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59 Abstract
60
61 Within urban landscape planning, debate continues around the relative merits of land-sparing 
62 (compaction) and land-sharing (sprawl) scenarios. Using part of Greater Manchester (UK) as a case-
63 study, we present a landscape approach to mapping green infrastructure and variation in social-
64 ecological-environmental conditions as a function of land sparing and sharing. We do so for the 
65 landscape as a whole as well as for areas of high and low urbanity. Results imply potential trade-offs 
66 between land-sparing-sharing scenarios relevant to characteristics critical to urban resilience such as 
67 landscape connectivity and diversity, air quality, surface temperature, and access to green space. These 
68 trade-offs may be particularly complex due to the parallel influence of patch attributes such as land-cover 
69 and size and imply that both ecological restoration and spatial planning have a role to play in reconciling 
70 tensions between land-sparing and sharing strategies. 
71
72 Keywords: green infrastructure; land-sparing-sharing; urban ecosystems; social-ecological systems
73
74
75 Introduction
76
77 The concept of green infrastructure has emerged as a promising framework to understand, manage and 
78 enhance the multiple benefits delivered from nature, particularly in highly fragmented landscapes 
79 (Benedict and McMahon, 2012). A green infrastructure approach involves optimizing multi-functionality 
80 in terms of social, ecological and economic benefits (Mell, 2013) and seeking resilience through 
81 landscape diversity, connectivity and micro-climate regulation (Lovell and Taylor, 2013).  With the 
82 unabated growth of urban areas in terms of population and the associated sprawl of developed areas into 
83 the rural hinterland, debates surrounding the optimum spatial configuration on which to base urban 
84 planning persist. At the centre of this debate is a tension between the relative social-ecological effects of 
85 urban densification (or the so-called compact cities approach) versus urban sprawl. This tension is largely 
86 characterized by high versus low population densities and associated housing stock (Couch and Karecha, 
87 2006). In scenarios which involve increased urban densification, questions arise as to how urban spatial 
88 planning can ensure the provision of adequate green space cover in order to maintain vital ecosystem 
89 services to urban residents. 
90
91 In recent years, a land-sharing versus land-sparing model, borrowed from landscape ecological studies on 
92 the effects of agricultural land-use on biodiversity (Phalan, 2011), has been adopted as a means to explore 
93 the influence of urbanization on ecological integrity. The model is particularly useful in the context of 
94 urbanization given the parallels that exist between the latter and agriculture-driven land-use change on 
95 which the concept was originally founded, namely high levels of local species extinction and ecosystem 
96 service degradation (Lin and Fuller, 2013).  In an urban context, a land-sparing approach is promoted in 
97 cases where non-green land-use is compacted in order to allow for larger patches of green space. This 
98 template theoretically favours large public green spaces in favour of smaller private green spaces in the 
99 form of domestic gardens (Geschke et al., 2017). Conversely, land-sharing implies the promotion of 

100 lower-density development which leads to smaller, more fragmented patches of public green space and 
101 greater cover by private domestic gardens. However, this dichotomy of public and private green land-use 
102 is still poorly understood from ecological, social and environmental points of view. Moreover, there is, as 
103 yet, insufficient evidence that public or private green land-use per se promotes either sparing or sharing 
104 outcomes. This is in large part due to a low number of empirical studies and poorly conceived 
105 representations of urban green infrastructure. 
106
107 Conceptualizing green infrastructure for urban land sparing-sharing studies
108
109 A key shortcoming of both the conceptualization and spatial representation of green infrastructure in 
110 research on urban areas is a consideration of green space from either an anthropocentric point of view 
111 (i.e. as land-use or function) or from a physical-ecological point of view (i.e. land-cover). In order to 
112 understand the relative benefits of land-sparing versus sharing in urban areas, composite datasets are 
113 required that can model spatial variation in public and private land-use in tandem with their respective 
114 land-covers. With improved datasets, based on more social-ecological conceptualisations of green 
115 infrastructure, ecological and socio-environmental characteristics critical to resilience in urban systems 
116 could be effectively modelled. Moreover, the assumptions around the role of public versus private urban 
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117 green space in promoting sparing and sharing scenarios respectively can also be clarified, which should 
118 inform persisting debates within urban planning. 
119
120 However, despite the need for holistic, integrated conceptualisations of urban landscapes, research on 
121 urban land sparing and sharing has largely sought to reduce the complex characteristics of urban areas. 
122 For example, studies have typically modelled hypothetical landscapes based on observed patterns of 
123 species distribution (Caryl et al., 2016) as a response to broad land-use types such as building density 
124 (Soga et al., 2014). In addition, meta-analyses drawing on a range of geographically diverse studies (Stott 
125 et al., 2015) have been carried out in order to identify common trends. These reductionist approaches 
126 however, have not considered wider social-ecological factors such as landscape connectivity, 
127 heterogeneity, overall green cover quantity and quality or other socio-environmental factors such as 
128 access to nature, urban cooling or air quality. We argue that a more holistic approach to evaluating urban 
129 landscapes is necessary in order to inform planning frameworks that align with UN Sustainable 
130 Development Goals. The creation of landscapes that promote human well-being, urban resilience to 
131 climate change, and which address inequalities in addition to biodiversity loss, requires a green 
132 infrastructure approach which considers a range of social-ecological outcomes (Lovell and Taylor, 2013; 
133 Reyers et al., 2013; Schewenius et al., 2014; Ramaswami et al., 2016). Doing so is only achievable 
134 through the mapping of whole study areas in sufficient spatial and thematic detail. To our knowledge, no 
135 studies on land-sparing-sharing scenarios exist that extensively and accurately characterise urban green 
136 infrastructure of whole landscapes. The latter is essential in order to model social, ecological and 
137 environmental factors vital to sustainable urban planning. For example, landscape connectivity and 
138 heterogeneity are positively linked to both the provision and, in particular, the resilience of ecosystem 
139 services (Ahern, 2011; Mitchell et al., 2013) whereas attributes such as core area and primary 
140 productivity are likewise important indicators of ecosystem service providing landscapes (Kong et al., 
141 2014; Xu et al., 2016). 
142
143 Urban landscapes are particularly heterogeneous, however, in terms of land-use and highly fragmented in 
144 terms of land-cover and, therefore, present significant challenges for the accurate classification and 
145 quantification of green infrastructure components. Recent advances in geographic information and 
146 remote sensing applications to the mapping of urban areas, employing high resolution open-source data, 
147 have provided an opportunity to improve the situation with regards to the generation of fit-for-purpose 
148 urban spatial datasets. Recent work by Dennis et al. (2018) and Haase et al. (2019), for example, have 
149 demonstrated how a range of geo-computational techniques can be applied to high resolution remotely 
150 sensed data integrating information on land-use and land-cover in order to achieve high levels of 
151 integration necessary for studying complex social-ecological landscapes. Such advances present an 
152 opportunity to explore associations between spatial configurations of green infrastructure and urban 
153 social-ecological outcomes.
154
155 Conceptualizing land-sparing-sharing outcomes within a green infrastructure framework
156
157 The consideration of wider characteristics such as overall green cover and quality in urban localities is 
158 particularly important if urban studies are to be based on the same robust logic as agriculture-based 
159 studies on land-sparing-sharing. The latter are assessed primarily at the level of yield-to-species density 
160 performance in order to compare the relative success of sparing-to-sharing scenarios (Phalan, 2018). In 
161 urban areas however, the management goal is less clear or, at least, characterised with less consistency. 
162 Although housing density provides a useful proxy for level of development in urban environments, this 
163 comprises only one type of built infrastructure common in urbanizing landscapes. Sophisticated measures 
164 of “yield” from urbanisation, comparable to the use of the term in agricultural land-sparing-sharing 
165 models, are not forthcoming. A useful approach is to consider total surface sealing as a measure of 
166 overall development and, therefore, as a proxy for services delivered by “grey infrastructure”. The 
167 question then, from a land-sparing-sharing perspective, is whether consolidating such grey infrastructure 
168 into compact forms for the sake of sparing large undeveloped spaces is preferable to allowing developed 
169 areas to spread out in low-density patterns. The latter implies smaller, albeit potentially more numerous 
170 patches of green space and represents a lower level of urban land-use intensity that, in both agricultural 
171 and urbanisation contexts, inevitably requires a larger spatial extent (Stott et al., 2015). However, in the 
172 urban context, where measuring productivity is a more complex issue, in order to assess the relative 
173 performance of land that remains undeveloped, it is logical to standardise comparisons of land-sharing 
174 and land-sparing scenarios by the degree of development and scale. The former requires that, for the 
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175 same degree of urban development (i.e. surface sealing) a direct comparison across a range of desirable 
176 landscape attributes can be made between different spatial configurations. This is important for three 
177 reasons. Firstly, without this standardised approach, it is not possible to assess whether relative gains (e.g. 
178 land-cover diversity and connectivity) are due to spatial factors or simply a greater amount of green land-
179 cover. Secondly, by taking a standardised approach, meaningful comparisons across scales of 
180 investigation are thereby permitted. By developing assessments which model outcomes across scales and 
181 are standardised by area, a more informed view can be taken on spatial planning approaches which 
182 balance land-use productivity with landscape resilience. Thirdly, decision-makers are required to develop 
183 urban spatial frameworks within defined spatial extents according to administrative boundaries. 
184 Therefore, research which can identify optimum landscape configurations for a given degree of 
185 development at a range of scales are desperately needed in order to allow planners to design urban areas 
186 which can provide much needed ecosystem services to local residents. Such knowledge may assist 
187 decision-makers to identify bottom lines for the amount of green infrastructure cover necessary at a range 
188 of scales that, when consisting of suitable type and distribution, ensures both productivity and resilience.   
189
190 Land itself can be thought of as the primary asset to be managed in urban areas with local planning 
191 authorities working to tight spatial and regulatory constraints, and within administrative boundaries. In 
192 light of increasing land-use pressures associated with highly modified urban landscapes, integrated 
193 analyses on the relative benefits associated with different landscape patterns are necessary for planners 
194 and developers to navigate such complexity. There is a need, therefore, to develop assessments of the 
195 relative social, ecological and environmental merits of different urban landscape configurations at 
196 meaningful scales (i.e. that are both appropriate to urban governance and transferable between scientific 
197 disciplines). Such cross-scale comparisons can only be carried out if whole-landscape studies are 
198 facilitated by accurate, integrated characterisations of land-use-land-cover combinations in existing urban 
199 landscapes. 
200
201 The urban-to-peri-urban context
202
203 The spatial and temporal heterogeneity of landscapes subject to urbanisation stand in contrast to the 
204 relatively homogenizing effect of land-use change by agriculture and reinforce the need for high 
205 resolution, integrated data on urban spatial configurations. Gradients of urbanisation in particular create 
206 complex social-ecological conditions. Rural to urban gradients have been shown to exhibit considerable 
207 variation in ecosystem service provision (Radford and James, 2010; Haase, 2019), well-being effects of 
208 green space (Dennis and James, 2017) and biodiversity outcomes (Turrini and Knop, 2015). Moreover, 
209 urbanised landscapes covering city-regions may encompass a range of human-dominated land-uses 
210 including highly compacted urban centres to low-density suburbs as well as agricultural landscapes in the 
211 peri-urban fringe. Due to such contrasting land-use-land-cover configurations, calls have rightly been 
212 made to employ whole-landscape approaches to modelling sparing-sharing outcomes in urban systems 
213 (Lin and Fuller, 2013). In addition to whole-landscape assessments we also argue that analyses at sub-
214 landscape scales e.g. within urban and peri-urban zones are necessary given that the subject of a land-
215 sparing-sharing model (i.e. the land being “spared”) will differ depending on the context. For example, 
216 taking a sparing approach in high-urban areas will typically imply the promotion of urban intensification 
217 towards consolidating larger patches of urban green space whereas, in peri-urban areas, the “spared” land 
218 will likely take the form of agricultural or forestry land. This raises another important point related to a 
219 land-sharing-sparing dichotomy within the context of urbanisation. Much of the debate and associated 
220 research related to land-sparing and sharing in agricultural landscapes is predicated on the relative 
221 success of modelled yield-species density curves within biodiversity supporting habitats. However, many 
222 peri-urban landscapes typically comprise already degraded ecosystems in various stages of agricultural 
223 land-use. Indeed, for some functional groups, urban areas, and residential gardens in particular, can 
224 contain higher diversity and abundance than the agricultural hinterland (Cussans et al., 2010). Therefore, 
225 it is entirely possible that assumptions applied to land-sparing conservation efforts in areas containing in-
226 tact biodiversity-supporting vegetation, may not be applicable to landscapes made up of complex 
227 juxtapositions of highly-modified land-uses. Given the variance in green infrastructure function, 
228 heterogeneity and quality between urban and peri-urban areas, information on vegetation type and health 
229 is a critical factor (along with spatial characteristics such as connectivity and patch size) when judging 
230 the productivity and resilience of landscapes characterised by (semi-)natural and highly modified 
231 habitats. 
232
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233 In order to address these research imperatives, a novel spatial dataset was created, following a method 
234 developed by Dennis et al. (2018), which allowed the precise measurement of land-use-land-cover 
235 configurations across a spatially contiguous urban area comprising the two cities of Manchester and 
236 Salford, and the Metropolitan Borough of Trafford, all parts of Greater Manchester, in north-west 
237 England, UK. Our overall aim was to evaluate associations between sharing-sparing scenarios on a range 
238 of social-ecological-environmental factors relevant to urban landscape productivity and resilience. In 
239 order to do this robustly we focussed on potential mediating factors and, as such, our objectives were 
240 three-fold: 1: to assess the relative contribution of land-use-land-cover combinations to sparing-sharing 
241 configurations; 2: to identify scale-effects in the performance of sparing-sharing scenarios, and 3: to 
242 evaluate the relevance of urban and peri-urban contexts in assessing the relative merits of different 
243 landscape configurations. 
244            
245
246 Methods
247
248 Spatial data on land-use and land-cover 
249
250 A composite spatial dataset covering the contiguous urban areas of three districts in Greater Manchester 
251 (the cities of Manchester, Salford and the metropolitan borough of Trafford) was achieved through a 
252 combination of remote sensing and GIS techniques based on a method published by Dennis et al. (2018). 
253 Briefly, the method achieves the characterisation of discrete landscape features through an integration of 
254 land-use and land-cover data. Land-use (from OS Mastermap Topography and Greenspace layers, 2017 
255 and UK Land Cover Map: Rowland et al., 2015) was computed for public (including all public parks and 
256 amenity green spaces), domestic green space (private gardens including rented allotment gardens), urban 
257 fabric, informal urban greenery (street-scapes and informal and/or spontaneous vegetation within the 
258 urban fabric), institutional land and peri-urban land-use within the study area. In addition, spatially co-
259 incident data on land-cover were classified through Planet Scope 3 m imagery (Planet Team, 2017) and 
260 supplemented by Ordnance Survey Rivers, Woodland and Buildings layers (OS Open Rivers 2018; OS 
261 Open Map Local, 2018) and City of Trees canopy data (Cityoftrees.org.uk, 2011), resulting in five 
262 classes (built, ground vegetation, field layer vegetation, tree canopy and water). Accuracy assessment of 
263 the land-cover layer was achieved through 200 randomly generated sampling points (40 for each land 
264 cover type) for which classified values were cross-tabulated with ground truth evaluations using aerial 
265 photography (Edina, 2017). Overall accuracy and Cohen’s Kappa co-efficient were subsequently 
266 calculated. The work flow for the land-cover classification is summarised in Figure 1.
267
268  
269 Figure 1 Work-flow for the land-cover classification used in this study combining 3 m satellite imagery 
270 (Planet Scope, 2018), tree canopy data (City of Trees 2011 and Ordnance Survey Open Map Local, 2018) and 
271 buildings data (OS Open Map Local, 2018). 
272
273 Landscape and environmental metrics
274
275 A range of social-ecological metrics were quantified within 0.5, 1 and 2 km² zones created through a 
276 hexagonal tessellation of the study area. The land-cover layer was used to compute a range of landscape 
277 characteristics including effective mesh size (Meff), total core area (TCA), largest patch index (LPI) and 
278 Shannon’s land-cover diversity (SHDI) , calculated using the QGIS plug-in Lecos (Jung, 2015). Values 
279 for Meff and TCA are returned in the spatial units of the source data and, in order to allow comparability 
280 across scales, these were standardized as a percentage of the spatial units used in our analysis. In 
281 addition, socio-environmental variables land surface temperature (LST, derived from Landsat 8 TIRS 
282 imagery for July 2018 at 30 m resolution: NASA, 2018), background nitrogen dioxide concentration 
283 (interpolated using the ordinary kriging method from Defra background nitrogen dioxide data points, 
284 2018) and population within 300 m of a recreational green space (using PopGrid 10 m data: Murdock et 
285 al., 2017) As a measure of vegetation quality, the normalized difference vegetation index (NDVI) was 
286 calculated for pixels in the dataset classified as vegetation (i.e. ground layer, field layer and tree canopy). 
287 This was achieved by creating a mask based on all green land-cover pixels and setting this as the 
288 environment for the NDVI calculation within ArcMap (version 10.4), again at units of 0.5, 1 and 2 km². 
289 We refer to this metric as vNDVI in subsequent sections. Subsequently, the degree to which the 
290 tessellated regions exhibited land-cover indicative of land-sparing or land-sharing was judged according 
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291 to their largest patch index (LPI), following similar approaches taken elsewhere (e.g. Soga et al. 2015). 
292 This metric represents the proportion of green space in a given locality that is comprised of a single 
293 contiguous patch. High values therefore represent increasing sparing of large patches relative to overall 
294 cover by green-space. Tessellated regions were divided into three quantile groups representing low (land-
295 sharing), medium (neither land-sparing nor land sharing) and high (land-sparing) scores for LPI. Figure 2 
296 gives examples of areas exhibiting low, medium and high LPI (land-sharing, neither sharing nor sparing, 
297 and land-sparing respectively).
298
299
300
301 Figure 2 Example of areas classified as land-sharing, land-sparing and neither sharing nor sparing.
302
303 The influence of land-sharing/sparing on critical ecological and socio-environmental attributes was 
304 assessed through a series of general linear models using the three LPI quantile groups as fixed factors. 
305 Meff, SHDI, TCA, vNDVI, LST, nitrogen dioxide and percentage of the local population within 300 m of 
306 a recreational green space were all entered as dependent variables whilst controlling for total green land-
307 cover. Controlling for overall green cover, in addition to fulfilling the standardised approach argued for in 
308 the introduction to this paper, was equally important from a methodological point of view. LPI and total 
309 green land-cover were significantly correlated (at units of 1 kmᶟ, for example, Pearson’s r = 0.82; p < 
310 0.01). Therefore, entering green land-cover as a co-variate ensured that the LPI metric was not acting as a 
311 surrogate for the former in our assessments. Analyses were repeated at low and high urbanity levels 
312 (separated by the median values of developed land – i.e. non-green land-use - within each of the 0.5, 1 
313 and 2 km² units of analysis). 
314
315 Given that socio-economic status is known to influence green cover in urban land-uses (Baker et al., 
316 2018; Dennis et al., 2018) and that the latter may influence the performance of sparing-sharing patterns of 
317 green infrastructure, information on vegetation cover within green land-uses was calculated for low and 
318 high-urban areas. Income deprivation scores from the English Indices of Multiple Deprivation (DCLG, 
319 2015) were downloaded for Lower Super Output Areas (LSOAs; English census reporting units – mean 
320 population is 1500) and mean values were assigned to the smallest unit of analysis for this study (0.5 km² 
321 zones; N = 554) in order to best reflect the spatial variance in the original LSOAs dataset (N = 570; mean 
322 area = 0.56 km²). Finally, associations between land-use-land-cover metrics were explored through 
323 multiple linear regression analysis. LPI, TCA, Meff, SHDI, mean LST, mean nitrogen dioxide and mean 
324 vNDVI values were entered as dependent variables. The list of land-use-land-cover metrics computed 
325 and entered into regression models as independent variables is given in Table 1.
326
327 Table 1 Descriptions of landscape metrics computed for use in linear regression analyses within this study
328

Name Description Expressed as: 
Domestic Domestic green space Percentage of total unit of analysis*
Public Public green space Percentage of total unit of analysis
Institutional Institutional green space Percentage of total unit of analysis
Informal Urban 
Greenery

Informal urban green land-cover such as 
street trees and other greenery, roadside 
verges, ruderal vegetation.

Percentage of total unit of analysis

Peri-urban Land-use outside of urban and suburban 
areas.

Percentage of total unit of analysis

Domestic green 
cover 

Domestic green space that is vegetation 
or water

Percentage of total unit of analysis

Domestic built 
cover 

Domestic green space that is built 
surface cover

Percentage of total unit of analysis

Public green 
cover

Public green space that is vegetation or 
water

Percentage of total unit of analysis

Public built cover Public green space that is built surface 
cover

Percentage of total unit of analysis

Institutional  
green cover

Institutional green space that is 
vegetation or water

Percentage of total unit of analysis

Institutional  built Institutional green space that is built Percentage of total unit of analysis
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cover surface cover
Peri-urban green 
cover

Peri-urban land-use that is vegetation or 
water

Percentage of total unit of analysis

Peri-urban built 
cover

Peri-urban land-use that is built surface 
cover

Percentage of total unit of analysis

Domestic MPA Mean patch area of domestic green 
space

m²

Public MPA Mean patch area of public green space m²
Institutional 
MPA

Mean patch area of institutional green 
space

m²

Peri-urban MPA Mean patch area of peri-urban green 
space

m²

Informal Urban 
Greenery MPA

Mean patch area of informal urban 
greenery

m²

Buildings cover Proportion of land-cover by buildings Percentage of total unit of analysis
Buildings density Number of buildings Count for the unit of analysis
Major road 
density

Distance of all major roads within the 
unit of analysis

m 1000 mˉ²

Minor road 
density

Distance of all minor roads within the 
unit of analysis

m 1000 m⁻²

329 *0.5, 1 or 2 km² zones
330   
331 In addition to the above, for models in which vegetation type was deemed to be of particular relevance 
332 (i.e. where mean LST, nitrogen dioxide and vNDVI were the dependent variables), combinations of all 
333 land-use and land-cover classes (proportion of the unit of analysis that is e.g. tree canopy in public parks 
334 or ground layer vegetation in the urban fabric) were entered as independent variables. For analyses with 
335 mean nitrogen dioxide as the dependent variable, density (m 1000 m⁻²) of major and minor roads 
336 (downloaded from OS Open Roads, 2018), were also considered important predictors, as primary 
337 emission sources. Regression models were carried out at the 1 km² level as this provided a more robust 
338 number of cases than doing so at the 2 km² level whereas an unsatisfactorily high number of missing 
339 values for the variables given in Table 1 were produced when calculated at the 0.5 km² level. All 
340 statistical tests were carried out in SPSS.23.
341
342
343 Results
344
345 Land-cover and land-use attributes for the study area (form and function) are presented in Figures 3 and 4 
346 respectively. The land-use classification achieved a high level of overall accuracy (92%; Cohen’s Kappa 
347 = 0.89, p < 0.001). Figure 5 gives the relative cover by major land-uses (those comprising > 1% of the 
348 study area) and associated land-cover across low, medium and high income levels (for whole-landscape 
349 and for low versus high-urban areas) at the 0.5 km² level. 
350
351
352 Figure 3 Study area characterised by land-cover (contains Planet Scope 2017, City of Trees 2011 and 
353 Ordnance Survey, 2018 data) 
354
355 Figure 4 Land-uses within the study area (contains Ordnance Survey 2018 data)
356
357
358
359
360
361
362
363
364
365
366
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367
368
369 Figure 5 Vegetation cover within major land-uses (those comprising > 1 % of the study area)
370 A) all areas; B) low-urban areas; C) high-urban areas 
371
372 The spatial extent and content of public and domestic green space exhibited contrasting mean values 
373 between low and high urban areas. Values associated with domestic gardens in particular also showed 
374 considerable variation as a function of income. For example, in terms of domestic green-space, low-urban 
375 areas contained lower cover relative to high-urban areas and, within the context of the latter, higher 
376 income was associated with both a larger spatial extent and a greater proportion of green land-cover. For 
377 both levels of urbanity, lower income areas contained the greatest public green space cover with a higher 
378 degree of surface sealing seen for this land-use in the high-urban context. Table 2 gives correlation co-
379 efficients (Pearson’s r) between land-use types and key indicators of urbanisation.  
380
381 Table 2 Correlations between land-use and urban indicators (at 1 km²)
382

Low-urban High-urban

Green-space 
type

Minor Rd 
Density

Major Rd 
Density

Population 
Density

Buildings
Density

Mean 
Building 
Size

Minor Rd 
Density

Major Rd 
Density

Population 
Density

Buildings 
Density

Mean
Building 
Size

Domestic 0.886** -0.042 0.802** 0.932** -0.228** 0.552** -0.376** 0.546** 0.955** -0.694**

Public 0.023 0.140 0.053 0.014 0.016 -0.493** -0.126 -0.455** -0.401** -0.114

Institutional 0.504** 0.217* 0.590** 0.504** -0.055 0.247** -0.026 0.260** 0.152 -0.192*

Urban Fabric 0.740** 0.359** 0.727** 0.713** 0.082 -0.168 0.435** -0.214* -0.619** 0.738**

Peri-urban -0.725** -0.213* -0.710** -0.726** 0.064 -0.311** 0.108 -0.252** -0.237** 0.268**
*   significant at the p < 0.05 level 
** significant at the p < 0.01 level 

383
384
385
386 The relative cover by major land-use types for three quantile groups of the Largest Patch Index metric 
387 within 1 km² zones (low LPI = land-sharing; high LPI = land-sparing), controlling for overall green land-
388 cover, is given in Figure 6. 
389
390
391
392 Figure 6 Relative extent of public, domestic and peri-urban green space at units of 1 km²  across a gradient of 
393 land sparing-sharing for A) all areas; B) low-urban areas and C) high urban areas. Error bars represent 95% 
394 confidence intervals.
395
396
397
398 Ecological and socio-environmental characteristics varied significantly as a function of land-sparing-
399 sharing and urbanity. Figures 7, 8 and 9 and 10 give marginal mean values for TCA, Meff, SHDI and 
400 vNDVI respectively for low, medium and high quantile groups for LPI at 0.5, 1 and 2 km². 
401
402
403 Figure 7 Mean Total Core Area for three levels of land-sparing/sharing controlling for overall green cover. A) all areas; 
404 B) low-urban areas and C) high urban areas.  Error bars represent 95% confidence intervals. 
405
406
407
408
409
410
411 Figure 8 Effective mesh size for three levels of land-sparing/sharing controlling for overall green cover. A) all areas; B) 
412 low-urban areas and C) high urban areas. Error bars represent 95% confidence intervals. 
413
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414
415
416
417
418 Figure 9 Mean SHDI for three levels of land-sparing/sharing controlling for overall green cover. A) all areas; B) low-
419 urban areas and C) high urban areas.  Error bars represent 95% confidence intervals.
420
421
422 Figure 10 Mean vNDVI across three levels of land-sparing/sharing controlling for overall green cover. A) all areas; B) 
423 low-urban areas and C) high urban areas.  Error bars represent 95% confidence intervals.
424
425
426 Contrasting patterns were observed between individual landscape metrics with TCA and SHDI in 
427 particular exhibiting unique distributions along the sharing-sparing gradient employed. Figures 11 and 12 
428 give the marginal mean values resulting from general linear models for socio-environmental variables 
429 land surface temperature and ambient nitrogen dioxide concentration respectively. In terms of population 
430 within 300 m of a recreational green space, statistical significance was exhibited only in high urban areas 
431 (Figure 13) 
432
433
434
435 Figure 11 Mean ambient NO₂ concentration for three levels of land-sparing/sharing controlling for overall green cover. 
436 A) all areas; B) low-urban areas and C) high urban areas.  Error bars represent 95% confidence intervals.
437
438
439
440
441 Figure 12 Mean land surface temperature for three levels of land-sparing/sharing controlling for overall green cover. A) 
442 all areas; B) low-urban areas and C) high urban areas.  Error bars represent 95% confidence intervals.
443
444
445
446 Figure 13 Mean percentage population within 300 m of a recreational green space across three levels of land-
447 sparing/sharing controlling for overall green cover. A) all areas; B) low-urban areas and C) high urban areas.  Error bars 
448 represent 95% confidence intervals.
449
450
451
452
453 Table 3 gives significance levels for models at each scale and level of urbanity considered. Overall, 
454 analyses at units of 0.5 km² provided the greatest number statistically significant tests, though low-urban 
455 areas did not follow this trend as closely as high-urban areas.
456      
457
458 Table 3 Significance levels (p values) for all general linear model analyses carried out in this study

All areas Low Urban High urban
Dependent 

variable 0.5 km² 1 km² 2 km² 0.5 km² 1 km² 2 km² 0.5 km² 1 km² 2 km²
TCA < 0.001 0.049 0.459 0.144 <0.001 0.801 < 0.001 <0.001 0.100
Meff < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 <0.001 < 0.001 < 0.001 < 0.001
SHDI < 0.001 < 0.001 0.003 < 0.001 0.003 0.617 0.163 0.050 0.991

Mean Temp.  0.005 0.160 0.234 0.020 0.002 0.040 0.003 0.108 0.025
vNDVI < 0.001 <0.001 0.002 0.006 0.002 0.228 < 0.001 0.072 0.301

nitrogen 
dioxide  0.004 0.070 0.045 < 0.001 < 0.001 0.007 0.033 0.187 0.936

Pop. <300 m 
to green space 0.164 0.558 0.054 0.001 0.391 0.203 0.007 0.009 0.004

459
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460
461 Multiple linear regression results
462
463 Table 4 gives the results of the multiple linear regression models with landscape metrics LPI, TCA, Meff, 
464 SHDI and vNDVI as dependent variables and Table 4 summarizes regression results where socio-
465 environmental variables mean LST, mean nitrogen dioxide concentration and percentage population 
466 within 300 m of a recreational green space. 
467
468 Table 4 Results of regressing land-use-land-cover attributes on landscape metrics used in this study. All tests carried 
469 out at 1 km² units. 

Low-urban Beta Sig. High-urban Beta Sig.
LPI 1 km²

r²: 0.64 r²: 0.47
Major road density -0.510 < 0.01 Major road density -0.228 0.002

Domestic green cover 0.321 < 0.01 Domestic green cover 0.707 <0.01
Domestic built cover -0.808 < 0.01 Domestic built cover -0.689 < 0.01

Public built cover -0.114 0.036 Public green cover 0.360 < 0.01
Peri-urban green cover 0.180 0.008

TCA 1 km²
r²: 0.89 r²: 0.98

Major road density -0.169 < 0.01 Domestic built cover -0.080 < 0.01
    Domestic built cover -0.874 < 0.01 Public green cover 0.808 < 0.01

Public built cover -0.284 < 0.01 Peri-urban green cover 0.451 < 0.01
Peri-urban mean patch area 0.96 0.002 Public mean patch area 0.058 < 0.01

Public green cover 0.060 0.041 Institutional green cover 0.177 < 0.01
Domestic green cover 0.596 < 0.01

Informal urban greenery 0.210 < 0.01
Meff 1 km²

r²: 0.82 r²: 0.67
Domestic built cover -0.808   < 0.01 Domestic built cover -0.664 < 0.01

Major rd density -0.458 < 0.01 Public green cover 0.514 < 0.01
Domestic MPA 0.160  < 0.01 Peri-urban green 0.282 < 0.01

Public built cover -0.224 < 0.01 Domestic green cover 0.942 < 0.01
SHDI 1 km²

r² = 0.55 r² = 0.92
Peri-urban -0.756 < 0.01 Informal Urban Greenery 0.257 < 0.01

Informal Urban Greenery 0.237  0.01 Public green cover 0.793 < 0.01
Domestic -0.290 < 0.01 Domestic green cover 0.712 <0.01

Public mean patch area -0.067 0.029
Peri-urban 0.334 < 0.01

Institutional green cover 0.210 <0.01
vNDVI 1km²

r²: 0.64 r²: 0.75
Public 0.393 < 0.01 Domestic field 0.251 < 0.01

Domestic built cover -0.281 < 0.01 Domestic canopy 0.360 < 0.01
Public built -0.134  0.024 Public field 0.252 < 0.01

Public canopy 0.241  < 0.01 Public canopy 0.399 < 0.01
Institutional field layer - - Institutional field layer 0.112 0.018

Peri-urban canopy 0.513 < 0.01 Public built cover -0.137 0.013
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Domestic mean patch area 0.167 < 0.01 Major road density -0.112 0.027
Public mean patch area 0.141 0.013 Public mean patch area 0.166 < 0.01

Peri-urban mean patch area -0.367 < 0.01 Public ground 0.226 < 0.01

470
471
472
473 Table 5 Results of regressing land-use-land-cover attributes on socio-environmental metrics used in this 
474 study. All tests carried out at 1 km² units. 

Low-urban Beta Sig. High-urban Beta Sig.
Mean LST Mean LST 1 km²

r² = 0.68 r² = 0.67
Public ground 0.311 < 0.01 Urban water -0.324 < 0.01

Urban water -0.182 < 0.01 Major road density -0.215 < 0.01
Minor road density 0.375 < 0.01 Public canopy -0.338 < 0.01

Public canopy -0.425 < 0.01
Informal Urban Greenery 

mean patch area -0.405 -
Peri-urban canopy -0.632 < 0.01 Public field layer vegetation -0.264 < 0.01

Informal Urban Greenery -0.162 0.19 Domestic canopy -0.529 < 0.01
Peri-urban mean patch 

area -0.160 0.013 Institutional canopy -0.206 0.027
Peri-urban mean patch 

area 0.187 < 0.01 Domestic mean patch area -0.295 < 0.01
Public mean patch area -0.125 0.022 Public water -0.109 < 0.01

Domestic canopy -0.210 < 0.01
Public field layer 

vegetation -0.265 < 0.01
Nitrogen dioxide 

r² = 0.59 r² = 0.66
Major road density 0.259 < 0.01 Major road density 0.382 < 0.01

Peri-urban field layer -0.496 < 0.01 Peri-urban mean patch area -0.184  < 0.01
Public canopy 0.274 < 0.01 Institutional built 0.234 < 0.01

Domestic mean patch 
area -0.200 < 0.01 Domestic green cover -0.465 < 0.01

Public field layer -0.208 < 0.01 Institutional field layer -0.234 < 0.01
Buildings density 0.147 0.016 Informal Urban Greenery 0.223 < 0.01

Minor road density 0.332 < 0.01
Pop < 300 m green space 

r²  = 0.63 r² = 0.54
Peri-urban green cover -0.545 < 0.01 Domestic 0.739 < 0.01

Major road density 0.211 < 0.01 Minor road density 0.453 < 0.01
Peri-urban mean patch 

area -0.160 0.013 Informal Urban Greenery 0.307 < 0.01
Informal Urban Greenery 

mean patch area -0.198  0.01 Domestic green cover -0.218 < 0.01
Public mean patch area -0.146  0.09 Institutional green cover 0.157 0.018

Informal Urban Greenery 
mean patch area -0.391 <0.01

475
476
477
478 Regression analyses demonstrated that public and private land-uses exhibited unique and contrasting 
479 associations with ecological and socio-environmental variables implying considerable potential trade-
480 offs. Moreover, these associations varied as a function of the level of urbanity and appeared to be 
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481 modified by patch characteristics (mean area and green land-cover). 
482
483
484 Discussion 
485
486 Land-use characteristics and sharing-sparing scenarios 
487
488 For the study area as a whole, and in areas of high urbanity, the distribution of public versus private 
489 green-spaces, controlling for total green land-cover, exhibited patterns that fulfill expectations of land-
490 sparing-sharing scenarios. Inverse trends were observed for mean cover of public relative to domestic 
491 green space with increasing LPI (Figure 6a and c). However, in areas of low urbanity this pattern was not 
492 replicated where a dominance of public over domestic land-use was seen in land-sharing areas (i.e. low 
493 LPI) with domestic green space cover highest in land-sparing areas. Our analysis suggests, therefore, that 
494 the definition of land-sparing and sharing within an urban planning framework, in terms of primary land-
495 uses which support this dichotomy, is subject to some fluidity as a function of urbanity. Moreover, the 
496 regression results highlighted domestic green and built land-covers as critical factors contributing to the 
497 largest patch index in both low and high urbanity areas, seemingly exerting a stronger influence on LPI 
498 than public green-space (Table 4). This is an important observation as it challenges some of the 
499 assumptions surrounding the relative patterns resulting from the prevalence of public and private green 
500 spaces within green infrastructure planning frameworks (Lin and Fuller, 2013). That ratios of built-to-
501 green land-cover in domestic green space were also shaped by socio-economic status (Figure 5) suggests 
502 that overall urbanity, land-cover and economic status may all comprise determinants of land-sparing-
503 sharing configurations in city regions. 
504
505 Level of Urbanity
506
507 Our analysis suggests that complex trade-offs may be implied by the ascendency of one or other of a 
508 land-sparing versus land-sharing approach within different contexts of urbanisation. This appeared to be 
509 most evident for socio-environmental factors considered. For example, models for mean LST and 
510 nitrogen dioxide values exhibited differing trends between high and low areas of urbanity. For mean LST, 
511 contrasting trends were observed along the sparing-sharing gradient between low and high-urban areas. 
512 This mirrored similarly inverse trends for domestic green space cover, presenting the latter as a potential 
513 causal factor. In the case of percentage of the local population in close proximity to a recreational green 
514 space, analysis of high-urban areas suggested provision was greatest in land-sharing environments when 
515 measured at a scale of 2 km². For low-urban areas however, a mixture of land-sharing and land-sparing 
516 exhibited the greatest delivery of green space access. Vegetation quality (vNDVI) also exhibited highest 
517 mean values within this scenario in statistically significant models in low-urban areas (0.5 and 1 km²) 
518 whereas the highest values were associated with land-sparing in high-urban areas.   
519
520 Although the two levels of urbanity presented some contrasting results, there was evidence of some 
521 consistency related to specific spatial or class-level components. For example, regardless of scale or level 
522 of urbanity, land-sparing appeared to consistently promote greater connectivity (Meff). That Meff was 
523 highest in land-sparing scenarios in both urbanity contexts (even though this implied different land-use 
524 patterns) suggests that individual land-use types are a minor consideration relative to spatial 
525 characteristics when aiming at connectivity. In terms of land-cover, tree canopy consistently promoted 
526 greater cooling (lower mean LST) and greater vegetation vigour, regardless of land-use or urbanity. This 
527 implies that, as identified by others (e.g. Collas et al, 2017), restoration through afforestation may 
528 significantly support and mediate broader landscape considerations in the promotion of urban ecosystem 
529 services and their resilience. From the perspective of landscape heterogeneity, differences in SHDI were 
530 significant between sparing-sharing scenarios in low-urban areas at the 0.5 and 1 km² scale. At these 
531 scales, areas which comprised neither sharing nor sparing configurations exhibited greatest land-cover 
532 diversity, with land-sharing areas also showing significantly greater mean SHDI values than land-sparing 
533 areas (Figure 9). In addition, in low-urban areas peri-urban land-use appeared to play a detrimental role in 
534 landscape heterogeneity (Table 4). Overall, therefore, our results point towards an increase in vegetation 
535 diversity and quality in areas character rised by peri-urban land-use through the introduction of more 
536 typically urban green space types (Figures 5, 6 and 9). In the high-urban context, all major green land-
537 uses appeared to contribute to landscape heterogeneity (Table 4) suggesting that increases in green land-
538 cover of any type are beneficial regardless of land-sparing-sharing considerations (which were not 
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539 statistically relevant to SHDI in high urban areas, Table 3). 
540  
541
542 Scale 
543
544 Associations between ecological and socio-environmental patterns and land-sparing-sharing scenarios 
545 appeared to be moderated as a function of the scale of investigation employed. For example, for the study 
546 area as a whole, when measured at units of 2 km², TCA appeared to be highest within spatial 
547 configurations which represent land-sparing scenarios (Figure 7). In contrast, land-sparing appeared to 
548 promote this critical landscape characteristic when measured at scales of ≤ 1 km². The influence of scale 
549 differed between variables. For example, of the landscape attributes tested, SHDI exhibited generally 
550 higher values when measured at larger scales, whereas (standardised) Meff values were highest at smaller 
551 scales of investigation. In terms of levels of statistical relevance, our analysis exhibited scale-dependence 
552 (Table 3). This is important from both an urban planning and nature conservation perspective. When 
553 treating the study area landscape as a whole, higher levels of statistical significance were exhibited at 
554 smaller scales of investigation for most variables considered (Table 3), though urbanity appeared to 
555 mediate this trend. For example, in low-urban areas, analysis at scale of 1 km² returned the greatest 
556 number of statistically significant tests, whereas in high-urban areas this was occurred at the 0.5 km² 
557 scale. This implies that in more highly fragmented landscapes, higher spatial resolution is necessary to 
558 discern land-sparing-sharing associations with environmental characteristics. 
559
560 This variance as a function of scale and urbanity poses a challenge for landscape analysis which would 
561 inform decisions on social and ecological goals respectively. For example, analyses of species 
562 distributions in urban ecological studies are commonly carried out at units of 1 x 1 km² (Vanbergen et al., 
563 2005; Ockinger et al., 2009) though our results suggest that working at such scales may not capture the 
564 potential for land-cover configurations to similarly achieve co-benefits such as urban cooling. Therefore, 
565 using a multi-scale approach such as that developed here, considering multiple socio-environmental 
566 characteristics relevant to sustainable urban development may be of considerable merit. This is largely 
567 due to the possibility, as demonstrated here, of identifying optimum scales of analysis through relatively 
568 rapid assessments using GIS and remote sensing techniques. 
569
570 Influence of land-cover 
571
572 Regression analyses of individual land-use and land-cover attributes on environmental and ecological 
573 variables demonstrated a high degree of consistency between areas of contrasting urbanity though 
574 exceptions, related to SHDI in particular, were observed (Table 4). Specifically, both peri-urban and 
575 domestic land-use exhibited contrasting directions of association with SHDI dependent on whether they 
576 were assessed at low or high-urbanity. The cover by, and level of vegetation within, domestic gardens in 
577 particular were also subject to stark contrasts between areas of low and high urbanity (Figure 5). These 
578 disparities appeared to be underpinned by socio-economic processes. The latter, therefore, proved also to 
579 be an important local consideration moderating the status, and therefore influence, of land-use-land-cover 
580 combinations on ecological and environmental variables.     
581
582 Cover by gardens and land-cover within gardens exhibited strong links with all socio-environmental 
583 characteristics measured. Of all land-cover types, mean LST was most strongly (negatively) associated 
584 with canopy cover in gardens in high-urban areas (Table 5), suggesting that management of domestic 
585 greening presents opportunities for climate resilience in cities. Green land-cover within informal and 
586 other private (institutional) settings also exerted significant influence on both ecological and 
587 environmental characteristics, particularly in high urban areas. This underlines the complex mosaic of 
588 land-uses contributing to effective urban green infrastructure and the need for land management within 
589 such spaces to be acknowledged as key components of planning for sustainable and resilient cities. 
590 Gardens also appeared to exert an influence on both proximity to green space and air quality. For 
591 example, domestic garden cover was positively associated with access to green space in high-urban areas 
592 though, notably, public green-space (to which category green recreational spaces belonged), was non-
593 significant. This suggests that, for the current study area at least, access (defined as proximity) to 
594 recreational green spaces may be more closely related to population distribution than to provision of 
595 green space per se. This is supported by the fact that domestic green space mean patch size – denoting 
596 lower housing (and therefore population) density - was negatively associated with proximity to 
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597 recreational green space (Table 5). This pattern supports other work on urban land-sparing which 
598 highlights the merits of land-sharing configurations on green space use (Soga et al., 2015). It also 
599 suggests, however, that increasing urban residential density, through compaction and in-filling may offer 
600 opportunities for sparing non-developed land whilst ensuring local access to green space. 
601
602 In terms of air quality, domestic garden cover showed a surprising negative association with mean 
603 nitrogen dioxide concentrations: the strongest of all land-uses types for high urban areas. Specific land-
604 covers within gardens did not seem to be responsible for this association (Table 5), but that garden cover 
605 correlated negatively (p < 0.01) with density of major roads (Table 2) may offer a potential explanation 
606 and suggests urban form, rather than land-cover, as a critical factor. This idea is supported by results 
607 reported elsewhere which suggest that complex geometric patterns created by fragmented urban forms 
608 may reduce traffic-related congestion and pollution (Zhou et al., 2018). That tree cover in public green 
609 spaces in low-urban areas was positively associated with mean nitrogen dioxide concentrations may 
610 explain to some degree why public green-space cover overall was not statistically relevant to mean 
611 nitrogen dioxide concentrations. This stands in contrast to findings in other studies highlighting the 
612 ability of trees to remove nitrogen dioxide from the environment (Fantozzi et al., 2015). However, ours is 
613 the first study of its kind to consider a range of vegetation types across different land-uses 
614 simultaneously. The results of our regression models showed that tree canopy and lower vegetation types 
615 exhibited contrasting associations with level of nitrogen dioxide with field layer vegetation showing the 
616 greatest negative influence on ambient nitrogen dioxide at both levels of urbanity.  Broader evidence on 
617 the relationship between the urban canopy and ambient nitrogen dioxide is, however, mixed (Yli-
618 Pelkonen et al., 2018) and known to be subject to meteorological factors (Grundström et al., 2015). 
619 Specifically, ambient nitrogen dioxide has been shown to decrease with local air temperature (Ibid.). The 
620 latter is particularly relevant given that tree cover was negatively associated with LST in our results and 
621 implies a potential trade-off resulting from different socio-environmental outcomes related to the 
622 presence of green infrastructure (i.e. urban cooling and air quality). Overall, cover by water in urban 
623 areas suggested the greatest cooling effect by any land-cover, underlining the importance of waterways 
624 and wetlands in the regulation of the urban micro-climate (e.g. Gomez-Baggethun et al., 2013).
625
626
627 Moving the land-sparing-sharing debate forward in urban areas.
628
629 The analysis presented here demonstrates how a landscape approach, incorporating spatially coincident 
630 measures of land-use and land-cover, can be employed to unpick spatial and ecological complexities 
631 relevant to sustainable urban development. Our analysis suggests three pathways for future evaluation 
632 and research on landscapes subject to the process of urbanization. Firstly, scale (spatial units) should be 
633 considered in planning and research where multiple socio-environmental concerns are to be addressed. In 
634 the case of the former, we suggest that a modular approach working at smaller, local scales of analysis 
635 should be employed to capture variables that are highly spatially sensitive. Concurrently, research should 
636 focus on evaluating the potential for up-scaling analysis of small-scale phenomena (e.g. micro-climate 
637 regulation) to align with larger theoretically established units of investigation of others (e.g. species 
638 distribution). Secondly, spatial context in terms of levels of urbanity should be equally considered as a 
639 highly significant mediating factor in the determination of optimal land-use configurations. Not only do 
640 levels of urbanization modify the spatial characteristics of landscapes, but from the perspective of 
641 landscape resilience and ecosystem services provision, different contexts will dictate the nature of 
642 management goals related to spatial planning. For example, in urban areas where natural green cover is 
643 high fragmented but may also exhibit high heterogeneity, developing landscape configurations which 
644 increase connectivity per unit area may take priority over increasing diversity. Conversely, in peri-urban 
645 areas where green cover consists of larger and more connected patches, but highly homogenous (e.g. due 
646 to agricultural practices), land-use-land-cover combinations which promote landscape complexity rather 
647 than cohesion may be prioritised. Further, our results suggests that, even when different landscape 
648 configurations are promoted in urban and peri-urban areas, this may in reality involve parallel promotion 
649 of the same land-use type. However, we concede that the current study used a highly simplified 
650 dichotomous take on an urban-to-peri-urban gradient, controlling for overall green land-cover within each 
651 zone. In reality urban-rural gradients will consist of multiple degrees of urbanisation and human density. 
652 Furthermore, overall greenness of the environment and the merits of land-sparing versus sharing 
653 outcomes are likely to be subject to non-linear functional relationships (Stott et al., 2015). Therefore, our 
654 findings should be tested, ideally across landscapes which exhibit multiple combinations of green land-
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655 cover and population, in order to identify potential thresholds in the relative performance of land-sparing-
656 sharing combinations.    
657
658 Land-use-land-cover combinations exerted a significant influence on the social-ecological-environmental 
659 characteristics explored here and exhibited the potential to subvert assumptions related to land-sparing-
660 sharing scenarios (e.g. the relative distribution of public and private green space). We suggest, therefore, 
661 as a third imperative for future research on land-use configurations towards sustainable urban landscapes, 
662 that land-cover specifically (and ecological restoration more broadly) be embedded within research 
663 designs as a qualitative consideration with a view to potentially clarifying and resolving tensions related 
664 to spatial considerations. Operationalising and refining these three principles of analysis could help to 
665 clarify and harness complexity in human-dominated landscapes towards spatial configurations that 
666 promote productive, diverse and ultimately resilient urban areas
667
668
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