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Abstract—Noise handling is a critical aspect of image 

processing, which can significantly affect the accuracy of 

classification and recognition algorithms. In this paper, we 

propose a technique for improved noise handling in sparse 

input feature maps where the noise signal is also sparse. The 

signal-noise relationship is formulated as an optimization 

problem which is solved by a genetic algorithm. The genetic 

algorithm is applied to optimize the setting of a non-convexity 

parameter which yields a more accurate image sparse matrix. 

The resulting feature map is then classified using a densely 

connected convolutional network (DenseNet). Lung computed 

tomography images were used for the experiments. The 

proposed approach achieves better performance when the 

classification results are compared with a case in which the 

input signal has not been denoised using the proposed 

approach. 

Keywords—ADMM; DenseNet; genetic algorithm; lung cancer; 

sparse noise  

I.  INTRODUCTION  

Noise in image processing can make it difficult to identify 
salient features in images. The common forms of noise in 
image processing are ‘salt and pepper’ noise and Gaussian 
noise [1] – [2]. The presence of noise in an image usually 
affects the quality of the image. In medical applications, high-
quality images enable medical practitioners to make both 
timely and accurate diagnoses of various ailments. There are 
several approaches for noise removal/reduction in image 
processing. Some of these include statistical methods, non-
linear filtering, random field, and deep learning neural 
networks [3]. When considering appropriate noise removal 
techniques, it is important to ensure that the integrity of the 
image is not severely compromised [3]. Sparse denoising is 
the process of removing noise from a sparse representation of 
an image. The importance of using sparse images is that it can 
reduce image processing time. There are also various kinds of 
sparse noise.  

Meanwhile, a norm is a function that gives a strictly 
positive value to a vector or variable. Many norm 
minimizations are used to achieve sparse representation in 
image processing. These include the L0-norm, the Lp-norm, 
the L1-norm, and the L2,1-norm [4]. Unlike the l1-norm, the l0-
norm approach to sparse representation is presented as an NP-
hard problem whose solution is difficult to approximate [5]. 
Therefore, using the L1-norm to approximate a sparse 
representation problem results in an analytical solution, and 
that is also solvable within polynomial time. Many 
optimization techniques are also used to perform sparse 
representation, such as methods that consider constraints 
called constrained optimization. 

The method of constrained optimization involves 
optimizing an objective function with respect to some 
variables in the presence of constraints on those variables. 
There are several constrained optimization methods for sparse 
representation of images. Some of these include gradient 
projection sparse reconstruction (GPSR) [6], the interior-point 
method based sparse representation strategy [7], and 
alternating direction method (ADM) based sparse 
representation strategy [8]. This paper proposes an improved 
alternating direction method of multipliers (ADMM) approach 
with enhanced noise removal capability to further improve 
image quality. This is important because while the L1-norm 
approach is effective in obtaining sparse image 
representations, it is susceptible to the problem of non-
convexity. This problem results in a misrepresentation of the 
final image sparse representation. Therefore, we use a genetic 
algorithm (GA) to optimize the setting of a non-convexity 
parameter which yields a more accurate image sparse matrix. 

The ADMM is an optimization approach that solves a 
nonlinear problem by decomposing it into smaller parts and 
then solves each part sequentially. This ensures that such a 
problem is easier to solve compared to solving it in its original 
form. Meanwhile, the L1-norm has been used extensively as a 
regularizer for sparsity. However, it has a problem of 
trivializing non-zero values of the original signal. This results 
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in an inaccurate representation of the sparse signal, and 
consequently, this affects the reconstruction of the original 
image negatively. Hence, we propose this improvement to 
using the L1 regularizer by applying a constrained 
optimization strategy.  

We will also use a genetic algorithm to optimize the 
objective function in order to obtain the best possible sparse 
representation of the original image. The rest of the paper is 
organized as follows: Section 2 gives a brief review of some 
applications of the L1-norm regularization approach in image 
classification. Section 3 proposes the approach of optimal 
selection of the non-convexity parameter for improving the 
image sparse matrix representation. Section 4 briefly discusses 
the DenseNet structure used for the image classification 
process. Section 5 specifies details regarding the image dataset 
used in the paper, and the performance indices used to test the 
proposed approach. Section 6 discusses the results obtained 
and Section 7 concludes the paper.  

II. RELATED WORKS 

This section discusses some applications of the L1-norm 
regularization related approaches in image classification. 
Several regularization methods have been proposed to 
represent image reconstruction. One of these is the low-rank 
matrix modeling of local k-space neighborhoods (LORAKS) 
[9], and the priority was given to instances involving the low-
ranking phase of magnetic resonance imaging (MRI) images. 
In this work, a rank-deficient matrix was constructed such that 
its rank was equal to the number of non-zero values. 
Negligible (near zero) values were approximated using the 
proposed low-rank method. The constraints considered were 
phase and support constraints with respect to the image 
reconstruction process. From the results obtained, the 
proposed LORAKS method outperformed both conventional 
L1-norm and total variation minimization approaches in terms 
of the reconstruction error.  

Furthermore, in [10], a reconstruction method called L1-
norm regularization piecewise constant level set approach was 
proposed. This reconstruction approach was used to improve 
image results for the fluorescence molecular tomography 
imaging technique. This technique is based on the fact that 
fluorescent probes at certain intensities can be used to target 
specific tumors within the human body. The optimization 
function was modeled as an L1-norm regularization function 
which is convex. Therefore the Lagrangian-based method was 
used to optimize the function. The results of this approach 
were validated by reliable reconstruction results when 
compared to two other conventional methods. 

Additionally, in [11], the ADMM approach was used to 
solve a convex objective function using a non-convex 
regularizer. This approach was used to perform 1- and 2-
dimensional signal denoising using non-convex penalty 
functions. The Lagrangian parameter was selected in such a 
way that its magnitude was greater than the inverse of the tight 
frame condition parameter. Results obtained for the proposed 
method were better than the L1-norm regularization and 
reweighted L1 minimization methods in terms of peak signal-
to-noise ratio (PSNR). Also in [12], a mesoscopic 
fluorescence molecular tomography (MFMT) approach was 
proposed for performing high-resolution imaging of 3D 

biological tissue samples. This approach was based on L1-
norm regularization. The proposed method achieved superior 
performance compared to the conjugate gradients (CG) and 
least square QR (LSQR) methods. Specifically, it achieved a 
spatial resolution of 80µm for a tissue sample of 3mm 
thickness, with accurate locations of fluorophore distribution 
within the sample. Other applications of the L1-norm in image 
sparsity can be found in [13]-[17]. One common challenge of 
using the conventional L1-norm approach is that it often does 
not achieve sufficient sparsity [18]. Hence, we propose a 
method to improve the capability of the L1-norm 
regularization by leveraging the merits of both a genetic 
algorithm for optimizing the setting of the Lagrangian 
parameter and non-convex regularization. 

III. PROPOSED METHODOLOGY 

The section proposes the approach of optimal selection of 
the non-convexity parameter for improving the image sparse 
matrix representation. The signal denoising problem is 
formulated according to [11]: 

𝑎𝑟𝑔 min
𝑎

[𝐺(𝑎) =
1

2
‖𝑏 − 𝑎‖2

2 + ∑ 𝛾𝑖𝛽((𝑇𝑎)𝑖
𝑗
𝑖=1 ∙ 𝜂𝑖)]    (1) 

 
where 𝛾𝑖 > 0 are regularization parameters, 𝛽 is a real-valued 
parameter which attacks non-smoothness of the sparsity 
matrix, 𝜂𝑖 ensures non-convexity of 𝛽 to enable the convexity 
of the resulting objective function, 𝑏 is the noisy signal 
resulting from the original input image 𝑎, 𝑇 is an 𝑚 × 𝑛 tight 
frame matrix representing the input signal.  

Concerning the non-convexity of the penalty parameter 𝛽, 
the following assumptions are made: 

 

1. The first derivative of 𝛽 over the range of positive  
real numbers approaches unity i.e. 𝛽(𝑎, 0+) → 1 
2. Based on the assumption in 1, therefore: 

𝛽(𝑎) = |𝑎|                  (2) 
 

3. 𝛽𝑎→∞
′′ (𝑎, 𝜂) = −𝜂  ∀𝑎 > 0            (3) 

𝜂 controls the degree of non-convexity of 𝛽. Depending on the 
sparsity matrix, the value of 𝛽 is varied to keep 𝐺(𝑎) as 
convex as possible. To ensure that this is the case, we also 
enforce the condition that 𝛽 is symmetrical about the origin: 
 

𝛽(−𝑎, 𝜂) = 𝛽(𝑎, 𝜂)             (4) 
 

Also, according to [20], we consider a proximity operator 
with respect to the resulting noisy signal 𝑏, this is defined as: 

 

Γ𝛽(𝑏, 𝛾) = 𝑎𝑟𝑔 min
𝑏𝜖ℝ

[
1

2
(𝑏 − 𝑎)2 + 𝛾𝛽(𝑎, 𝜂)]          (5) 

 

To represent the original problem 𝐺(∙) in a more relaxed 
form, we specify a Lagrangian operator according to the 
following form: 

 

(
𝑐

𝑎
)

1/2

− 𝑏 ≤ 𝑥             (6) 
 

In terms of the Lagrangian, we define the problem in 
Equation (4) subject to the following non-linear constraint: 

 

|𝑎(𝑥 + 𝑏)2| ≥ 𝑐                         (7) 
Therefore, the Lagrangian of the denoising problem is 

formulated as: 



 

ℒ(𝑎𝑟𝑔 min
𝑎,𝑥

𝐺(𝑎, 𝑥)) = [
1

2
‖𝑏 − 𝑎‖2

2 + ∑ 𝛾𝑖
𝑗
𝑖=1 𝛽([𝑇𝑎]𝑖 ∙

𝜂𝑖) + (‖𝑎(𝑋 + 𝑏)2‖2
2 − 𝑐)]                                                 (8) 

 

 

With respect to Equation (8), the regularization parameter 
setting for the non-convex behavior of the problem is 
dynamically optimized using a genetic algorithm as specified 
in Algorithm 1. The ADMM approach is also implemented 
using GA for decomposing the convex problem 𝐺(⋅). The 
algorithm is shown in Algorithm 2. 

 

Algorithm 2 ensures that the original problem 𝐺(⋅) has a 
solution that is as close as possible to the optimal solution. It is 
important to note that convergence of the ADMM algorithm to 
the optimal solution depends on the degree of convexity of 𝐺(⋅
) [21]. Therefore, we choose to perform the steps in Algorithm 
1 with respect to the Lagrangian in Equation (8). This ensures 
optimal convexity before the problem is decomposed using the 
ADMM approach. Meanwhile, the block diagram of the 
proposed methodology for the image classification is shown in 
Figure 1. 

 

 

 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 

Fig. 1. Proposed methodology for medical image classification 

IV. IMAGE CLASSIFICATION  

The process of image classification is implemented using a 
Densely Connected Convolutional Network (DenseNet) [19]. 
This neural network structure has the following advantages:  

• Learned features from previous layers are propagated 
to successive layers throughout the network 

• The number of training parameters is significantly 
reduced 

• Learning gradient is maintained all through the learning 
stage 

• Features used during the training of various stages of 
the network are reused throughout the learning process 

V. DATASET AND PERFORMANCE INDICES 
 

The image dataset used in this paper consists of 422 lung 
computed tomography (CT) images obtained from The Cancer 
Imaging Archive (TCIA) supported by the University of 
Arkansas for Medical Sciences (UAMS), under collection 
name: NSCLC-Radiomics [22]. To evaluate the performance 
of the proposed method, we use some performance indices 
which include peak signal-to-noise ratio (PSNR), average 
sparsity, recognition accuracy, and computational time. 
Average sparsity is the ratio of non-zero elements to the total 
number of sparse features [14]. This means that the smaller the 
value of average sparsity, the better the diversity of the sparse 
representation [23]. Mathematically, it is represented as:  

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦 =
1

𝐹𝑆
∑

∑ ‖𝑣𝑠,𝑝‖𝑃
𝑝=1

𝑃×𝑅

𝐹𝑆
𝑛=1          (9) 

 

𝐹𝑆 is the total number of sparse features, 𝑃 is the total number 
of patches in the image, 𝑣𝑠,𝑝 is the sparse feature vector of 

patch 𝑝, 𝑅 is the total resolution of the image represented by 
𝑃. The PSNR measures the quality of the reconstructed image 
in dB by measuring the peak signal to noise ratio compared to 
the original image. Therefore, the higher the PSNR, the better 
the quality of reconstruction. 

 

𝑃𝑆𝑁𝑅 = 10 log10(
𝑓𝑚𝑎𝑥

2

𝑀𝑆𝐸
)           (10) 

 

𝑓𝑚𝑎𝑥 is maximum fluctuation in the input image data type, 
𝑀𝑆𝐸 is mean square error.  

VI. RESULTS AND DISCUSSIONS 

In this work, we use the genetic algorithm to find the 
optimal setting of the non-convexity parameter, 𝜂 for which 
the peak signal-to-noise ratio (PSNR) of the resulting sparsity 
matrix is maximum, i.e. the non-convex regularization was 
performed by using the genetic algorithm to optimize the non-
convexity parameter 𝜂. The genetic algorithm has the 
following settings for the optimization process: 

 

Number of particles  100 
Mutation rate   0.7 
Feature evaluations  5,000 
Search space dimension 50 

Algorithm 1 

Initialize 𝐺(𝑎), 𝛾𝑖 , 𝛽, 𝜂𝑖 
for 𝑖 = 1,2, … … .. 
set rank  of ℒ(𝐺(𝑎, 𝑥)) equal to the rank of 𝐺(𝑎) 
optimize argmin

𝑎
𝐺(𝑎) while iteratively varying 𝛾, 𝛽 and 𝜂 for optimal 

convexity 
end for 
end 

Algorithm 2 

Input 𝑎, 𝑏, 𝑇, 𝑐 
Initialize 𝛾, 𝛽, 𝜂 
Repeat:  
𝑎, 𝛾, 𝛽, 𝜂 → Γ𝛽,𝑜𝑝𝑡(𝑏, 𝛾) 

Until convergence 

DenseNet processing 

Input sparse matrix formulation 

Image classification 

Preprocessing (denoising, feature 

extraction) 



 

TABLE I.  PSNR VALUES FOR 10 SETTINGS OF CROSSOVER RATE (𝐶𝑟) FOR GA 

 
 
 
 
 
 
 
 

 

 

 

TABLE II.  VARIATION BETWEEN CROSSOVER RATE ABD AVERAGE SPARSITY OF INPUT SPARSE MATRIX 

  
 

  
 
 
 
 
 

 
 

TABLE III.  COMPARISON BETWEEN PROPOSED SND-ADMM AND 

CONVENTIONAL ADMM FOR AVERAGE SPARSITY, COMPUTATIONAL TIME, AND 

RECOGNITION ACCURACY 

 
 

To demonstrate the effectiveness of the GA to optimize the 
non-convexity parameter, we examined the denoising 
capability of Algorithm 1 by using various settings of the GA 
crossover rate and observing the effect on PSNR. The results 
are shown in Table 1.  

 
From the results in Table 1, the mutation or crossover rate 

was varied and the effect on the non-convexity parameter was 
observed. There was no clear trend regarding the relationship 
between 𝐶𝑟 and 𝜂. However, it was established that a variation 
in the crossover rate resulted in changes in the non-convexity 
parameter. Also, this variation affected the PSNR. From the 
results obtained, the mutation rate with the highest PSNR was 
0.70, and this was used in the parameter setting for the GA. As 
a further investigative step to determine the significance of the 
crossover rate in the preprocessing step of the image 
classification process, we examined the effect of its variation 
on the average sparsity of the sparse matrix that formed the 
input to the DenseNet. A better sparse matrix is indicated by a 
lower value of average sparsity. The results are shown in 
Table 2. 

 
From Table 2, it is important to note that there is a 

relationship between the PSNR and the average sparsity for 
the sparse matrix. In other words, for the optimal crossover 
rate setting of 0.70, it is observed that the PSNR and average 
sparsity values were the best compared to the other nine 
values used. Ten different settings were chosen for each case 
to provide diversity in the analysis. Also, it can be observed 
that in Table 2, slightly different values were used in some 
cases to ensure that better values of 𝐶𝑟 and 𝜂 did not exist 
within the experimental limits of this paper. We also 
compared the performance of the DenseNet in terms of 
classification of the CT images for the specified dataset for the 
10 settings specified in Table 1. The performance indices used 

𝑪𝒓 0.45 0.38 0.58 0.63 0.25 0.70 0.84 0.92 0.75 0.69 

𝜼 0.16 0.24 0.36 0.29 0.44 0.35 0.31 0.53 0.66 0.51 

PSNR (dB) 11.3 12.5 16.1 15.7 12.9 21.8 18.4 10.1 12.2 13.3 

𝑪𝒓 0.45 0.38 0.60 0.63 0.25 0.70 0.84 0.92 0.72 0.55 

𝜼 0.16 0.24 0.32 0.29 0.44 0.35 0.31 0.53 0.61 0.57 

Av. sparsity 0.121 0.270 0.018 0.167 0.036 0.012 0.388 0.432 0.274 0.094 

 
 

 

 
Proposed 

method 

(sparse 
noise 

denoising 

ADMM) 

𝑪𝒓 𝜼 Av. 

sparsity 

Comp. 

time 

(secs) 

Recognition 

accuracy 

0.45 0.16 0.121 46.5 76.02±0.56 

0.38 0.24 0.270 53.8 77.43±0.48 

0.58 0.36 0.018 51.7 73.67±0.43 

0.63 0.29 0.167 44.3 75.43±0.41 

0.25 0.44 0.036 41.5 71.07±0.74 

0.70 0.35 0.012 36.9 89.65±0.55 

0.84 0.31 0.388 42.1 81.73±0.31 

0.92 0.53 0.432 48.2 69.42±0.68 

0.75 0.66 0.274 52.4 74.83±0.51 

0.69 0.51 0.094 50.6 72.17±0.53 

 

 
 

Without 

sparse noise 
denoising 

(ADMM 

only) 

- 0.16 0.263 55.2 69.12±0.66 

- 0.24 0.417 59.6 71.23±0.41 

- 0.36 0.219 60.2 68.27±0.49 

- 0.29 0.378 50.4 70.35±0.48 

- 0.44 0.116 49.4 61.92±0.81 

- 0.35 0.217 47.1 74.66±0.39 

- 0.31 0.458 51.6 71.72±0.44 

- 0.53 0.528 54.2 61.88±0.62 

- 0.66 0.389 61.9 68.94±0.31 

- 0.51 0.215 58.4 69.52±0.52 



 

were the average sparsity, computational time, and recognition 
accuracy. The results are summarized in Table 3. 

From Table 3, it can be seen that the proposed method 
outperforms the conventional ADMM method in terms of 
average sparsity, computational time, and recognition 
accuracy. In particular, we observe that the use of GA to select 
the setting for the non-convexity parameter is beneficial for 
achieving improved computational time and recognition 
accuracy, even in the case where there is no sparse denoising. 
It can be seen that the conventional ADMM method achieves 
better performance with 𝜂 = 0.35. The proposed method 
achieves superior performance for all performance indices 
considered. To further show how good the proposed method 
performs, it is compared with two other well-known CNNs for 
medical image recognition, and the results are shown in Table 
4. 

 

From the results obtained in Table 4, it can be seen that the 
proposed method generally performs better than the other two 
methods with respect to average sparsity, computational time, 
and recognition accuracy. However, the performance of the R-

CNN and MDNet can also be improved if they are integrated 
with the proposed denoising framework. Furthermore, the 
proposed pre-processing algorithm improves the classification 
accuracy of the DenseNet compared to a case where the 
DenseNet alone was used to classify the images. Another 
observation that is important to note is the fact that improved 
performance has been observed with the same DenseNet 
structure used in the proposed approach and conventional 
ADMM. In other words, improved image recognition results 
can be achieved not only by improving the structure of the 
neural network but also by improving the preprocessing stage 
of the image recognition process. 

 
 
 

 

 

TABLE IV.  PERFORMANCE COMPARISON BETWEEN THE PROPOSED METHOD, REGION-BASED CNN (R-CNN) AND MULTI-DOMAIN CNN (MDNET) 

 
 

 
 
 
 
 
 
 
 
 

 
 

 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Proposed method  

𝑪𝒓 𝜼 Av. sparsity Comp. time (secs) Recognition accuracy 

0.45 0.16 0.121 46.5 76.02±0.56 

0.38 0.24 0.270 53.8 77.43±0.48 

0.58 0.36 0.018 51.7 73.67±0.43 

0.63 0.29 0.167 44.3 75.43±0.41 

0.25 0.44 0.036 41.5 71.07±0.74 

0.70 0.35 0.012 36.9 89.65±0.55 

0.84 0.31 0.388 42.1 81.73±0.31 

0.92 0.53 0.432 48.2 69.42±0.68 

0.75 0.66 0.274 52.4 74.83±0.51 

0.69 0.51 0.094 50.6 72.17±0.53 

R-CNN 

- - 0.312 49.8 71.74±0.41 

- - 0.217 55.1 70.18±0.31 

- - 0.119 56.9 67.86±0.85 

- - 0.114 46.9 69.38±0.73 

- - 0.098 48.2 68.42±0.55 

- - 0.109 50.8 61.49±0.61 

- - 0.401 55.6 70.45±0.42 

- - 0.591 59.6 63.03±0.45 

- - 0.304 60.3 71.34±0.49 

- - 0.113 59.3 69.83±0.36 

MDNet 

- - 0.293 48.4 72.42±0.69 

- - 0.210 54.6 72.63±0.63 

- - 0.108 54.3 70.58±0.48 

- - 0.173 45.1 72.94±0.52 

- - 0.052 46.3 69.11±0.56 

- - 0.058 48.5 81.17±0.44 

- - 0.099 42.1 71.47±0.59 

- - 0.453 51.8 66.18±0.27 

- - 0.292 57.9 73.17±0.59 

- - 0.101 56.5 70.88±0.53 



 

 

VII. CONCLUSION 

In this paper, a method is proposed to improve medical 
image recognition tasks. It involves an improved ADMM 
approach with enhanced noise removal capability to 
improve the image quality which leads to better 
classification results when the DenseNet is applied. To 
achieve this we used a genetic algorithm to optimize the 
setting of a non-convexity parameter which yields a more 
accurate image sparse matrix. From the results obtained, we 
have established that improving the preprocessing stage of 
the image recognition process can significantly improve the 
overall recognition accuracy and performance. In particular, 
we see that using GA as a tuning approach for the non-
convexity parameter improves the noise removal capability 
of ADMM. While it has been established that DenseNet is 
effective in image recognition applications, this paper has 
demonstrated the importance of optimal tuning of denoising 
parameters. This has been further established by the results 
obtained in Table 3, in which the results gotten using 
conventional ADMM with the same DenseNet structure 
were inferior to those obtained using the GA-optimized non-
convexity parameter. Future research will investigate the 
effect of GA parameter tuning on other forms of norm 
regularization by comparing their performance on selected 
image recognition tasks.  
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