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Abstract: Remote sensing technology is a timely and cost-efficient method for leaf area index (LAI)
estimation, especially for less accessible areas such as mangrove forests. Confounded by the poor
penetrability of optical images, most previous studies focused on estimating the LAI of the main
canopy, ignoring the understory. This study investigated the capability of multispectral Sentinel-2
(S2) imagery, airborne hyperspectral imagery (HSI), and airborne LiDAR data for overstory (OLe) and
understory (ULe) LAI estimation of a multi-layered mangrove stand in Mai Po, Hong Kong, China.
LiDAR data were employed to stratify the overstory and understory. Vegetation indices (VIs) and
LiDAR metrics were generated as predictors to build regression models against the OLe and ULe
with multiple parametric and non-parametric methods. The OLe model fitting results were typically
better than ULe because of the dominant contribution of the overstory to the remotely sensed signal.
A single red-edge VI derived from HSI data delivered the lowest RMSE of 0.12 and the highest R2

adj

of 0.79 for OLe model fitting. The synergetic use of LiDAR metrics and S2 VIs performed best for
ULe model fitting with RMSE = 0.33, R2

adj = 0.84. OLe estimation benefited from the high spatial
and spectral resolution HSI that was found less confounded by the understory. In addition to their
penetration attributes, LiDAR data could separately describe the upper and lower canopy, which
reduced the noise from other components, thereby improving the ULe estimation.

Keywords: hemispherical photography; LAI; LiDAR; overstory; understory; vegetation indices

1. Introduction

Leaf area index (LAI), defined as one-half the total leaf area per unit ground surface
area [1–3], can reflect foliage density and the health condition of plants. LAI is a critical
variable for reflecting canopy structure, estimating photosynthetic primary production,
and measuring vegetation responses to global environmental change in process-based
models [4]. LAI can be most accurately measured by direct methods such as harvesting, but
it is extremely time-consuming, labor-intensive, and operation-constrained [5]. In recent
decades, indirect non-contact LAI measurement techniques (based on the measurement
of light transmission through canopies) have offered an alternative for LAI measurement.
Coupled with remote sensing techniques, they have provided a timely and labor-efficient
solution for LAI estimation over large spatial and long temporal scales [6–10]. Applying
remote sensing approaches to estimate LAI can be categorized into physically based models
and empirical statistical regression models. The former method involves the inversion
of a canopy radiative transfer model (RTM) with remote sensing data for LAI retrieval.
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The latter method establishes a regression model between remote sensing variables and
LAI. Empirical statistical regression models are the most commonly used and simplest
method for LAI estimation, and they are highly flexible (which is critical when combining
multi-source data) [11,12]. To apply a statistical approach, a regression method is selected
to relate the observed LAI to several predictor variables. Parametric regression methods,
which are defined by mathematically linear or non-linear functions, have been frequently
employed [13–15]. These methods can describe the apparent relationship between LAI
and predictors, but may also suffer from overfitting and poor accuracy when dealing with
multiple predictors [12]. Meanwhile, non-parametric regression methods have been recom-
mended for model fitting for various LiDAR metrics [16,17]. Non-parametric regression
methods such as partial least squares (PLS), random forests (RFs), and artificial neural
networks (ANNs) have been found to produce accurate and stable results for biophysical
parameter retrieval over crop and forest areas [18–22]. Since the regression models tend to
be sensor- and site-specific and the regression results also might change in time and space,
the best regression method could vary case by case.

Vegetation indices (VIs) derived from multispectral and hyperspectral images are
commonly used as predictor variables to build regression models against LAI. VIs are
calculated from two or more spectral bands in order to enhance the sensitivity of spectral
features to a vegetation property and reduce disturbance from the background or atmo-
sphere [23]. Conventional broadband indices are mainly developed from the ratio, slope,
or distance between the red reflectance valley and near-infrared (NIR) reflectance peak.
They include the Normalized Difference Vegetation Index (NDVI), Simple Ratio (SR), Soil
Adjusted Vegetation Index (SAVI), Enhanced Vegetation Index (EVI), and Atmospherically
Resistant Vegetation Index (ARVI). Such indices have been found useful for estimating LAI
in the literature [24–26]. Since novel sensors such as WorldView-2/3 and Sentinel-2 have
been providing red-edge bands, a series of modified or novel red-edge indices have been
proposed, including the Modified Red-Edge Normalized Difference (MNDre), Modified
Simple Ratio Red Edge (MSRre), and Inverted Red-Edge Chlorophyll Index (IRECI). These
indices have proven to be more useful than traditional VIs in canopy property monitor-
ing [27–30]. VIs derived using red-edge bands have been found to alleviate the saturation
effect and improve LAI estimation accuracy when compared with VIs constructed from
traditional NIR bands [20]. Sentinel-2 data have been widely used to estimate local and
regional scale LAI [31–34].

Narrowband indices are derived from hyperspectral data, including those derived
from field spectroradiometers, spaceborne (EO-1 Hyperion), and airborne instruments
(APEX, CASI, Headwall, etc.). They can be designed to emphasize subtle features along
the spectral curve such as the reflectance slope in the red-edge region. Some narrowband
indices have been found to perform consistently and robustly for LAI or chlorophyll content
estimation. For example, the Non-Linear Vegetation Index (NLI) and Modified NLI, which
exploit NIR and shortwave-infrared (SWIR) wavelengths [14,35], and the Transformed
Chlorophyll Absorption in Reflectance (TCARI) and Modified Chlorophyll Absorption in
Reflectance Index (MCARI), which are related to chlorophyll absorption [36–38]. When
these narrowband indices were further modified and adopted for multispectral data, strong
correlations with LAI were still obtained [20,29,39]. However, the limitation of VIs (such as
the saturation effect) has been noted in other studies [40,41].

Most previous studies estimated the LAI of forests’ main canopy but neglected the un-
derstory. Photosynthesis mostly occurs in overstories that are closely related to biomass and
productivity [42]. Moreover, understory LAI has remained inherently difficult to predict
with passive optical images, as vegetation reflectance is mainly dominated by signals from
the upper crowns in optical images. Understories aid soil nutrient cycling [42], provide
habitat for wildlife [43], and contribute to the diversity in both species and structure [42].
Importantly, understories also make a contribution to biomass, net primary production and
carbon stocks [44]. Despite the importance of understories, the exploration and quantifica-
tion of their distribution has been limited in previous research. The estimation of LAI for
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both the understory and the main canopy would provide complete knowledge, enabling
us to better understand forest communities, model biogeochemical cycles, and evaluate
ecosystem function [8,9]. A few studies demonstrated that the presence of the understory
can affect observed reflectance and LAI estimation [24,45,46], but the effect of background
reflectance (understory vegetation, senescent leaves, and soil) is difficult to measure [47,48].

LiDAR data provide 3D information that provides opportunities to describe forest
structure and improve LAI estimation. It is common to use geometric and radiometric
metrics such as tree height, return elevation distribution statistics, and mean return intensity
to estimate LAI [49,50]. Both canopy volume and foliage density metrics have been found
useful for LAI estimation because LAI can be considered as a proportion of the crown
volume containing foliage, estimated from the penetration length of lasers into the top
canopy surface [51,52]. Penetration metrics indicate the canopy gap probability, which is
non-linearly related to LAI according to the Beer–Lambert law [53]. Other useful metrics
include the Last Echo Cover Index (LCI) and Solberg’s Cover Index (SCI), which quantify
the rate of pulse penetration through the canopy [17,49,54]. Some studies attempted to
combine LiDAR data and spectral images for biophysical parameter retrieval, in order to
improve LAI estimation. For example, ref. [55] reported that the combination of VIs and
LiDAR metrics could potentially better estimate biophysical parameters (e.g., canopy cover,
water content, biomass) in tropical riparian zones, and [46,56,57] demonstrated that the
combination of these two data sources improves LAI estimation accuracy for crops and
forests. Meanwhile, ref. [58] suggested that LiDAR data can provide satisfactory estimates
of LAI, but no significant improvement occurs when VIs are included for model fitting.

In addition to its utility for estimating the LAI of the main canopy, the penetrability of
LiDAR data also enables the exploration of the understory layer. LiDAR data assisted in
detecting the distribution of understory vegetation with accuracies of between 83% and
88% [43,59,60]. Furthermore, studies demonstrate the accurate stratification of the overstory
and understory with LiDAR data based on canopy vertical profiles [61–63], which facilitate
the separate estimation of overstory and understory LAI. Recently, ref. [64] improved
overstory and understory LAI estimation with modified LiDAR indices in loblolly pine
forest. Similarly, ref. [65] quantified understory LAI by combining full-waveform and point
cloud LiDAR in a temperate forest. Although LiDAR data demonstrate the capacity to
predict LAI in each forest component, there are limited studies that investigate the role of
both optical and LiDAR data in a separated estimation of overstory and understory LAI. In
boreal, deciduous, and planted forests, recent research has demonstrated that overstory
and understory LAI/fractional cover are strongly related, mainly due to the reliance of the
understory on light transmission through the overstory [66–69]. However, studies have
rarely explored the overstory and understory structure and their relationship in coastal
mangrove areas, which can be affected by varying tides, mudflat soils, disturbances, etc.

A double-layered structure was reported in the mangroves of Mai Po, Hong Kong [70],
but no research has investigated the overstory LAI without neglecting the understory LAI.
Based on the aforementioned research background, the overall objective of this study is to
explore the feasible methods for LAI estimation in double-layered mangrove areas, so as to
obtain a comprehensive understanding of mangrove growth. More specifically, this study
attempts to investigate:

(1) The ability of hyperspectral imagery, multispectral imagery, and LiDAR data to
estimate the LAI of the overstory and understory, respectively.

(2) The important features derived from remote sensing data to estimate each LAI category.
(3) Possible factors such as remote sensing data, canopy structure, field measurement

might affect the LAI estimation, especially for understories.

2. Materials and Methods
2.1. Study Area

The study area was the mangrove conservation core zone of Mai Po Nature Reserve,
Ramsar wetland, (22◦29′N–23◦31′N, 113◦59′E–114◦03′E) in Hong Kong, China (Figure 1).
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A double-layered canopy structure was commonly found in the study area (Figure 1a).
Overstories are commonly composed of mature arbor mangroves including Kandelia obovata
(KAOB), Avicennia marina (AVMA), Aegiceras corniculatum (AECO), and Sonneratia (SO).
The average canopy height of overstory mangroves varies from 5.5 m to 8.5 m for different
species [61]. Understories were mainly found as shrub mangroves Acanthus ilicifolius
(ACIL), which are commonly observed with a canopy height of between 1 m and 1.5 m [61].
A single-layered canopy structure was observed as two types. The first type consists of short
mangroves such as shrub and small mangroves (Figure 1c) and another type is comprised
of tall mangroves (most found as KAOB) without an understory beneath (Figure 1b).
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Figure 1. The location of the study area and the distribution of leaf area index measurement plots
(AVMA: Avicennia marina; KAOB: Kandelia obovate). The based map is a false-color image composed
of near-infrared, red, and green bands of Sentinel-2 images. The right panel shows examples of
threshold determination to separate the overstory and understory from the LiDAR returns histogram,
the LiDAR profile, and field photos. Subfigures (a) double-layered mangroves with overstory
and understory, (b) single-layered mangroves without understory beneath, and (c) single-layered
mangroves. The location of the three examples is marked on the map of the study area.

2.2. Remote Sensing Data and Processing

Multispectral Sentinel-2 imagery, airborne hyperspectral imagery, and discrete return
LiDAR data of the study area were used as the main remote sensing data.

The Sentinel-2 (S2) imagery includes 13 spectral bands in 3 spatial resolutions: 10 m
in the blue, green, red, and near-infrared (NIR) bands, 20 m in 3 vegetation red-edge, a
narrow NIR, and 2 SWIR bands, and 60 m in coastal aerosol and water vapor bands. An
S2 Level-2A image captured on 26 December 2018 was downloaded from the Sentinel
Scientific Data Hub (https://scihub.copernicus.eu/ (accessed on 15 January 2019)), which

https://scihub.copernicus.eu/
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was the clearest and most concurrent image with the in-situ LAI measurement period.
Atmospheric correction was conducted using Sen2Cor to obtain surface reflectance. The S2
image was reprojected into the Hong Kong 1980 Grid. Furthermore, 10 m was the finest
spatial resolution of the S2 captures, and was also the same size as the LAI field-measured
plots [30]. Therefore, the S2 image was resampled to a common 10 m spatial resolution
using nearest neighbor resampling to preserve the original spectral values in ENVI 5.3.

Airborne hyperspectral imagery (HSI) was acquired using a headwall Nano-Hyperspec
push-broom sensor on 13 March 2019. The HSI consisted of 271 spectral channels from
400 to 1000 nm with a full-width at a half maximum (FWHM) of 6 nm. The flying height
was less than 300 m above the ground level, resulting in a spatial resolution of between
0.27 and 0.38 m. A total of 21 hyperspectral strips were acquired for the study area. The
raw HSI was radiometrically corrected and then orthorectified in the WGS 1984 geographic
coordinate system with inertial motion data of the flight campaign and a digital elevation
model, using the SpectralView software (Headwall Photonics Inc., Bolton, MA, USA, 2018).
After that, the HSI was registered to the Hong Kong 1980 Grid using digital aerial orthopho-
tos (Lands Department, Hong Kong SAR Government) with manually selected tie points,
obtaining an of accuracy less than 1 m in ArcMap 10.6. The spatial resolution of all HSI was
homogenized to 0.5 m with nearest neighbor resampling. Atmospheric conditions were
corrected to derive surface reflectance using the empirical line method (1) coupled with
field reflectance measurements in ENVI.

Surface Reflectance = Gain × Radiance + Offset (1)

Reflectance calibration tarpaulins in a white color (~70% reflectance) and a in black
color (~5% reflectance) with a size of 3.5 m × 3 m that were placed within the flight area
were measured by a spectroradiometer (ASD FieldSpec 4, ASD Inc., Boulder, CO, USA)
throughout the flight. The spectroradiometer was calibrated using a Spectralon panel
(SRT-99-100, Labsphere, North Sutton, NH, USA) before each recording. A total of 34
and 24 measured points were evenly distributed over the white and black tarpaulins,
respectively. With the known reflectance of the white and black tarpaulins (as measured
with the spectroradiometer) and their radiance extracted from the HSI, the gain and offset
could be computed (1) [71].

Airborne LiDAR data were acquired on 21 March 2018 with a Riegl VUX-1LR laser
scanner (RIEGL Inc., Horn, Austria) emitting a NIR 905 nm beam with a laser pulse rate of
600 kHz. The system can collect up to five discrete returns. The LiDAR data were acquired
at an altitude between 155 and 270 m above the ground level, resulting in an average point
density of 20 points per m2. The LiDAR data were projected on the Hong Kong 1980 Grid
and were further aligned with the digital aerial orthophotos. Subsequently, ground returns
were classified with the Progressive Triangular Irregular Network (TIN) Densification
filtering method [72], and then the return height was normalized by subtracting the TIN
derived from ground returns in LAStools (https://rapidlasso.com/lastools/ (accessed on
15 January 2019)).

An object-based vertical stratification was applied to classify overstory and understory
returns. The multiresolution segmentation algorithm in eCongition developer 9 (Trimble,
Westminster, CA, USA) was applied to segment the 2 m spatial resolution canopy height
model (CHM) into objects. After multiple trials and visual interpretation, the shape and
compactness parameters were set to 0.1 and 0.8, respectively, and a scale parameter of 5
was determined. As a result, the CHM was segmented into 3088 objects. The frequency
histogram of the return height was plotted in 0.2 m intervals for each object. A kernel
regression was fit to smooth the distribution of histogram, where peaks would represent
the canopy layers while valleys would represent the threshold for stratifying different
layers [61,64]. The local minimum was searched as the stratified threshold in the bimodal
distribution (Figure 1a), after which returns below the threshold were classified as under-
story and those beyond the threshold were regarded as overstory. Histograms showing

https://rapidlasso.com/lastools/
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unimodal distribution indicated that areas were comprised of a single-layer canopy, such
as shrub (Figure 1c).

It is worth noting that although the airborne hyperspectral, LiDAR, and satellite-
borne data were collected at different times, most of the mangroves within the study
area are mature, and their canopies have not undergone drastic changes during recent
years. Additionally, all data were collected during the dry season, reducing differences
due to phenology. The airborne data represent the latest hyperspectral and LiDAR data
available for Mai Po at the time of the study. A comparison of three data can be found in
Supplementary File Figure S1.

2.3. Field Data Collection and Processing

A digital hemispherical photography (DHP) system comprised of a Nikon Coolpix
P5000 digital camera and a 180◦ field of view fisheye lens (FC-E8) was used to measure
LAI. Fieldwork was undertaken between 14 and 30 January in 2019 under overcast weather
conditions. Mangrove fieldwork is particularly challenging due to the harsh environment
(i.e., swampy mudflats and dense and prickly understories). As a result, most plots were
located around the boardwalk. Sample plots were designed in 10 × 10 m quadrants at least
10 m away from the boardwalk and at least 10–20 m between each other (Figure 1). The
understory vegetation had denser and larger leaves than the overstory, with understory
canopy heights often taller than 1 m. Therefore, DHP images of both the overstory and
understory (if present) were taken facing upward at five locations in each plot: one at the
center of the plot and four at the centers of four sub-grids [9,73].

Plots were positioned using GPS (Garmin, Montana 600) with an average positioning
uncertainty of +/− 3.65 m, and nearby landmarks were also recorded to help visually
identify the plot location in the high-resolution images. Tree species in each plot were
recorded, and tree heights of the understory at each sampling point were measured. Since
AECO only occasionally appeared as one or two individual crowns within the accessible
area, and SOAP only presented in the inaccessible seaward edge, there was no pure
species plot for AECO and SOAP. Accessible single-layered shrub areas were not large
enough to contain a 10 m × 10 m plot or Sentinel-2 pixel. As a result, a total of 51 plots
including 34 KAOB plots and 17 AVMA plots were measured. Sample plots represented
various canopy types, including mature and young mangroves with sparse to lush shrub
beneath. One plot had no understory and seven plots had sparse and low (0.52–1.06 m)
shrub ACIL beneath. The remaining 43 plots had a dense and relatively tall (1.1–1.65 m)
thicket underneath.

The CAN-EYE software (https://www6.paca.inra.fr/can-eye/ (accessed on 15 January
2019)) was used to post-process the DHP images for effective LAI calculation. Undesirable
objects in understory DHPs such as operator or obvious overstory components in the DHPs
of the understory were masked out using the masking tool in CAN-EYE. Due to the large
occurrence of mixed pixels at higher zenith angles, all classified binary images were limited
to 0◦–60◦. Woody areas in the DHP images (such as trunks, branches, and twigs) were
difficult to clearly distinguish from leaves, especially for AM, which was characterized
by crooked trunks. Additionally, since is not possible to recognize if some leaves are
present behind these woody areas, only classifying visible leaves could lead to a large
underestimation of the actual LAI value [74]. Therefore, the woody areas were included
in the vegetation class. With the inclusion of wood material, the plant area index (PAI)
was derived, which was used as a proxy for LAI in this study. The statistical summary of
measured LAI can be found in Supplementary File Table S1.

2.4. Generation of Vegetation Indices and LiDAR Metrics

A large set of different vegetation indices that were reported as useful for LAI estima-
tion in previous studies were calculated as predictors [11,14,30,75,76]. VIs were categorized
into the following groups: conventional NIR, atmospheric, red-edge, and SWIR indices (see
Table A1). The individual S2 pixel that intersected with the central point of the plot was

https://www6.paca.inra.fr/can-eye/
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selected to calculate VIs, as both the pixel size of the resampled S2 data and the plot size
were equal to 10 m. To match this extent, for the 0.5 m HSI, a 21 × 21 pixel window was
used to represent the plot. The average reflectance of the window was used to calculate
the VIs.

LiDAR returns within a 10 × 10 m square around the plot center were extracted to
derive LiDAR metrics. Widely used standard metrics that statistically describe return height
were generated (Table A2). Additionally, various metrics describing the penetration rate
(i.e., canopy cover) were calculated and some of them were modified with consideration of
the overstory and understory.

2.5. Statistical Methods to Estimate LAI and Validation

Both univariate and multivariate regression methods were examined for overstory
effective leaf area index (OLe) and understory effective leaf area index (ULe) fitting. Uni-
variate methods including linear and non-linear (exponential and logarithm) regression
were applied so that the useful variables (VIs or LiDAR metrics) and their relationship
with overstory and understory LAI could be explored. Multivariate regression methods
including parametric multiple linear regression (MLR), non-parametric method partial
least squares regression (PLSR), and random forest regression (RFR) were employed to
understand whether the combination of data could improve the LAI model fitting.

Every additional predictor in a multivariate regression model might decrease the
RMSE and increase the R2, and also increase the risk of overfitting [30]. Therefore, several
rules were applied to select variables for multivariate regression:

(1) The maximum number of predictor variables from single-source data (i.e., VIs from
S2 or HSI and LiDAR metrics) was restricted to four, because the RMSE was observed
to be stable with more than four predictors. Therefore, the maximum number of
combination predictors (i.e., four VIs + four LiDAR metrics) would be eight.

(2) To include an additional predictor variable, the RMSE of the model had to be decreased
by at least 2% when compared with the original value.

Predictors were then selected by the recursive feature elimination (RFE) feature selec-
tion algorithm based on RF. RFE-RF iteratively eliminates redundant variables to fit the
RFR model until the best root-mean-square error (RMSE) is obtained. Feature selection
was performed with S2 VIs, HSI VIs, and LiDAR metrics separately, to identify important
predictors. Subsequently, the selected VIs and LiDAR metrics were input into the REF-RF
again to determine the optimal combination of predictors.

Regression models were fitted and assessed through five-fold cross-validation (CV)
due to the limited number of field samples. The coefficient of determination (R2) and the
RMSE of cross-validation were used to assess the model fit. Because adding additional
predictors tends to increase the R2, the adjusted R2 (R2

adj) was also calculated to better
evaluate models with a different number of input variables. The regression fitting was
implemented in R (https://www.r-project.org/ (accessed on 15 January 2019)) with addi-
tional packages: “pls”, “randomForest”, and “caret”. Figure 2 summarizes the workflow of
above-mentioned data process and analysis.

https://www.r-project.org/
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3. Results

Table 1 presents the models achieving the highest R2 and lowest RMSE by using each
remote sensing data source, univariate regression, and multivariate regression, respec-
tively. Important features determined by the feature selection process for multivariable
regressions are listed by decreasing order of importance in Table 1. For OLe estimation, the
top three VIs come from different groups, which indicates that the decorrelation among
variables may benefit the OLe model fitting. In our case, the optimal combination of IRECI
(Inverted Red-Edge Chlorophyll Index, red-edge VI), RDVI (Renormalized Difference
Vegetation Index, NIR indices), and GARI (Green Atmospherically Resistant Index, at-
mospheric indices), derived from HSI and NBR (Normalized Burn Ratio, SWIR indices);
and TCARI2(Transformed Chlorophyll Absorption Reflectance Index 2, red-edge VI) and
Cig (Green Chlorophyll Index, NIR indices), derived from S2 data, were selected as input.
LiDAR metrics reflecting the LiDAR return distribution of canopy structure, including
zsd (standard deviation of height distribution), LCI (Last Echo Cover Index), and zkurt
(kurtosis of height distribution), were selected. Both HSI VIs and S2 VIs were considered
more important than LiDAR metrics in OLe estimation if combining both spectral and
spatial features together. For ULe estimation, all selected VIs were from the red-edge VI
group. This result may reflect that the synergy of multiple red-edge spectral features
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works better for the understory with weak reflectance signals. LiDAR metrics that reflected
the distribution of LiDAR returns in lower canopy layered such as zpcum7 (cumulative
percentage of return in the seventh layer), zq40 (40th percentile of the height distribution),
den_u (point density of understory returns) were selected. When combing VIs and LiDAR
metrics to estimate ULe, LiDAR metrics were considered more important than VIs as the
penetration property of LiDAR data is able to capture more signals from the understory.

Table 1. OLe and ULe regression model fitting results. The best model fitting result of each regression
method is highlighted in bold. For multiple regression, variables are listed in descending order of
importance, indicated by feature selection processing.

Data Method Variables RMSE R2 R2
adj

OLe

Univariate regression
HSI Exp IRECI a 0.12 0.79 0.79
S2 Exp NDII 0.15 0.68 0.68

LiDAR Exp zsd 0.17 0.53 0.52

Multivariate regression

HSI MLR IRECI, RDVI, GARI 0.16 0.79 0.77
S2 RFR NBR, TCARI2, Cig 0.20 0.70 0.68

LiDAR RFR zsd, LCI, zkurt 0.21 0.63 0.61
HSI + LiDAR PLSR IRECI, RDVI, GARI, zsd, LCI b 0.16 0.81 0.78
S2 + LiDAR PLSR NBR, TCARI2, Cig, zsd, LCI, zkurt 0.16 0.78 0.76

ULe

Univariate regression
HSI Exp MSRren 0.37 0.41 0.40
S2 Exp NLI 0.30 0.57 0.56

LiDAR Exp Pground
c 0.24 0.57 0.56

Multivariate regression

HSI MLR MSRren, MTCI, SRre2, 0.66 0.44 0.40
S2 RFR BSItian, MTVI2, MCARI2 0.47 0.64 0.61

LiDAR RFR den_u, zpcum6, zq40, zpcum7, zkurt 0.40 0.71 0.67

HSI + LiDAR RFR zpcum7, zpcum6, zq40, den_u, zkurt,
MTCI, SRre2, MSRren 0.40 0.70 0.65

S2 + LiDAR RFR zpcum7, zpcum6, MTVI2, MCARI2,
den_u d 0.33 0.84 0.82

Abbreviations: HSI, hyperspectral imagery; S2, Sentinel-2; Exp, exponential regression; MLR, multiple linear
regression; RFM, random forest regression; PLSR, partial least squares regression. See Tables A1 and A2 for
explanation of variables. The superscript a, b, c, and d suggest the predictors and methods used to generate LAI
map in Figure 3.

For OLe estimation, using only the HSI red-edge VI IRECI produced the best model
fitting result, with the highest R2

adj of 0.79 and the lowest RMSE of 0.12. IRECI alone
performed better than using multiple HSI VIs or combining spectral VIs and LiDAR metrics.
The individual S2 VI NDII (Normalized Difference Infrared Index), which incorporates the
NIR and SWIR bands, could also produce a good model fitting result, with an R2

adj of 0.68
and RMSE of 0.15. The combination of S2 VIs and LiDAR metrics significantly improved
the R2

adj to 0.76, which was better than using either S2 VIs (R2
adj = 0.68) or LiDAR metrics

(R2
adj = 0.61) alone.

Overall, ULe models were observed with larger RMSEs than OLe models. Applying
LiDAR metric Pground (percentage of ground return) and S2 NLI (Non-Linear Index of
Red and NIR bands) alone generated a low RMSE of 0.24 and 0.3, respectively, with an
R2

adj = 0.56. It was observed that although increasing the number of predictors (such
as using multiple S2 VI or LiDAR metrics) could improve R2

adj to 0.61–0.67, the RMSE
increased to 0.4–0.47. The combination of S2 red-edge VIs and LiDAR metrics produced the
best R2

adj of 0.82 with an RMSE of 0.33. Although HSI VIs performed best in OLe estimation,
they seem less useful in ULe estimation compared with S2 VIs and LiDAR metrics.

As shown in Figure 3, the best univariate and multivariate regression models were
applied to generate maps of Ole and Ule, respectively. Maps generated by the multivariate
regression model (Figure 3b,d) are more homogenous than the univariate ones for both OLe
and ULe (Figure 3a,c). A similarity in spatial distribution of both OLe and ULe values was
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observed, although different predictors and methods were employed. For double-layered
mangroves in region 1 and 2 (region are shown in Figure 1), OLe values are moderate
(between 2 and 4), where OLe values of AMVA are slightly higher than KAOB. Meanwhile,
the understories beneath them have relatively high ULe (ranging from 2.1 to 2.9 or 2.1 to
4.2). The OLe distribution in region 3 is complex. Young mangroves near the seaside and
along the fringe have the highest OLe (3–5), while the adjacent KAOB region 2 is found
to have lower OLe (less than 2). The ULe in region 3 is relatively low, showing a gradual
decrease toward the seaside. Prediction bias can be indicated by comparing the measured
and predicted LAI values. The OLe map produced by the combination of predictors has
a slightly higher OLe compared to the map predicted by the single HSI VI, especially for
double-layered areas. Areas with low OLe (below 1.2) may be overestimated while areas
with OLe higher than 2 may be underestimated. The estimated LAI of areas where ULe was
less than 2 has a larger bias than where ULe was 3 or higher. For high ULe (2.5–3.5), the
bias between observation and estimation could be even larger if using the single LiDAR
metric Pground.

Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 22 
 

 

 
Figure 3. Maps of estimated leaf area index (LAI), (a). OLe estimated from individual HSI VI, (b). 
OLe estimated from HSI VI + LiDAR metrics, (c). ULe estimated from individual LiDAR metrics, (d). 
ULe estimated from LiDAR metrics + S2 VIs. Scatter Plots (a1), (b1), (c1) and (d1) show the correla-
tion between measured and predicted LAI for (a), (b), (c), and (d), respectively. Predictors used to 
generate each map are noted in Table 1 in superscript. Species names in scatter plots are Kandelia 
obovata (KAOB) and Avicennia marina (AVMA).  

4. Discussion 
4.1. Estimation of OLe and ULe 

OLe and ULe were predicted with varying degrees of accuracy by using different data 
sources. OLe exhibited better relationships with predictors because both spectral reflec-
tance and LiDAR pulses were dominated by the upper canopy. HSI was found as the most 
useful data to estimate OLe in the experiments, which may benefit from its high spatial 
and spectral resolution. The high spatial resolution HSI provided more detail of the man-
grove stand. For instance, the overstory canopy, gaps, and shadow could be distinguished 

Figure 3. Maps of estimated leaf area index (LAI), (a) OLe estimated from individual HSI VI, (b) OLe
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4. Discussion
4.1. Estimation of OLe and ULe

OLe and ULe were predicted with varying degrees of accuracy by using different data
sources. OLe exhibited better relationships with predictors because both spectral reflectance
and LiDAR pulses were dominated by the upper canopy. HSI was found as the most useful
data to estimate OLe in the experiments, which may benefit from its high spatial and spectral
resolution. The high spatial resolution HSI provided more detail of the mangrove stand.
For instance, the overstory canopy, gaps, and shadow could be distinguished (Figure S1).
Additionally, the narrow bands of the HSI are thought to be less sensitive to the background
when compared to broad bands [77]. As a result of these factors, in the HSI, the spectral
properties of the overstory might be less confounded by background information. Table 2
compares the correlation coefficient between field-measured LAI (OLe and ULe) and S2
spectral bands and selected HSI spectral bands. For easy comparison, hyperspectral bands
with wavelengths closest to the central wavelength of each S2 band were selected. As the
wavelength range of HSI is 400 nm–1000 nm, SWIR bands are not available in HSI. In the
visible wavelengths range from 443 nm to 705 nm, S2 and HSI spectral bands show similar
correction levels to OLe. However, in the red-edge to NIR bands (740 nm–945 nm), HSI
spectral bands produced better correlation coefficients (0.773–0.847) to OLe when compared
with S2 spectral bands.

Table 2. A comparison of the correlation coefficients between field-measured leaf area indices (OLe:
overstory leaf area index; ULe: understory leaf area index) and Sentinal-2 (S2) spectral bands/selected
hyperspectral (HSI) bands.

S2 Bands B1
443 nm

B2
490 nm

B3
560 nm

B4
665 nm

B5
705 nm

B6
740 nm

B7
783 nm

B8
842 nm

B8A
865 nm

B9
945 nm

B11
1610 nm

B12
2190 nm

OLe −0.154 −0.551
***

−0.528
***

−0.606
***

−0.347
*

0.683
***

0.730
***

0.736
***

0.713
***

0.314
*

−0.563
***

−0.678
***

ULe −0.495
***

−0.645
***

−0.592
***

−0.609
***

−0.399
** 0.230 0.338

*
0.474

***
0.400

**
0.385

** 0.037 −0.160

HSI bands 444 nm 491 nm 560 nm 666 nm 706 nm 740 nm 782 nm 842 nm 864 nm 945 nm

OLe −0.564
***

−0.556
*** 0.030 −0.527

*** 0.168 0.773
***

0.837
***

0.840
***

0.838
***

0.847
***

ULe −0.334
*

−0.307
*

−0.286
*

−0.226 −0.255
. 0.057 0.168 0.186 0.192 0.206

The significance of correlation is indicated by * symbol, where p-value ranges to symbols is listed as: 0–0.001 to ***;
0.001–0.01 to **; 0.01–0.05 to *; 0.05–0.1 to .; 0.1–1.0 no symbol.

The ULe model fitting obtained less accuracy compared with OLe, which may result
from inherent factors in both remote sensing data and environment. Understory infor-
mation could be partially blocked by the upper canopy or affected by shadow, leading
to weaker relationships between ULe and predictors. Therefore, it is particularly useful
to combine spectral and spatial features to provide as much information as possible for
the understory. LiDAR data are more adaptable for ULe prediction as a result of their
penetration characteristics. S2 VIs appeared to be more helpful than HSI VI for ULe esti-
mation. As shown in Table 2, visible bands (443 nm–705 nm) and red-edge to NIR bands
(783 nm–945 nm) of S2 show significant correlations to Ule, with correlation coefficients be-
tween 0.338 and 0.645. Although the blue, green, and red-edge bands of HSI are negatively
correlated to ULe, the correlation and significance are weaker than the corresponding S2
spectral bands. The broad spectral bands may have received more spectral signal from
the background than narrow spectral regions [77]. The bandwidth of the hyperspectral
data is much narrower than the corresponding S2 spectral band shown in Table 2. As a
result, S2 bands commonly showed better correlations with ULe, and similarly, S2 VIs were
more capable of reflecting ULe than narrowband VIs. Future studies may attempt to apply
multiple contiguous hyperspectral bands to better extract understory signals. Meanwhile,
as parts of the understory can be seen from the gaps of canopy, coarse pixels in S2 imagery
are more likely to capture a certain amount of understory signal. The understory in HSI
was often affected by the shadow (Figure S1), which lowers the sensitivity to the under-
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story. This might explain the relatively poor regression results between HSI VIs and ULe.
Additionally, the canopy gaps and shadow captured in HSI could introduce noise and led
to a heterogeneous OLe map (Figure 3a).

Unlike previous studies mainly composed of low herbs, ferns, grasses, and moss [24,45],
understories in the study area were composed of shrub mangroves and poaceae, with sub-
stantial variation in canopy density and height. Previous studies found that ULe was
negatively correlated with OLe in both deciduous and coniferous forests because the over-
story gap fraction was directly related to light availability, which was a key factor restricting
the growth of the understory [24,45]. However, OLe and ULe showed no significant corre-
lation in our case, which may relate to factors such as species and historical disturbances
apart from light availability. The average OLe of AVMA was observed to be higher than
KAOB, but the understory LAI under the AVMA is not necessarily lower than under the
KAOB (Table S1). For example, only the AVMA species defoliated in late spring due to
moth pests. The understory of defoliated areas was able to receive abundant sunlight
and grow rapidly. After that, AVMA leaves grew back into a healthy and lush canopy in
summer [78,79].

4.2. Important Features and Regression Methods

According to the regression results in Table 1, VIs derived from red-edge, NIR, and
SWIR that are highly correlated to OLe (Table 2) are most useful for OLe estimation. Specif-
ically, the contiguous spectral sampling provided by the HSI allows for subtle spectral
details to be resolved, especially for red-edge slope/ratio characteristics, which might
make the HSI red-edge indices less liable to saturation at high LAI levels [14,20,80]. For
instance, IRECI derived from HSI outperformed other variables as it characterizes the
red-edge slope by using two red-edge bands while also making use of the minimum and
maximum vegetation reflectance found in red and NIR bands, respectively [29]. For S2 VIs,
compared with the NIR band (842 nm) that can significantly correlate to both OLe and Ule,
SWIR bands (1610 nm and 2190 nm) only show negative correlations with OLe. This allows
SWIR bands to reflect the canopy closure and meanwhile eliminate the effect from the
background [81], specific to the understory in this study. As a result, SWIR VIs such as NDII
and NBR were found to be more useful than other red-edge or NIR VIs. Although LiDAR
metrics were less important than VIs for estimating OLe, a few useful LiDAR metrics were
identified. Specifically, zsd (the standard deviation of return height) reflected the roughness
of the canopy surface and zkurt (kurtosis of return height) indicated the number of returns
in the main canopy. We calculated LCI (last echo cover index) by using the proportion
of last and single returns in overstory layers, which could more accurately describe both
between-crown and within-crown canopy gaps [82].

The penetration attribute of LiDAR data played an important role in estimating ULe.
Some LiDAR metrics could represent the understory or low layered returns, for example,
den_u reflected the return density of the understory and Pground and zpcum6 emphasized
the percentage of return in the low layer. These LiDAR metrics using returns within
a height range corresponding to the understory could help to eliminate the noise from
other components and improve the ULe estimation accuracy. S2 VIs such as MTVI2 and
MCARI2 have similar mathematical forms that calculate the difference between the red-
edge (783 nm) and the red (665 nm) or green (560 nm) band. Previous studies indicated
that MTVI2 and MCARI2 were less sensitive to chlorophyll concentration variations and
exhibited the best linearity with green LAI. Consequently, VIs that were robustly coupled
with LAI were more likely to be selected to present the weak signals from the understory.

It was noted that exponential regression consistently produced the best results between
LAI and individual VIs or LiDAR metrics. The results demonstrated a robust non-linear
relationship between predictors derived from remote sensing data and field-measured LAI
in our case. Similarly, non-parametric regression methods such as RFR and PLSR commonly
performed better when handling multiple variables [83–85]. RFR is well-suited to handling
collinear features by searching for the best split for nodes of the decision tree [86]. In
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PLSR, it is possible to interpret the underlying physical variables to latent variables [87].
However, the explanatory power of the regression model may be limited by training data
for a relatively good fitting result. For instance, it is difficult to furthermore improve the
OLe regression model, even by combining the HSI VIs and LiDAR metrics. With limited
field observations for this study, we applied feature selection to reduce input variables and
five-fold cross-validation to overcome overfitting problem. While in some cases, especially
when combining the VIs and LiDAR metrics, the overfitting problem may happen with the
small dataset. More field data will be collected in the future to improve the explanatory
power and prevent overfitting.

4.3. Technical Challenges and Outlooks

Actual LAI might be overestimated by PAI but removing woody areas from DHP
images was difficult. Nevertheless, it is important to recognize that satellite and airborne
data always contain a mixed signal of leaf and woody components, and this might balance
the relationship between predictors and observations. The direct methods would acquire
the most accurate LAI. However, destructive sampling is commonly prohibited in mangrove
reserves; therefore, accurate overstory, understory, and total LAI could not be obtained in
this study. Fieldwork is particularly challenging in mangrove areas due to the swampy
mudflats and tidal fluctuation. Limited by the field environment and manpower, we could
not measure understory LAI in a more ideal condition at the time—for instance, raising the
lens at least 2 m above the understory or either acquired more observations. It would be
ideal to design a solution to better measure the understory LAI and collect more samples for
building a robust estimation model. It is worth estimating the total LAI in the multi-layered
forest in future studies, so that the contribution of each component to the total LAI could be
understood [42]. Rigorous approaches to measure total LAI should be designed to collect
the total LAI, which will need to consider the saturation in LAI of the equipment and the
measurement distance for both the overstory and understory. The above-mentioned factors,
such as species and disturbances, that might affect the relationship between the upper and
lower layers should also be considered when building the total LAI estimation model.

5. Conclusions

Our results demonstrated the potential of multi-source remote sensing data and re-
gression methods in OLe and ULe estimation over double-layered mangrove areas. Both
spatial and spectral resolution could affect the interpretation of overstory and understory
reflectance signals from optical images. High spatial and spectral resolution HSI could
better eliminate the influence from the background and performed best in OLe modeling.
Meanwhile, it was important to be aware of the background signal captured by multispec-
tral fine resolution S2 images, which was useful for ULe estimation. Novel VIs constructed
by red-edge, NIR, and SWIR bands have the potential to improve LAI estimation. The
penetrability of LiDAR data alleviated the challenges in ULe estimation. LiDAR data
stratified the overstory and understory, which helped to eliminate noise from other forest
components. The synergetic use of LiDAR metrics and VIs demonstrates their complemen-
tary nature for overcoming limitations such as weak signals and shadow effects for the
understory. The results indicated the feasibility of statistical regression methods for both
OLe and ULe estimation. Non-linear and non-parametric regression methods frequently
produced the best model fitting in this study.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs15102551/s1, Figure S1: Examples of mangrove pixels in Sentinel-
2 image (S2), hyperspectral imagery (HSI), and vertical profile in LiDAR data based on field plots;
Table S1: Statistical summary of effective leaf area index (LAI) for field plots.

https://www.mdpi.com/article/10.3390/rs15102551/s1
https://www.mdpi.com/article/10.3390/rs15102551/s1
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Appendix A

Table A1. A list of vegetation indices calculated for LAI estimation.

Index Description Formula Reference

Conventional NIR indices

NDVI Normalized Difference Vegetation Index (NIR − Red)/(NIR + Red) [88]

DVI Difference Vegetation Index NIR − Red [89]

CIg Green Chlorophyll Index (NIR/Green) − 1 [90]

WDRVI Wide Dynamic Range Vegetation Index (a × NIR − Red)/(a × NIR + Red) [91]

NR Normalized Red Band Index Red/(NIR + Red + Green) [92]

NNIR Normalized NIR Band Index NIR/(NIR + Red + Green) [92]

NLI Non-Linear Index (NIR2 − Red)/(NIR2 + Red) [93]

RDVI Renormalized Difference Vegetation Index (NIR− Red)/√(NIR + Red) [94]

SPVI Spectral Polygon Vegetation Index
0.4× 3.7× (ρ800− ρ680)− 1.2×√

(ρ530− ρ670)2 [95]

Atmospheric indices

ARVI Atmospherically Resistant Vegetation Index NIR−Red−(Blue−Red)
NIR+Red−(Blue−Red) [96]

EVI Enhanced Vegetation Index 2.5×(NIR−Red)
NIR+6×Red−7.5×Blue+1 [97]

GARI Green Atmospherically Resistant Index NIR−(Green−γ(Blue−Red))
NIR+(Green−γ(Blue−Red)) [41]

VARIg Visible Atmospherically Resistant Index (Green−Red)
(Green+Red−Blue) [98]

Red edge indices

CIre Red-Edge Chlorophyll Index (B7/B5) − 1 [90]

WDRVI-re Red-Edge Wide Dynamic Range Vegetation Index (a × Red Edge − Red)/(a × Red Edge + Red) [99]
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Table A1. Cont.

Index Description Formula Reference

PSRI Plant senescence Reflectance Index (ρ650− ρ550)/ρ750 [100]

MTCI MERIS Terrestrial Chlorophyll Index (ρ750− ρ708)/(ρ708− ρ680) [101]

MCARI Modified Chlorophyll Absorption Ratio Index ρ700–(ρ1640−ρ2150)
ρ860+ρ1640−ρ2130 [102]

MCARI2 Modified Chlorophyll Absorption Ratio Index Improved
1.5×(1.2×ρ800−ρ670)−2.5×(ρ800−ρ550))√
(2×ρ800+1)2−(6×ρ800−5×

√
ρ670)−0.5

[75]

TCARI Transformed Chlorophyll Absorption Reflectance Index
3× (ρ700− ρ670)− 0.2×

(ρ700− ρ550)× ρ700
ρ670

[103]

TCARI2 Transformed Chlorophyll Absorption Reflectance Index 2
3× (ρ705− ρ770)− 0.2×

(ρ705− ρ550)× ρ705
ρ770

[37]

TVI Triangular Vegetation Index 120×(ρ750−ρ550)−200×(ρ670−ρ550)
2 [77]

MTVI2 Modified Triangular Vegetation Index—Improved
1.5×(1.2×(ρ800−ρ550 )−2.5×(ρ670−ρ550))√
(2×ρ800+1)2−(6×ρ800−5×

√
ρ670)−0.5

[75]

IRECI Inverted Red-Edge Chlorophyll Index ρ783−ρ665
ρ705/ρ740 [29]

S2REP Sentinel-2 Red-Edge Position Index 705 + 35×
(

ρ783+ρ665
2

)
−ρ705

ρ740−ρ705
[29]

NDre1m Modified Red-Edge Normalized Difference 1 ρ750−ρ705
(ρ750+ρ705−2×ρ445) [28]

NDre2m Modified Red-Edge Normalized Difference 2 ρ783−ρ705
(ρ783+ρ705−2×ρ445) [28]

SRre1 Red-Edge Simple Ration 1 ρ750–ρ445
ρ700−ρ445 [28]

SRre2 Red-Edge Simple Ration 1 ρ783–ρ445
ρ700−ρ445 [28]

MSRren Modified Simple Ratio Red-Edge Narrow

(
ρ865
ρ700

)
−1√(

ρ865
ρ700

)
+1

[39]

BSItian Tian’s three-band spectral index ρ605−ρ521−ρ682
ρ605+ρ521+ρ682 [104]

SWIR indices

NDII Normalized Difference Infrared Index ρ819–ρ1649
ρ819+ρ1649 [105]

NBR Normalized Burn Ratio (NIR − SWIR)/(NIR + SWIR) [106]

NMDI Normalized Multi-Band Drought Index ρ860–(ρ1640−ρ2150)
ρ860+ρ1640−ρ2130 [107]

Table A2. A list of LiDAR metrics calculated for leaf area index estimation.

Abbreviation of LiDAR Metric Metric Details Reference

Statistical metrics

zmax Maximum height

zmean Mean height

zsd Standard deviation of height distribution

zskew Skewness of height distribution

zkurt Kurtosis of height distribution

pzabovezmean Percentage of returns above mean height
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Table A2. Cont.

pzabove 2 Percentage of returns above 2 m

zqx
(x = 5, 10, 15 . . . 95) Xth percentile (quantile) of the height distribution

zpcumx
(x = 1, 2, 3 . . . 9)

For each plot, the LiDAR height range was divided into 10 equal intervals.
Cumulative percentage of return in the Xth layer [108]

den Point density of all returns

den_o Point density of overstory returns

den_u Point density of understory returns

Penetration related metrics

CRR Canopy relief ratio, [109]

cover_o Overstory canopy cover is the proportion of overstory returns over
vegetation returns

cover_u Understory canopy cover is the proportion of understory returns over
vegetation returns

LCI Last Echo Cover Index [82]

SCI Solberg’s Cover Index [49]

SCI_O Modified Solberg’s Cover Index using overstory returns

SCI_U Modified Solberg’s Cover Index using understory returns

LPIFR LPIFR =
∑ RO( f irst)

∑ R f rist
[110]

ABRI ABRI = ∑ RO
∑ RU

[111]

Pgap_weight Pgap_weight = 1− ∑ 1/NoR
Ntotal

[112]

pground Pground =
∑ Rground

∑ Rtotal

BL BL =

(
∑ I<T(single)

∑ I(total)

)
+

√
∑ I<T(last)

∑ I(total)(
∑ I( f rist)+∑ I(single)

∑ I(total)

)
+

√
∑ I(intermediate)+∑ I(last)

∑ I(total)

[110]

BLcanopy BLcanopy =

(
∑ IO( f rist)+∑ IO(single)

∑ I(total)

)
+

√
∑ IO(intermediate)+∑ IO(last)

∑ I(total)(
∑ I( f rist)+∑ I(single)

∑ I(total)

)
+

√
∑ I(intermediate)+∑ I(last)

∑ I(total)

[64]

BLunder BLunderstand =

(
∑ IU(Frist)+∑ IU(Single)

∑ I(Total)

)
+

√
∑ IU(Intermediate)+∑ IU(Last)

∑ I(Total)(
∑ I(Frist)+∑ I(Single)

∑ I(Total)

)
+

√
∑ I(Intermediate)+∑ I(Last)

∑ I(Total)

[64]

R f rist: first returns; RO: overstory returns, RU : understory returns; Rground: ground return; Ntotal : total number of
returns; NoR: number of returns; I: intensity
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