐶∞
)𝛻�̄�, micro-organism diffusivity is symbolized by 𝐷𝑛, 𝑊𝐶 is the maximum 

velocity of a cell movement and the chemotaxis constant is b (Note- the product 𝑊𝐶𝑏 is viewed as 

constant). Effectively the conservation equation for number density of gyrotactic micro-organisms 

can be written as [66-67]: 

�̄�
𝜕�̄�

𝜕�̄�
+ �̄�

𝜕�̄�

𝜕�̄�
+ �̄�

𝜕�̄�

𝜕�̄�
+

�̃�𝑊𝐶

𝐶𝑤−𝐶∞
(

𝜕

𝜕�̄�
(�̄�

𝜕�̄�

𝜕�̄�
) +

𝜕

𝜕�̄�
(�̄�

𝜕�̄�

𝜕�̄�
) +

𝜕

𝜕�̄�
(�̄�

𝜕�̄�

𝜕�̄�
)) = 𝐷𝑚 (

𝜕2�̄�

𝜕�̄�2 +
𝜕2�̄�

𝜕�̄�2 +
𝜕2�̄�

𝜕�̄�2). 

            (14) 

2.2.5 Boundary conditions for the regime   

The wall and free stream boundary conditions prescribed for solving Eqns. (1)-(3), (7), (11) and 

(14) are expressed as:  

�̄� = 𝑈𝑤(�̄�) = 𝑎�̄�, �̄� = 𝑉𝑤(�̄�) = 𝑏�̄�, �̄� = 0, �̄� = 𝑇𝑤, �̄� = 𝐶𝑤, �̄� = 𝑁𝑤 𝑎𝑡 �̄� = 0,

�̄� → 0, �̄� → 0, �̄� → 𝑇∞, �̄� → 𝐶∞, �̄� → 𝑁∞ 𝑎𝑠 �̄� → ∞.
}  (15) 

 

2.3. Analysis of electroosmosis 

The coating material considered in Fig. 1 is an ionic nanofluid. This possesses an electrostatic 

potential due to the formation of an electric double layer (EDL) which is defined by the Poisson 

equation [24-27, 37]: 

𝛻2�̄� = −
�̄�𝑒

𝜀𝑒𝑓𝑓
,      (16) 

Here 𝜀𝑒𝑓𝑓 = 𝜀0𝜀𝑟in which vacuum permittivity is specified by 𝜀0 and 𝜀𝑟refers to dielectric constant 

of the medium (nanofluid coating). Assuming that cations and anions have the same valence �̃�, the 

charge number density for symmetric electrolyte solutions (ionic nanofluids) is calculated as: 

�̄�𝑒 = 𝑒�̃�(𝑛+ − 𝑛−),     (17) 
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Here 𝑛+ and 𝑛−  are the number of cations and anions, with the electronic charge e and n0 is the 

mass concentration of ions. Based on this assumption, a linearized Poisson-Boltzmann distribution 

can be used to accurately describe the electrical potentials inside the nanofluid coating boundary 

layer regime with an electrical double layer (EDL) smaller than half the thickness of the surface 

plate. The Boltzmann ion number concentration is defined as follows: 

𝑛± = 𝑒
∓

𝑒�̃��̄�

𝑘𝐵𝑇𝑣,      (18)  

Substituting Eqn. (18) into Eqn. (17), we obtain:  

�̄�𝑒 = −2�̃�𝑒𝑛0 𝑠𝑖𝑛ℎ (
𝑧𝑒�̄�

𝑘𝐵𝑇𝑣
),    (19) 

Substituting the value of charge density (Eqn. (19)) into Poisson's equation (Eqn. (16)), the 

following differential equation for electrical potential emerges: 

𝜕2�̄�

𝜕�̄�2 +
𝜕2�̄�

𝜕�̄�2 +
𝜕2�̄�

𝜕�̄�2 =
2𝑧𝑒𝑛0

𝜀𝑒𝑓𝑓
𝑠𝑖𝑛ℎ (

𝑧𝑒�̄�

𝑘𝐵𝑇𝑣
),                                                       (20) 

The following boundary condition for the electric potential is assumed: 

�̄� = 𝜉 at �̄� = 0 and �̄� → 0as �̄� → ∞.        (21) 

 

2.4 Dimensionless variables and reduction of governing equations 

In order to reduce the governing system of partial differential equations to nonlinear non-

dimensional ordinary differential equations, the following dimensionless variables are invoked: 

�̄� = 𝑎�̄�𝑓′(𝜂), �̄� = 𝑏�̄�𝑔′(𝜂), �̄� = −√𝑎𝜐𝑓 [𝑓(𝜂) + 𝑔(𝜂)], 

𝜃(𝜂) =
�̄�−𝑇∞

𝑇𝑤−𝑇∞
, 𝜑(𝜂) =

𝐶−𝐶∞

𝐶𝑤−𝐶∞
, 𝜒(𝜂) =

𝑁−𝑁∞

𝑁𝑤−𝑁∞
, 𝛷 =

𝑧𝑒�̄�

𝑘𝐵𝑇𝑣
, 𝜂 = �̄�√

𝑎

𝜐𝑓
.    (22)  

Eqn. (1) is automatically satisfied by applying the correct similarity transformation (22), and Eqns. 

(2)-(3), (7), (11), (14) and (20) which comprise the full model, become the following ordinary 

differential conservation equations for primary momentum (axial), secondary momentum 

(transverse), energy, nanoparticle concentration, micro-organism number density and electrical 

potential: 

(𝑛𝑊𝑒1𝑓
″ + (1 − 𝑛)) 𝑓‴ − 𝑓 ′2 + (𝑓 + 𝑔)𝑓″ + 𝜆(𝜃 − 𝑁𝑟𝜑 − 𝑁𝑐𝜒) − 𝑀𝑓 ′ + 𝑈𝑒𝛷

″ = 0, (23)  

𝑔′′(𝑓 + 𝑔) − 𝑔′2 + 𝑔‴[𝑛𝑊𝑒2𝑔
″ + (1 − 𝑛)] − 𝑀𝑔′ = 0,     (24)  
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(1 + 𝑅𝑑)𝜃″ + 𝑃𝑟 𝜃 ′ (𝑓 + 𝑔) + 𝑃𝑟𝑁 𝑏𝜃 ′𝜑′ + 𝑃𝑟 𝑁 𝑡(𝜃 ′)2 + 𝑀 𝑃𝑟 𝐸 𝑐𝑓 ′2 + 𝑃𝑟𝑄 𝜃 

+(1 − 𝑛)𝐸𝑐𝑓″2 − 𝑃𝑟𝛺𝑇 ((𝑓 ′ + 𝑔′)𝜃 ′(𝑓 + 𝑔) + (𝑓 + 𝑔)2𝜃″) = 0,    (25) 

𝜑″ + 𝐿𝑒 𝑃𝑟(𝑓 + 𝑔)𝜑′ +
𝑁𝑡

𝑁𝑏
𝜃″ − 𝐿𝑒 𝑃𝑟 𝛺𝐶 ((𝑓 ′ + 𝑔′)(𝑓 + 𝑔)𝜑′ + (𝑓 + 𝑔)2𝜑″) = 0, (26)  

𝜒″ + 𝐿𝑏(𝑓 + 𝑔)𝜒′ − 𝑃𝑒(𝜒′𝜑′ + (𝛺 + 𝜒)𝜑″) = 0,      (27) 

𝛷″ − 𝜅2 𝑠𝑖𝑛ℎ(𝛷) = 0.        (28) 

The complete set of dimensionless boundary conditions can be expressed as follows: 

𝑓 ′ = 1, 𝑔′ = 𝛾, 𝑓 = 0, 𝑔 = 0, 𝜃 = 1, 𝜑 = 1, 𝜒 = 1,𝛷 = 𝜉𝑎𝑡𝜂 = 0

𝑓 ′ → 0, 𝑔′ → 0, 𝜃 → 0, 𝜑 → 0, 𝜒 → 0,𝛷 → 0𝑎𝑠𝜂 → ∞.
}    (29) 

In Eqns. (23)-(29), the following non-dimensional parameters arise: Primary and secondary 

Weissenberg numbers associated with the bi-directional stretching, 𝑊𝑒1 = √
2𝑎

𝜐𝑓
𝑎�̄�𝛤, 𝑊𝑒2 =

√
2𝑎

𝜐𝑓
𝑎�̄�𝛤, mixed convection parameter 𝜆 =

(1−𝐶𝑓)𝛽∗𝑔∗(𝑇𝑤−𝑇∞)

𝑎𝑈𝑤
, buoyancy ratio parameter 𝑁𝑟 =

(𝜌𝑝−𝜌𝑓)(𝐶𝑤−𝐶∞)

𝜌𝑓(1−𝐶∞)(𝑇𝑤−𝑇∞)𝛽∗, bioconvection Rayleigh number 𝑁𝑐 =
𝛾∗(𝜌𝑚−𝜌𝑓)(𝑁𝑤−𝑁∞)

𝜌𝑓(1−𝐶∞)(𝑇𝑤−𝑇∞)𝛽∗, magnetic interaction 

number 𝑀 =
𝜎∗𝐵0

2

𝑎𝜌𝑓
,  stretching rate ratio 𝛾 =

𝑏

𝑎
, which is based on the ratio of the stretching rate 

velocities i.e. �̄� = 𝑎�̄�𝑓′(𝜂), �̄� = 𝑏�̄�𝑔′(𝜂), electric field parameter 𝑈𝑒 =
1

𝑎𝑈𝑤
𝑈𝐻𝑆 in which 𝑈𝐻𝑆 =

−
𝑘𝐵𝑇𝑣𝜀𝑒𝑓𝑓�̄��̄�

𝜇𝑓𝑧𝑒
 is the Helmholtz-Smoluchowski velocity, electroosmosis parameter 𝜅2 = 𝑚2 𝜐𝑓

𝑎
 in 

which  𝑚2 = −
2𝑧2𝑒2𝑛0

𝜀𝑒𝑓𝑓𝑘𝐵𝑇𝑣
 is the Debye-Hückel parameter, Brownian dynamics parameter 𝑁𝑏 =

𝜏𝐷𝐵(𝐶𝑤−𝐶∞)

𝜐𝑓
, thermophoresis parameter 𝑁𝑡 =

𝜏𝐷𝑇(𝑇𝑤−𝑇∞)

𝑇∞𝜐𝑓
, Prandtl number 𝑃𝑟 =

𝜐𝑓

𝛼
, Eckert number 

𝐸𝑐 =
𝑈𝑤

2

𝑐𝑝(𝑇𝑤−𝑇∞)
, thermal radiation parameter 𝑅𝑑 =

16�̄�𝑇∞
3

3�̄��̄�
, thermal relaxation 𝛺𝑇 = 𝑎𝛤𝐸 , heat 

generation/absorption 𝑄 =
𝑄0

𝑎𝜌𝑐𝑝
, Lewis number 𝐿𝑒 =

𝛼

𝐷𝐵
, concentration (mass) relaxation  𝛺𝐶 =

𝑎𝛤𝐶 , bioconvection Lewis number 𝐿𝑏 =
𝜐𝑓

𝐷𝑚
, Péclet number 𝑃𝑒 =

�̃�𝑊𝐶

𝐷𝑚
, microorganisms difference 

variable 𝛺 =
𝑁∞

𝑁𝑤−𝑁∞
 and zeta potential parameter 𝜉 =

𝑧𝑒�̃�

𝑘𝐵�̃��̃�

.  Furthermore, it is useful to define 
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physical quantities for characterising the nanoparticle mass transfer and micro-organism transfer 

rates at the wall. These are the local Sherwood and motility density numbers are defined as follows: 

𝑆ℎ𝑥 =
𝑞𝐶�̄�

(𝐶𝑤−𝐶∞)𝐷𝐵
, 𝑆𝑛𝑥 =

𝑞𝑁�̄�

(𝑁𝑤−𝑁∞)𝐷𝑚
.       (30) 

Here the nanoparticle and micro-organism mass fluxes are:  

𝑞𝐶 = −𝐷𝐵 (
𝜕�̄�

𝜕�̄�
)

�̄�=0

, 𝑞𝑁 = −𝐷𝑚 (
𝜕�̄�

𝜕�̄�
)

�̄�=0

. 

In non-dimensional form the relevant expressions for local Sherwood number and micro-organism 

density number gradient are: 

𝑆ℎ𝑥

√𝑅𝑒𝑥
= −𝜑′(0);

𝑆𝑛𝑥

√𝑅𝑒𝑥
= −𝜒′(0).        (31) 

Here local Reynolds number 𝑅𝑒𝑥 =
�̄�𝑈𝑤

𝜐𝑓
 is used based on the primary stretching direction.   

 

3. NUMERICAL SOLUTION WITH MATLAB SOFTWARE AND VALIDATION 

The nonlinearity of the coupled ordinary differential Eqns. (23)-(28) with associated boundary 

conditions (29), renders analytical solutions impractical. Therefore, computational solutions are 

sought using the MATLAB's bvp4c shooting technique. This utilizes a Lobattao - IIIa collocation 

method. Using appropriate variables, the higher order differential equations are reduced to first 

order equations, as follows: 

𝑓 = 𝑦1; 𝑓
′ = 𝑦2; 𝑓

″ = 𝑦3; 𝑓
‴ = 𝑦3

′ ; 𝑔 = 𝑦4; 𝑔
′ = 𝑦5; 𝑔

″ = 𝑦6; 𝑔
‴ = 𝑦6

′ ; 𝜃 = 𝑦7; 𝜃
′ = 𝑦8; 𝜃

″ =

𝑦8
′ ; 𝜑 = 𝑦9; 𝜑

′ = 𝑦10; 𝜑
″ = 𝑦10

′ ; 𝜒 = 𝑦11; 𝜒
′ = 𝑦12; 𝜒

″ = 𝑦12
′ ; 𝛷 = 𝑦13; 𝛷

′ = 𝑦14; 𝛷
″ = 𝑦14

′ .    (32) 

Here the following definitions apply:  

𝑦3
′ =

1

𝑛𝑊𝑒1𝑦3−𝑛+1
(𝑦2

2 − (𝑦1 + 𝑦4)𝑦3 − 𝜆(𝑦7 − 𝑁𝑟𝑦9 − 𝑁𝑐𝑦11) + 𝑀𝑦2 − 𝑈𝑒𝜅2 𝑠𝑖𝑛ℎ(𝑦13)),  (33) 

𝑦5
′ =

1

𝑛𝑊𝑒2𝑦6−𝑛+1
(𝑦5

2 − (𝑦1 + 𝑦4)𝑦6 + 𝑀𝑦5),              (34) 

𝑦8
′ =

1

(1+𝑅𝑑−𝑃𝑟 𝛺𝑇(𝑦1+𝑦4)2)
(
𝑃𝑟 𝛺𝑇 𝑦8(𝑦1 + 𝑦4)(𝑦2 + 𝑦5) − (1 − 𝑛)𝐸𝑐𝑦3

2 − 𝑃𝑟 𝑦8 (𝑦1 + 𝑦4)

−𝑃𝑟 𝑁 𝑏𝑦8𝑦10 − 𝑃𝑟 𝑁 𝑡𝑦8
2 − 𝑀 𝑃𝑟 𝐸 𝑐𝑦2

2 − 𝑃𝑟 𝑄 𝑦7

),          (35) 

𝑦10
′ =

1

(1+𝐿𝑒𝑃𝑟 𝛺𝐶(𝑦1+𝑦4)2)
(𝐿𝑒 𝑃𝑟 𝛺𝐶 𝑦10(𝑦1 + 𝑦4)(𝑦2 + 𝑦5) − 𝐿𝑒 𝑃𝑟 𝑦10 (𝑦1 + 𝑦4) −

𝑁𝑡

𝑁𝑏
𝑦8
′ ), (36) 

( )( ) ( )12 12 10 10 11 12 1 4
,y Pe y y y y Lby y y = + + − + 𝑦14

′ = 𝜅2 𝑠𝑖𝑛ℎ(𝑦13).         (37) 

The boundary conditions are prescribed in MATLAB bvp4c as follows: 
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𝑦2 = 1, 𝑦5 = 𝛾, 𝑦1 = 0, 𝑦4 = 0, 𝑦7 = 1, 𝑦9 = 1, 𝑦11 = 1, 𝑦13 = 𝜉𝑎𝑡𝜂 = 0
𝑦2 → 0, 𝑦5 → 0, 𝑦7 → 0, 𝑦9 → 0, 𝑦11 → 0, 𝑦13 → 0𝑎𝑠𝜂 → ∞.

}   (34) 

To validate the numerical solutions described in the next section, benchmarking with previous 

simpler studies from the literature is conducted. Table 1 shows the primary (axial) and secondary 

(transverse) skin friction i. e. velocity gradients at the wall compared with Wang [55] and Hayat 

et al. [64]. Excellent correlation is obtained for a range of stretching ratio parameter values (𝛾 =

𝑏

𝑎
) for the case where electrical, magnetic, nanofluid and bioconvection effects are negated. 

Confidence in the present MATLAB solutions is therefore confirmed.  

 

Table 1: Comparative data for different values of 𝛾 with Wang [55] and Hayat et al. [64] for the 

absence of the 𝜆 = 𝑀 = 𝑈𝑒 = 0 and 𝑛 = 0. 

𝛾 Present MATLAB bvp4c results Wang [55] Hayat et al. [64]. 

 −𝑓″(0) −𝑔″(0) −𝑓″(0) −𝑔″(0) −𝑓″(0) −𝑔″(0) 

0 1.000062482423727 0 1 0 1.0 0 

0.10 1.020300418083956 0.066859434360486 -- -- 1.020260 0.668472 

0.20 1.039522965336466 0.148750458516618 -- -- 1.039495 0.148737 

0.25 1.048834372997002 0.194576788554375 1.048813 0.194564 1.048810 0.19457 

0.30 1.057974439764333 0.243371878755454 -- -- 1.057955 0.243360 

0.40 1.075802327844086 0.349218734209357 -- -- 1.075880 0.349209 

0.5 1.093105441666520 0.465213017843099 1.093097 0.465205 1.093095 0.465205 

0.6 1.109954659937748 0.590535464860613 -- -- 1.109942 0.590529 

0.7 1.126403245925845 0.724536912744527 -- -- 1.126398 0.724532 

0.75 1.134490705802878 0.794622858170999 1.134485 0.794622 1.134500 0.794620 

0.8 1.142492898714836 0.866686975477697 -- -- 1.142489 0.866683 

0.9 1.158257049643253 1.016541855969542 -- -- 1.158254 1.016539 

1 1.173723095061049 1.173723095061331 1.173720 1.173720 1.173721 1.173721 

 

4. RESULTS AND DISCUSSION 

MATLAB computations are visualized in Figs. 2-9 for the impact of selected parameters on the 

primary (axial) velocity, temperature, nanoparticle concentration and motile microorganism 
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density number (concentration) distributions with transverse coordinate ().  This permits an 

appraisal of the interplay between different multi-physical effects in the non-Newtonian bio-nano 

electromagnetic functional coating boundary layer regime.  
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Figs.2(a-j) Effects of 𝑊𝑒1, 𝑛, 𝜆, 𝑁𝑟, 𝑁𝑐,𝑀, 𝜅, 𝐸𝑐, 𝑄 and 𝑃𝑒on primary (axial) velocity 𝑓′ versus  

𝜂 for the fixed parameter values of 𝜆 = 0.1; 𝑁𝑟 = 1; 1;Nc = 𝑃𝑟 =0.71; 1;
T

 = 𝛺𝐶 = 1; 𝐸𝑐 =

1;𝑁𝑏 = 𝑁𝑡 = 1; 𝑛 = 0.3;𝑊𝑒1 = 0.1;𝑊𝑒2 = 0.2; 𝜅 = 2;𝑀 = 2;𝑄 = −0.1; 𝑅𝑑 = 1; 𝐿𝑒 =
1; 𝑃𝑒 = 1; 𝛺 = 1; 𝐿𝑏 = 0.2; 𝛾 = 0.5 and 𝜉 = 0.5. 
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Figs.3(a-i) Effects of 𝑊𝑒1, 𝑛, 𝜆, 𝑁𝑟, 𝑁𝑐,𝑀, 𝜅, 𝐸𝑐, 𝑄 and 𝑃𝑒on nanoparticle temperature 𝜃 versus  

𝜂 for fixed parameter values of 𝜆 = 0.3; 0.5;Nr Nc= = 𝑃𝑟 =0.71; 0.1;
T

 = 𝛺𝐶 = 0.1; 𝐸𝑐 =

0.5; 𝑁𝑏 = 𝑁𝑡 = 1; 𝑛 = 0.3;𝑊𝑒1 = 0.1;𝑊𝑒2 = 0.2; 𝜅 = 2;𝑀 = 1;𝑄 = −0.5; 𝑅𝑑 = 1; 𝐿𝑒 =
0.5; 𝑃𝑒 = 0.5; 𝛺 = 1; 𝐿𝑏 = 0.5; 𝛾 = 0.5 and 𝜉 = 0.5. 

 

Fig.4(a) Effect of 𝜅 on nanoparticle concentration (𝜑) versus  𝜂 for fixed parameter values of 

𝜆 = 0.1; 0.1; 1;Nr Nc= = 𝑃𝑟 =0.71; 0.3;
T

 = 𝛺𝐶 = 0.1; 1;Ec = 𝑈𝑒 = 3;𝑁𝑏 = 𝑁𝑡 = 0.5; 𝑛 =

0.4;𝑊𝑒1 = 0.1;𝑊𝑒2 = 0.2;𝑀 = 0.1; 𝑄 = −1; 𝑅𝑑 = 1; 𝐿𝑒 = 2; 𝑃𝑒 = 1; 𝛺 = 0.1; 𝐿𝑏 =
0.5; 𝛾 = 0.5 and 𝜉 = 0.5. 
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Fig.4(b) Effects of 𝜅 on number density (concentration) of the microorganisms (𝜒) versus  𝜂 for 

fixed parameter values of 𝜆 = 0.5; 0.5;Nr Nc= = 𝑃𝑟 =0.71; 2;
T

 = 𝛺𝐶 = 1; 0.5;Ec = 𝑈𝑒 =

1;𝑁𝑏 = 𝑁𝑡 = 1; 𝑛 = 0.5;𝑊𝑒1 = 0.1;𝑊𝑒2 = 0.2;𝑀 = 1;𝑄 = −0.2; 𝑅𝑑 = 1; 𝐿𝑒 = 0.2; 𝑃𝑒 =
0.5; 𝛺 = 1; 𝐿𝑏 = 1; 𝛾 = 0.5 and 𝜉 = 0.5. 

 

Fig.5(a) Effect of 𝑈𝑒 on nanoparticle concentration (𝜑) versus  𝜂 for fixed parameter values of 

𝜆 = 0.1; 0.1; 1;Nr Nc= = 𝑃𝑟 =0.71; 0.3;
T

 = 𝛺𝐶 = 0.1; 𝐸𝑐 = 1;𝑁𝑏 = 𝑁𝑡 = 0.5; 𝑛 =

0.4;𝑊𝑒1 = 0.1;𝑊𝑒2 = 0.2; 𝜅 = 0.4;𝑀 = 1;𝑄 = −1; 𝑅𝑑 = 1; 𝐿𝑒 = 2; 𝑃𝑒 = 1;𝛺 =
0.1; 𝐿𝑏 = 0.5; 𝛾 = 0.5 and 𝜉 = 0.5. 
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Fig.5(b) Effects of 𝑈𝑒 on number density (concentration) of the microorganisms (𝜒) versus  𝜂 

for fixed parameter values of 𝜆 = 0.5; 0.5;Nr Nc= = 𝑃𝑟 =0.71; 2;
T

 = 𝛺𝐶 = 1; 0.5;Ec =

𝑈𝑒 = 1;𝑁𝑏 = 𝑁𝑡 = 1; 𝑛 = 0.5;𝑊𝑒1 = 0.1;𝑊𝑒2 = 0.2;𝑀 = 1;𝑄 = −0.2; 𝑅𝑑 = 1; 𝐿𝑒 = 0.2; 
𝑃𝑒 = 0.5; 𝛺 = 1; 𝐿𝑏 = 1; 𝛾 = 0.5 and 𝜉 = 0.5. 

 

Fig.6(a) Effect of 𝑛 on nanoparticle concentration (𝜑) versus  𝜂 for fixed parameter values of 

𝜆 = 0.1; 0.1; 1;Nr Nc= = 𝑃𝑟 =0.71; 0.3;
T

 = 𝛺𝐶 = 0.1; 𝐸𝑐 = 1;𝑁𝑏 = 𝑁𝑡 = 0.5;𝑊𝑒1 =

0.1;𝑊𝑒2 = 0.2; 𝜅 = 0.4;𝑀 = 0.1; 𝑄 = −1; 𝑅𝑑 = 1; 𝐿𝑒 = 2; 𝑃𝑒 = 1; 𝛺 = 0.1; 𝐿𝑏 = 0.5; 𝛾 =
0.5 and 𝜉 = 0.5. 
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Fig.6(b) Effects of 𝑛 on number density (concentration) of the microorganisms (𝜒) versus  𝜂 for 

fixed parameter values of 𝜆 = 0.5; 0.5;Nr Nc= = 𝑃𝑟 =0.71; 2;
T

 = 𝛺𝐶 = 1; 1.5;Ec = 𝑈𝑒 =

1;𝑁𝑏 = 𝑁𝑡 = 1; 𝜅 = 0.5;𝑊𝑒1 = 0.1;𝑊𝑒2 = 0.2;𝑀 = 1;𝑄 = −0.2; 𝑅𝑑 = 1; 𝐿𝑒 = 0.2; 𝑃𝑒 =
0.5; 𝛺 = 1; 𝐿𝑏 = 1; 𝛾 = 0.5 and 𝜉 = 0.5. 

 

Fig.7(a) Effect of 𝐿𝑒 on nanoparticle concentration (𝜑) versus 𝜂 for fixed parameter values of 

𝜆 = 0.1; 0.1; 1;Nr Nc= = 𝑃𝑟 =0.71; 0.3;
T

 = 𝛺𝐶 = 0.1; 1;Ec = 𝑈𝑒 = 1;𝑁𝑏 = 𝑁𝑡 = 0.5; 𝑛 =

0.4;𝑊𝑒1 = 0.1;𝑊𝑒2 = 0.2; 𝜅 = 0.4;𝑀 = 0.1; 𝑄 = −1; 𝑅𝑑 = 1; 𝑃𝑒 = 1; 𝛺 = 0.1; 𝐿𝑏 =
0.5; 𝛾 = 0.5 and 𝜉 = 0.5. 
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Fig.7(b) Effects of 𝐿𝑒 on number density (concentration) of the microorganisms (𝜒) versus  𝜂 

for fixed parameter values of 𝜆 = 0.5; 0.5;Nr Nc= = 𝑃𝑟 =0.71; 2;
T

 = 𝛺𝐶 = 1; 0.5;Ec =

𝑈𝑒 = 1;𝑁𝑏 = 𝑁𝑡 = 1; 𝑛 = 0.5;𝑊𝑒1 = 0.1;𝑊𝑒2 = 0.2;𝑀 = 1;𝑄 = −0.2; 𝑅𝑑 = 1; 𝜅 =
1; 𝑃𝑒 = 0.5; 𝛺 = 1; 𝐿𝑏 = 1; 𝛾 = 0.5 and 𝜉 = 0.5. 

 

Fig.8(a) Effect of 𝐸𝑐 on nanoparticle concentration (𝜑) versus  𝜂 for fixed parameter values of 

𝜆 = 0.1; 0.1; 1;Nr Nc= = 𝑃𝑟 =0.71; 0.3;
T

 = 𝛺𝐶 = 0.1; 2;Le = 𝑈𝑒 = 2;𝑁𝑏 = 𝑁𝑡 = 0.5; 𝑛 =

0.4;𝑊𝑒1 = 0.1;𝑊𝑒2 = 0.2; 𝜅 = 0.4;𝑀 = 0.1; 𝑄 = −1; 𝑅𝑑 = 1; 𝑃𝑒 = 1;𝛺 = 0.1; 𝐿𝑏 =
0.5; 𝛾 = 0.5 and 𝜉 = 0.5. 
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Fig.8(b) Effects of 𝐸𝑐 on number density (concentration) of the microorganisms (𝜒) versus  𝜂 

for fixed parameter values of 𝜆 = 0.5; 0.5;Nr Nc= = 𝑃𝑟 =0.71; 2;
T

 = 𝛺𝐶 = 1; 0.2;Le =

𝑈𝑒 = 1;𝑁𝑏 = 𝑁𝑡 = 1; 𝑛 = 0.5;𝑊𝑒1 = 0.1;𝑊𝑒2 = 0.2;𝑀 = 1;𝑄 = −0.2; 𝑅𝑑 = 1; 𝜅 = 1; 
𝑃𝑒 = 0.5; 𝛺 = 1; 𝐿𝑏 = 1; 𝛾 = 0.5 and 𝜉 = 0.5. 

 

Fig.9(a) Effect of 𝑃𝑒 on nanoparticle concentration (𝜑) versus  𝜂 for fixed parameter values 

of𝜆 = 0.1; 0.1; 1;Nr Nc= = 𝑃𝑟 =0.71; 0.3;
T

 = 𝛺𝐶 = 0.1; 2;Le = 𝑈𝑒 = 2;𝑁𝑏 = 𝑁𝑡 =

0.5; 𝑛 = 0.4;𝑊𝑒1 = 0.1;𝑊𝑒2 = 0.2; 𝜅 = 0.4;𝑀 = 0.1; 𝑄 = −1; 𝑅𝑑 = 1; 𝐸𝑐 = 1; 𝛺 =
0.1; 𝐿𝑏 = 0.5; 𝛾 = 0.5 and 𝜉 = 0.5. 
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Fig.9(b) Effects of 𝑃𝑒 on number density (concentration) of the microorganisms (𝜒) versus  𝜂 

for fixed parameter values of 𝜆 = 0.5; 0.5;Nr Nc= = 𝑃𝑟 =0.71; 2;
T

 = 𝛺𝐶 = 1; 0.2;Le =

𝑈𝑒 = 1;𝑁𝑏 = 𝑁𝑡 = 1; 𝑛 = 0.5;𝑊𝑒1 = 0.1;𝑊𝑒2 = 0.2;𝑀 = 1;𝑄 = −0.5; 𝑅𝑑 = 1; 𝜅 = 1; 
𝛺 = 1; 𝐿𝑏 = 1; 𝛾 = 0.5 and 𝜉 = 0.5. 

 

Table 2: Numerical values for local (nanoparticle) Sherwood number −𝜑′(0) and local micro-

organism density number −𝜒′(0) at the surface with various parameters at fixed values of 𝜆 =
0.1; 𝑁𝑟 = 0.1; 0.1;Nc = 𝑃𝑟 =0.71; 1;Ec = 𝑈𝑒 = 0.5; 𝐿𝑒 = 0.5;𝑊𝑒2 = 0.2; 𝑄 = −0.5; 𝑅𝑑 =

0.5; 𝛺 = 0.5; 𝐿𝑏 = 0.5; 𝜉 = 0.5and 𝛾 = 0.5.  
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Fig.2(a - j) illustrate for the case of positive and negative values of the electric field parameter 

(Ue), the effects of non-Newtonian parameters (axial Weissenberg number i.e. We1 and power law 

parameter, n), mixed convection parameter (), buoyancy ratio parameter (Nr), Rayleigh 

bioconvection number (Nc), magnetic interaction number (M), electroosmosis parameter ( ), 

Eckert number (Ec), heat generation/absorption parameter (Q) and bioconvection Péclet number 

(Pe), on the axial (primary) velocity distributions. It is important to note that in the plots, two 

values are studied for electric field parameter Ue since the electrical field orientation is critical in 

controlling the transport phenomena in the stretching charged ionic nanofluid coating. When the 

axial electric field is aligned in the positive axial direction (as shown in Fig. 1), Ue i. e. electrical 

field parameter value is negative, whereas when the axial electric field is aligned in the reverse 

(negative) axial direction, the Ue parameter value is positive. The axial velocity evolution with 

variation in We1 is shown in Fig 2a for both Ue > 0 and Ue < 0. Axial Weissenberg number,  

𝑊𝑒1 = √
2𝑎

𝜐𝑓
𝑎�̄�𝛤represents the ratio of the relaxation time of the nanofluid to the time scale of the 

flow. In rheological coatings, relaxation time quantifies the time it takes one portion of the polymer 



33 

 

entanglement network to react to alterations in another portion and is therefore a nonlinear memory 

effect. It is also a measure of the elastic force to the viscous force in the fluid. The axial 

Weissenberg number features in the shear-modified terms in the primary (axial) momentum Eqn. 

(22), (𝑛𝑊𝑒1𝑓
″ + (1 − 𝑛))𝑓‴. Intensification in We1 damps the axial velocity and increases the 

momentum boundary layer thickness. Higher values of We1 corresponds to the relaxation time 

exceeding the time scale of a flow and greater viscous effects. This manifests in strong retardation 

in the flow. The opposite scenario of low values of We1 correspond to the time scale of the flow 

exceeding the relaxation time and the dominance of elastic force over viscous force. This produces 

acceleration and greater axial velocity. In the case where We1 = 0, viscoelasticity vanishes, and the 

maximum axial velocity is observed. The trends are sustained throughout the boundary layer 

domain. Furthermore, with Ue > 0 i.e. for which the electric field is aligned in the reverse (negative) 

axial direction, consistently greater magnitudes of axial velocity are computed compared with the 

case when Ue < 0 (positively aligned axial electrical field) and the disparity is greatest in the 

vicinity of the wall. Asymptotically smooth profiles are computed in the free stream confirming 

that an adequately infinity boundary condition has been prescribed in the MATLAB computations.  

Fig. 2(b) shows the effect of the power law index number (n) on the axial velocity profile for both 

Ue > 0 and Ue < 0. The maximum axial velocity is found when the power law index number 

assumes zero value i. e. Newtonian fluid, and this behaviour is computed for both negative and 

positive electric field parameters, although significantly greater magnitudes are observed for Ue > 

0. For increasingly pseudoplastic behaviour, i. e. increment in the values of n, there is a strong 

deceleration in axial flow and a thicker momentum boundary layer is produced. The implication 

is that stronger shear-thinning behaviour of the nanofluid damps the velocity and there is a 

significant modification in the viscosity with increasing shear rate. A characteristic aspect of non-

Newtonian fluids is the decrease in shear rate (compared to Newtonian fluids). With intensification 

in shear thinning (pseudoplasticity), the fluid particles gradually align with the streamlines, an 

alignment that changes almost instantaneously in response to changes in imposed shear; after 

complete alignment at high shear, the apparent viscosity remains constant. Clearly the inclusion 

of the tangent hyperbolic model in the simulation produces a velocity distribution which 

significantly deviates from the conventional Newtonian model. The pseudoplastic behaviour of 

nanofluids has also been identified experimentally by Choi and co-workers [11-13]. In Fig. 

Fig.2(c), it is evident that increasing values of mixed convection parameter substantially deplete 
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the primary (axial) velocity. Auxiliary flow (heated wall) and forced convection flow are 

represented by the cases  > 0 and  = 0.  This parameter features in the terms, 

+𝜆(𝜃 − 𝑁𝑟𝜑 − 𝑁𝑐𝜒) in Eqn. (22) and for the mixed convection case,  > 0, enables the 

temperature, nanoparticle concentration and micro-organism fields to influence the primary 

momentum. Clearly the boundary layer equations for heat, nanoparticle concentration and 

microorganism density number are strongly coupled to the primary momentum (velocity) field via 

these terms. For the forced convection case,  = 0, these terms vanish. The two cases of Ue > 0 and 

Ue < 0 are again considered and higher velocity magnitudes are produced for the former. An 

increase in the mixed convection parameter suppresses axial momentum development in the 

stretching regime. It inhibits the momentum transfer and leads to a thicker momentum boundary 

layer. Fig. 2 (d) and Fig. 2 (e) show the influence of the buoyancy ratio parameter (Nr) and the 

bioconvection Rayleigh number (Nc) for mixed convection ( > 0) on the axial velocity profile for 

the two electrical field cases Ue> 0 and Ue< 0. A significant suppression in axial (primary) velocity 

profiles is induced with an increment in both buoyancy force parameters (Nr, Nc). Maximum axial 

velocity (minimal momentum boundary layer thickness) arises when Nc = Nr =0 i. e. in the 

absence of the buoyancy forces. Both buoyancy parameters feature as linear coupling terms in the 

primary momentum Eqn. (22), +𝜆(𝜃 − 𝑁𝑟𝜑 − 𝑁𝑐𝜒) and exert a marked influence on momentum 

development in the boundary layer. Again, substantially greater axial velocity is computed for Ue> 

0 compared with Ue< 0. Effectively the axial flow is strongly damped with intensification in 

buoyancy forces and this has also been reported in other studies of nanofluid bioconvection 

including [45] and [49]. Fig. 2(f) reveals that with an increment in magnetic parameter, M there is 

a prominent reduction in axial velocity. 𝑀 =
𝜎∗𝐵0

2

𝑎𝜌𝑓
  and expresses the ratio between electromagnetic 

force (Lorentz drag) and inertia force. Increasing magnetic field B0 counteracts the mobility of the 

fluid in the initial phase (0 ≤ 𝜂 ≤ 1.209) when the electric field is negative and (0 ≤ 𝜂 ≤ 2.029) 

when the electric field is positive. When the magnetic interaction number is increased, the velocity 

profile shows a decreasing tendency in the initial phase. As an increase in magnetic interaction 

number M leads to an increase in drag force, the velocity of the fluid decreases due to the increased 

drag force. Axial velocity is clearly therefore maximized in the regime with M = 0 i. e. for the non-

magnetic case, in which the momentum boundary layer thickness is minimized. As in other plots, 

the assistive electrical field scenario i.e. Ue> 0 produces greater axial velocity magnitudes 
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compared with the inhibitive electrical field scenario, Ue< 0. In the latter case, slightly negative 

values are observed at intermediate distances from the wall, indicating that for strong magnetic 

field and counteracting electrical field, there is a weak back flow in the regime.  

Fig. 2 (g) shows the effect of the electroosmotic parameter () on the axial fluid velocity, again 

for Ue> 0 and Ue< 0. It is again evident that higher axial (primary) velocity values are generated 

when the electric field parameter Ue >0, as noted earlier, due to the reversed electrical field 

assisting the momentum development. The parameter  is defined by 𝜅2 = 𝑚2 𝜐𝑓

𝑎
 (in which  𝑚2 =

−
2𝑧2𝑒2𝑛0

𝜀𝑒𝑓𝑓𝑘𝐵𝑇𝑣
 is the Debye-Hückel parameter). It features only in the electrical potential Eqn. (27) in 

the term, −𝜅2 𝑠𝑖𝑛ℎ(𝛷). The electrical potential coupling term in Eqn. (22) i. e. +𝑈𝑒𝛷
″ enables 

the primary momentum to be directly influenced by the electroosmotic parameter, . When the 

electroosmotic parameter is decreased, the electrical double layer thickness (EDL) is expanded 

and the intensity of collisions between particles on the extended surface increases. As,  is 

increased, axial velocity is elevated for the Ue >0 case whereas the opposite effect i. e. deceleration 

is produced for the Ue <0 case. This behaviour is sustained throughout the regime i.e. at all values 

of . A different modification in axial (primary) flow and boundary layer thickness is therefore 

induced with greater electroosmotic effect, depending on the orientation of the axial electrical 

field. This permits designers to manipulate the momentum characteristics in nano-coating 

manufacture via controlling the electrical field direction and also the electrical double layer (EDL) 

thickness. Fig.2(h) shows the effects of varying the Eckert number on the axial velocity profile of 

the fluid for both electrical field cases, Ue > 0 and Ue < 0. The Eckert number is used to describe 

the effects of self-heating of a fluid as a result of kinetic energy dissipation effects. It is found that 

the minimum axial fluid velocity occurs when viscous dissipation is absent (Ec = 0) for both cases 

of Ue > 0 and Ue < 0. However as observed in other plots, generally the magnitudes are greater 

for the assistive axial electrical field situation (Ue > 0) relative to the opposing electrical field 

situation (Ue < 0), although further from the wall there is a cross-over in behaviour. With an 

increase in the Eckert number, there is an increase in collisions between the fluid molecules. 𝐸𝑐 =

𝑈𝑤
2

𝑐𝑝(𝑇𝑤−𝑇∞)
 and features in both the conventional viscous heating term, +(1 − 𝑛)𝐸𝑐𝑓″2 in the energy 

Eqn. (24) and also the magnetic Joule heating (Ohmic dissipation) term, +𝑀 𝑃𝑟 𝐸 𝑐𝑓′2. The effect 

of Ec is therefore prominent on axial velocity since these terms are coupled with the primary 
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momentum Eqn. (22). In the boundary layer, the dissipation rate increases, leading to an increase 

in the axial velocity and strong acceleration in the flow. Fig. 2(i) depicts the effects of the heat 

sink/source (Q) on the axial fluid velocity for Ue > 0 and Ue < 0. An increase in the strength of 

the heat source (Q > 0) leads to an increase in the axial fluid velocity, whereas an increase in the 

strength of the heat sink (Q < 0) leads to a decrease in the axial fluid velocity. Heat source 

corresponds to energy generation in the nanofluid whereas heat sink implies energy absorption i.e. 

removal. Temperature is therefore strongly affected by 𝑄 =
𝑄0

𝑎𝜌𝑐𝑝
, which appears in the linear term, 

+𝑃𝑟 𝑄 𝜃 in the energy Eqn. (24). Fig. 2(j) illustrates the effect of the bioconvection Péclet number, 

on the axial fluid velocity for both electric field parameter scenarios, i. e. Ue > 0 (assistive 

electrical field) and Ue < 0(inhibiting electrical field). 𝑃𝑒 =
�̃�𝑊𝐶

𝐷𝑚
and arises in the terms, 

−𝑃𝑒(𝜒′𝜑′ + (𝛺 + 𝜒)𝜑″) in the motile micro-organisms density number (concentration) boundary 

layer Eqn. (27). However coupling with the primary momentum Eqn. (22) (and secondary 

momentum Eqn. (23)) is achieved ia the terms, +𝐿𝑏(𝑓 + 𝑔)𝜒′ also appearing in Eqn. (27). In an 

advection-dominated distribution, a high Pe value indicates advection, while a low Pe indicates 

diffusive flow. This parameter is also inversely proportional to the micro-organism diffusivity (𝐷𝑛) 

whereas it is directly proportional to 𝑊𝐶 (maximum swimming velocity of a micro-organism cell 

movement) and b (chemotaxis constant). Higher Pe values therefore indicates a lower micro-

organism diffusivity and a higher micro-organism swimming velocity. The latter produces 

acceleration in the axial flow and explains the significant boost in axial (primary) velocity 

throughout the regime. The case Pe = 0 implies the micro-organisms are stationary i. e. not self-

propelling and leads to a minimization in axial velocity magnitudes. Doping the nanofluid with 

gyrotactic micro-organisms can therefore be successfully exploited to manipulate flow 

characteristics in the coating regime.  

Fig. 3(a-i) shows the dimensionless temperature (𝜃) distributions for various selected parameters, 

the 𝑊𝑒1, 𝑛, 𝜆, 𝑁𝑟, 𝑁𝑐,𝑀, 𝜅, 𝐸𝑐, 𝑄 and 𝑃𝑒on nanoparticle versus 𝜂 for  again for both positive and 

negative values of the electric field parameter i.e. Ue > 0 (assistive electrical field) and Ue < 

0(inhibiting electrical field).  Fig. 3(a-b) shows that increasing both rheological parameters (axial 

Weissenberg numbers We1, and power law index parameter n) results in a weak and stronger 

increase in temperature. Temperature at the stretching surface (wall) is therefore lowest for 

Newtonian fluid (We1 = n =0). Increasing elastic and decreasing viscous force (We1 expresses the 
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ratio of elastic to viscous forces) and greater pseudoplastic behavior (higher n values) in the 

nanofluid therefore generates a heating effect and increases thermal boundary layer thickness, 

although the effect is more prominent for the latter.  The inclusion of rheological parameters clearly 

produces significant deviation from the Newtonian case. Higher temperature magnitudes are 

observed for Ue < 0 (opposing electrical field) and Ue > 0 (assisting electrical field) which is the 

opposite effect to that for the axial velocity field computed earlier. Fig. 3(c-d) visualize the impact 

of magnetic interaction number, M, and electroosmotic parameter ()  on temperature evolution, 

for Ue < 0 (opposing electrical field) and Ue > 0 (assisting electrical field) scenarios. It is observed 

that the temperature distribution increases uniformly when the magnetic interaction number is 

increased for both Ue < 0 and Ue > 0, although clearly greater temperatures are computed for Ue 

< 0 (opposing electrical field). The minimum temperature profile of the nanoparticles is generated 

for both negative and positive values of the electric field parameters for vanishing magnetic 

interaction number (M = 0), where no magnetic field is applied to the stretching sheet (see Fig. 

3(c)). Fig. 3(d) shows that the temperature of the nanoparticles increases significantly when the 

electroosmotic parameter ()  is elevated for the Ue < 0 case; the contrary trend is computed for 

Ue > 0 case. In other words, for reversed axial electrical field, greater   or decreasing electrical 

Double layer thickness, heating in the boundary layer is produced, whereas for an aligned electrical 

field the opposite effect (cooling) is generated.  Thermal boundary layer thickness is therefore 

accentuated with greater   for Ue < 0 whereas it is depleted for Ue > 0. Smooth convergence of 

temperature profiles is achieved in the free stream in all temperature plots verifying that a 

sufficiently large infinity boundary condition has been adopted in the MATLAB bvp4c 

simulations. Overall, the temperature in the stretching nanofluid sheet can be manipulated 

successfully with the careful combination of applied transverse magnetic and axial electric fields.  

The effect of Prandtl number Pr on the nanoparticle temperature profile is shown in Fig. 3(e) for 

both Ue < 0 (opposing electrical field) and Ue > 0 (assisting electrical field situations. Increasing 

the Prandtl number decreases the nanoparticle temperature in the regime, as shown in Fig. 3(e). A 

higher Prandtl number indicates a lower thermal conductivity of the electromagnetic rheological 

nanofluid, and this reduces the intensity of thermal diffusion in the boundary layer. Pr values of 

and above unity value are representative of metallic nanoparticle doped aqueous ionic nanofluids 

and electroconductive nanogels [61]. Increment in Pr also suppresses thermal boundary layer 

thickness. Momentum diffusivity relative to thermal diffusivity is also expressed in the Prandtl 
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number. An increase in Pr corresponds to a significant reduction in thermal diffusivity, which 

restricts molecular conduction in the nanofluid coating and cools the regime. Therefore, when it 

comes to managing temperature distributions, the precise selection of the thermal characteristics 

of the nanofluid is essential. Larger temperatures are also observed again for Ue < 0 (opposing 

electrical field) compared with Ue > 0 (assisting electrical field), confirming that electrical field 

orientation is also instrumental in regulating temperatures in the boundary layer.  

Temperatures in the boundary layer domain rise with an increase in the Brownian parameter, Nb, 

as shown in Fig. 3(f).For higher Nb, the random mobility of nanoparticles in the material increases, 

leading to an intensification in ballistic collisions which generates more heat. As a result, the 

temperature of the nanofluid increases. In the Buongiorno model [14], larger Nb implies smaller 

diameter nanoparticles and smaller Nb corresponds to larger nanoparticles. Chaotic motions are 

therefore exacerbated with an increment in Nb. Nb features in the +𝑃𝑟 𝑁 𝑏𝜃′𝜑′ term in the energy 

(thermal) boundary layer Eqn. (24) and the in the term, +
𝑁𝑡

𝑁𝑏
𝜃″ nanoparticle concentration 

boundary layer Eqn. (25). There is evidently a strong interplay between diffusive motion of the 

nanoparticles and the temperature field. Higher magnitudes of temperature are again associated 

with Ue < 0 (opposing electrical field) compared with Ue > 0 (assisting electrical field). The effects 

of the thermal radiation parameter (Rd) on θ (η) are shown in Fig. 3(g) for both electrical field 

cases Ue < 0 (opposing) and Ue > 0 (assisting). This graph shows that temperature is boosted 

strongly when the radiation parameter is increased. Rd features in the augmented thermal diffusion 

term, (1 + 𝑅𝑑)𝜃″ in the energy Eqn. (24). 𝑅𝑑 =
16�̄�𝑇∞

3

3�̄��̄�
 and expresses the relative contribution of 

thermal radiation to thermal conduction heat transfer. For Rd = 0 radiative flux effects vanish and 

temperature is minimized (purely conductive heat transfer). With inreasing Rd, the optically thick 

nanofluid is energized by thermal radiation and this induces significant heating, leading also to a 

growth in thermal boundary layer thickness. As with other temperature graphs, higher temperature 

magnitudes are computed or Ue < 0 (opposing electrical field) compared with Ue > 0 (assisting 

electrical field), again emphasizing that the direction of applied axial electrical field has a strong 

effect on temperature distributions. An increase in the Eckert number (Ec) as observed in Fig. 3(h) 

modifies both the viscous heating and Joule heating terms and elevates the temperature magnitudes 

since more mechanical energy is converted to thermal energy in the regime. Higher temperatures 

correspond to Ue < 0 (opposing electrical field) and lower temperatures for Ue > 0 (assisting 
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electrical field). The Eckert number describes the relationship between kinetic energy and enthalpy 

difference in the boundary layer. Work done against viscous forces results in conversion of fluid 

kinetic energy to internal energy. Increased kinetic energy produces greater molecular vibration, 

leading to more collisions between molecules and heats the regime. Neglecting dissipation effects 

(Ec = 0) in mathematical models therefore leads to an under-prediction in temperatures and a lower 

estimation of thermal boundary layer thickness. The effect of heat sink (Q < 0) or heat source (Q 

> 0) parameters on the temperature profile of nanoparticles is shown in Fig. 3(i) for both electrical 

field cases. The nanoparticles and base fluid become hotter as the strength of the heat source (Q > 

0) increases and the heat generated increases the thickness of the boundary layer. On the other 

hand, the nanoparticles and base fluid become cooler when the strength of the heat sink (Q < 0) 

increases and this manifests in a depletion in thermal boundary layer thickness, for both Ue < 0 

(opposing electrical field) and Ue > 0 (assisting electrical field) cases, although as noted earlier, 

the former achieves higher temperatures. 

Figures 4 - 9 show the influence of selected parameters on the concentration of nanoparticles (𝜑) 

and the concentration of microorganisms (motile number density), (𝜒) through the boundary layer 

domain with constrained values of other parameters. The impact of electroosmotic parameter () 

on nanoparticle concentration and microorganism concentration are shown in Fig. 4(a-b). 

Evidently the concentration of nanoparticles increases with the increase in the value of the 

electroosmosis parameter (see Fig. 4(a)). The opposite behavior is observed in the profile of the 

concentration of microorganisms (Fig. 4(b)). A decrease in electrical double layer (EDL) thickness 

therefore produces a strong accentuation in nanoparticle concentrations whereas it suppresses 

micro-organism concentrations. The absence of electroosmotic effects corresponds to () which 

decouples the electrical potential equation (27) from the primary momentum eqn. (22) and 

therefore all other conservation equations. Nanoparticle concentration boundary layer thickness is 

therefore enhanced with increasing electroosmotic parameter () or decreasing EDL thickness 

whereas the converse behavior is induced in the motile gyrotactic micro-organism species 

boundary layer thickness. Both nanoparticle and micro-organism concentration fields can therefore 

be manipulated by the electroosmotic body force in the regime.  Fig. 5(a-b) shows the influence of 

the electric field parameter (Ue) on nanoparticle and micro-organism concentration distributions. 

𝑈𝑒 =
1

𝑎𝑈𝑤
𝑈𝐻𝑆 in which 𝑈𝐻𝑆 = −

𝑘𝐵𝑇𝑣𝜀𝑒𝑓𝑓�̄��̄�

𝜇𝑓𝑧𝑒
 is the Helmholtz-Smoluchowski velocity. As 
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elaborated earlier the case of Ue < 0 is associated with aligned axial electrical field whereas the 

case Ue > 0 is connected with reversed axial electrical field. The former produces significantly 

greater magnitudes in nanoparticle and micro-organism concentrations which is sustained through 

the boundary layer transverse to the wall. In Fig. 6(a-b), indicate that an increment in tangent 

hyperbolic power law index parameter n strongly enhances both nanoparticle 𝜑 and micro-

organism concentrations 𝜒. Stronger pseudoplastic behaviour is therefore assistive to the diffusion 

of the nanoparticles and the propulsion of gyrotactic micro-organisms, since greater shear-thinning 

is present. Fig.7(a-b) shows that with an increase in Lewis number (Le) there is a significant 

suppression in both nanoparticle concentration (𝜑) and microorganism concentration (𝜒).𝐿𝑒 =
𝛼

𝐷𝐵
 

and expresses the ratio of thermal diffusivity ()  to the nanoparticle Brownian diffusion cefficient 

(𝐷𝐵) . It is distinct from the bioconvection lewis number, 𝐿𝑏 =
𝜐𝑓

𝐷𝑚
, which expresses the ratio of 

momentum diffusivity (𝜐𝑓) to microorganism diffusivity (𝐷𝑚). Le features only in the nanoparticle 

concentration boundary layer Eqn. (25) in the terms, +𝐿𝑒 𝑃𝑟(𝑓 + 𝑔)𝜑′ and −𝐿𝑒 𝑃𝑟 𝛺𝐶 ((𝑓′ +

𝑔′)(𝑓 + 𝑔)𝜑′ + (𝑓 + 𝑔)2𝜑″). When Le is increased, the diffusivity of the nanoparticles decreases 

and this inhibits diffusion in the boundary layer leading to a depletion in nanoparticle concentration 

(Fig. 7a), a pattern which is maintained throughout the domain at all values of transverse 

coordinate, .  Similarly, via coupling of the micro-organism concentration Eqn. (26) to the 

nanoparticle conservation Eqn. (25), via the term,  −𝑃𝑒(𝜒′𝜑′ + (𝛺 + 𝜒)𝜑″), the micro-organism 

concentration is also indirectly affected strongly and is depleted. Motile micro-organism boundary 

layer thickness is therefore reduced. Significant control of both nanoparticle and gyrotactic micro-

organism transport is therefore achieved via modification in only the Lewis number, Le. Fig. 8(a-

b) shows that with elevation in Eckert number (Ec) there is a weak reduction in concentration of 

nanoparticles whereas there is a more significant depletion in concentration of microorganisms. 

The self-propelling micro-organism concentration is also more substantially influenced for a 

greater distance into the boundary layer transverse to the wall, whereas the nanoparticle diffusion 

modification is localized near the wall. Greater sensitivity of the self-propelling micro-organisms 

is therefore computed to viscous dissipation and Joule heating effects compared with 

nanoparticles.  Fig. 9(a-b), shows that with increment in bioconvection Péclet number (Pe), there 

is a minor decrease in nanoparticle concentration, 𝜑 whereas a substantial decrement in micro-

organism concentration 𝜒 is computed. An increase in Pe directly strongly accentuates the 
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−𝑃𝑒(𝜒′𝜑′ + (𝛺 + 𝜒)𝜑″) terms in the micro-organism species boundary layer Eqn. (26) but does 

not directly modify the nanoparticle concentration since Pe is not present in the nanoparticle 

species conservation Eqn. (25). Since 𝑃𝑒 =
�̃�𝑊𝐶

𝐷𝑚
, therefore increment in Pe implies a reduction in 

microorganism diffusivity (𝐷𝑚) for a fixed swimming speed, Wc and chemotaxis constant, b. This 

will strongly damp the self-propulsion of micro-organisms but will only weakly decrease 

nanoparticle concentrations via coupling of the respective concentration equations. A trivial 

decrease in nanoparticle concentration boundary layer thickness will therefore be induced with 

higher bioconvection bioconvection Péclet number (Pe), whereas a prominent depletion in micro-

organism species boundary layer thickness will be produced.  

MATLAB bvp4c numerical results for local Sherwood number −𝜑(𝜂) and local density number 

of microorganisms −𝜒(𝜂) as a function of several selected nanoscale, rheological, electrical, 

magnetic, non-Fourier, non-Fickian and micro-organism diffusivity parameters i.e. 𝑁𝑡, 𝑁𝑏, 𝑛, 

𝑊𝑒1, 𝜅, 𝑀, 𝛺𝐶 , 𝛺𝑇 and 𝑃𝑒 are provided in Table-2.  It is apparent that −𝜑(𝜂)and −𝜒(𝜂) decrease 

with increment in 𝑁𝑏, 𝑊𝑒1, 𝛺𝐶  and 𝛺𝑇  whereas they both increase with elevation in 𝑁𝑡, 𝑛, 𝜅and 

𝑀. The local Sherwood number −𝜑(𝜂)and local density number of microorganisms −𝜒(𝜂)are 

opposite in nature for larger values of bioconvection Péclet number, Pe. The Peclet number 

quantifies the relative significance of advection and diffusion, with a high value indicating an 

advectively dominated distribution and a small value indicating a diffuse flow. 

 

6. CONCLUSIONS 

As a simulation of rheological electro-conductive ionic nano-bio-coating flow processing, a 

mathematical model for laminar, steady, incompressible bioconvection flow of a tangential 

hyperbolic (non-Newtonian) nanofluid from a bi-directional stretching surface under mutually 

orthogonal electrical and magnetic fields has been presented. Nonlinear thermal radiation, Joule 

heating and heat source/sink effects have been included. The transformed, non-dimensional 

nonlinear ordinary differential boundary value problem has been solved numerically with an 

efficient numerical Lobattao - IIIa collocation method available in the MATLAB bvp4c shooting 

solver. The principal findings of the present study which has considered a fixed stretching rate 

ratio, may be summarized as follows: 
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• The axial velocity decreases with increment in tangent hyperbolic rheological parameters 

(We1 & n) for both cases of 𝑈𝑒 < 0 (aligned electrical field) and 𝑈𝑒 > 0 (reversed electrical 

field).  

• Increment in the Eckert number, which increases both viscous and Houle heating effects, 

leads to an increase in the axial fluid velocity. Elevation of the mixed convection parameter 

(𝜆) and buoyancy ratio parameter (𝑁𝑟), which decreases the velocity of the fluid in the 

axial direction, increases the axial velocity magnitudes. 

• Both the number of magnetic interactions and the electroosmosis parameter increase the 

temperature and the thickness of the thermal boundary layer. 

• The nanoparticle species concentration and associated boundary layer thickness increases 

with a decrease in the electric field parameter (Ue), Lewis number (Le) and Eckert number 

(Ec), whereas it increases with an increment in rheological parameter (n) and 

electroosmosis parameter (𝜅) i.e. inverse electrical double layer (EDL) thickness. 

• The density number (concentration) of motile microorganisms is a decreasing function of 

the electroosmosis parameter, the electric field parameter, the bioconvection Péclet number 

and the ordinary Lewis number. 

• The local Sherwood number decreases while the local density of motile microorganisms 

increases as a function of bioconvection Péclet number.  

• The local Sherwood number goes down and the local density of moving microorganisms 

goes up as a function of the bioconvection Péclet number. 

• The local density of the motile microorganisms is a decreasing function of the rheological 

parameters (We1 & n) of tangent hyperbolic nanofluids and the non-Fourier thermal and 

non-Fickian concentration (solutal) relaxation parameters (𝛺𝑇 , 𝛺𝐶).  

• Increasing Eckert number reduces motile micro-organism density whereas it elevates 

temperatures.   

The present study has revealed some interesting characteristics of advanced functional 

electromagnetic nanofluid coating flows with non-Fourier and non-Fickian effects. However 

future works may generalize the model to consider the following: 

• Homogeneous-heterogeneous chemical reactions may be considered via appropriate 

formulations. 
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•  Other non-Newtonian fluid models can also be explored such as the Jeffreys viscoelastic 

model [64]. 

• The Buongiorno nanoscale model may be replaced by the Tiwari-Das model, which allows 

a wide range of combinations of metallic and carbon-based nanoparticles and base fluids 

to be studied. 
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