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Abstract 32 

Seagrasses are marine flowering plants, which form extensive meadows in intertidal and shallow-water marine 33 

environments. They provide a wide range of ecosystem services, which directly or indirectly benefit humans, and 34 

can be grouped into four broad categories: provisioning (e.g., food production); regulating (e.g., carbon 35 

sequestration); supporting (e.g., primary production); and cultural (e.g., recreational, and eco-tourism). This study 36 
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provides a review of publications focusing on seagrass ecosystem services provision, to identify knowledge gaps 37 

and improve our understanding of the use of these habitats as nature-based solutions to societal challenges, such 38 

as climate change. Results showed that some ecosystem services, namely food provision, carbon sequestration 39 

and maintenance of biodiversity/nursery habitats receive a higher level of focus and attention than others, such as 40 

regulation of diseases and social relations, which are rarely, if ever, included in studies. It is clear that in order to 41 

fully comprehend the nature-based solution potential held by seagrass ecosystems, studies need to consider 42 

ecosystem services as a whole, and also combine and share results across global regions, to better understand the 43 

potential impacts of degradation and loss of these ecosystems worldwide. Suggestions include applying novel 44 

technologies such as remote sensing and ecological niche modelling to address some of the main gaps in seagrass 45 

research, like meadow extent and connectivity within landscapes, to better incorporate preservation of seagrass 46 

ecosystems in marine management plans.  47 

Keywords: Seagrass, ecosystem services, conservation, nature-based solutions.  48 

Introduction  49 

Marine and coastal ecosystems and their related economic and social services have been suffering profound 50 

impacts due to human induced climate change (IPCC, 2018). Thus, a better understanding of how these 51 

ecosystems function, the services they provide (in both ecological and economic terms), and what is at stake 52 

should we lose them, are necessary parts of any coastal management plan (Fisher et al., 2009; Heckwolf et al., 53 

2021). Vegetated coastal systems characterise ecologically important areas where the land meets sea and are 54 

generally composed of plant species adapted to either fully or partially submerged environments (Short et al., 55 

2016). These systems are home to a wide range of ecological and economic activities (Royal Society, 2017), and 56 

provide numerous ecosystem services, including the provision of nursery habitats for commercially important 57 

marine species, raw materials, coastal protection, and enhancing water quality (Lau, 2013).  Vegetated coastal 58 

systems are sometimes referred to as "blue carbon" ecosystems due to their role as carbon sinks (Mcleod et al., 59 

2011; Pendleton et al., 2012). Thus, by capturing and sequestering carbon from the atmosphere, these blue carbon 60 

ecosystems play an important role in climate change mitigation (Fourqurean et al., 2012; Veettil et al. 2018; Lima 61 

et al. 2020; Ward, 2020). 62 

Coastal ecosystems, when in pristine condition, naturally provide diverse benefits to both humans and nature. 63 

Therefore, effective nature conservation strategies are necessary to guarantee their continued or enhanced 64 

ecosystem service provision (Watson & Zakri, 2003; Rigo et al., 2021). The Millennium Ecosystem Assessment 65 



(2005) uses a broad definition that equates ‘the benefits people obtain from ecosystems’ with the term ‘ecosystem 66 

services.’ As per the definition by the Millennium Ecosystem Assessment Board, ‘an ecosystem is a dynamic 67 

complex of plant, animal, and microorganism communities and the non-living environment, interacting as a 68 

functional unit’, including humans as an integral part of many ecosystems (Watson & Zakri, 2003). Amongst 69 

vegetated coastal systems, seagrass meadows have been identified as important ecosystem service providers, 70 

especially as there is strong evidence that healthy seagrass beds enhance the productivity of neighbouring systems 71 

like mangroves, salt marshes and coral reefs (de los Santos et al., 2020; Cziesielsk et al., 2021).  72 

Seagrasses 73 

Seagrass meadows have a pan-global distribution, being found in shallow coastal areas of all continents, except 74 

Antarctica (Garrard and Beaumont, 2014). Seagrasses occupy soft-bottom sediments of the world’s oceans from 75 

the tropics to the temperate zones (World Resources Institute, 2005), extending from the intertidal zone to depths 76 

of up to 40 m (Gutiérrez et al. 2011). There is a high variation in the estimated global areal coverage of seagrass 77 

meadows, ranging from 17 x 106 to 60 x 106 ha worldwide (Hemminga & Duarte, 2000; Mcleod et al. 2011). This 78 

uncertainty highlights the need for more research, to better map and understand seagrass global distribution, 79 

including seasonal and long-term temporal variations (Garrard and Beaumont, 2014; Macreadie et al., 2018). 80 

Seagrasses are marine angiosperms (Figure 1) adapted to exist fully submerged in brackish or salt water, where 81 

they promote sediment deposition, stabilise substrates, decrease water velocity and function as part of the estuarine 82 

filtration system, removing contaminants from the water column (Orth et al., 2006; Campagne et al., 2015). 83 

Seagrasses also provide a range of other ecosystem services to the marine environment, including nutrient cycling, 84 

supporting a range of commercially important fish species as a nursery habitat and as an important food source 85 

for mega-herbivores such as green turtles, dugongs, and manatees (Costanza et al., 1997; Hemminga & Duarte 86 

2000; Orth et al., 2006; Björk et al., 2008; Nordlund et al., 2018; de los Santos et al., 2020).  87 

Seagrasses can also act as ecological engineers, altering their environment to improve conditions by reducing 88 

suspended sediment concentrations, which can increase light availability and reduce water column pollutant 89 

levels, resulting in improved conditions for seagrass growth and survival as well as other marine photosynthetic 90 

organisms (van der Heide et al., 2007 Paquier et al., 2014; Serrano et al., 2016). Seagrass canopies can also reduce 91 

wave attenuation, and this combined with a dense root matrix can further promote sediment deposition and prevent 92 

erosion (Potouroglou et al., 2017). Some species, particularly those with high canopy density and above ground 93 



biomass have been shown to reduce current velocities by up to 90%, resulting in net sediment accretion rates of 94 

up to 2 mm year-1 (Hogarth, 2015).  95 

Therefore, seagrasses directly and indirectly provide a range of ecosystem services, which vary by geographical 96 

region and genera (Cullen-Unsworth et al., 2014; Nordlund et al., 2016; Nordlund et al., 2018). The diversity of 97 

ecosystem services is categorised as provisioning (ecological goods, such as food, fisheries, etc. provided directly 98 

by seagrasses or indirectly by associated species), regulation and maintenance (ecological services, such as climate 99 

regulation, water filtration, and ecological processes), supporting (primary production, soil formation) and cultural 100 

(spiritual or knowledge values, such as recreation, tourism, and education) (Campagne et al., 2015; Nordlund et 101 

al., 2016).  102 

  Nature-Based Solutions 103 

Nature-based solutions (NbS) are defined as innovations inspired and supported by nature, which provide 104 

environmental, social, and economic benefits, and help build resilience by benefiting biodiversity and supporting 105 

the delivery of a range of ecosystem services (Seddon, et al., 2019; Wild et al., 2020; UNEP, 2020). NbS can 106 

address such current and vital societal challenges as climate change and associated impacts, environmental 107 

pollution, food security and water scarcity. NbS include established approaches such as ecosystem-based 108 

adaptation, ecosystem-based disaster risk reduction, green and blue natural infrastructure, as well as the more 109 

recently described "natural climate solutions" (Cohen-Shacham et al., 2016, 2019; Griscom et al., 2017; Chausson 110 

et al., 2020).  111 

The potential of seagrass ecosystems as NbS, including climate mitigation, is evidenced through the high carbon 112 

sequestration and storage potential, which could be used for CO2 offsets in nationally determined contributions, 113 

particularly in the case of successful restoration (Stankovic et al., 2021; Lima et al., 2022). Stankovic et al. (2021) 114 

suggest that successful and well-designed restoration projects and conservation measures, could result in seagrass 115 

meadows contributing up to 1.43% towards CO2 offset of countries' total emissions by 2030 (business-as-usual, 116 

BAU scenario). However, the climate solution potential of seagrasses is still one of the most poorly represented 117 

as a NbS (Chausson et al., 2020; UNEP, 2020; Veettil et al. 2021), partly because seagrass meadows are especially 118 

vulnerable to anthropogenic impacts from both adjacent terrestrial and marine systems (Unsworth et al., 2019).  119 

Such impacts can be physical, resulting in direct removal of plants, or chemical, polluting both the sediment and 120 

water (Mazarrasa et al., 2017). Moreover, storms and severe weather events, associated with climate change, can 121 

affect seagrass populations by uprooting plants and mobilizing sediments, increasing turbidity, and reducing water 122 



quality and light penetration (Cardoso et al., 2008). Additionally, fluctuations in sea temperature are considered 123 

the primary climate change related threat to seagrass ecosystems, which could lead to alterations in seagrass 124 

distribution and metabolism, subsequently reducing net autochthonous carbon sequestration potential (Clausen et 125 

al., 2014; Hyndes et al., 2016; Mazarrasa et al., 2018). Furthermore, sea level rise may alter habitat availability 126 

for intertidal seagrass species, and as projected by the IPCC (2019) with medium confidence under the RCP8.5 127 

emission scenario by the end of the century, vegetated coastal ecosystems in general are at high risk of local losses.  128 

Past studies estimate the value of coastal ecosystem services to be US$31.6 tr yr−1 covering seagrass meadows 129 

and algae beds as well as tidal marshes and mangroves (Bertram et al., 2021). However, compared to other coastal 130 

ecosystems (such as mangroves and corals) that also benefit humans, there has been substantially less research 131 

focus on identifying and valuing ecosystem services provided by seagrasses, mainly due to the absence of detailed 132 

information on marine habitat distribution and the difficulties in assessing both processes and functions (Maes et 133 

al., 2012; Himes-Cornell et al., 2018). Consequently, the value of seagrasses as an ecosystem is often not 134 

considered in marine management decisions, and rarely incorporated into NbS projects (Duarte et al., 2008; Grech 135 

et al., 2012; Chausson, et al., 2020). In addition, non-monetary values of seagrasses are important, with some 136 

studies assessing non-monetary values by using biological proxies, such as area coverage, the biomass of bird and 137 

mammal groups that seagrass supports, or the energy resources invested by nature when estimating the benefits 138 

of seagrass as a habitat (Plummer et al., 2013; Vassallo et al., 2013).  139 

The lack of public awareness concerning the importance of the ecosystem services that seagrasses provide is 140 

arguably one the biggest threats to their conservation. This suggests that studies highlighting the importance of 141 

ecosystem service provision by seagrasses can raise the profile of this important habitat and provide support for 142 

their protection and conservation (Nordlund et al., 2018; Quevedo et al., 2020). Thus, this research evaluates and 143 

lists the services provided by seagrass ecosystems by conducting a comprehensive review of the literature, in 144 

order to identify potential gaps in knowledge and areas of focus or concern for the future. The aim of this review 145 

is to contribute to a better understanding of how seagrass ecosystem services have been studied so far, with the 146 

goal of constructing a knowledge-base for future NbS projects. The objective of this study is to review how the 147 

main ecosystem services provided by seagrass meadows have been reported over time to highlight the need for 148 

protection and preservation of their natural assets, in order to successfully develop NbS that incorporates these 149 

extremely productive ecosystems.  150 

 151 



Methods 152 

Literature Search  153 

A systematic literature review was conducted in order to better understand the range of studies that have been 154 

published to assess the ecosystem services provided by seagrasses. The search centred on studies explicitly 155 

focused on ecosystem services (Figure 2). The literature search was conducted using the Web of Science scientific 156 

citation database. The studies were searched in the Web of Science Core collection (editions: Science Citation 157 

Index Expanded, Social Sciences Citation, Conference Proceedings Citation, Emerging Sources Citation, 158 

Conference Proceedings, Citation – Social Science & Humanities and Book Citation Science) considering the 159 

period between 1900 and March 2022, using the following search string applied to all fields: (seagrass*⁄ OR "sea 160 

grass*/") AND ("ecosystem⁄ service*⁄"), resulting in a total of 684 papers. A second search was conducted using 161 

the same search string but applied to the field topic (title (title, key words, and abstract), resulting in a total of 654 162 

papers. 163 

For the purpose of this study, the search focused on peer reviewed papers, excluding grey literature. It is likely 164 

that some of the literature on ecosystem services provided by seagrasses may have been published as working 165 

papers, government reports, or other additional grey literature sources. However, it is not feasible to develop 166 

search criteria that will identify all such possible studies within the topic of this study. Moreover, there are likely 167 

additional publications on studies for ecosystem services in seagrass habitats that do not mention the specific key 168 

words included in our search criteria.  169 

Selection Criteria 170 

In order to select articles to include in this review, all 684 publications were screened. Only publications that 171 

mentioned seagrass ecosystem services in the title, abstract or key words, or if the content was unclear reading 172 

the abstract, were retained, yielding 654 publications. Through this selection, the publications retained from the 173 

Science Citation Index Expanded were used for full-text reading and analysis. After full text reading, 105 174 

publications (16% of all screened publications) were retained that focused on the description, valuation, or 175 

inclusion of one or more ecosystem services provided by seagrasses as the main topic of research, even if this was 176 

integrated into analyses with other coastal habitats such as, mangroves, salt marshes or coral reefs. 177 

Data extraction 178 



For those final selected publications, the publication year; type of publication; the ecosystems services discussed; 179 

the geographic area where the study was conducted; and the threats to the studied ecosystems were extracted. 180 

Ecosystem services were organised into categories based on the classification scheme defined by the Millennium 181 

Ecosystem Assessment (2005). The Millennium Ecosystem Assessment was chosen as a framework for this study 182 

as it was conducted as a multiscale assessment, with interlinked assessments undertaken at local, national, 183 

regional, and global scales, incorporating seagrass ecosystem services within their Marine, Coastal, and Island 184 

Systems section. 185 

Results 186 

Overall, there has been an annual increase in the number of studies including evaluation of seagrass ecosystem 187 

services, over the 23 years under study, with 19% (n=20) of the cumulative total of studies being published in 188 

2021 (Figure 3). Studies ranged from reviews of existing ecosystem services, assessment of current threats, 189 

evaluation of public or stakeholders’ perspectives, and knowledge gaps, to models for assessing ecosystem 190 

services and valuation. 191 

Of the 105 studies analysed, 37% (n=39) had a global approach to seagrass ecosystem services, 34% (n=36) 192 

focused on specific global regions, mainly meadows in the Caribbean (n=5), Africa (n=5), and the Mediterranean 193 

(n=3), and 42 studies analysed seagrass ecosystem services at national level, representing 40% of the total number. 194 

The most prolific nations studied were the USA (n=9) and Spain (n=8), followed by Australia with 4 studies and 195 

Sweden and the UK, both with 3 studies each (Table S1). Approximately half of the analysed studies focused 196 

solely on ecosystem services provided by seagrasses (n=55), while the other half provided a combined approach, 197 

grouping seagrasses with other blue carbon ecosystems such as mangroves, coastal wetlands, kelp forests and 198 

coral reefs. Out of the 55 studies focussing on seagrass, 17 (16% of the total) concentrated on Posidonia oceanica 199 

(Linnaeus, 1813) meadows specifically. It was also noted that more recent studies focused exclusively on 200 

ecosystem services provided by seagrass habitats, whilst older ones usually combined seagrasses within wetlands 201 

and/or other coastal habitats such as oyster and coral reefs (Table S1).  202 

Most studies described threats to seagrasses and their related ecosystem services. Although studies reported those 203 

threats differently, the nomination of threats provides an insight into the potential for changes in the area of intact 204 

seagrass ecosystems as well as challenges that resource managers likely face within each region, such as to 205 

fisheries. Within the studies evaluated, the greatest emphasis was placed on threats associated with land 206 

conversion, pollution, climate change, aquaculture, and unsustainable resource use (Table S1). The most cited 207 



threats in these studies have also been highlighted by the general literature on seagrass ecosystems, namely climate 208 

change, sea level rise, pollution, fishing, and urbanisation (Unsworth et al., 2019; Young et al., 2021; Moksnes et 209 

al., 2021). 210 

Altogether, ecosystem services were reported 396 times within the selected studies, and these have been classified 211 

into types relating to provisioning, regulating, supporting and cultural services (Table 1, Figure 4). Although the 212 

wider literature regularly cites the large number of ecosystem services and benefits provided by seagrass systems, 213 

these are not always the central focus of research, rather being used as a means to justify the importance of 214 

studying these habitats. It has also been noted that a subset of ecosystem services tends to be researched much 215 

more frequently than others (Figure 4). For example, researchers tend to focus on carbon sequestration (n= 60), 216 

food provision (n= 49 studies), maintenance of habitat and biodiversity/nursery habitats (n= 37), storm 217 

protection/extreme events (n= 31) and opportunities for recreation and tourism (n= 29) far more than any of the 218 

other seagrass ecosystem services (Table 1). In addition, regulating services overall tend to be studied much more 219 

frequently than other categories of ecosystem services, representing 42% of the total with 166 mentions, whilst 220 

the least explored were provisioning services with 17% of total reports (n=66) (Table 1; Figure 4). Moreover, 221 

some seagrass ecosystem services identified by the Millennium Ecosystem Assessment are rarely, or sometimes 222 

never, assessed including, provisioning services of fuel or fresh water (Table 1).  223 

In total, 17 studies provided valuation models for the ecosystem services described (Table S1). Services such as 224 

food security and raw material provisioning, and opportunities for recreation and tourism have mainly been 225 

assessed and used to value the ecosystem service provided by seagrass habitats. Researchers have used market 226 

prices to measure food, raw material, climate regulation (via carbon sequestration), and opportunities for 227 

recreation and tourism, while voided cost and replacement cost are generally used to value waste treatment and 228 

moderation of extreme events.  229 

Discussion  230 

Although the need to study ecosystem services for seagrasses is indicated by the increasing number of 231 

publications, findings are mostly focused on seagrass cover and distribution mapping (Hossain et al., 2014; 232 

Nordlund et al., 2016; Nordlund et al., 2018) except a few species-specific case studies focusing mainly on 233 

Posidonia spp. (Vassallo et al., 2013; Campagne et al., 2015). Moreover, this review demonstrates that some 234 

ecosystem services are studied much more frequently than others (e.g., food provision in 47% of studies, carbon 235 

sequestration in 57% of studies), likely because of stakeholder interest and current climate change mitigation 236 



policies. Several important services are poorly addressed (i.e., medicinal, and genetic resources, air quality, 237 

regulation of water flow, biological control, spiritual experience) or entirely absent (i.e., fuel, ornamental 238 

resources, inspiration for culture/art) in the literature, most likely due to poor data availability and the difficulty 239 

of quantifying the extent of service provision. However, although this systematic review followed established 240 

search protocols, it limited the search to the wider term ‘seagrass ecosystem services’ within titles, key words or 241 

abstracts, which restricts the analyses of studies where seagrass ecosystem services do not feature in those 242 

sections, even though they might be indirectly evaluated or quantified in other sections. Consequently, for 243 

example, few studies from the UK were included in the search, although researchers such as Lima et al., (2020, 244 

2022), Potouroglou et al., (2021), Green et al., (2018) and others have been assessing the UK’s seagrass carbon 245 

stocks with the aim of promoting natural climate solutions. Another limitation to consider is that this review 246 

focused on scientific journal publications only, which discards regional and global reports on the assessment of 247 

seagrasses’ ecosystem services and their potential as NbS, e.g. UNEP (2020). Nevertheless, this review suggests 248 

that there has been an increase in the inclusion of the term ‘ecosystem services’ in seagrass studies in more recent 249 

years, showing a positive trend of raising awareness of their importance as NbS.  250 

Seagrass carbon stock analyses have been reported worldwide, even though there might be a bias of reported 251 

global estimates, which mainly focus on values from tropical and Mediterranean seagrass meadows dominated by 252 

larger species, like Posidonia spp. (Johannessen and Macdonald, 2016; Serrano et al., 2018; Lima et al., 2022). 253 

Although this demonstrates that many studies have been focusing on seagrasses’ potential as NbS for climate 254 

change mitigation, these are not always evidenced as an ecosystem service provision, and even more rarely linked 255 

to the categories proposed by the Millennium Assessment, as described in this study. Therefore, despite a broad 256 

recognition of the importance of such data (Pascual et al., 2017), serious gaps in the identification of ecosystem 257 

services provided by seagrass ecosystems still exist, notably involving methodology, areal extent, and valuation 258 

of ecosystem services (Nordlund et al., 2018; de los Santos et al., 2020). The variability of ecosystem services 259 

across a seascape, including spatial (i.e. extent of a seagrass meadow and its ability to buffer storm waves) and 260 

temporal differences (seasonal fluctuations and density of seagrass biomass) may influence the assessment and 261 

quantification of some services and should be considered by researchers and policymakers (Barbier et al., 2011). 262 

Mapping the services provided by seagrass ecosystems is key to evaluating temporal and spatial alterations to 263 

their provision, particularly when taking a regional approach, such as those reviewed in this study for the 264 

Caribbean and Mediterranean (de los Santos et al., 2020). Mapping ecosystem services is one of the requirements 265 

in ecosystem accounting, tracking alterations in natural assets and evaluating links with economic and human 266 



activities (Veettil et al., 2020). Despite advances in seagrass ecosystem service assessment studies and extent 267 

mapping, there are still large global and regional data gaps (Veettil et al., 2020; 2022), predominantly as a result 268 

of the in situ approaches that are typically used including scuba/snorkeling surveys (Gotceitas et al., 1997), 269 

ground-based sampling (Moore et al., 2000), and hovercraft-based mapping (McKenzie, 2003).  270 

Even though projects focused on the protection and sustainable management of vegetated coastal environments, 271 

including seagrass, are not a novelty, such efforts are mainly aimed at generating benefits and services to local 272 

communities and biodiversity, as well as the fisheries and tourism sectors (Herr et al., 2014; Mitsch and Mander, 273 

2018). Unlike terrestrial ecosystems, few coastal programs have been established with the goal of conserving and 274 

restoring ecosystems as potential mechanisms for nature-based climate mitigation (carbon capture/ avoided 275 

emissions) solutions (Herr et al., 2011; Gattuso et al., 2018). Chausson et al., (2020) assessed the six most 276 

represented ecosystem types when examining the effectiveness of nature-based interventions to address climate 277 

impacts and emphasised that only 13% of studies included coastal ecosystems, with only one study, out of 386, 278 

focused on seagrass ecosystems specifically. Herr and Landis (2016) highlight that even though 151 countries 279 

contain at least one blue carbon ecosystem (seagrass, mangrove, or saltmarsh) with 71 containing all three, only 280 

28 countries include references to vegetated coastal systems in terms of climate crisis mitigation in their intended 281 

nationally determined contributions (INDCs). Hence, undertaking ecosystem service assessments, such as those 282 

presented in this review, could provide key data to identify conservation and management actions for these 283 

ecosystems to be incorporated in such strategies (Pabon-Zamora et al., 2008; Pascual et al., 2017). 284 

Half of the studies in this review focused on seagrass meadows specifically while the other half incorporated 285 

neighbouring ecosystems in their ecosystem services appraisal. It has been reported that in order to 286 

comprehensively assess ecosystem services, it is necessary to incorporate the multiple and synergistic 287 

characteristics of ecosystems (Koch et al., 2009; Barbier, 2012). However, studies continue to focus on each 288 

service independently, even though ecological interactions suggest that there is connectivity between vegetated 289 

coastal ecosystems, which impacts the availability and/or quality of the services (Barbier et al., 2011). By 290 

assessing ecosystem services collectively, like some of the papers in this review, studies could better delineate 291 

between functions, services, and benefits to avoid the problem of double counting that may arise due to the fact 292 

that some services (i.e., supporting and regulating) provide the basis and inputs for the assessment of others (Boyd 293 

& Banzhaf, 2007; Fisher et al., 2009; Kumar, 2012). For example, in recent years, ecological niche modelling has 294 

been used as an alternative tool to predict the effects of climate change on seagrass ecosystem distributions (Valle 295 

et al., 2014; Davis et al., 2016; Chefaoui et al., 2018), the potential distributions of certain seagrass-associated 296 



species (March et al., 2013; Chefaoui et al., 2016; Jayathilake & Costello, 2018) and seagrass conservation 297 

priorities (Valle et al., 2013; Adams et al., 2016). Ecological modelling can be a useful and promising tool for 298 

seagrass restoration programs, as it is used to determine the most favourable environmental conditions for species 299 

growth by collecting large scale datasets for seagrass meadows, including variables such as: light intensity; 300 

seagrass coverage and biomass; sediment accretion rates; water velocity; sediment parameters and porewater 301 

nutrients (Valle et al., 2011; Adams et al., 2016; Stankovic et al., 2019; Horn et al., 2021).  302 

To effectively include seagrass ecosystems in climate regulation policy, a comprehensive understanding of the 303 

factors that control carbon stocks, and sequestration rates, are urgently required (Lima et al., 2020). The reported 304 

loss of seagrasses capacity to sequester and store carbon is of high concern, highlighting the need for protection 305 

and conservation of these ecosystems (Unsworth et al., 2018). This should be undertaken to not only maintain the 306 

carbon stored in their sediments, but also to maintain important supporting ecosystem services linked to 307 

biodiversity, such as: critical feeding grounds for birds; important nursery areas for seabass; supporting threatened 308 

runs of migratory salmon and sea trout on their way to and from spawning grounds, as well as migration routes 309 

for eels to spawn at sea (Jackson et al., 2001; Hiscock et al., 2005; Lilley & Unsworth, 2014; Harding et al., 2016; 310 

Jones et al., 2018; Bertelli & Unsworth, 2018;  de los Santos et al., 2020). To date, conservation programs are 311 

rarely based on the explicit consideration of threats and drivers for a specific seagrass meadow, and instead focus 312 

on conserving seagrass as part of a broader management plan incorporating other habitats or species, like many 313 

reviewed by this study (Jones et al., 2018). One way to improve this and highlight their importance would be to 314 

include conservation and protection of seagrass ecosystems in financing mechanisms involving the reduction of 315 

CO2 emissions as a natural climate mitigation solution (Wylie et al., 2016; Herr et al., 2017; Howard et al., 2017; 316 

Barbier et al., 2018; Himes-Cornell et al., 2018). 317 

Some seagrass areas have been reported to rival coral reefs in terms of supporting biodiversity, and when 318 

associated with adjacent mangrove and barrier reef systems, they can provide more protection services than the 319 

corals themselves and compensate for long term degradation of the reefs (Guannel et al., 2016). The indirect value 320 

of the supporting services provided by seagrasses, including providing shelter and nutrition to a range of marine 321 

species, adds to their wider ecological importance (Hogarth, 2015; Nordlund et al., 2016; Nordlund et al., 2018). 322 

However, many ecosystem services provided by seagrasses remain poorly studied, or not clearly referenced, 323 

especially indirect use values and non-use values (Himes- Cornell et al. 2018). With the recent focus on the climate 324 

mitigation potential of blue carbon ecosystems in the realm of international conservation (e.g., the Paris 325 

Agreement, UN SDG 14), coastal managers would benefit from a better understanding of the valuation of services 326 



provided by seagrass ecosystems. Jones and Unsworth (2016), further note that there are a wide range of risks 327 

associated with poor environmental management of seagrass meadows, particularly concerning the provisioning 328 

service of food security, the most frequent service described in this review, given their value as fisheries nursery 329 

habitats.  330 

As a consequence of their sensitivity to disturbance and broad geographical range, seagrasses are considered to 331 

be excellent biological indicators to be included in intended nationally determined contributions (INDCs) as NbS 332 

(Pergent et al., 2015; UNEP, 2020). NbS are increasingly recognised as vital to achieving climate mitigation and 333 

conservation targets, with seagrass meadows in the UK and northern Europe, for example, being typically included 334 

in conservation law and agendas, either directly or indirectly (Harding et al., 2016; Jackson et al., 2016). However, 335 

studies suggest that these programs might not have been effective in protecting these ecosystems, with declines 336 

being consistently reported (Jones and Unsworth, 2016; Jones et al., 2018; Smale et al., 2019). Also, NbS, 337 

including seagrass restoration, are not typically among the lowest cost options and so do not form a major 338 

proportion of compliance markets, aimed to meet greenhouse gas emissions and climate change legislation 339 

(UNEP, 2020). Conversely, NbS are popularly represented in voluntary markets, with several methods being 340 

developed for seagrass restoration, including through the Verified Carbon Standard (Needelman et al., 2018; 341 

UNEP, 2020).  342 

 343 

Conclusions 344 

Following the publication of the Millennium Ecosystem Assessment (MEA, 2005) and the Economics of 345 

Ecosystems and Biodiversity report (Kumar, 2012), there has been increased interest in the development of 346 

national, regional, and global ecosystem services indicators. However, the full range of ecosystem services 347 

provided by seagrass ecosystems has not been appropriately quantified, suggesting that informed management 348 

decisions cannot be formulated. An increase in the geographic coverage of ecosystem services studies is 349 

recommended, especially in understudied areas such as Africa, South America and the Middle East, in order to 350 

improve value estimates by region and meadow type. Regional/global-scale datasets of spatially explicit seagrass 351 

species presence-absence, abundance, and estimates of their ecosystem service provision, although currently 352 

lacking, could support resource management, and facilitate global conservation targets demanded by multilateral 353 

environmental agreements, policies, and initiatives, especially those including natural climate solutions. Thus, 354 

future research needs to focus on: 1) incorporating less studied ecosystem services, especially those related to 355 



social relations and cultural heritage into valuation studies to fully grasp the natural capital provided by the 356 

seagrass ecosystem; 2) incorporating remote sensing techniques to better map seagrass meadows’ areal extent and 357 

variability among species and sites, to better identify regions where losses of ecosystem services may be occurring; 358 

3) use of ecological niche modelling as an ecosystem based management tool to better understand seagrass 359 

ecology and connectivity with other coastal habitats; 4) improved communication between regions and across 360 

disciplines, especially those that focus on ecosystem services provided by other coastal vegetated ecosystems 361 

adjacent to seagrass meadows, like salt marshes, mangroves, macroalgae and coral reefs.  Results from this study 362 

showed a growing interest in researching ecosystem services provided by seagrass meadows, and also highlighted 363 

the threats hindering the provision of these services. Thus, more needs to be done, as detailed above, to make sure 364 

that the full scope of ecosystem services are recognised and appropriately assessed, to be effectively included in 365 

marine coastal management planning as NbS. 366 

 367 
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Table 1: Integrated heat map representing the frequency of studies that developed seagrass ecosystem service valuation estimates for each ecosystem service category between 

2000 and March 2022, per the Millennium Ecosystem Assessment Board classification scheme, (2005). Values of 0 represent no studies published for a particular ecosystem 

service that year.  
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Abstract 32 

Seagrasses are marine flowering plants, which form extensive meadows in intertidal and shallow-water marine 33 

environments. They provide a wide range of ecosystem services, which directly or indirectly benefit humans, and 34 

can be grouped into four broad categories: provisioning (e.g., food production); regulating (e.g., carbon 35 

sequestration); supporting (e.g., primary production); and cultural (e.g., recreational, and eco-tourism). This study 36 
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provides a review of publications focusing on seagrass ecosystem services provision, to identify knowledge gaps 37 

and improve our understanding of the use of these habitats as nature-based solutions to societal challenges, such 38 

as climate change. Results showed that some ecosystem services, namely food provision, carbon sequestration 39 

and maintenance of biodiversity/nursery habitats receive a higher level of focus and attention than others, such as 40 

regulation of diseases and social relations, which are rarely, if ever, included in studies. It is clear that in order to 41 

fully comprehend the nature-based solution potential held by seagrass ecosystems, studies need to consider 42 

ecosystem services as a whole, and also combine and share results across global regions, to better understand the 43 

potential impacts of degradation and loss of these ecosystems worldwide. Suggestions include applying novel 44 

technologies such as remote sensing and ecological niche modelling to address some of the main gaps in seagrass 45 

research, like meadow extent and connectivity within landscapes, to better incorporate preservation of seagrass 46 

ecosystems in marine management plans.  47 

Keywords: Seagrass, ecosystem services, conservation, nature-based solutions.  48 

Introduction  49 

Marine and coastal ecosystems and their related economic and social services have been suffering profound 50 

impacts due to human induced climate change (IPCC, 2018). Thus, a better understanding of how these 51 

ecosystems function, the services they provide (in both ecological and economic terms), and what is at stake 52 

should we lose them, are necessary parts of any coastal management plan (Fisher et al., 2009; Heckwolf et al., 53 

2021). Vegetated coastal systems characterise ecologically important areas where the land meets sea and are 54 

generally composed of plant species adapted to either fully or partially submerged environments (Short et al., 55 

2016). These systems are home to a wide range of ecological and economic activities (Royal Society, 2017), and 56 

provide numerous ecosystem services, including the provision of nursery habitats for commercially important 57 

marine species, raw materials, coastal protection, and enhancing water quality (Lau, 2013).  Vegetated coastal 58 

systems are sometimes referred to as "blue carbon" ecosystems due to their role as carbon sinks (Mcleod et al., 59 

2011; Pendleton et al., 2012). Thus, by capturing and sequestering carbon from the atmosphere, these blue carbon 60 

ecosystems play an important role in climate change mitigation (Fourqurean et al., 2012; Veettil et al. 2018; Lima 61 

et al. 2020; Ward, 2020). 62 

Coastal ecosystems, when in pristine condition, naturally provide diverse benefits to both humans and nature. 63 

Therefore, effective nature conservation strategies are necessary to guarantee their continued or enhanced 64 

ecosystem service provision (Watson & Zakri, 2003; Rigo et al., 2021). The Millennium Ecosystem Assessment 65 



(2005) uses a broad definition that equates ‘the benefits people obtain from ecosystems’ with the term ‘ecosystem 66 

services.’ As per the definition by the Millennium Ecosystem Assessment Board, ‘an ecosystem is a dynamic 67 

complex of plant, animal, and microorganism communities and the non-living environment, interacting as a 68 

functional unit’, including humans as an integral part of many ecosystems (Watson & Zakri, 2003). Amongst 69 

vegetated coastal systems, seagrass meadows have been identified as important ecosystem service providers, 70 

especially as there is strong evidence that healthy seagrass beds enhance the productivity of neighbouring systems 71 

like mangroves, salt marshes and coral reefs (de los Santos et al., 2020; Cziesielsk et al., 2021).  72 

Seagrasses 73 

Seagrass meadows have a pan-global distribution, being found in shallow coastal areas of all continents, except 74 

Antarctica (Garrard and Beaumont, 2014). Seagrasses occupy soft-bottom sediments of the world’s oceans from 75 

the tropics to the temperate zones (World Resources Institute, 2005), extending from the intertidal zone to depths 76 

of up to 40 m (Gutiérrez et al. 2011). There is a high variation in the estimated global areal coverage of seagrass 77 

meadows, ranging from 17 x 106 to 60 x 106 ha worldwide (Hemminga & Duarte, 2000; Mcleod et al. 2011). This 78 

uncertainty highlights the need for more research, to better map and understand seagrass global distribution, 79 

including seasonal and long-term temporal variations (Garrard and Beaumont, 2014; Macreadie et al., 2018). 80 

Seagrasses are marine angiosperms (Figure 1) adapted to exist fully submerged in brackish or salt water, where 81 

they promote sediment deposition, stabilise substrates, decrease water velocity and function as part of the estuarine 82 

filtration system, removing contaminants from the water column (Orth et al., 2006; Campagne et al., 2015). 83 

Seagrasses also provide a range of other ecosystem services to the marine environment, including nutrient cycling, 84 

supporting a range of commercially important fish species as a nursery habitat  and as an important food source 85 

for mega-herbivores such as green turtles, dugongs, and manatees (Costanza et al., 1997; Hemminga & Duarte 86 

2000; Orth et al., 2006; Björk et al., 2008; Nordlund et al., 2018; de los Santos et al., 2020).  87 

Seagrasses can also act as ecological engineers, altering their environment to improve conditions by reducing 88 

suspended sediment concentrations, which can increase light availability and reduce water column pollutant 89 

levels, resulting in improved conditions for seagrass growth and survival as well as other marine photosynthetic 90 

organisms (van der Heide et al., 2007 Paquier et al., 2014; Serrano et al., 2016). Seagrass canopies can also reduce 91 

wave attenuation, and this combined with a dense root matrix can further promote sediment deposition and prevent 92 

erosion (Potouroglou et al., 2017). Some species, particularly those with high canopy density and above ground 93 



biomass have been shown to reduce current velocities by up to 90%, resulting in net sediment accretion rates of 94 

up to 2 mm year-1 (Hogarth, 2015).  95 

Therefore, seagrasses directly and indirectly provide a range of ecosystem services, which vary by geographical 96 

region and genera (Cullen-Unsworth et al., 2014; Nordlund et al., 2016; Nordlund et al., 2018). The diversity of 97 

ecosystem services is categorised as provisioning (ecological goods, such as food, fisheries, etc. provided directly 98 

by seagrasses or indirectly by associated species), regulation and maintenance (ecological services, such as climate 99 

regulation, water filtration, and ecological processes), supporting (primary production, soil formation) and cultural 100 

(spiritual or knowledge values, such as recreation, tourism, and education) (Campagne et al., 2015; Nordlund et 101 

al., 2016).  102 

  Nature-Based Solutions 103 

Nature-based solutions (NbS) are defined as innovations inspired and supported by nature, which provide 104 

environmental, social, and economic benefits, and help build resilience by benefiting biodiversity and supporting 105 

the delivery of a range of ecosystem services (Seddon, et al., 2019; Wild et al., 2020; UNEP, 2020). NbS can 106 

address such current and vital societal challenges as climate change and associated impacts, environmental 107 

pollution, food security and water scarcity. NbS include established approaches such as ecosystem-based 108 

adaptation, ecosystem-based disaster risk reduction, green and blue natural infrastructure, as well as the more 109 

recently described "natural climate solutions" (Cohen-Shacham et al., 2016, 2019; Griscom et al., 2017; Chausson 110 

et al., 2020).  111 

The potential of seagrass ecosystems as NbS, including climate mitigation, is evidenced through the high carbon 112 

sequestration and storage potential, which could be used for CO2 offsets in nationally determined contributions, 113 

particularly in the case of successful restoration (Stankovic et al., 2021; Lima et al., 2022). Stankovic et al. (2021) 114 

suggest that successful and well-designed restoration projects and conservation measures, could result in seagrass 115 

meadows contributing up to 1.43% towards CO2 offset of countries' total emissions by 2030 (business-as-usual, 116 

BAU scenario). However, the climate solution potential of seagrasses is still one of the most poorly represented 117 

as a NbS (Chausson et al., 2020; UNEP, 2020; Veettil et al. 2021), partly because seagrass meadows are especially 118 

vulnerable to anthropogenic impacts from both adjacent terrestrial and marine systems (Unsworth et al., 2019).  119 

Such impacts can be physical, resulting in direct removal of plants, or chemical, polluting both the sediment and 120 

water (Mazarrasa et al., 2017). Moreover, storms and severe weather events, associated with climate change, can 121 

affect seagrass populations by uprooting plants and mobilizing sediments, increasing turbidity, and reducing water 122 



quality and light penetration (Cardoso et al., 2008). Additionally, fluctuations in sea temperature are considered 123 

the primary climate change related threat to seagrass ecosystems, which could lead to alterations in seagrass 124 

distribution and metabolism, subsequently reducing net autochthonous carbon sequestration potential (Clausen et 125 

al., 2014; Hyndes et al., 2016; Mazarrasa et al., 2018). Furthermore, sea level rise may alter habitat availability 126 

for intertidal seagrass species, and as projected by the IPCC (2019) with medium confidence under the RCP8.5 127 

emission scenario by the end of the century, vegetated coastal ecosystems in general are at high risk of local losses.  128 

Past studies estimate the value of coastal ecosystem services to be US$31.6 tr yr −1 covering seagrass meadows 129 

and algae beds as well as tidal marshes and mangroves (Bertram et al., 2021). However, compared to other coastal 130 

ecosystems (such as mangroves and corals) that also benefit humans, there has been substantially less research 131 

focus on identifying and valuing ecosystem services provided by seagrasses, mainly due to the absence of detailed 132 

information on marine habitat distribution and the difficulties in assessing both processes and functions (Maes et 133 

al., 2012; Himes-Cornell et al., 2018). Consequently, the value of seagrasses as an ecosystem is often not 134 

considered in marine management decisions, and rarely incorporated into NbS projects (Duarte et al., 2008; Grech 135 

et al., 2012; Chausson, et al., 2020). In addition, non-monetary values of seagrasses are important, with some 136 

studies assessing non-monetary values by using biological proxies, such as area coverage, the biomass of bird and 137 

mammal groups that seagrass supports, or the energy resources invested by nature when estimating the benefits 138 

of seagrass as a habitat (Plummer et al., 2013; Vassallo et al., 2013).  139 

The lack of public awareness concerning the importance of the ecosystem services that seagrasses provide is 140 

arguably one the biggest threats to their conservation. This suggests that studies highlighting the importance of 141 

ecosystem service provision by seagrasses can raise the profile of this important habitat and provide support for 142 

their protection and conservation (Nordlund et al., 2018; Quevedo et al., 2020). Thus, this research evaluates and 143 

lists the services provided by seagrass ecosystems by conducting a comprehensive review of the literature, in 144 

order to identify potential gaps in knowledge and areas of focus or concern for the future. The aim of this review 145 

is to contribute to a better understanding of how seagrass ecosystem services have been studied so far, with the 146 

goal of constructing a knowledge-base for future NbS projects. The objective of this study is to review how the 147 

main ecosystem services provided by seagrass meadows have been reported over time to highlight the need for 148 

protection and preservation of their natural assets, in order to successfully develop NbS that incorporates these 149 

extremely productive ecosystems.  150 

 151 



Methods 152 

Literature Search  153 

A systematic literature review was conducted in order to better understand the range of studies that have been 154 

published to assess the ecosystem services provided by seagrasses. The search centred on studies explicitly 155 

focused on ecosystem services (Figure 2). The literature search was conducted using the Web of Science scientific 156 

citation database. The studies were searched in the Web of Science Core collection (editions: Science Citation 157 

Index Expanded, Social Sciences Citation, Conference Proceedings Citation, Emerging Sources Citation, 158 

Conference Proceedings, Citation – Social Science & Humanities and Book Citation Science) considering the 159 

period between 1900 and March 2022, using the following search string applied to all fields:  (seagrass*⁄ OR "sea 160 

grass*/") AND ("ecosystem⁄ service*⁄"), resulting in a total of 684 papers. A second search was conducted using 161 

the same search string but applied to the field topic (title (title, key words, and abstract), resulting in a total of 654 162 

papers. 163 

For the purpose of this study, the search focused on peer reviewed papers, excluding grey literature. It is likely 164 

that some of the literature on ecosystem services provided by seagrasses may have been published as working 165 

papers, government reports, or other additional grey literature sources. However, it is not feasible to develop 166 

search criteria that will identify all such possible studies within the topic of this study. Moreover, there are likely 167 

additional publications on studies for ecosystem services in seagrass habitats that do not mention the specific key 168 

words included in our search criteria.  169 

Selection Criteria 170 

In order to select articles to include in this review, all 684 publications were screened. Only publications that 171 

mentioned seagrass ecosystem services in the title, abstract or key words, or if the content was unclear reading 172 

the abstract, were retained, yielding 654 publications. Through this selection, the publications retained from the 173 

Science Citation Index Expanded were used for full-text reading and analysis. After full text reading, 105 174 

publications (16% of all screened publications) were retained that focused on the description, valuation, or 175 

inclusion of one or more ecosystem services provided by seagrasses as the main topic of research, even if this was 176 

integrated into analyses with other coastal habitats such as, mangroves, salt marshes or coral reefs. 177 

Data extraction 178 



For those final selected publications, the publication year; type of publication; the ecosystems services discussed; 179 

the geographic area where the study was conducted; and the threats to the studied ecosystems were extracted. 180 

Ecosystem services were organised into categories based on the classification scheme defined by the Millennium 181 

Ecosystem Assessment (2005). The Millennium Ecosystem Assessment was chosen as a framework for this study 182 

as it was conducted as a multiscale assessment, with interlinked assessments undertaken at local, national, 183 

regional, and global scales, incorporating seagrass ecosystem services within their Marine, Coastal, and Island 184 

Systems section. 185 

Results 186 

Overall, there has been an average annual increase in the number of studies including evaluation of seagrass 187 

ecosystem services, of 31.5% over the 2319 years under study, with 19% (n=20) of the cumulative total of studies 188 

being published in 2021 (Figure 3). Studies ranged from reviews of existing ecosystem services, assessment of 189 

current threats, evaluation of public or stakeholders’ perspectives, and knowledge gaps, to models for assessing 190 

ecosystem services and valuation. 191 

Of the 105 studies analysed, 37% (n=39) had a global approach to seagrass ecosystem services, 34% (n=36) 192 

focused on specific global regions, mainly meadows in the Caribbean (n=5), Africa (n=5), and the Mediterranean 193 

(n=3), and 42 studies analysed seagrass ecosystem services at national level, representing 40% of the total number. 194 

The most prolific nations studied were the USA (n=9) and Spain (n=8), followed by Australia with 4 studies and 195 

Sweden and the UK, both with 3 studies each (Table S1). Approximately half of the analysed studies focused 196 

solely on ecosystem services provided by seagrasses (n=55), while the other half provided a combined approach, 197 

grouping seagrasses with other blue carbon ecosystems such as mangroves, coastal wetlands, kelp forests and 198 

coral reefs. Out of the 55 studies focussing on seagrass, 17 (16% of the total) concentrated on Posidonia oceanica 199 

(Linnaeus, 1813) meadows specifically. It was also noted that more recent studies focused exclusively on 200 

ecosystem services provided by seagrass habitats, whilst older ones usually combined seagrasses within wetlands 201 

and/or other coastal habitats such as oyster and coral reefs (Table S1).  202 

Most studies described threats to seagrasses and their related ecosystem services. Although studies reported those 203 

threats differently, the nomination of threats provides an insight into the potential for changes in the area of intact 204 

seagrass ecosystems as well as challenges that resource managers likely face within each region, such as to 205 

fisheries. Within the studies evaluated, the greatest emphasis was placed on threats associated with land 206 

conversion, pollution, climate change, aquaculture, and unsustainable resource use (Table S1). The most cited 207 



threats in these studies have also been highlighted by the general literature on seagrass ecosystems, namely climate 208 

change, sea level rise, pollution, fishing, and urbanisation (Unsworth et al., 2019; Young et al., 2021; Moksnes et 209 

al., 2021). 210 

Altogether, ecosystem services were reported 396 times within the selected studies, and these have been classified 211 

into types relating to provisioning, regulating, supporting and cultural services (Table 1, Figure 4). Although the 212 

wider literature regularly cites the large number of ecosystem services and benefits provided by seagrass systems, 213 

these are not always the central focus of research, rather being used as a means to justify the importance of 214 

studying these habitats. It has also been noted that a subset of ecosystem services tends to be researched much 215 

more frequently than others (Figure 4). For example, researchers tend to focus on carbon sequestration (n= 60), 216 

food provision (n= 49 studies), maintenance of habitat and biodiversity/nursery habitats (n= 37), storm 217 

protection/extreme events (n= 31) and opportunities for recreation and tourism (n= 29) far more than any of the 218 

other seagrass ecosystem services (Table 1). In addition, regulating services overall tend to be studied much more 219 

frequently than other categories of ecosystem services, representing 42% of the total with 166 mentions, whilst 220 

the least explored were provisioning services with 17% of total reports (n=66) (Table 1; Figure 4). Moreover, 221 

some seagrass ecosystem services identified by the Millennium Ecosystem Assessment are rarely, or sometimes 222 

never, assessed including, provisioning services of fuel or fresh water (Table 1).  223 

In total, 17 studies provided valuation models for the ecosystem services described (Table S1). Services such as 224 

food security and raw material provisioning, and opportunities for recreation and tourism have mainly been 225 

assessed and used to value the ecosystem service provided by seagrass habitats. Researchers have used market 226 

prices to measure food, raw material, climate regulation (via carbon sequestration), and opportunities for 227 

recreation and tourism, while voided cost and replacement cost are generally used to value waste treatment and 228 

moderation of extreme events.  229 

Discussion  230 

Although the need to study ecosystem services for seagrasses is indicated by the increasing number of 231 

publications, findings are mostly focused on seagrass cover and distribution mapping (Hossain et al., 2014; 232 

Nordlund et al., 2016; Nordlund et al., 2018) except a few species-specific case studies focusing mainly on 233 

Posidonia spp. (Vassallo et al., 2013; Campagne et al., 2015). Moreover, this review demonstrates that some 234 

ecosystem services are studied much more frequently than others (e.g., food provision in 47% of studies, carbon 235 

sequestration in 57% of studies), likely because of stakeholder interest and current climate change mitigation 236 



policies. Several important services are poorly addressed (i.e., medicinal, and genetic resources, air quality, 237 

regulation of water flow, biological control, spiritual experience) or entirely absent (i.e., fuel, ornamental 238 

resources, inspiration for culture/art) in the literature, most likely due to poor data availability and the difficulty 239 

of quantifying the extent of service provision. However, although this systematic review followed established 240 

search protocols, it limited the search to the wider term ‘seagrass ecosystem services’ within titles, key words or 241 

abstracts, which restricts the analyses of studies where seagrass ecosystem services do not feature in those 242 

sections, even though they might be indirectly evaluated or quantified  in other sections. Consequently, for 243 

example, few studies from the UK were included in the search, although researchers such as Lima et al., (2020, 244 

2022), Potouroglou et al., (2021), Green et al., (2018) and others have been assessing the UK’s seagrass carbon 245 

stocks with the aim of promoting natural climate solutions. Another limitation to consider is that this review 246 

focused on scientific journal publications only, which discards regional and global reports on the assessment of 247 

seagrasses’ ecosystem services and their potential as NbS, e.g. UNEP (2020). Nevertheless, this review suggests 248 

that there has been an increase in the inclusion of the term ‘ecosystem services’ in seagrass studies in more recent 249 

years, showing a positive trend of raising awareness of their importance as NbS.  250 

Seagrass carbon stock analyses have been reported worldwide, even though there might be a bias of reported 251 

global estimates, which mainly focus on values from tropical and Mediterranean seagrass meadows dominated by 252 

larger species, like Posidonia spp. (Johannessen and Macdonald, 2016; Serrano et al., 2018; Lima et al., 2022). 253 

Although this demonstrates that many studies have been focusing on seagrasses’ potential as NbS for climate 254 

change mitigation, these are not always evidenced as an ecosystem service provision, and even more rarely linked 255 

to the categories proposed by the Millennium Assessment, as described in this study. Therefore, despite a broad 256 

recognition of the importance of such data (Pascual et al., 2017), serious gaps in the identification of ecosystem 257 

services provided by seagrass ecosystems still exist, notably involving methodology, areal extent, and valuation 258 

of ecosystem services (Nordlund et al., 2018; de los Santos et al., 2020). The variability of ecosystem services 259 

across a seascape, including spatial (i.e. extent of a seagrass meadow and its ability to buffer storm waves) and 260 

temporal differences (seasonal fluctuations and density of seagrass biomass) may influence the assessment and 261 

quantification of some services and should be considered by researchers and policymakers (Barbier et al., 2011). 262 

Mapping the services provided by seagrass ecosystems is key to evaluating temporal and spatial alterations to 263 

their provision, particularly when taking a regional approach, such as those reviewed in this study for the 264 

Caribbean and Mediterranean (de los Santos et al., 2020). Mapping ecosystem services is one of the requirements 265 

in ecosystem accounting, tracking alterations in natural assets and evaluating links with economic and human 266 



activities (Veettil et al., 2020). Despite advances in seagrass ecosystem service assessment studies and extent 267 

mapping, there are still large global and regional data gaps (Veettil et al., 2020; 2022), predominantly as a result 268 

of the in situ approaches that are typically used including scuba/snorkeling surveys (Gotceitas et al., 1997), 269 

ground-based sampling (Moore et al., 2000), and hovercraft-based mapping (McKenzie, 2003).  270 

Even though projects focused on the protection and sustainable management of vegetated coastal environments, 271 

including seagrass, are not a novelty, such efforts are mainly aimed at generating benefits and services to local 272 

communities and biodiversity, as well as the fisheries and tourism sectors (Herr et al., 2014; Mitsch and Mander, 273 

2018). Unlike terrestrial ecosystems, few coastal programs have been established with the goal of conserving and 274 

restoring ecosystems as potential mechanisms for nature-based climate mitigation (carbon capture/ avoided 275 

emissions) solutions (Herr et al., 2011; Gattuso et al., 2018). Chausson et al., (2020) assessed the six most 276 

represented ecosystem types when examining the effectiveness of nature-based interventions to address climate 277 

impacts and emphasised that only 13% of studies included coastal ecosystems, with only one study, out of 386, 278 

focused on seagrass ecosystems specifically. Herr and Landis (2016) highlight that even though 151 countries 279 

contain at least one blue carbon ecosystem (seagrass, mangrove, or saltmarsh) with 71 containing all three, only 280 

28 countries include references to vegetated coastal systems in terms of climate crisis mitigation in their intended 281 

nationally determined contributions (INDCs). Hence, undertaking ecosystem service assessments, such as those 282 

presented in this review, could provide key data to identify conservation and management actions for these 283 

ecosystems to be incorporated in such strategies (Pabon-Zamora et al., 2008; Pascual et al., 2017). 284 

Half of the studies in this review focused on seagrass meadows specifically while the other half incorporated 285 

neighbouring ecosystems in their ecosystem services appraisal. It has been reported that in order to 286 

comprehensively assess ecosystem services, it is necessary to incorporate the multiple and synergistic 287 

characteristics of ecosystems (Koch et al., 2009; Barbier, 2012). However, studies continue to focus on each 288 

service independently, even though ecological interactions suggest that there is connectivity between vegetated 289 

coastal ecosystems, which impacts the availability and/or quality of the services (Barbier et al., 2011). By 290 

assessing ecosystem services collectively, like some of the papers in this review, studies could better delineate 291 

between functions, services, and benefits to avoid the problem of double counting that may arise due to the fact 292 

that some services (i.e., supporting and regulating) provide the basis and inputs for the assessment of others (Boyd 293 

& Banzhaf, 2007; Fisher et al., 2009; Kumar, 2012). For example, in recent years, ecological niche modelling has 294 

been used as an alternative tool to predict the effects of climate change on seagrass ecosystem distributions (Valle 295 

et al., 2014; Davis et al., 2016; Chefaoui et al., 2018), the potential distributions of certain seagrass-associated 296 



species (March et al., 2013; Chefaoui et al., 2016; Jayathilake & Costello, 2018) and seagrass conservation 297 

priorities (Valle et al., 2013; Adams et al., 2016). Ecological modelling can be a useful and promising tool for 298 

seagrass restoration programs, as it is used to determine the most favourable environmental conditions for species 299 

growth by collecting large scale datasets for seagrass meadows, including variables such as: light intensity; 300 

seagrass coverage and biomass; sediment accretion rates; water velocity; sediment parameters and porewater 301 

nutrients (Valle et al., 2011; Adams et al., 2016; Stankovic et al., 2019; Horn et al., 2021).  302 

To effectively include seagrass ecosystems in climate regulation policy, a comprehensive understanding of the 303 

factors that control carbon stocks, and sequestration rates, are urgently required  (Lima et al., 2020). The reported 304 

loss of seagrasses capacity to sequester and store carbon is of high concern, highlighting the need for protection 305 

and conservation of these ecosystems (Unsworth et al., 2018). This should be undertaken to not only maintain the 306 

carbon stored in their sediments, but also to maintain important supporting ecosystem services linked to 307 

biodiversity, such as: critical feeding grounds for birds; important nursery areas for seabass; supporting threatened 308 

runs of migratory salmon and sea trout on their way to and from spawning grounds, as well as  migration routes 309 

for eels to spawn at sea (Jackson et al., 2001; Hiscock et al., 2005; Lilley & Unsworth, 2014; Harding et al., 2016; 310 

Jones et al., 2018; Bertelli & Unsworth, 2018;  de los Santos et al., 2020). To date, conservation programs are 311 

rarely based on the explicit consideration of threats and drivers for a specific seagrass meadow, and instead focus 312 

on conserving seagrass as part of a broader management plan incorporating other habitats or species, like many 313 

reviewed by this study (Jones et al., 2018). One way to improve this and highlight their importance would be to 314 

include conservation and protection of seagrass ecosystems in financing mechanisms involving the reduction of 315 

CO2 emissions as a natural climate mitigation solution (Wylie et al., 2016; Herr et al., 2017; Howard et al., 2017; 316 

Barbier et al., 2018; Himes-Cornell et al., 2018). 317 

Some seagrass areas have been reported to rival coral reefs in terms of supporting biodiversity, and when 318 

associated with adjacent mangrove and barrier reef systems, they can provide more protection services than the 319 

corals themselves and compensate for long term degradation of the reefs (Guannel et al., 2016). The indirect value 320 

of the supporting services provided by seagrasses, including providing shelter and nutrition to a range of marine 321 

species, adds to their wider ecological importance (Hogarth, 2015; Nordlund et al., 2016; Nordlund et al., 2018). 322 

However, many ecosystem services provided by seagrasses remain poorly studied, or not clearly referenced, 323 

especially indirect use values and non-use values (Himes- Cornell et al. 2018). With the recent focus on the climate 324 

mitigation potential of blue carbon ecosystems in the realm of international conservation (e.g., the Paris 325 

Agreement, UN SDG 14), coastal managers would benefit from a better understanding of the valuation of services 326 



provided by seagrass ecosystems. Jones and Unsworth (2016), further note that there are a wide range of risks 327 

associated with poor environmental management of seagrass meadows, particularly concerning the provisioning 328 

service of food security, the most frequent service described in this review, given their value as fisheries nursery 329 

habitats.  330 

As a consequence of their sensitivity to disturbance and broad geographical range, seagrasses are considered to 331 

be excellent biological indicators to be included in intended nationally determined contributions (INDCs) as NbS 332 

(Pergent et al., 2015; UNEP, 2020). NbS are increasingly recognised as vital to achieving climate mitigation and 333 

conservation targets, with seagrass meadows in the UK and northern Europe, for example, being typically included 334 

in conservation law and agendas, either directly or indirectly (Harding et al., 2016; Jackson et al., 2016). However, 335 

studies suggest that these programs might not have been effective in protecting these ecosystems, with declines 336 

being consistently reported (Jones and Unsworth, 2016; Jones et al., 2018; Smale et al., 2019). Also, NbS, 337 

including seagrass restoration, are not typically among the lowest cost options and so do not form a major 338 

proportion of compliance markets, aimed to meet greenhouse gas emissions and climate change legislation 339 

(UNEP, 2020). Conversely, NbS are popularly represented in voluntary markets, with several methods being 340 

developed for seagrass restoration, including through the Verified Carbon Standard (Needelman et al., 2018; 341 

UNEP, 2020).  342 

 343 

Conclusions 344 

Following the publication of the Millennium Ecosystem Assessment (MEA, 2005) and the Economics of 345 

Ecosystems and Biodiversity report (Kumar, 2012), there has been increased interest in the development of 346 

national, regional, and global ecosystem services indicators. However, the full range of ecosystem services 347 

provided by seagrass ecosystems has not been appropriately quantified, suggesting that informed management 348 

decisions cannot be formulated. An increase in the geographic coverage of ecosystem services studies is 349 

recommended, especially in understudied areas such as Africa, South America and the Middle East,  in order to 350 

improve value estimates by region and meadow type. Regional/global-scale datasets of spatially explicit seagrass 351 

species presence-absence, abundance, and estimates of their ecosystem service provision, although currently 352 

lacking, could support resource management, and facilitate global conservation targets demanded by multilateral 353 

environmental agreements, policies, and initiatives, especially those including natural climate solutions. Thus, 354 

future research needs to focus on: 1) incorporating less studied ecosystem services, especially those related to 355 



social relations and cultural heritage into valuation studies to fully grasp the natural capital provided by the 356 

seagrass ecosystem; 2) incorporating remote sensing techniques to better map seagrass meadows’ areal extent and 357 

variability among species and sites, to better identify regions where losses of ecosystem services may be occurring; 358 

3) use of ecological niche modelling as an ecosystem based management tool to better understand seagrass 359 

ecology and connectivity with other coastal habitats; 4) improved communication between regions and across 360 

disciplines, especially those that focus on ecosystem services provided by other coastal vegetated ecosystems 361 

adjacent to seagrass meadows, like salt marshes, mangroves, macroalgae and coral reefs.  Results from this study 362 

showed a growing interest in researching ecosystem services provided by seagrass meadows, and also highlighted 363 

the threats hindering the provision of these services. Thus, more needs to be done, as detailed above, to make sure 364 

that the full scope of ecosystem services are recognised and appropriately assessed, to be effectively included in 365 

marine coastal management planning as NbS. 366 

 367 
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Table 1: Integrated heat map representing the frequency of studies that developed seagrass ecosystem service valuation estima tes for each ecosystem service category between 

2000 and March 2022, per the Millennium Ecosystem Assessment Board classification scheme, (2005).  Values of 0 represent no studies published for a particular ecosystem 

service that year.  

 

 

 

 

 

 

  

2000 2003 2004 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 Total 

1 0 1 0 1 0 0 1 3 0 2 6 4 3 2 4 3 5 9 4 49

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 2

1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 2 0 5

0 0 1 0 0 0 0 0 0 0 0 2 0 1 0 0 1 0 3 1 9

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 2 0 7

1 0 0 1 0 0 0 0 4 2 3 2 6 5 1 6 5 5 15 4 60

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 2 1 5

1 1 0 0 1 0 1 0 1 0 0 2 4 3 1 0 1 1 5 1 23

0 0 0 0 0 0 0 0 1 0 0 1 3 2 1 2 1 3 6 2 22

1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 2 0 1 0 3 5 1 4 2 4 6 1 31

0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 6 0 9

1 1 0 0 0 0 0 0 0 0 2 0 1 2 1 1 2 0 3 0 14

1 0 0 0 0 0 1 1 2 1 1 1 3 1 0 3 0 1 3 0 19

1 0 0 0 0 0 0 0 0 0 1 0 1 0 2 0 0 1 3 1 10

0 0 1 0 0 0 0 1 1 0 1 2 4 2 3 2 3 4 10 3 37

0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 1 0 5

0 0 0 0 0 0 0 0 0 0 1 2 1 1 0 1 1 0 1 0 8

0 0 1 0 0 0 0 0 0 0 1 0 2 1 0 0 0 0 1 0 6

1 0 0 0 0 0 0 0 0 0 1 1 2 1 0 0 2 0 4 0 12

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 3

0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 1 1 0 1 1 7

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 2

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 2

1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 2 2 0 2 1 10

1 0 0 0 0 0 0 0 1 0 1 2 7 3 0 2 2 3 5 2 29

Ornamental resources

Provisioning Services Food and fibre

Fuel

Genetic resources

Biochemicals / Fertilisers 

Storm protection

Fresh water

Regulating Services Air quality maintenance

Carbon Sequestration 

Water regulation

Erosion control

Water purification

Waste treatment

Disease regulation

Biological control

Pollination

Inspiration

Climate regulation

Supporting Services Soil formation

Nutrient cycling

Primary production

Maintanance of biodiversity/Habitat

Cultural Services Cultural diversity

Spiritual and religious

Knowledge systems

Educational

Aesthetic

Social relations

Sense of place

Cultural heritage

Recreational and ecotourism



Supplementary reference list for table S1 

Abdolahpour, M., M. Ghisalberti, K. McMahon , & P. Lavery, 2020. Material rResidence tTime in mMarine 

cCanopies uUnder wWave-dDriven fFlows. Frontiers in Marine Science. 7:574, 

https://www.frontiersin.org/articles/10.3389/fmars.2020.00574. 

 

Arkema, K. K., G. M. Verutes, S. A. Wood, C. Clarke-Samuels, S. Rosado, M. Canto, A. Rosenthal, M. 

Ruckelshaus, G. Guannel, J. Toft, J. Faries, J. M. Silver, R. Griffin , & A. D. Guerry, 2015. Embedding ecosystem 

services in coastal planning leads to better outcomes for people and nature. Proceedings of the National Academy 

of Sciences of the United States of America National Acad Sciences 112: 7390–7395, 

http://dx.doi.org/10.1073/pnas.1406483112. 

 

Ascioti, F. A., M. C. Mangano, C. Marcianò , & G. Sarà, 2022. The sanitation service of seagrasses – 

Dependencies and implications for the estimation of avoided costs. Ecosystem sServices. 54: 101418, 

https://www.sciencedirect.com/science/article/pii/S2212041622000146. 

 

Baker, S., J. Paddock, A. M. Smith, R. K. F. Unsworth, L. C. Cullen-Unsworth , & H. Hertler, 2015. An 

ecosystems perspective for food security in the Caribbean: Seagrass meadows in the Turks and Caicos Islands. 

Ecosystem Services. 11: 12–21, https://www.sciencedirect.com/science/article/pii/S2212041614000825.  

 

Barañano, C., E. Fernández , & G. Méndez, 2018. Clam harvesting decreases the sedimentary carbon stock of a 

Zostera marina meadow. Aquatic Bbotany. 146: 48–57, 

https://www.sciencedirect.com/science/article/pii/S0304377017302346. 

 

 

Barbier, E. B., S. D. Hacker, C. Kennedy, E. W. Koch, A. C. Stier , & B. R. Silliman, 2011. The value of estuarine 

and coastal ecosystem services. Ecological Mmonographs. 81: 169–193. http://doi.wiley.com/10.1890/10-1510.1. 

 

Barbier, E. B., 2016. The protective value of estuarine and coastal ecosystem services in a wealth accounting 

framework. Environmental & Resource Economics Springer Science and Business Media. 64: 37–58. 

https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/article/10.1007/s10640-015-9931-

z&casa_token=eqrQA2STikIAAAAA:2EEA0R9l-mhLt-

b6YPzpmYWmF00bGoE59zbDAVe9l3WUhhAufSDhfdHIZMmir1QMn-CqKNJZa-tJag. 

Beheshti, K. M., S. L. Williams, K. E. Boyer, C. Endris, A. Clemons, T. Grimes, K. Wasson  , & B. B. Hughes, 

2022. Rapid enhancement of multiple ecosystem services following the restoration of a coastal foundation species. 

Ecological aApplications: a publication of the Ecological Society of America. 32: e02466, 

https://onlinelibrary.wiley.com/doi/10.1002/eap.2466. 

 

Bertram, C., M. Quaas, T. B. H. Reusch, A. T. Vafeidis, C. Wolff , & W. Rickels, 2021. The blue carbon wealth 

of nations. Nature Cclimate Cchange Nature Publishing Group 11: 704–709, 

https://www.nature.com/articles/s41558-021-01089-4. 

 

Blandon, A. , & P. S. E. zu Ermgassen, 2014. Quantitative estimate of commercial fish enhancement by seagrass 

habitat in southern Australia. Estuarine, Ccoastal and Sshelf Sscience. 141: 1–8, 

https://www.sciencedirect.com/science/article/pii/S0272771414000213. 

 

Brown, C. J., M. F. Adame, C. A. Buelow, M. A. Frassl, S. Y. Lee, B. Mackey, E. C. McClure, R. M. Pearson, 

A. Rajkaran, T. S. Rayner, M. Sievers, C. A. Saint Ange, A. I. Sousa, V. J. D. Tulloch, M. P. Turschwell  , & R. 

M. Connolly, 2021. Opportunities for improving recognition of coastal wetlands in global ecosystem assessment 

frameworks. Ecological iIndicators. 126: 107694, 

https://www.sciencedirect.com/science/article/pii/S1470160X21003599. 

Buonocore, E., L. Appolloni, G. F. Russo , & P. P. Franzese, 2020. Assessing natural capital value in marine 

ecosystems through an environmental accounting model: A case study in Southern Italy. Ecological Mmodelling. 

419: 108958, https://www.sciencedirect.com/science/article/pii/S0304380020300302.   

 

https://www.frontiersin.org/articles/10.3389/fmars.2020.00574
http://dx.doi.org/10.1073/pnas.1406483112
https://www.sciencedirect.com/science/article/pii/S2212041622000146
https://www.sciencedirect.com/science/article/pii/S2212041614000825
https://www.sciencedirect.com/science/article/pii/S0304377017302346
https://onlinelibrary.wiley.com/doi/10.1002/eap.2466
https://www.nature.com/articles/s41558-021-01089-4
https://www.sciencedirect.com/science/article/pii/S0272771414000213
https://www.sciencedirect.com/science/article/pii/S1470160X21003599


Burgos, E., M. Montefalcone, M. Ferrari, C. Paoli, P. Vassallo, C. Morri  , & C. N. Bianchi, 2017. Ecosystem 

functions and economic wealth: Trajectories of change in seagrass meadows. Journal of Ccleaner Pproduction. 

168: 1108–1119, https://www.sciencedirect.com/science/article/pii/S0959652617320358.  

 

Burt, J. A., R. Ben-Hamadou, M. A. R. Abdel-Moati, L. Fanning, S. Kaitibie, F. Al-Jamali, P. Range, S. Saeed , 

& C. S. Warren, 2017. Improving management of future coastal development in Qatar through ecosystem-based 

management approaches. Ocean & Ccoastal Mmanagement. 148: 171–181, 

https://www.sciencedirect.com/science/article/pii/S0964569117302028.  

 

Campagne, C. S., J.-M. Salles, P. Boissery , & J. Deter, 2015. The seagrass Posidonia oceanica: Ecosystem 

services identification and economic evaluation of goods and benefits. Marine Ppollution Bbulletin. 97: 391–400, 

https://www.sciencedirect.com/science/article/pii/S0025326X15003410. 

 

Cochard, R., S. L. Ranamukhaarachchi, G. P. Shivakoti, O. V. Shipin, P. J. Edwards , & K. T. Seeland, 2008. The 

2004 tsunami in Aceh and Southern Thailand: A review on coastal ecosystems, wave hazards and vulnerability. 

Perspectives in Pplant Eecology, Eevolution and Ssystematics. 10: 3–40, 

https://www.sciencedirect.com/science/article/pii/S143383190700056X.  

 

Cohen-Shacham, E., G. Walters, C. Janzen , & S. Maginnis, 2016. Nature-based Solutions to address global 

societal challenges. IUCN: Gland., Switzerlandserval.unil.ch, 

https://serval.unil.ch/resource/serval:BIB_93FD38C8836B.P001/REF.  

 

Cohen-Shacham, E., A. Andrade, J. Dalton, N. Dudley, M. Jones, C. Kumar, S. Maginnis, S. Maynard, C. R. 

Nelson, F. G. Renaud, R. Welling , & G. Walters, 2019. Core principles for successfully implementing and 

upscaling nNature-based sSolutions. Environmental Sscience & Ppolicy 98: 20–29, 

https://www.sciencedirect.com/science/article/pii/S1462901118306671.  

 

Cole, S. G. , & P.-O. Moksnes, 2016. Valuing mMultiple eEelgrass eEcosystem sServices in Sweden: Fish 

pProduction and uUptake of cCarbon and nNitrogen. Frontiers in Marine Science. 2: 121, 

https://www.frontiersin.org/articles/10.3389/fmars.2015.00121.  

 

Cullen-Unsworth, L. , & R. Unsworth, 2013. Seagrass mMeadows, eEcosystem sServices, and sSustainability. 

Environment: Science and Policy for Sustainable Development. 55: 14–28, 

https://doi.org/10.1080/00139157.2013.785864.  

 

Cullen-Unsworth, L. C., L. M. Nordlund, J. Paddock, S. Baker, L. J. McKenzie , & R. K. F. Unsworth, 2014. 

Seagrass meadows globally as a coupled social–ecological system: Implications for human wellbeing. Marine 

Ppollution Bbulletin. 83: 387–397, https://www.sciencedirect.com/science/article/pii/S0025326X13002919. 

 

Davidson, N. C., A. A. van Dam, C. M. Finlayson , & R. J. McInnes, 2019. Worth of wetlands: rRevised global 

monetary values of coastal and inland wetland ecosystem services. Marine and Freshwater Research. 70: 1189–

1194, https://www.publish.csiro.au/MF/MF18391.  

 

de la Torre-Castro, M. , & P. Rönnbäck, 2004. Links between humans and seagrasses—aAn example from 

tropical East Africa. Ocean & Ccoastal Mmanagement. 47: 361–387, 

https://www.sciencedirect.com/science/article/pii/S0964569104000626.  

 

Dewsbury, B. M., M. Bhat , & J. W. Fourqurean, 2016. A review of seagrass economic valuations: Gaps and 

progress in valuation approaches. Ecosystem Services. 18: 68–77, 

https://www.sciencedirect.com/science/article/pii/S2212041616300316. 

 

Duarte, C. M., 2000. Marine biodiversity and ecosystem services: aAn elusive link. Journal of Eexperimental 

Mmarine Bbiology and Eecology.  250: 117–131, http://dx.doi.org/10.1016/s0022-0981(00)00194-5.  

 

Duarte, C. M., T. Sintes , & N. Marbà, 2013. Assessing the CO2 capture potential of seagrass restoration projects. 

The Journal of Aapplied Eecology.  50: 1341–1349, 

https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/1365-2664.12155.  

 

Formatted: Subscript

https://www.sciencedirect.com/science/article/pii/S0959652617320358
https://www.sciencedirect.com/science/article/pii/S0964569117302028
https://www.sciencedirect.com/science/article/pii/S0025326X15003410
https://www.sciencedirect.com/science/article/pii/S143383190700056X
https://serval.unil.ch/resource/serval:BIB_93FD38C8836B.P001/REF
https://www.sciencedirect.com/science/article/pii/S1462901118306671
https://www.frontiersin.org/articles/10.3389/fmars.2015.00121
https://doi.org/10.1080/00139157.2013.785864
https://www.publish.csiro.au/MF/MF18391
https://www.sciencedirect.com/science/article/pii/S0964569104000626
https://www.sciencedirect.com/science/article/pii/S2212041616300316
http://dx.doi.org/10.1016/s0022-0981(00)00194-5
https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/1365-2664.12155


Failler, P., É. Pètre, T. Binet , & J.-P. Maréchal, 2015. Valuation of marine and coastal ecosystem services as a 

tool for conservation: The case of Martinique in the Caribbean. Ecosystem Services . 11: 67–75, 

https://www.sciencedirect.com/science/article/pii/S2212041614001272.  

Fernández, E., C. Barañano, S. Villasante , & G. Méndez, 2022. Historical evolution of the social perception on 

ecosystem services provided by seagrasses through analysis of the written press in North West Spain (1860 –2020). 

Ocean & Ccoastal Mmanagement. 216: 105983, 

https://www.sciencedirect.com/science/article/pii/S096456912100466X.  

 

Franzese, P. P., E. Buonocore, L. Donnarumma , & G. F. Russo, 2017. Natural capital accounting in marine 

protected areas: The case of the Islands of Ventotene and S. Stefano (Central Italy). Ecological Mmodelling. 360: 

290–299, https://www.sciencedirect.com/science/article/pii/S030438001730248X. 

 

Fulford, R., D. Yoskowitz, M. Russell, D. Dantin , & J. Rogers, 2016. Habitat and recreational fishing opportunity 

in Tampa Bay: Linking ecological and ecosystem services to human beneficiaries. Ecosystem Services. 17: 64–

74, https://www.sciencedirect.com/science/article/pii/S2212041615300590.  

 

González-García, A., M. Arias, S. García-Tiscar, P. Alcorlo , & F. Santos-Martín, 2022. National blue carbon 

assessment in Spain using InVEST: Current state and future perspectives. Ecosystem Services . 53: 101397, 

https://www.sciencedirect.com/science/article/pii/S2212041621001558. 

 

Greiner, J. T., K. J. McGlathery, J. Gunnell , & B. A. McKee, 2013. Seagrass rRestoration eEnhances “bBlue 

cCarbon” sSequestration in cCoastal wWaters. PloS Oone Public Library of Science 8: e72469, 

https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0072469&type=printable.  

 

Guerra-Vargas, L. A., L. G. Gillis , & J. E. Mancera-Pineda, 2020. Stronger tTogether: dDo cCoral rReefs 

eEnhance sSeagrass mMeadows “Bblue cCarbon” pPotential? Frontiers in Marine Science. 7:628, 

https://www.frontiersin.org/articles/10.3389/fmars.2020.00628. 

 

Hattam, C., S. Broszeit, O. Langmead, R. A. Praptiwi, V. Ching Lim, L. A. Creencia, T. Duc Hau, C. Maharja, P. 

Wulandari, T. Mitra Setia, J. Sugardjito, J. Javier, E. Jose, L. Janine Gajardo, A. Yee -Hui Then, A. Yang Amri, 

S. Johari, E. Vivian Justine, M. Ali Syed Hussein, H. Ching Goh, N. Phuc Hung, N. Van Quyen, L. Ngoc Thao, 

N. Hoang Tri, A. Edwards-Jones, D. Clewley , & M. Austen, 2021. A matrix approach to tropical marine 

ecosystem service assessments in Southeast Asia. Ecosystem Services. 51: 101346, 

https://www.sciencedirect.com/science/article/pii/S2212041621001042. 

 

Heckwolf, M. J., A. Peterson, H. Jänes, P. Horne, J. Künne, K. Liversage, M. Sajeva, T. B. H. Reusch , & J. Kotta, 

2021. From ecosystems to socio-economic benefits: A systematic review of coastal ecosystem services in the 

Baltic Sea. The Science of the tTotal eEnvironment. 755: 142565, 

http://dx.doi.org/10.1016/j.scitotenv.2020.142565.  

 

Hejnowicz, A. P., H. Kennedy, M. A. Rudd , & M. R. Huxham, 2015. Harnessing the climate mitigation, 

conservation and poverty alleviation potential of seagrasses: pProspects for developing blue carbon initiatives and 

payment for ecosystem service programmes. Frontiers in Marine Science. 2:32, 

https://www.frontiersin.org/articles/10.3389/fmars.2015.00032. 

 

Himes-Cornell, A., L. Pendleton , & P. Atiyah, 2018. Valuing ecosystem services from blue forests: A systematic 

review of the valuation of salt marshes, sea grass beds and mangrove forests. Ecosystem Services . 30: 36–48, 

https://www.sciencedirect.com/science/article/pii/S2212041617305880. 

 

Horn, S., M. Coll, H. Asmus , & T. Dolch, 2021. Food web models reveal potential ecosystem effects of seagrass 

recovery in the northern Wadden Sea. Restoration Ecology. 29:e13328, 

https://onlinelibrary.wiley.com/doi/10.1111/rec.13328. 

 

Hossain, M. S. , & M. Hashim, 2019. Potential of Earth Observation (EO) technologies for seagrass ecosystem 

service assessments. International Journal of Applied Earth Observation and Geoinformation. 77: 15–29, 

https://www.sciencedirect.com/science/article/pii/S030324341830967X. 

 

Howard, J., E. McLeod, S. Thomas, E. Eastwood, M. Fox, L. Wenzel , & E. Pidgeon, 2017. The potential to 

integrate blue carbon into MPA design and management. Aquatic Cconservation: Mmarine and Ffreshwater 

Eecosystems. 27: 100–115, https://onlinelibrary.wiley.com/doi/10.1002/aqc.2809.  

https://www.sciencedirect.com/science/article/pii/S2212041614001272
https://www.sciencedirect.com/science/article/pii/S096456912100466X
https://www.sciencedirect.com/science/article/pii/S030438001730248X
https://www.sciencedirect.com/science/article/pii/S2212041615300590
https://www.sciencedirect.com/science/article/pii/S2212041621001558
https://www.frontiersin.org/articles/10.3389/fmars.2020.00628
https://www.sciencedirect.com/science/article/pii/S2212041621001042
https://www.frontiersin.org/articles/10.3389/fmars.2015.00032
https://www.sciencedirect.com/science/article/pii/S2212041617305880
https://onlinelibrary.wiley.com/doi/10.1111/rec.13328
https://www.sciencedirect.com/science/article/pii/S030324341830967X
https://onlinelibrary.wiley.com/doi/10.1002/aqc.2809


 

van Keulen, M., L. M. Nordlund, & L. C. Cullen-Unsworth, 2018. Towards recognition of seagrasses, and their 

sustainable management. Marine pPollution Bbulletin. 134: 1–496, 

https://orca.cardiff.ac.uk/115265/1/EDITORIAL%20Securing%20a%20future%20for%20seagrass%20final.pdf . 

 

Keyzer, L. M., P. M. J. Herman, B. P. Smits, J. D. Pietrzak, R. K. James, A. S. Candy, R. E. M. Riva, T. J. Bouma, 

C. G. van der Boog, C. A. Katsman, D. C. Slobbe, M. Zijlema, R. M. van Westen , & H. A. Dijkstra, 2020. The 

potential of coastal ecosystems to mitigate the impact of sea-level rise in shallow tropical bays. Estuarine, Ccoastal 

and Sshelf Sscience. 246: 107050, https://www.sciencedirect.com/science/article/pii/S0272771420307812.  

 

Koch, E. W., E. B. Barbier, B. R. Silliman, D. J. Reed, G. M. E. Perillo, S. D. Hacker, E. F. Granek, J. H. 

Primavera, N. Muthiga, S. Polasky, B. S. Halpern, C. J. Kennedy, C. V. Kappel , & E. Wolanski, 2009. Non-

linearity in ecosystem services: tTemporal and spatial variability in coastal protection. Frontiers in Eecology and 

the Eenvironment. 7: 29–37, https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1890/080126.  

 

Liu, C., G. Liu, Q. Yang, T. Luo, P. He, P. P. Franzese, & G. V. Lombardi, 2021. Emergy-based evaluation of 

world coastal ecosystem services. Water Rresearch. 204: 117656, 

http://dx.doi.org/10.1016/j.watres.2021.117656.  

 

Lovelock, C. E., & R. Reef, 2020. Variable iImpacts of cClimate cChange on bBlue cCarbon. One Earth. 3: 195–

211, https://www.sciencedirect.com/science/article/pii/S2590332220303547.  

 

Luisetti, T., E. L. Jackson, & R. K. Turner, 2013. Valuing the European “coastal blue carbon” storage benefit. 

Marine Ppollution Bbulletin. 71: 101–106, 

https://www.sciencedirect.com/science/article/pii/S0025326X13001690.  

 

Lukman, K. M., Y. Uchiyama, J. M. D. Quevedo, & R. Kohsaka, 2021. Local awareness as an instrument for 

management and conservation of seagrass ecosystem: Case of Berau Regency, Indonesia. Ocean & cCoastal 

mManagement. 203: 105451, https://www.sciencedirect.com/science/article/pii/S0964569120303586. 

 

Mach, M. E., R. G. Martone, & K. M. A. Chan, 2015. Human impacts and ecosystem services: Insufficient 

research for trade-off evaluation. Ecosystem Services. 16: 112–120, 

https://www.sciencedirect.com/science/article/pii/S2212041615300450.  

 

Mainardis, M., F. Magnolo, C. Ferrara, C. Vance, G. Misson, G. De Feo, S. Speelman, F. Murphy, & D. Goi, 

2021. Alternative seagrass wrack management practices in the circular bioeconomy framework: A life cycle 

assessment approach. The Science of the Ttotal Eenvironment. 798: 149283, 

http://dx.doi.org/10.1016/j.scitotenv.2021.149283.  

 

Mangi, S. C., C. E. Davis, L. A. Payne, M. C. Austen, D. Simmonds, N. J. Beaumont, & T. Smyth, 2011. Valuing 

the regulatory services provided by marine ecosystems. Environmetrics. 22: 686–698, 

https://onlinelibrary.wiley.com/doi/10.1002/env.1095. 

 

Marx, L., S. Flecha, M. Wesselmann, C. Morell, & I. E. Hendriks, 2021. Marine Macrophytes as Carbon Sinks: 

Comparison Between Seagrasses and the Non-native Alga Halimeda incrassata in the Western Mediterranean 

(Mallorca). Frontiers in Marine Science. 8:, https://www.frontiersin.org/articles/10.3389/fmars.2021.746379. 

 

McGlathery, K. J., L. K. Reynolds, L. W. Cole, R. J. Orth, S. R. Marion, & A. Schwarzschild, 2012. Recovery 

trajectories during state change from bare sediment to eelgrass dominance. Marine Eecology Pprogress Sseries. 

448: 209–221, http://www.int-res.com/abstracts/meps/v448/p209-221/. 

 

McKenzie, L. J., R. L. Yoshida, J. W. Aini, S. Andréfouet, P. L. Colin, L. C. Cullen-Unsworth, A. T. Hughes, C. 

E. Payri, M. Rota, C. Shaw, R. T. Tsuda, V. C. Vuki, & R. K. F. Unsworth, 2021. Seagrass ecosystem contributions 

to people’s quality of life in the Pacific Island Countries and Territories. Marine Ppollution Bbulletin. 167: 

112307, http://dx.doi.org/10.1016/j.marpolbul.2021.112307. 

 

Mehvar, S., T. Filatova, A. Dastgheib, E. De Ruyter van Steveninck, & R. Ranasinghe, 2018. Quantifying 

Eeconomic Vvalue of Ccoastal Eecosystem Sservices: A Rreview. Journal of mMarine Sscience and 

Eengineering. 6: 5, https://www.mdpi.com/252190. 

 

https://orca.cardiff.ac.uk/115265/1/EDITORIAL%20Securing%20a%20future%20for%20seagrass%20final.pdf
https://www.sciencedirect.com/science/article/pii/S0272771420307812
https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1890/080126
http://dx.doi.org/10.1016/j.watres.2021.117656
https://www.sciencedirect.com/science/article/pii/S2590332220303547
https://www.sciencedirect.com/science/article/pii/S0025326X13001690
https://www.sciencedirect.com/science/article/pii/S0964569120303586
https://www.sciencedirect.com/science/article/pii/S2212041615300450
http://dx.doi.org/10.1016/j.scitotenv.2021.149283
https://onlinelibrary.wiley.com/doi/10.1002/env.1095
https://www.frontiersin.org/articles/10.3389/fmars.2021.746379
http://www.int-res.com/abstracts/meps/v448/p209-221/
http://dx.doi.org/10.1016/j.marpolbul.2021.112307
https://www.mdpi.com/252190


Moberg, F., & P. Rönnbäck, 2003. Ecosystem services of the tropical seascape: Iinteractions, substitutions and 

restoration. Ocean & Ccoastal Mmanagement. 46: 27–46, 

https://www.sciencedirect.com/science/article/pii/S0964569102001199. 

 

Moksnes, P.-O., M. E. Röhr, M. Holmer, J. S. Eklöf, L. Eriander, E. Infantes, & C. Boström, 2021. Major impacts 

and societal costs of seagrass loss on sediment carbon and nitrogen stocks. Ecosphere. 12:e03658, 

https://onlinelibrary.wiley.com/doi/10.1002/ecs2.3658.  

 

Montefalcone, M., P. Vassallo, G. Gatti, V. Parravicini, C. Paoli, C. Morri , & C. N. Bianchi, 2015. The exergy of 

a phase shift: Ecosystem functioning loss in seagrass meadows of the Mediterranean Sea. Estuarine, cCoastal and 

sShelf sScience. 156: 186–194, https://www.sciencedirect.com/science/article/pii/S0272771414003722.  

 

Morris, R. L., T. M. Konlechner, M. Ghisalberti, & S. E. Swearer, 2018. From grey to green: Efficacy of eco-

engineering solutions for nature-based coastal defence. Global Cchange Bbiology. 24: 1827–1842, 

https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.14063?casa_token=n3KWgGCBsgcAAAAA:bIHXeEKMB

1sY7QgU6vppO7JTCXwmpHGkr0_H7j6Dp081WwmckiBuheuyZ1a0Jk4v1JLWL5IT2kmb. 

 

Nordlund, L., E. W. Koch, E. B. Barbier, & J. C. Creed, 2016. Seagrass Eecosystem Sservices and Ttheir 

Vvariability across Ggenera and Ggeographical Rregions. PloS Oone. 11: e0163091, 

http://dx.doi.org/10.1371/journal.pone.0163091. 

Nakaoka, M., K.-S. Lee, X. Huang, T. Almonte, J. S. Bujang, W. Kiswara, R. Ambo-Rappe, S. M. Yaakub, M. P. 

Prabhakaran, M. K. Abu Hena, M. Hori, P. Zhang, A. Prathep, & M. D. Fortes, 2014. Regional cComparison of 

the eEcosystem sServices from sSeagrass bBeds in Asia. iIn Nakano, S.-I., T. Yahara, & T. Nakashizuka (eds), 

Integrative Observations and Assessments . Springer Japan, Tokyo: 367–391, https://doi.org/10.1007/978-4-431-

54783-9_20. 

Namba, M., H. K. Lotze, & A. L. Schmidt, 2018. Large-scale differences in community structure and ecosystem 

services of eelgrass (Zostera marina) beds across three regions in eastern Canada. Estuaries and Ccoasts: 

Jjournal of the Estuarine Research. 41: 177–192, 

https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/article/10.1007/s12237 -017-0271-

9&casa_token=XmR-Hs7iACMAAAAA:lTgS4LrVr0tZb634l8_SDm7dUsIDAiK47BLShlZgJ5SQrAvG-

WOMswr8DeWx1fIZ8hxScHbJYI8eZg. 

Narayan, S., M. W. Beck, B. G. Reguero, I. J. Losada, B. van Wesenbeeck, N. Pontee, J. N. Sanchirico, J. C. 

Ingram, G.-M. Lange, & K. A. Burks-Copes, 2016. The Eeffectiveness, Ccosts and Ccoastal Pprotection 

Bbenefits of Nnatural and Nnature-Bbased Ddefences. PloS Oone. 11: e0154735, 

http://dx.doi.org/10.1371/journal.pone.0154735.  

Nordlund, L., E. W. Koch, E. B. Barbier, & J. C. Creed, 2016. Seagrass Eecosystem Sservices and Ttheir 

Vvariability across Ggenera and Ggeographical Rregions. PloS Oone. 11: e0163091, 

http://dx.doi.org/10.1371/journal.pone.0163091. 

 

Nordlund, L. M., E. L. Jackson, M. Nakaoka, J. Samper-Villarreal, P. Beca-Carretero, & J. C. Creed, 2018. 

Seagrass ecosystem services – What’s next?. Marine Ppollution Bbulletin. 134: 145–151, 

https://www.sciencedirect.com/science/article/pii/S0025326X1730749X. 

 

Panyawai, J., P. Tuntiprapas, & A. Prathep, 2019. High macrophyte canopy complexity enhances sediment 

retention and carbon storage in coastal vegetative meadows at Tangkhen Bay, Phuket, Southern Thailand. 

Ecological Rresearch. 34: 201–212, https://onlinelibrary.wiley.com/doi/10.1111/1440-1703.1066.  

 

https://www.sciencedirect.com/science/article/pii/S0964569102001199
https://onlinelibrary.wiley.com/doi/10.1002/ecs2.3658
https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.14063?casa_token=n3KWgGCBsgcAAAAA:bIHXeEKMB1sY7QgU6vppO7JTCXwmpHGkr0_H7j6Dp081WwmckiBuheuyZ1a0Jk4v1JLWL5IT2kmb
https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.14063?casa_token=n3KWgGCBsgcAAAAA:bIHXeEKMB1sY7QgU6vppO7JTCXwmpHGkr0_H7j6Dp081WwmckiBuheuyZ1a0Jk4v1JLWL5IT2kmb
https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/article/10.1007/s12237-017-0271-9&casa_token=XmR-Hs7iACMAAAAA:lTgS4LrVr0tZb634l8_SDm7dUsIDAiK47BLShlZgJ5SQrAvG-WOMswr8DeWx1fIZ8hxScHbJYI8eZg
https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/article/10.1007/s12237-017-0271-9&casa_token=XmR-Hs7iACMAAAAA:lTgS4LrVr0tZb634l8_SDm7dUsIDAiK47BLShlZgJ5SQrAvG-WOMswr8DeWx1fIZ8hxScHbJYI8eZg
https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/article/10.1007/s12237-017-0271-9&casa_token=XmR-Hs7iACMAAAAA:lTgS4LrVr0tZb634l8_SDm7dUsIDAiK47BLShlZgJ5SQrAvG-WOMswr8DeWx1fIZ8hxScHbJYI8eZg
http://dx.doi.org/10.1371/journal.pone.0163091
https://www.sciencedirect.com/science/article/pii/S0025326X1730749X
https://onlinelibrary.wiley.com/doi/10.1111/1440-1703.1066


Pendleton, L., D. C. Donato, B. C. Murray, S. Crooks, W. Aaron Jenkins, S. Sifleet, C. Craft, J. W. Fourqurean, 

J. Boone Kauffman, N. Marbà, P. Megonigal, E. Pidgeon, D. Herr, D. Gordon, & A. Baldera, 2012. Estimating 

Gglobal “Blue Carbon” Eemissions from Cconversion and Ddegradation of Vvegetated Ccoastal Eecosystems. 

PloS Oone. 7: e43542, 

https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0043542&type=printable .  

 

Pendleton, L. H., A. E. Sutton-Grier, D. R. Gordon, B. C. Murray, B. E. Victor, R. B. Griffis, J. A. V. Lechuga, 

& C. Giri, 2013. Considering “coastal carbon” in existing U.s. federal statutes and policies. Coastal 

Mmanagement: an international journal of marine environment, resources, law, and society. 41: 439–456, 

https://www.tandfonline.com/doi/abs/10.1080/08920753.2013.822294. 

 

Pinsky, M. L., G. Guannel, & K. K. Arkema, 2013. Quantifying wave attenuation to inform coastal habitat 

conservation. Ecosphere. 4: art95, http://doi.wiley.com/10.1890/ES13-00080.1. 

 

Quevedo, J. M. D., Y. Uchiyama, & R. Kohsaka, 2020. Perceptions of the seagrass ecosystems for the local 

communities of Eastern Samar, Philippines: Preliminary results and prospects of blue carbon services. Ocean & 

Ccoastal Mmanagement. 191: 105181, https://www.sciencedirect.com/science/article/pii/S0964569120300910. 

Quevedo, J. M. D., Y. Uchiyama, K. M. Lukman, & R. Kohsaka, 2021. Are mMunicipalities rReady for 

iIntegrating bBlue cCarbon cConcepts?: Content aAnalysis of cCoastal mManagement pPlans in the 

Philippines. Coastal Mmanagement: an international journal of marine environment, resources, law, and society. 

49: 334–355, https://doi.org/10.1080/08920753.2021.1928455.  

Quiros, T. E. A. L., K. Sudo, R. V. Ramilo, H. G. Garay, M. P. G. Soniega, A. Baloloy, A. Blanco, A. 

Tamondong, K. Nadaoka, & M. Nakaoka, 2021. Blue cCarbon eEcosystem sServices tThrough a vVulnerability 

Llens: Opportunities to rReduce sSocial vVulnerability in fFishing cCommunities. Frontiers in Marine Science. 

8:, https://www.frontiersin.org/articles/10.3389/fmars.2021.671753.  

Rahman, S. A., & S. M. Yaakub, 2020. Socio-economic valuation of seagrass meadows in the Pulai River Estuary, 

Peninsular Malaysia, through a wellbeing lens. Marine and Freshwater Research. 71: 877–891, 

https://www.publish.csiro.au/MF/MF19208.  

Rönnbäck, P., N. Kautsky, L. Pihl, M. Troell, T. Söderqvist, & H. Wennhage, 2007. Ecosystem goods and services 

from Swedish coastal habitats: iIdentification, valuation, and implications of ecosystem shifts. Ambio BioOne 36: 

534–544, http://dx.doi.org/10.1579/0044-7447(2007)36[534:egasfs]2.0.co;2.  

 

Ruiz-Frau, A., S. Gelcich, I. E. Hendriks, C. M. Duarte, & N. Marbà, 2017. Current state of seagrass ecosystem 

services: Research and policy integration. Ocean & Ccoastal Mmanagement. 149: 107–115, 

https://www.sciencedirect.com/science/article/pii/S0964569117304325. 

 

Ruiz-Frau, A., T. Krause, & N. Marbà, 2019. In the blind-spot of governance –- Stakeholder perceptions on 

seagrasses to guide the management of an important ecosystem services provider. The Science of the Ttotal 

Eenvironment. 688: 1081–1091, https://www.sciencedirect.com/science/article/pii/S0048969719328979.  

 

Russell, M., J. Rogers, S. Jordan, D. Dantin, J. Harvey, J. Nestlerode, & F. Alvarez, 2011. Prioritization of 

ecosystem services research: Tampa bay demonstration project. Journal of Ccoastal Cconservation Springer 

Science and Business Media 15: 647–658, 

https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/article/10.1007/s11852-011-0158-

z&casa_token=_mFsBxf8HKwAAAAA:EEVsfuTNlVXkOnBy9ho85F9OH-

9BMtku6gwD1qDOdMnhyugAYVeJV-riyzkfB8IfknIHsc3-xdVGEA.  

 

Scemama, P., C. Kermagoret, A. Accornero-Picon, F. Alban, P. Astruch, C. Boemare, C. F. Boudouresque, T. 

Changeux, E. Charbonnel, & M. L. Harmelin-Vivien, 2020. A strategic approach to assess the bundle of 

https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0043542&type=printable
https://www.tandfonline.com/doi/abs/10.1080/08920753.2013.822294
https://www.sciencedirect.com/science/article/pii/S0964569120300910
https://doi.org/10.1080/08920753.2021.1928455
https://www.frontiersin.org/articles/10.3389/fmars.2021.671753
https://www.publish.csiro.au/MF/MF19208
http://dx.doi.org/10.1579/0044-7447(2007)36%5b534:egasfs%5d2.0.co;2
https://www.sciencedirect.com/science/article/pii/S0964569117304325
https://www.sciencedirect.com/science/article/pii/S0048969719328979
https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/article/10.1007/s11852-011-0158-z&casa_token=_mFsBxf8HKwAAAAA:EEVsfuTNlVXkOnBy9ho85F9OH-9BMtku6gwD1qDOdMnhyugAYVeJV-riyzkfB8IfknIHsc3-xdVGEA
https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/article/10.1007/s11852-011-0158-z&casa_token=_mFsBxf8HKwAAAAA:EEVsfuTNlVXkOnBy9ho85F9OH-9BMtku6gwD1qDOdMnhyugAYVeJV-riyzkfB8IfknIHsc3-xdVGEA
https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/article/10.1007/s11852-011-0158-z&casa_token=_mFsBxf8HKwAAAAA:EEVsfuTNlVXkOnBy9ho85F9OH-9BMtku6gwD1qDOdMnhyugAYVeJV-riyzkfB8IfknIHsc3-xdVGEA


ecosystem services provided by Posidonia oceanica meadows in the Bay of Marseille.  Life & Environment 70: 

197-207 https://hal.sorbonne-universite.fr/hal-03342451/document.  

 

Serrano, O., R. Ruhon, P. S. Lavery, G. A. Kendrick, S. Hickey, P. Masque, A. Arias -Ortiz, A. Steven, & C. M. 

Duarte, 2016. Impact of mooring activities on carbon stocks in seagrass meadows [dataset]. Edith Cowan 

UniversityScientific Reports 6: 23193, https://ro.ecu.edu.au/datasets/26/.  

 

Schmidt, A. L., M. Coll, T. Romanuk, & H. K. Lotze, 2011. Ecosystem structure and services in eelgrass 

Zostera marina and rockweed Ascophyllum nodosum habitats. Marine Eecology Pprogress Sseries Inter-

Research Science Center 437: 51–68, http://www.int-res.com/abstracts/meps/v437/p51-68/. 

 

Stewart-Sinclair, P. J., C. J. Klein, I. J. Bateman, & C. E. Lovelock, 2021. Spatial cost-benefit analysis of blue 

restoration and factors driving net benefits globally. Conservation Bbiology: the journal of the Society for 

Conservation Biology. 35: 1850–1860, https://conbio.onlinelibrary.wiley.com/doi/abs/10.1111/cobi.13742. 

 

Sutton-Grier, A. E., & A. Moore, 2016. Leveraging cCarbon sServices of cCoastal eEcosystems for hHabitat 

pProtection and rRestoration. Coastal Mmanagement: an international journal of marine environment, resources, 

law, and society Taylor & Francis 44: 259–277, https://doi.org/10.1080/08920753.2016.1160206. 

 

Thomas, S., 2014. Blue carbon: Knowledge gaps, critical issues, and novel approaches. Ecological Eeconomics: 

the journal of the International Society for Ecological Economics. 107: 22–38, 

https://www.sciencedirect.com/science/article/pii/S0921800914002304.  

 

Trégarot, E., G. Touron-Gardic, C. C. Cornet, & P. Failler, 2020. Valuation of coastal ecosystem services in the 

Llarge Mmarine Eecosystems of Africa. Environmental Development. 36: 100584, 

https://www.sciencedirect.com/science/article/pii/S2211464520301068. 

 

Trégarot, E., T. Catry, A. Pottier, E.-H. M. El-Hacen, M. A. Sidi Cheikh, C. C. Cornet, J.-P. Maréchal, & P. 

Failler, 2021. Coastal protection assessment: Aa tradeoff between ecological, social, and economic issues. 

Ecosphere. 12:, https://onlinelibrary.wiley.com/doi/10.1002/ecs2.3364.  

 

Tussadiah, A., A. S. Sujiwo, I. Andesta, & W. Daeli, 2021. Assessment of coastal ecosystem services and its 

condition for policy management plan in East Nusa Tenggara, Indonesia. Regional Studies in Marine Science. 

47: 101941, https://www.sciencedirect.com/science/article/pii/S2352485521003339.  

 

Tuya, F., R. Haroun, & F. Espino, 2014. Economic assessment of ecosystem services: Monetary value of 

seagrass meadows for coastal fisheries. Ocean & Ccoastal Mmanagement. 96: 181–187, 

https://www.sciencedirect.com/science/article/pii/S0964569114001409. 

 

Twomey, A. J., K. R. O’Brien, D. P. Callaghan, & M. I. Saunders, 2020. Synthesising wave attenuation for 

seagrass: Drag coefficient as a unifying indicator. Marine Ppollution Bbulletin. 160: 111661, 

http://dx.doi.org/10.1016/j.marpolbul.2020.111661. 

 

Tyllianakis, E., A. Callaway, K. Vanstaen, & T. Luisetti, 2019. The value of information: Realising the 

economic benefits of mapping seagrass meadows in the British Virgin Islands. The Science of the Ttotal 

Eenvironment. 650: 2107–2116, http://dx.doi.org/10.1016/j.scitotenv.2018.09.296. 

 

Unsworth, R. K. F., & L. C. Cullen, 2010. Recognising the necessity for Indo-Pacific seagrass conservation. 

Conservation Lletters. 3: 63–73, https://conbio.onlinelibrary.wiley.com/doi/abs/10.1111/j.1755-

263X.2010.00101.x. 

 

Unsworth, R. K. F., M. van Keulen, & R. G. Coles, 2014. Seagrass meadows in a globally changing environment. 

Marine Ppollution Bbulletin. 83: 383–386, http://dx.doi.org/10.1016/j.marpolbul.2014.02.026. 

 

Unsworth, R. K. F., L. J. McKenzie, L. M. Nordlund, & L. C. Cullen-Unsworth, 2018. A changing climate for 

seagrass conservation?. Current Bbiology. 28: R1229–R1232, http://dx.doi.org/10.1016/j.cub.2018.09.027. 

 

Unsworth, R. K. F., L. J. McKenzie, C. J. Collier, L. C. Cullen-Unsworth, C. M. Duarte, J. S. Eklöf, J. C. Jarvis, 

B. L. Jones, & L. M. Nordlund, 2019. Global challenges for seagrass conservation. Ambio Springer 48: 801–815, 

http://dx.doi.org/10.1007/s13280-018-1115-y. 

https://hal.sorbonne-universite.fr/hal-03342451/document
https://ro.ecu.edu.au/datasets/26/
http://www.int-res.com/abstracts/meps/v437/p51-68/
https://conbio.onlinelibrary.wiley.com/doi/abs/10.1111/cobi.13742
https://doi.org/10.1080/08920753.2016.1160206
https://www.sciencedirect.com/science/article/pii/S0921800914002304
https://www.sciencedirect.com/science/article/pii/S2211464520301068
https://onlinelibrary.wiley.com/doi/10.1002/ecs2.3364
https://www.sciencedirect.com/science/article/pii/S2352485521003339
https://www.sciencedirect.com/science/article/pii/S0964569114001409
http://dx.doi.org/10.1016/j.marpolbul.2020.111661


 

van Katwijk, M. M., B. I. van Tussenbroek, S. V. Hanssen, A. J. Hendriks , & L. Hanssen, 2021. Rewilding the 

Ssea with Ddomesticated Sseagrass. Bioscience. 71: 1171–1178, http://dx.doi.org/10.1093/biosci/biab092.  

 

Vassallo, P., C. Paoli, A. Rovere, M. Montefalcone, C. Morri, & C. N. Bianchi, 2013. The value of the seagrass 

Posidonia oceanica: Aa natural capital assessment. Marine pPollution Bbulletin. 75: 157–167, 

http://dx.doi.org/10.1016/j.marpolbul.2013.07.044. 

 

Veettil, B. K., R. D. Ward, N. T. K. Dung, D. D. Van, N. X. Quang, P. N. Hoai, & N.-D. Hoang, 2021. The use 

of bioshields for coastal protection in Vietnam: Current status and potential. Regional Studies in Marine Science . 

47: 101945, https://www.sciencedirect.com/science/article/pii/S2352485521003376. 

 

Bas Ventín, B. L., J. de Souza Troncoso, & S. Villasante, 2015. Towards adaptive management of the natural 

capital: Disentangling trade-offs among marine activities and seagrass meadows. Marine Ppollution Bbulletin. 

101: 29–38, http://dx.doi.org/10.1016/j.marpolbul.2015.11.031. 

 

Vlachopoulou, E. I., A. M. Wilson, & A. Miliou, 2013. Disconnects in EU and Greek fishery policies and practices 

in the eastern Aegean Sea and impacts on Posidonia oceanica meadows. Ocean & Ccoastal Mmanagement. 76: 

105–113, https://www.sciencedirect.com/science/article/pii/S0964569113000331. 

 

Wallner-Hahn, S., M. Dahlgren, & M. de la Torre-Castro, 2022. Linking seagrass ecosystem services to food 

security: The example of southwestern Madagascar’s small-scale fisheries. Ecosystem sServices. 53: 101381, 

https://www.sciencedirect.com/science/article/pii/S221204162100139X. 

Watson, S. C. L., J. Preston, N. J. Beaumont, & G. J. Watson, 2020. Assessing the natural capital value of water 

quality and climate regulation in temperate marine systems using a EUNIS biotope classification approach. The 

Science of the Ttotal Eenvironment. 744: 140688, http://dx.doi.org/10.1016/j.scitotenv.2020.140688. 

Wylie, L., A. E. Sutton-Grier, & A. Moore, 2016. Keys to successful blue carbon projects: Lessons learned from 

global case studies. Marine Policy. 65: 76–84, 

https://www.sciencedirect.com/science/article/pii/S0308597X15003905. 

Young, M. A., O. Serrano, P. I. Macreadie, C. E. Lovelock, P. Carnell , & D. Ierodiaconou, 2021. National scale 

predictions of contemporary and future blue carbon storage. The Science of the Ttotal Eenvironment. 800: 

149573, http://dx.doi.org/10.1016/j.scitotenv.2021.149573. 

Zarate-Barrera, T. G., & J. H. Maldonado, 2015. Valuing blue carbon: carbon sequestration benefits provided by 

the marine protected areas in Colombia. PloS Oone. 10: e0126627, 

http://dx.doi.org/10.1371/journal.pone.0126627. 

Zuidema, C., R. Plate, & A. Dikou, 2011. To preserve or to develop? East Bay dredging project, South Caicos, 

Turks and Caicos Islands. Journal of Ccoastal Cconservation Springer Science and Business Media. 15: 555–563, 

https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/article/10.1007/s11852-011-0144-

5&casa_token=Wu9FDiYFheIAAAAA:Zs4nO4X0HEMJeDW12yZPcnGZRv-

TSbmWGlFI3tb0TpEq5tauVQbj7WI29BF0T_zOjaRny6USxzlg7g. 

 

http://dx.doi.org/10.1093/biosci/biab092
https://www.sciencedirect.com/science/article/pii/S221204162100139X
http://dx.doi.org/10.1016/j.scitotenv.2020.140688
https://www.sciencedirect.com/science/article/pii/S0308597X15003905
http://dx.doi.org/10.1016/j.scitotenv.2021.149573
http://dx.doi.org/10.1371/journal.pone.0126627
https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/article/10.1007/s11852-011-0144-5&casa_token=Wu9FDiYFheIAAAAA:Zs4nO4X0HEMJeDW12yZPcnGZRv-TSbmWGlFI3tb0TpEq5tauVQbj7WI29BF0T_zOjaRny6USxzlg7g
https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/article/10.1007/s11852-011-0144-5&casa_token=Wu9FDiYFheIAAAAA:Zs4nO4X0HEMJeDW12yZPcnGZRv-TSbmWGlFI3tb0TpEq5tauVQbj7WI29BF0T_zOjaRny6USxzlg7g
https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/article/10.1007/s11852-011-0144-5&casa_token=Wu9FDiYFheIAAAAA:Zs4nO4X0HEMJeDW12yZPcnGZRv-TSbmWGlFI3tb0TpEq5tauVQbj7WI29BF0T_zOjaRny6USxzlg7g


Figure 1: Seagrass meadow exposed during low tide. Patchy seagrass meadow dominated by Zostera 

angustifolia during low tide in Hayling Island, England, U.K. Photo credit: Mariana Lima, including 

anatomical scientific drawing of the seagrass Zostera marina (eelgrass), showing living above-ground 

(shoots and blades), below-ground (roots and rhizomes) components and seeds. (From: Watson, and 

Dallwitz, 1992). 

 

Figure 2: Methodology and search criteria used in the systematic literature review following a 

modified version of the PRISMA (Preferred Reporting Items for Systematic Reviews) statement rules 

and template (Moher et al., 2010) 

Figure 3: Number of Seagrass Ecosystem Service studies published per year from 2000 until March 

2022, including cumulative line. 

Figure 4: Schematic diagram showing all ecosystem services identified in this review, divided by the 

four main categories as suggested by the Millennium Ecosystem Assessment, 2005. 
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