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Abstract Seeking analytical solutions of nonlinear Schrödinger (NLS)-like equations remains an 

open topic. In this paper, we revisit the general inhomogeneous nonautonomous NLS (inNLS) 

equation and report on exact similaritons under generic constraint relationships by proposing a 

novel generic self-similar transformation, which implies that there exist a rich variety of 

highly-controllable solution families for inhomogeneous systems. As typical examples, richly 

controllable behaviors of the self-similar soliton (SS), self-similar Akhmediev breather (SAB), 

self-similar Ma breather (SMB), and self-similar rogue wave (SRW) are presented in a periodic 

distribution nonlinear system. With the aid of a linear transformation, these novel similariton 

solutions are deployed as a basis for constructing two-component composite solutions to a pair of 

coherently coupled inNLS equations including four-wave mixing. The diverse composite waves that 

emerge, including SS SS, SAB SMB, and SRW SRW families, are investigated in some detail. 

The family of similariton solutions presented here may prove significance for designing the control 

and transmission of nonlinear waves.  

Key words: generic self-similar transformation; exact similaritons family; diverse composite waves; 

control and transmission 

 

1. Introduction 

Similaritons in amplifying nonlinear graded-index waveguides can be realized under much less 

compatibility condition by controlling the power of Raman gain to match the parameters of the 

waveguides [1]. This line of work has been extended in various ways to nonautonomous systems [2, 

3]. Similar results have also been obtained for matter waves in trapped or anti-trapped 

Bose-Einstein condensates (BECs) with time-modulated atomic interactions [4]. The transmission 

of nonlinear waves in inhomogeneous waveguide systems are well described by an inhomogeneous 
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nonautonomous nonlinear Schrödinger (inNLS) equation [5, 6]. Many works have been devoted to 

finding solution constructions of inNLS-like equations with recourse to methods such as Darboux 

transformations and Lax pairs [7-9], Hirota bilinearizations [10], and self-similar transformations 

[10-14]. To date, some important self-similar soliton solutions have been obtained under special 

balance conditions between gain/loss, dispersion and nonlinearity [5-20]. Motivated by these works, 

it is natural to pose two key questions: (i) Are there other self-similar solutions of inNLS-like 

equations that have not yet been found? (ii) Do there exist families of solutions that can describe the 

dynamics of solitons and/or similaritons for various inhomogeneous systems? In this paper, a series 

of exact similariton solutions of an inNLS equation with external potentials will be sought by 

introducing a generic self-similar transformation and a generic constraint relationship between 

gain/loss, dispersion and nonlinearity. The arbitrary nature of the parameters and the introduction of 

a matching function representing residual gain/loss can be expected to give rise to similariton 

solutions with a diverse range of forms.  

In more sophisticated geometries, coupled NLS/inNLS equations can model physical processes 

that support multiple or multi-component nonlinear waves [16-21]. For instance, Manikandan et al. 

[16] investigated the manipulation of vector localized matter waves in multi-component 

Bose-Einstein condensates by transforming coupled inNLS equations into constant-coefficient NLS 

equations. Babu Mareeswaran et al. [17] analyzed superposed nonlinear waves of coherently 

coupled inNLS equations in systems with periodic and kink-like nonlinearity distributions. More 

recently, Jia et al. [18] have investigated coherently coupled inNLS equations through three kinds of 

similarity transformations, demonstrating energy exchange and the existence of a wide selection of 

composite waves in homogeneous/inhomogeneous optical fiber systems. Also of particular note is 

the work of Ding et al. [7], who presented breathers and rogue waves for coupled inNLS equations 

with the aid of Darboux transformations in the context of inhomogeneous plasmas. 

Here, we will use a linear transformation of envelopes to help identify families of similaritons 

that satisfy the inNLS equation. Those single-component solutions can then be mapped onto 

two-component solutions for a pair of coherently coupled inNLS equations. Subsequent analysis 

will focus on the propagation and control of various composite waves in inhomogeneous coupled 

systems. 

The significance of the results presented in this work is threefold:  

i) A family of exact similariton solutions for an inNLS equation involving external potentials is 
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presented by proposing introducing a generic self-similar transformation with a generic constraint 

relationship among gain/loss, dispersion and nonlinearity.  

ii) The generic constraints imply that there always exist exact similaritons with quite different 

forms in inhomogeneous fibers even if gain/loss, dispersion and nonlinearity are not precisely 

balanced. As illustrative examples, the control of typical similaritons in inhomogeneous systems 

will be demonstrated.  

iii) The family of similaritons can also be applied, via a linear transformation, to coherently 

coupled inNLS equations. The implication is that there must also exist corresponding series of 

composite self-similar waves in inhomogeneous coupled systems. 

The analysis presented in this paper is organized as follows. In Section II, we derive a family 

of exact similariton solutions of an inNLS equation with external potentials by proposing a novel 

generic self-similar transformation. The dynamics of those new solutions is demonstrated in Section 

III, where we consider the propagation in a range of inhomogeneous nonlinear fibers. In Section IV, 

we use a linear transformation to decouple a pair of inNLS equations including four-wave mixing 

terms into two identical inNLS equations. Utilizing the family of similaritons solutions (obtained in 

Section II), we study a broad range of composite self-similar waves in a coherently coupled inNLS 

model with periodic nonlinearity and different residual gain/loss. We conclude, in Section V, with 

some discussions of our results. 

 

2. A family of similariton solutions of inNLS equation 

Nonlinear waves such as optical solitons, rogue waves, and matter wave solitons in 

homogeneous systems can be well described by the NLS equation [22-26]. In realistic applications, 

systems are rarely homogeneous due to long-distance transmission, manufacturing imperfections, 

and the inclusion of other technological elements (e.g., connected to soliton management and 

control). It is necessary, then, to investigate how these types of nonlinear waves arise in 

non-autonomous inhomogeneous systems, and how they evolve during interactions in the presence 

of external potentials. The transmission of nonlinear waves in inhomogeneous systems can be 

modelled by the following inNLS equation [5, 6, 27, 28]: 
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Here, u  u(z, t) is the envelope of the electric field while z and t represent the longitudinal (spatial) 

and time coordinates, respectively. The real functions d(z), r(z) and (z) describe the group-velocity 

dispersion, nonlinearity, and gain ( (z) < 0) or loss ( (z) > 0) in the system, respectively. The real 

function 0(z), 1(z) and 2(z) parametrize the constant, linear and parabolic contributions, 

respectively. Equation (1) is of technical interest because of its wide range of potential applications 

[3-6, 13, 29, 30]. It can be used to investigate not only the stable transmission of optical pulses in 

inhomogeneous fiber or waveguide systems, but also the amplification and management of solitons 

and combined waves [10, 20, 21]. Over recent years, some particular similariton solutions of Eq. (1) 

have been found for special constraints [12, 18, 31-36]. Here, we are interested in more general 

analytical solutions of Eq. (1) under somewhat relaxed conditions. To proceed, we propose a 

generic self-similar transformation  
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The real functions Z(z), T(z,t), A(z) and (z,t) represent the effective propagation distance, 

self-similar time, self-similar amplitude and self-similar phase variables of the similariton, 

respectively. Parameters k1, d and r are arbitrary real constants, and g(z) quantifies the gain/loss. 

Equation (3) implies that A(z) is proportional to either [r(z)/d(z)]1/2 or [r(z)d(z)]1/2, which embodies 

the expectation that growth or decay of the amplitude due to gain/loss should be exponential along 

the transmission direction z [12, 18, 32]. Inserting Eqs. (2) and (3) into Eq. (1) and imposing the 

following conditions  
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where the subscripts z and t denote derivatives with respect to those variables and V(z, t) = 

0(z)+ 1(z)t+ 2(z)t2, one can obtain the standard NLS equation, 
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Analyzing and solving Eqs. (4) (7), one can find a pair of generic compatibility conditions  
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where r = 1/4  r/2, d = d/2  1/4, g(z) = 2 p p(z)dz and frdp(z) = (1/2 r)rz(z)/r(z) (1/2+ d)dz(z) 

/d(z) pp(z). The expressions for the self-similar solution variables are thus in the following forms: 
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where k2 is a constant of integration determining the trajectory and phase of the similaritons. In 

compatibility conditions (9) and (10), p is an arbitrary real constant and p(z) is an arbitrary 

matching function introduced to capture the residual gain/loss. The proposed generic self-similar 

transformation (2), in conjunction with Eq. (3), gives rise to generic compatibility conditions (9) 

and (10) and the set of self-similar solution variables (11) (14). When combining Eq. (2) with Eqs. 

(11) (16), Eq. (1) can be transformed into the standard NLS equation (8). Hence, we have 

established the connection between Eqs. (1) and (8). All known solutions to the latter e.g., solitons 

[22], Akhmediev and Ma breathers (ABs and MBs, respectively) [23], and rogue waves (RWs) 

[24] can now be mapped onto corresponding solutions of the former. 

Note that compatibility conditions (9) and (10), along with the set of self-similar variables [see 
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Eqs. (11) (14)], are closely tied to the free parameters r, d and p. Since those three constants are 

entirely arbitrary (including all positive and negative integers, rational and even irrational numbers), 

it follows that Eqs. (9) and (10) greatly relax the existence criteria of similaritons because the 

residual gain/loss function p(z) is itself also arbitrary. When p = 0, they predict an exact balance 

between gain/loss, dispersion and nonlinearity. However, when p ss cannot be 

completely compensated by dispersion and nonlinearity, and a residual gain/loss p(z) survives. 

Since the choice of p(z) is arbitrary, Eqs. (9) and (10) constitute weak constraints by compensating 

the unbalanced nature of dispersion, nonlinearity and gain/loss. Compared to those reported in 

earlier works [17, 18, 20, 29, 30, 32, 39-45] the introduction of arbitrary r, d, p and p(z) 

necessarily results in a family of exact similariton solutions to Eq. (1) under infinite corresponding 

constraint conditions, which can take a diverse form of solutions. Especially, these constraint 

conditions are easier to realize in practice due to the introduction of free p(z). In the next section, we 

will discuss the dynamic characteristics of the self-similar soliton (SS), self-similar AB (SAB), 

self-similar MB (SMB) and self-similar RW (SRW) solutions to Eq. (1) (explicit forms are given in 

Appendix A). 

In accordance with Eqs. (14) and (15), the function f1(z) represents the frequency shift of 

similariton (2), and the width W(z), trajectory Tr(z), and the chirp C(z) can also be derived from Eqs. 

(13) and (14) as follows: 
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It is clear from inspection of Eqs. (15) and (17) (19) that f1(z), W(z), Tr(z) and C(z) are determined 

by the dispersion d(z), nonlinearity r(z) and matching function p(z). Moreover, the trajectory and 

frequency shift are modulated by the linear external potential 1(z). It is also worth emphasizing 

that the self-similar characteristic variables along with the self-similar transformation (2) are all 

associated with the free parameters r, d and p. Such connections imply that the different values of 

r, d and p may regulate the amplitude, effective propagation distance, width, the trajectory of the 

similaritons. Therefore, typical similaritons such as SSs, SABs, SMBs or SRWs are all fully 
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controllable and configurable. In order to better illustrate the significance of similariton solution (2), 

we make six important remarks. 

Remark 1: Amplitude. The following deductions can be obtained from Eq. (11). When d = 

1/4, it follows that dzzppr ezrkzA
)(22-/21

1 )()(  and hence the amplitude of similariton (2) is not 

modulated by the dispersion d(z). When r = 1/4, one has dzzppd ezdkzA
)(222/1

1 )()(  and so the 

amplitude is not modulated by the nonlinearity r(z). When r = d = 1/4, we 

have dzzppekzA
)(2

1)(  so that the amplitude is independent of r(z) and d(z) [i.e., A(z) changes 

exponentially with p(z)]. For the general case d 1/4 or r 

in different ways even for the same d(z) or r(z). 

Remark 2: Effective distance. The following deductions can be made from Eq. (12). When d 

= 1/4, one has dzezrkzZ dzzppr
)(44-22

1 )()( and so the effective distance is independent of d(z). 

When r = 1/2, one has dzezdkzZ
dzzppd

)(4412
1 )()(  so that the effective distance is 

independent of r(z). When r = 2 d = 1/2, one has dzekzZ
dzzpp )(42

1)(  and hence the 

effective distance is independent of both r(z) and d(z) [i.e., Z(z) depends only upon p and p(z)].  

Remark 3: Width. The following deductions can be made from Eq. (17). When d = 1/2, one 

has 1
)(212 /)()( kezrzW
dzzppr and so the width of similariton (2) is independent of the dispersion 

d(z). When r = 1/2, one has 1
)(221 /)()( kezdzW
dzzppd and so the width is independent of r(z). 

When r = d = 1/2, the width depends only upon related to p(z) and p. Furthermore, if p = 0, the 

width of the similariton remains constant while, when d  1/2 and r 

modulated by both d(z) and r(z) in different ways (as determined by the selection of d and r). 

Remark 4: Trajectory. If the system has no residual gain/loss (i.e., p = 0), then for r = 1/2 we 

have from Eq. (18) that dzdzzdzkzdzdzTr ddd ])()([)()(2)( 21
12

4121 . The trajectory of 

similariton (2) is then independent of r(z). When 1(z

dispersion d(z) regardless of d, which is in agreement with the propagation features found in Refs. 

[46, 47]. 

Remark 5: Chirp. For homogeneous system [where d(z) = r(z) =1 and p(z) = 0], Eq. (19) 

predicts that similariton (2) is chirp-free. When r = 1/2, one has C(z) = (1/2 + d)dz(z)/d2(z) + 

pp(z)/d(z) so that the chirp of the similariton is independent of r(z). In general, the similariton 



8 

always has a chirp related to d(z) irrespective of d, except for the special cases of either r = d = 

1/2 and p = 0, or p(z) = (1/2  r)rz(z)/[ pr(z)]  (1/2 + d)dz(z)/[ pd(z)]. 

Remark 6: General cases. From constraint (9), when the dispersion and nonlinearity are 

subject to the relation const.)()( rd zrzd , one has (z) = pp(z) so that the matching function is 

determined solely by (z). Without loss of generality, we may always set const. = 1 and then deduce 

two special cases as important examples. Case : When r = d [i.e. d(z) = r(z)], it is known from 

Eqs. (11) and (17) that dzzppekzA )(2
1)(  and dzzppekzW )(21

1)( . These results mean that both 

the amplitude and the width of similariton (2) are independent of r(z) and d(z), but they are 

dependent on (z). Case : When r = 2 d [i.e. d(z) = r2(z)], one can obtain from Eq. (12) that 

dzekzZ
dzzpp )(42

1)( which means Z(z) varies exponentially with p(z) irrespective of r(z) and 

d(z). 

From the above observations, it is easy to surmise that for an inhomogeneous system with 

given dispersion and nonlinearity, the similariton prescribed by Eqs. (2), (3) and (12) (16) may 

have distinctly different qualitative behaviors whose amplitude, effective propagation distance, 

width, trajectory and chirp can all be controlled by choosing different r, d and p. In fact, the 

self-similar transformations reported in previous papers are some special cases of our work with 

particular choices of r, d and p [17, 18, 20, 29, 30, 39-45]. For example, when p = 0, 5 d = 3 r 

and r5(z) = d3(z), the constraint conditions and self-similar variables (9) (16) can be reduced to 

those studied in Ref. [11] as shown in Appendix B [see system (B1)]. When p, d and r take on 

other special values, the reduced expressions shown in Appendix B [see systems (B2) (B4)] are in 

agreement with those in Refs. [12, 18, 33, 34]. Some special cases of self-similar transformation (2) 

are listed in Table 1, w -

r or d have no effect on constraint condition (9) due to rz(z)/r(z) = 0 or dz(z)/d(z) = 0. For ease of 

comparison, we note also that our p(z) corresponds to the ratio wz(z)/w(z) in Refs. [32-34, 36]. 

The reported self-similar transformations listed in Table 1 are the special cases of our current 

work. The generality of similariton (2) arises from the introduction of arbitrary quantities r, d, p 

and p(z). For homogeneous systems with d(z) = 1/2, r(z) = 1, (z) = 1/2, 0(z) = 1(z) = 0 and 2(z) 

= 1/2, when r = d = 2 p = 1, the similariton (2) can reduce to the similar but a little bit different 
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with the one in Ref. [1] due to unidentical self-similar transformations. For inhomogeneous systems, 

the constraints imposed by Eqs. (9) and (10) are easy to satisfy and the corresponding similaritons 

can be diversely regulated by choosing different values of r, d, p and p(z) at will. Without loss of 

generality, in the subsequent sections we demonstrate the dynamics of similaritons with different 

free parameters in periodic nonlinear systems. 

Table 1 Some special cases of the self-similar transformation (2) 

References p r d 
Refs. [20, 29, 30, 39-41] 0 0 0 
Refs. [15-17, 32, 42-45] 0 0 - 

Ref. [11] 0 r 0.6 r 
Ref. [18] 0 0 1/2 
Ref. [18] 0 1/2 1  

Refs. [12, 18] 0 1/2 1/2 
Ref. [35] 0 1/4 - 
Ref. [32] 1/2 1/2 1/2 
Ref. [36] 1/2 1/2 - 

Refs. [33, 34] 1/2 - - 
This work * * * 

 

3. Dynamics of similaritons in inhomogeneous nonlinear systems 

It has been demonstrated above that the dynamics of similaritons can be modulated by free 

parameters r, d and p. For simplicity, here we investigate only the role of r by setting p = 0 and 

considering a simple inhomogeneous nonlinear system [18, 40]:  

1 = )(     ),cos(2 1 = )( zdz+zr ,                         (20) 

where is the fluctuation parameter of r(z) and we set = 1/2 for definiteness. Since dz(z)/d(z) = 0, 

d does not affect constraint conditions (9) and (10) or similariton solution (2). Recall that the 

potential 0(z) influences only the phase and the potential 1(z) changes the trajectory and 

frequency shift [18, 39]. Hence, in the subsequent analysis, we set 0(z) = 1(z) = 0 and the 

constant k1 = 1 in order to isolate the role of r. 

In accordance with Eqs. (9) (12), the system parameters (z), 2(z) and self-similar variables 

A(z) and Z(z) will take the simple forms following from system (20):  

)]2cos(2/[)2sin(2)( zzz r ,                      (21) 

22 )2cos(22
)4cos()12()2cos(423)21()(

z
zzz rr

r ,             (22) 
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rzzA 22/1]/2)2cos(1[)( ,                        (23) 

dzzzZ r4-2]/2)2cos(1[)( .                       (24) 

For different values of r, the specific forms of (z), 2(z), A(z) and Z(z) in Eqs. (21) (24) evidently 

change significantly. Figure 1 depicts their profiles when r = 1/4, 1/2 and 3/2, respectively. It can 

be seen that (z) has the same period but different amplitudes and slopes for those choices of r. 

The parabolic potential 2(z) has the same period with different shapes for r = 1/4 and 3/2, but its 

periodicity vanishes for r = 1/2. The amplitude A(z) is constant for r = 1/4, while for r = 1/2 and 

3/2 it has complementary peaks and troughs at the same fixed period. The depth of modulation in 

A(z) is also much greater for r = 3/2 than for r = 1/2. Finally, the effective propagation distance 

Z(z) takes periodic oscillation, linear and step-like forms, respectively.  

 

Fig. 1. The profiles of (a) (z), (b) 2(z), (c) A(z) and (d) Z(z) for r = 1/4, 1/2 and 3/2 in inhomogeneous 

nonlinear system (20). 

From the similariton solutions (given in Appendix A), it is straightforward to find specific 

expressions for the SS, SAB, SMB and SRW with r = 1/4, 1/2, 3/2 in inhomogeneous nonlinear 

system (20); evolutions of those waves are shown in Fig. 2. When r = 1/4 and 3/2, the trajectories 

of the SS, SMB and SRW oscillate periodically; their peak intensities and background fields are 

unmodulated when r = 1/4 [see Figs. 2(a1) (d1)] but they exhibit periodic oscillations when r = 

3/2 [see Figs. 2(a3) (d3)]. The SS is an exception since its background field is necessarily zero [see 

Fig. 2(a3)], as predicted by Eqs. (23), (17) and (18). When r = 1/2, the intensities and backgrounds 

of the similaritons oscillate periodically except for the background of the SS, and due to Tr(z) = 2k2z, 

their trajectories vary linearly in the (z,t) plane [see Figs. 2(a2) (d2)]. It is worth noting that when r 

= 3/2, a very high-intensity pulse train and pulse can be generated [see Figs. 2(b3) (d3)]. 

According to Eq. (18), the trajectories of the similaritons are prescribed by Tr(z) = 2k2[1 + 

cos(2z)] 1/2[z + sin(2z)/2], 2k2z and 2k2[1 + cos(2z)] 4 cos(2z)]8dz, when r = 1/4, 1/2 and 

3/2. It follows that the peaks of the SS, SAB, SMB and SRW are tilted when r = 1/2 and skewed 
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when r = 1/4, 3/2 [where the trajectories may be linear or curved in the (z,t) plane, respectively].  

 

 

   
Fig.2. Evolution of (a) the SS (A1) with s = 1, s = 0, s = 0, Ts = 0, k2 = 0.1; (b) the SAB (A2) with ab = 0.8, Tab 

= 0, Zab = 0, k2 = 0.5; (c) the SMB (A3) with m = 0.8, Tm = 0, Zm = 0, k2 = 0.1; (d) the SRW (A4) with g = 1, Tg = 

0, Zg = 0, k2 = 0.5, in the system (20) for different r, respectively. The other parameters are the same as in Fig. 1. 

It is worth reemphasizing that the similariton properties discussed above are strictly for p = 0. 

For p (9) (16) predict that the residual gain/loss p(z) is not only related to the constraint 

conditions, but it also affects the similariton parameters. In order to explore the role of p(z), here we 
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set = 0 in system (20) [i.e., so that r(z) = 1 = d(z)]. Thereafter, the parabolic potential 2(z), the 

self-similar amplitude A(z) and the effective propagation distance Z(z) take the forms of: 2(z) = 

p[pz(z) + 2 pp2(z)]/2, A(z) = exp( 2 p p(z)dz) and Z(z 4 p p(z)dz)]dz. These functions 

evidently depend strongly upon p(z). Figure 3 shows the profiles of 2(z), A(z) and Z(z) for periodic 

p(z) = p psin( pz pcos( pz)] [27] and linear p(z) = pz [7], respectively, where it can be seen 

that 2(z), A(z) and Z(z) have very different profiles for these two choices. For periodic p(z), the 

functions 2(z), A(z) and Z(z) all have the same period as that of p(z) [see Fig. 3(a)]; for linear p(z), 

we find 2(z) has a parabolic profile, A(z) goes to zero at z Z(z) is of kink form [see Fig. 

3(b)]. These results demonstrate that p(z), when unbalanced by the nonlinearity and dispersion, not 

only relaxes the existence conditions for similaritons but it can also control the amplitude and 

evolution of such waves. 

  

Fig. 3. The profiles of 2(z), A(z) and Z(z) in the system (20) with  = 0, (a) p(z) = p psin( p z p cos( p z)] 

and (b) p(z) = p z, where p p = 0.5 p = 0.1 and p = 1.  

 

Evolution of the SS, SAB, SMB and SRW for the periodic and linear p(z) are presented in Fig. 

4. In the periodic case [see Figs. 4(a1) 4(d1)], all four solutions either oscillate periodically or repeat 

along the propagation direction due to the form of the function 
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The periodic nature of the SS [see Fig. 4(a1)] is different from that shown in Figs. 2(a2) and 2(a3), 

Fig. 4(b1)], and the SMB and SRW 

appear, respectively, as a spatially-localized three-hump [see Fig. 4 (c1)] and double-hump waves 

[see Fig. 4(d1)]. In the linear case, the evolution of the SS and SMB [see Figs. 4(a2) and 4(c2), 

respectively] are spatially localized on a zero-background due to A(z) = exp( p pz2); they are 

qualitatively different from the solutions shown in Figs. 2(a) and 2(c), and also from those 
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appearing in the literature [6, 20]. Finally, the SAB retains spatial localization while the SRW 

exhibits both spatial and temporal localization; both waves exist on a zero-background [see Figs. 

4(b2) and 4(d2)], which is again different from the conventional AB and RW [7, 28]. 

 

Fig.4. Evolution of the (a) SS, (b) SAB, (c) SMB and (d) SRW in system (20) with periodic (top row) and linear 

(bottom row) p(z). The corresponding parameters are the same as in Fig. 3.  

 

4. Diversely composite waves in coherently coupled inNLS model  

As a direct application of the new similariton solutions, we now consider a coupled inNLS 

model that captures the phenomenon of four-wave mixing [17, 18] : 

      

,0)(),()(2)2)((2)(

,0)(),()(2)2)((2)(

22
*
2

2
12

2
1

2
22

2
2

2

11
*
1

2
21

2
2

2
12

1
2

1

QziQtzVQQzrQQQzr
t
Qzd

z
Qi

QziQtzVQQzrQQQzr
t
Qzd

z
Qi

         (25) 

where V(z, t) is the same here as in Section 3. In order to solve these coupled equations, we 

substitute the linear transformation [17, 18] for Q1 and Q2:  

2,1,
2

),()1(),(),( 21 jtzqtzqtzQ
j

j ,                     (26) 

into system (25). That procedure generates a new pair of independent (i.e., decoupled) equations of 

the inNLS type, namely 
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zd
z

q
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jj .         (27) 

Since Eq. (27) has the same form as Eq. (1), its solutions such as SS, SAB, SMB and SRW can be 
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deployed with the aid of Eq. (26) to construct composite waves that satisfy system (25). For 

combinations of self-similar solutions X and Y of Eq. (27) 

wave composed of an SAB and an SMB). 

We continue with periodic nonlinear system (20) and apply the explicit self-similar solutions 

(A1) (A4) of Eq. (1) to study the propagation of composite waves of system (25). As before, the 

parameter d plays no role in the problem since dz(z)/d(z)=0. Thus, it is necessary to investigate 

only the effect of varying r. The evolution of the two components for typical composite waves is 

shown in Fig. 5. When r = 1/4, the trajectories of the SS SS change periodically with z, while the 

intensities of two components remain unchanged [except for a peak appearing in |Q1|2 and a valley 

in |Q2|2 at the collision point see Figs. 5(a1), 5(a2), respectively]. When r = 1/2, the trajectories of 

the two components of the SS SS wave are unmodulated by the periodic nonlinearity while the 

intensities fluctuate periodically as the waves undergo an energy exchange process [appearing as 

two peaks in |Q1|2, or a valley in |Q2|2 at the collision point see Figs. 5(b1) and 5(b2), respectively]. 

These properties are fully consistent with the expressions for the amplitude [Eq. (3)] and trajectory 

[Eq. (18)], where the A(z) is a constant for r = 1/4 and Tr(z) is a constant for r = 1/2. 

Figures 5(c) and 5(d) also shows the evolution of the SAB SMB intensity with r = 1/4 and 

1/2, respectively. The background waves of both components with r = 1/2 exhibit periodic 

fluctuations [see Fig. 5(d)], while those with r = 1/4 do not [see Fig. 5(c)]. A further observation is 

that the intensities of the background waves in both cases change abruptly at the location (Tm, Zab) 

of the collision between the SAB and SMB waves. 

Figures 5(e) and 5(f) plot the intensities of SRW SRW components with r = 1/4 and 1/2, 

respectively. When r = 1/4, we find |Q1|2 - -like 

solution  see Fig. 5(e1)]. In contrast, when r = 1/2, we find |Q1|2 has the form of a 

-shaped distribution on a strongly fluctuating background wave [see Fig. 5(f1)]. It is 

interesting to note that |Q2|2 for both values of r present a localized bimodal structure on 

zero-amplitude background [see Figs. 5(e2) and 5(f2)]. Such states may be used to generate 

high-power twin pulses localized in space-time. 
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Fig. 5. Intensity evolution of typical composite waves in periodic nonlinear system (20) for r = 1/4 (top two rows) 

and r = 1/2 (bottom two rows), respectively. (a, b) The SS SS with s1 = s2 = 1, s1 = s2 = 0.3, s1 = s2=0, Ts1 = 

Ts2 = 0, (c, d) the SAB SMB with ab = 0.8, Tab = 0, Zab = 0.6; m = 0.8, Tm = 0, Zm = 0; and (e, f) the SRW-SRW 

with g1 = g2 = 1, Tg1 = Tg2 = 0.5, Zg1 = Zg2 = 0. The other parameters are the same as in Fig.1.   

To emphasize the central role of p(z), we consider the special case of = 0 in the system (20) 

and choose periodic or linear forms according to p(z) = p psin( pz p cos( pz)] and p(z) = pz, 

respectively. The evolution of the corresponding SS SS, SAB SMB and SRW SRW are presented 

in Fig. 6. It is evident that the two different choices of p(z) can have a strong impact on the 

qualitative properties and controllable features of the composite waves; in particular, we naturally 

see more varied qualitative phenomena for the coupled-inNLS model than for the inNLS model. 

With the periodic p(z), intensity |Q1|2 of the SS SS composite wave comprises a zero-background 

RW-like state while |Q2|2 -

periodic modulation by p(z) and 2(z) see Figs. 6(a1) and 6(a2), respectively]. With the linear p(z), 

both |Q1|2 and |Q2|2 of the SS SS are spatially and temporally localized, where |Q1|2 has a 

nonperiodic zero-background RW-like state and |Q2|2 is a nonperiodic -
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the modulations by p(z) and 2(z) see Figs. 6(b1) and 6(b2), respectively]. 

Comparing Figs. 6(c) and 6(d), we see that the SAB component of the SAB SMB composite 

wave is much stronger in |Q2|2 than in |Q1|2

sides around the collision points in both |Q1|2 and |Q2|2, while the SMB components manifest 

single-hump [see Fig. 6(c2)], double-hump [see Figs. 6(c1) and 6(d2)] and triple-hump [see Fig. 

6(d1)] structures, except for periodicity of the composite wave in Figs. 6(c) for periodic p(z). 

Figures 6(e) and 6(f) show the evolution of SRW SRW composite waves. For periodic p(z), 

intensity |Q1|2 appears to be periodic RW-like with bright wings [cf. Fig. 5(e1)] while |Q2|2 has a 

-shaped structure [see Fig. 6(e2)]. For linear p(z -shaped RW-like 

structure appears in |Q1|2 [see Fig. 6(f1)] while twin RW-like structures appear in |Q2|2 [see Fig. 

6(f2)].   

 

 

Fig. 6. Evolution of the (a, b) SS-SS, (c, d) SAB-SMB and (e, f) SRW-SRW in the coupled system with periodic 

(top two rows) and linear (bottom two rows) p(z), respectively. The parameters of SS, SAB, SMA SRW are the 

same as in Fig. 5 except for Zab = 0. The parameters of p(z) are the same as in Fig. 3(a) and 3(b), respectively. 
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Finally, we investigate the evolution of composite waves SS SAB, SAB SRW, and 

SMA SRW [see Fig. 7] by choosing the same forms of p(z) and inhomogeneous systems as those in 

Fig. 6. After comparing Figs. 7 (a), 7(c), and 7(e), and also Figs. 7(b), 7(d), and 7(f), one can 

observe diverse waveforms and collision points of the SAB(SRW) component due to different 

component nonlinear dynamics. On the one hand, periodic single-hump [see Figs. 7 (a1), 7(c2), 7(e2)] 

and double-hump [see Figs. 7 (a2), 7(c1), 7(e1)] structures appear for the periodic p(z). On the other 

hand, valley [see Figs. 7 (d2)], single-hump [see Figs. 7(b2), 7(d1), 7(f1)], and double-hump [see 

Figs. 7 7(b1), 7(f2)] structures are manifest for linear p(z). The peaks of the SAB component of the 

SS SAB comp Q1|2 and |Q2|2 

[see Figs. 7(a) 7(d)]. Two evolutions of SMA SRW composite waves are shown in Figs. 7(e) and 

7(f). For periodic p(z), the intensity |Q1|2 appears to be a periodic double-RW-like structure with 

bright wings [cf. Fig. 7(e1)] while |Q2|2 -shaped structure [see Fig. 7(e2)]. 

For linear p(z), a RW-like structure with six dark holes appears in |Q1|2 [see Fig. 7(f1)] while twin 

RW-like structures appear in |Q2|2 along the z axis [cf. Fig. 7(f2)]. Such abundant properties imply 

that one can achieve diversely controllable composite waves through careful design of the gain/loss 

and potential distributions. 

5. Conclusions 

In this work, we have reported a family of exact similariton solutions for an inNLS equation 

with external potentials by proposing a generic self-similar transformation and identifying relaxed 

constraint conditions that combine gain/loss, dispersion, nonlinearity, and a matching function 

representing residual gain/loss. The parameters involved in the constraint conditions can be 

arbitrary real constants, implying that: (i) the existence condition of the similaritons can be relaxed, 

and (ii) there exists an infinite number of similariton solutions that can be readily controlled with a 

careful choice of parameters. Taking a nonlinear inhomogeneous system with periodic properties, 

we uncovered rich dynamical behaviors associated with propagating similaritons. Furthermore, we 

applied these newly-derived similariton solutions to a pair of coupled inNLS equations which 

included four-wave mixing terms. This procedure has allowed to investigate, for the first time, 

families of diversely controllable composite waves such as SS SS, SAB SMB and SRW SRW.  
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Fig. 7. Evolution of the (a, b) SS-SAB, (c, d) SAB-SRW and (e, f) SMA-SRW in the coupled system with periodic 

(top two rows) and linear (bottom two rows) p(z), respectively. The other parameters of the SS, SAB, SRW and 

SMA are the same as in Fig. 6 except for s =0, Zab = 0, Tg = 0. The periodic and linear parameters of p(z) are the 

same as in Fig. 3(a) and (b), respectively. 

It should be pointed out that the foregoing analysis is only in the designated systems with 

different free parameters r, d and p or p(z) as examples, which can achieve plentifully modulated 

self-similar waves. In fact, the exact similaritons family presented in this work suggest a more 

in-depth study into the dynamics of single- and two-component similaritons over a much greater 

range of their non-trivial parameter spaces. Investigating other systems and parameter regimes may 

provide further insight into designing inhomogeneous fibers in order to realize special wave control 

and transmission.  

In addition, Eq. (8) is a classic nonlinear physical model for wave envelopes which has 

abundant exact solutions, including N-soliton solutions, first-order and higher-order breathers and 

RW solutions [25, 26, 48]. By deploying other known solutions of Eq. (8) in combination with 

transformations (2) and (25), one can uncover a much wider range of evolution characteristics and 
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modulation mechanisms relating to more exotic composite waves in coupled inNLS systems. 

 

Appendix A: Explicit Self-Similar Solutions of Eq. (1)  

The explicit solutions of SS, SAB, SMB and SRW for inNLS Eq. (1) can be obtained by 

combining Eqs. (11) (16) and the exact solutions of the soliton [22], Akhmediev and Ma breather 

[23], and rogue wave (RW) [24] of Eq. (8), which are expressed as follows: 

(1) Exact SS solution: 
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where s, s, Ts and s represent the amplitude, frequency, initial position and phase of the SS, 

respectively. 

(2) Exact SAB solution 
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      A2) 

where a = 2sin(2 ab), b = 2sin( ab), ab  . The parameters Zab and Tab are, respectively, related to 

the initial position and time-shift of the SAB.  

(3) Exact SMB solution  
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where ma = 2sinh(2 m), mb = 2sinh( m), m  . The parameters Zm and Tm determine the initial 

position and time-shift of the SMB, respectively.  

(4) Exact SRW solution 
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where g is related to the background intensity of the SRW. The parameters Zg and Tg determine the 

initial position and time-shift of the SRW, respectively. Here, the self-similar variables Z Z(z) and 

T T(z, t) in (A1) (A4) are given by Eqs. (12) and (13), respectively.  
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Appendix B: Some Special Cases of Similariton (2)  

(1) When p = 0, 5 d = 3 r, r5(z) = d3(z) and 0 = 0, under the constraint conditions (z) = 0 and 

2(z) = [ 8dz2(z) + 5d(z)dzz(z)] /[50d3(z)], the self-similar variables are reduced to those studied in 

Ref. [11] : 
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(2) When p = 0, r = 0, d = 1/2 and 0(z) = 0, under the constraint conditions (z) = dz(z)/2d(z) 

and 2(z) = [r(z)rz(z)dz(z) + 2d(z)rz
2(z)  d(z)r(z)rzz(z), the self-similar variables are reduced to the 

first case reported in Ref. [18]: 
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(3) When p = 0, r = 1/2, d = 1/2 and 0(z ) = 0, under the constraint conditions 2(z) = 0 and 

(z) = rz(z)/2r(z)  dz(z)/2d(z), the self-similar variables are reduced to those reported in Refs. [12, 

18]:  

1
1 2

/d z rA z zk ,                        (B3.1) 

dzzdkzZ )()( 2
1 ,                           (B3.2) 

dzdzzkzdktktzT )()(2),( 1211 ,               (B3.3) 

dzzkzdtdzzktz ]))()(([])([),( 2
1212 .            (B3.4) 

(4) When p = 1/2, r = 0, d = 0, p(z )= wz(z)/w(z) and d(z) = r(z )= 1, 0(z) = 1(z) = 0, under the 

constraint conditions (z)= wz(z)/2w(z) and 2(z) = wzz(z)/4w(z),, the self-similar variables are 

reduced to those reported in Refs. [33, 34]: 
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It should be pointed out that there is a slight difference among Appendix B and Refs. [11, 12, 18, 33, 

34] due to the different coefficients used in the theory. 
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