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Abstract 38 

 39 

Canopy biophysical variables such as the fraction of canopy cover (fCOVER), fraction of absorbed 40 

photosynthetically active radiation (fAPAR), and leaf area index (LAI) are widely used for ecosystem 41 

modelling and monitoring.  The Sentinel-2 mission was designed for systematic global mapping of these 42 

variables at 20m resolution using imagery from the MultiSpectral Instrument.  The Simplified Level 2 43 

Prototype Processor (SL2P) is available as a baseline mapping solution. Previous validation over limited 44 

sites indicates that SL2P generally satisfies user requirements for all three variables over crops but 45 

underestimates LAI over forests.  In this study, Sentinel-2 fAPAR, fCOVER and LAI products from SL2P 46 

were validated over 281 sites representative of most North American forest ecozones and also 47 

compared to  Moderate Resolution Imaging Spectrometer  (MODIS) and Copernicus Global Land Service  48 

(CGLS) products.  In addition to meeting the Committee on Earth Observation Satellites Stage 3 49 

validation requirements for these areas, our study also explores the relationship between bias in SL2P 50 

products and canopy clumping and provides empirical bias correction functions for each variable. 51 

 52 

 SL2P was implemented within the Landscape Evolution and Forecasting Toolbox in Google Earth Engine 53 

both for efficiency and due to bugs in the Sentinel Application Platform (SNAP) implementation. SL2P 54 

was found to underestimate LAI by 20% to 50% over forests with LAI>2; in agreement with other studies 55 

and with comparisons to MODIS and CGLS products.  SL2P bias for fCOVER and fAPAR transitions from 56 

~0.1 at low values to ~-0.1 at high values.  Precision error, at one standard deviation, was ~0.5 for LAI 57 

and slightly less than ~0.1 for fCOVER and fAPAR.  Total uncertainty was dominated by bias for LAI and 58 

slightly greater than precision error for fCOVER and fAPAR.  Target user requirements were satisfied for 59 

51% of LAI, 37% of fCOVER and 31% of fAPAR comparisons. For all variables, accuracy exhibited weak to 60 

moderate linear relationships to clumping  (r2<=0.52) but scatter plots indicated larger negative LAI 61 

biases over northern latitude sites where canopies exhibited greater clumping.   With the exception of 62 

evergreen broadleaf forests, empirical bias correction using in-situ data reduced LAI accuracy error by 63 

up to 96% and increased the agreement rate with uncertainty requirements by up to 8%.  Users of SL2P 64 

LAI over forests are recommended to apply bias correction or consider recalibrating SL2P with spatially 65 

heterogenous radiative transfer model simulations.   66 

 67 

 68 
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1. Introduction  69 

 70 

A primary goal of the Sentinel-2 (S2) mission is the systematic mapping of canopy variables, including 71 

the fraction of canopy cover (fCOVER), fractional of absorbed photosynthetically active radiation 72 

(fAPAR), and leaf area index (LAI), using measurements from the MultiSpectral Instrument (MSI) on a 73 

constellation of polar orbiting satellites (ESA Sentinel-2 Team, 2007).  The European Space Agency (ESA) 74 

sponsored the development of the Simplified Level 2 Prototype Processor (SL2P) for mapping these 75 

variables using Level 2A bottom of atmosphere reflectance (L2A) products derived from MSI data (Weiss 76 

and Baret, 2016).    SL2P versions are implemented  in ESA’s Sentinel Application Platform (SNAP) 9.0.0 ( 77 

http://step.esa.int), used by the European Union SEN4CAP agricultural sustainability project 78 

((http://esa-sen4cap.org/) and the open source LEAF-Toolbox (Fernandes et al., 2021)  implemented in 79 

Google Earth Engine (GEE), and used by the Government of Canada Earth Observation for Cumulative 80 

Effects Monitoring  Programme (Janzen et al., 2020).   81 

 82 

S2 mission requirements correspond to Global Climate Observing System requirements (GCOS, 2022; 83 

“Goal” in Table 1).   The Copernicus Global Land Service (CGLS) has also identified less stringent 84 

requirements considered acceptable by downstream services such as crop monitoring, hydrological and 85 

ecosystem models and habitat mapping (Sanchez-Sapero and Martinez-Sanchez, 2022; “Target” in Table 86 

1).  Good practice for validation requires quantification of uncertainty (U), accuracy (A), precision (P) and 87 

uncertainty agreement ratio (UAR), defined in Table 2, as a function of the reference product value. 88 

(Fernandes et. al., 2014).  The Committee on Earth Observation Satellites (CEOS, 89 

https://lpvs.gsfc.nasa.gov/) describes four validation levels corresponding to increasing spatial and 90 

temporal representativeness of validation statistics: Level 1, validation over <30 sites and time periods; 91 

Level 2, validation of >30 sites and time periods together with intercomparisons with similar products; 92 

Level 3, validation over >30 sites with validation statistics quantified as a function of reference 93 

conditions and with globally representative intercomparison; and Level 4 corresponding to ongoing 94 

Level 3 validation with fiducial reference networks.  95 

 96 

http://step.esa.int/
http://esa-sen4cap.org/
https://lpvs.gsfc.nasa.gov/
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Table 1.  Product definitions (Sanchez-Sapero, J. and Martinez-Sanchez, 2022 and GCOS, 2022) and user 97 

requirements for target (CGLS) goal (GCOS) thematic uncertainty levels. 98 

Variable Definition Goal Target 

fAPAR Fraction of absorbed photosynthetically active radiation by 
green vegetation for a given solar illumination condition. 

max(10%,0.05) max(10%,0.05) 

fCOVER Fraction of ground covered by green vegetation. 5% max(10%,0.05) 

LAI Half the total foliage area per unit horizontal ground area. 15% max(15%,0.5) 

 99 

Table 2.  Thematic error  metrics used for product validation. 100 

Metric Acronym Definition 

Uncertainty U Expected value of the absolute difference of estimated and product values. 

Accuracy A Expected value of the estimated value minus the product value. 

Precision P Square root of the expected value of the square of the total of the estimated 
value minus both the product value and the accuracy metric. 

Uncertainty 
agreement ratio 

UAR The fraction of validated samples that meet a given uncertainty requirement, 
in this case, GCOS. 

 101 

Level 2 and Level 3 validation has been performed for low resolution (>250m) LAI, fAPAR, and fCOVER 102 

products (Weiss et al., 2007; Garrigues et al., 2008; Weiss et al., 2014; Camacho et al 2013; Yan et al., 103 

2016; Brown et al., 2020; Fuster et al., 2020).   Some of these studies predate community good practices 104 

for quantifying errors as a function of retrieved or reference value (Fernandes et al., 2014) and none of 105 

these studies quantify the uncertainty of validation metrics due to limited reference measurements.  106 

There are few Level 2 studies validating medium resolution products due to the limited number of 107 

systematic products, the difficulty of product generation for large areas, and the complexity of matching 108 

reference and higher spatial resolution product values.  Brown et al. (2021a) performed a level 2 109 

validation of SL2P LAI that included detailed error analysis but did not  perform intercomparison with 110 

other products.  In fact, to date, SL2P has only been validated at Level 2 partly because co-incident in-111 

situ data is limited and partly due to the challenges in processing sufficient products for intercomparison 112 

using the SNAP toolbox.    Nevertheless, SL2P L2 validation indicates it generally satisfies target 113 

requirements for crops (Djamai et al., 2019; Hu et al., 2020; Brown et al., 2021a) but underestimates LAI 114 

and fAPAR over dense forests (Putzenlechner et al., 2019; Brown et al., 2021a) (Supplementary material 115 
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Table S1).   Brown et al. (2021a) hypothesised the LAI underestimation was due to spatial clumping of 116 

foliage not accounted for within SL2P but did not test this with data.  This also raises the concern that 117 

error of SL2P fAPAR and fCOVER estimates will also increase as spatial clumping increases.  However, 118 

SL2P has not been simultaneously validated for LAI, fAPAR and fCOVER over high latitude forests that 119 

exhibit substantial clumping (He et al., 2012).   120 

 121 

A Level 3 validation of SL2P estimates of LAI, fCOVER and fAPAR over a broad geographical range of 122 

forests would allow product users to integrate validation statistics in down stream applications, improve 123 

our understanding of the limitations of SL2P, and serve to prioritise improvements to SL2P or similar 124 

algorithms for mapping vegetation parameters using the S2 MSI.   Additionally, Level 3 validation may 125 

facilitate bias correction using empirical statistical models between the SL2P response and in-situ 126 

reference measurements.  For example, Brown et al. (2020) demonstrated that linear regression models 127 

between SL2P and reference measurements can produce unbiased estimates of LAI and fAPAR with a 128 

UAR exceeding 74%.  The extent to which this strategy can be applied at continental scale has yet to be 129 

determined. 130 

 131 

Here, SL2P is validated using in-situ reference measurements (RM) for 14 of 17 forest ecological zones of 132 

North America (Commission for Environmental Cooperation, 2022; Figure 1), not including tropical 133 

rainforests, temperate steppe and subtropical dry forests, and compared to previously validated coarse 134 

resolution Moderate Resolution Imaging Spectrometer (MODIS) and CGLS products. A new Canadian 135 

field campaign was conducted to address the issue of limited in-situ sampling.  To facilitate product 136 

intercomparison, SL2P was implemented in GEE to produce products over a replicate sample of 100km x 137 

100km regions of all North America forest ecological zones. Even so, this study does not evaluate the 138 

temporal stability of SL2P products as, prior to 2019, imagery over North America was not systematically 139 

processed to Level 2A surface reflectance products by ESA.  140 

 141 

 The goals of our study are to: 142 

I) validate SL2P LAI, fAPAR and fCOVER estimates over typical North American Forests by 143 

quantifying their accuracy, precision, uncertainty and uncertainty agreement ratio,  144 
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II) determine if indeed SL2P accuracy for each variable is related to canopy clumping, 145 

III) assess the applicability of empirical bias correction to reduce retrieval error, and 146 

IV) provide good practices for achieving a CEOS Stage 3 validation of medium resolution 147 

vegetation biophysical variable products.    148 

 149 

 150 

 151 

 152 

Figure 1.  Location of intercomparison regions (blue rectangles) and in-situ reference measurement sites (red and yellow 153 
circles) within North American Forest Ecological Regions.  Global BELMANIP intercomparison sites are indicated as well with 154 
black circles 155 

 156 

 157 

 158 
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2. Data Sets  159 

 160 

2.1 Geospatial Datasets 161 

 162 

Geospatial datasets described in the following subsections were used for SL2P product generation, 163 

stratification of intercomparison, and product intercomparison (Table 3). 164 

 165 

Table 3.  Geospatial data sets. 166 

Dataset Description Access Reference 

CGLSV1 333m 10d fAPAR (at 10.15 
Local Time), fCOVER and LAI 

http://land.copernicus.eu/global/products/ Verger and 
Descals, 2022. 

MERIT 
DEM 

3 arc second Multi Error 
Removed Improved DEM 

https://developers.google.com/earth-
engine/datasets/ 

Yamazaki, et al. 
2017 

MCD15 500m 4d MODIS Collection 6 
Leaf Area Index/FPAR 

https://developers.google.com/earth-
engine/datasets/catalog/MODIS_006_MCD
15A3H 

Myneni et al., 
2015 

MSI L2A MSI Level 2A Bottom of 
Atmosphere reflectance 

https://developers.google.com/earth-
engine/datasets/catalog/COPERNICUS_S2_S
R 

Copernicus 
Sentinel data 
2019,2020 

Forest 
Ecozones 

North American Forests 
Primary Ecological Zones 

https://www.cec.org/north-american-
environmental-atlas/north-american-
forests-2022/ 

Commission for 
Environmental 
Cooperation, 2022 

NALC2015 30m North American Land 
Cover 2015  
 

https://www.cec.org/north-american-
environmental-atlas/land-cover-30m-2015-
landsat-and-rapideye/ 

Commission for 
Environmental 
Cooperation, 2020 

 167 

2.1.1 MERIT-DEM 168 

 169 

MERIT-DEM is a 3 arc second resolution digital elevation model (DEM) produced by combining a number 170 

of available DEMs.  The vertical uncertainty is <±9m over forested areas with slope <10% (Yamazaki, et 171 

al. 2017). 172 

 173 

http://land.copernicus.eu/global/products/fapar
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR
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2.1.2 CEC Forest Ecozones 174 

 175 

CEC Forest Ecozones is a polygon coverage of forest ecological zones for North America produced jointly 176 

by the Governments of Canada, United States of America and Mexico and published by the Commission 177 

for Environmental Cooperation (2022) (Figure 1). The map indicates 17 different primary forest 178 

ecological zones based on a combination of climate and potential vegetation classifications.  The 179 

thematic error of this map is not given as it is a potential rather than actual geophysical dataset.   180 

2.1.3 NALC2015 181 

 182 

NALC2015 is a 30m resolution land cover map for North America circa 2015 with an 18-class legend 183 

(Table 4) (Commission for Environmental Cooperation, 2020).  The land cover is based on peak growing 184 

season satellite imagery from Landsat 5 and 8, as well as RapidEye over the U.S.A., from 2015; with 185 

missing pixels replaced using the peak season estimate in the most recent valid year.  The thematic error 186 

of products using the same monitoring system has been assessed over Canada with 79.9% correct 187 

labelling for all 18 classes and 83% correct labelling of forest classes (Latifovic et al., 2012).  The spatial 188 

uncertainty of NALC2015 is less than 5m, 67.5% circular error probable.  The NALC2015 legend was 189 

translated to International Geosphere Biosphere Programme (IGBP) classes (Lambin and Geist, 2006) 190 

used to label the RM sites.   191 

2.1.4 MCD15 192 

 193 

MCD15 corresponds to the global 4-day composites of fAPAR and LAI gridded at 500m resolution.  194 

Retrievals are produced using the MODIS Version 6.1 fAPAR and LAI algorithm (Myneni et al., 2015) 195 

applied to MODIS imagery from Terra and Aqua satellites. Here, only primary algorithm retrievals 196 

corresponding to the maximum fAPAR in the 4-day interval are selected.   The thematic error of MCD15 197 

over forests is reported in a number of studies (Supplementary Materials, Table S2).  Brown et al.  2020 198 

report a root mean square difference (RMSD) between 0.48 to 1.05 for LAI and 0.09 to 0.14 for FAPAR 199 

for 547 samples at 18 sites across North America.  Yan et al. (2016) report a maximum LAI (fAPAR) 200 

residual of +2/-1 LAI and ±0.2 fAPAR for 50 samples with reference LAI ranging from 1.2 to 6 and fAPAR 201 

from 0.25 to 0.9.  MCD15 underestimated LAI by between -0.14 (Brown et al., 2020) and -0.41 (Fuster et 202 

al., 2020) over ENF and by -1.47 for MF (Lin et al., 2017).   The geolocation uncertainty of MCD15 is 203 
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better than 53m root mean square error (RMSE; Lin et al., 2019) although the projected instantaneous 204 

field of view (PIFOV) of measurements can vary by a factor of 4.83 across-track (2.01 along track) for 205 

extreme view angles over flat terrain due to the MODIS 110˚ field of view (Wolfe et al., 1998). 206 

Table 4. NALC2015 land cover classes, IGBP Class acronym and forest land class designation. IGBP Classes: mixed forest (MF), 207 
deciduous broadleaf forest (DBF), evergreen needleleaf forest (ENF), grassland (GR), shrub (SH). evergreen broadleaf forest 208 
(EBF), barren land (BL ), cropland (CR), wetland (WL), urban (UB), water (WA), snow or ice (SI). 209 

NALC2015 Class IGBP Class  Forestland Class 

Temperate or sub-polar needleleaf forest ENF Yes 

Sub-polar taiga needleleaf forest ENF Yes 

Tropical or sub-tropical broadleaf evergreen forest EBF Yes 

Tropical or sub-tropical broadleaf deciduous forest DBF Yes 

Temperate or sub-polar broadleaf deciduous forest DBF Yes 

Mixed forest MF Yes 

Tropical or sub-tropical shrubland SH Yes 

Temperate of sub-polar shrubland SH Yes 

Tropical or sub-tropical grassland GR No 

Tropical or sub-polar grassland GR No 

Sub-polar or polar shrubland-lichen-moss SH No 

Sub-polar or polar grassland-lichen-moss GR No 

Sub-polar or polar barren-lichen-moss GR No 

Wetland WL Yes 

Cropland CR No 

Barren lands BL No 

Urban and built-up UB No 

Water WA No 

Snow/Ice SI No 

 210 

 211 

2.1.5 CGLSV1 212 

 213 
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CGLSV1 corresponds to CGLS Ocean Land Colour Instrument (OLCI) Version 1.1 fAPAR, fCOVER and LAI 214 

products gridded at 300m resolution for non-overlapping 10-day periods (Verger and Descals, 2022).  215 

CGLSV1 is a Level 4 product in that temporal interpolation using both current and historical retrievals for 216 

a mapped pixel are used to filling in empty periods.  Only non-interpolated pixels were used in this 217 

study.  The input Level 2 fAPAR and LAI products are derived by separate neural networks that relate 218 

OLCI surface reflectance to CGLS ProbaV Products (PBV 300m V1 v1.0; Baret et al., 2016).  The ProbaV 219 

products are in turn estimated using a weighting of corresponding MCD15 Version 5 (Yang et al., 2006) 220 

and CYCLOPES V3.1 (Baret et al., 2007) products; with the CYCLOPES V3.1 weighing transitioning from 221 

>80% for LAI<1 to <20% for LAI>2. This weighting reduces the independence of reference MCD15 and 222 

CGLS products since the latter are essentially scaled versions of the former for LAI>2.  Level 2 fCOVER is 223 

derived using a fixed logarithmic relationship between fCOVER and LAI.     224 

 225 

CGLS OLCI products have not been extensively validated due to geolocation issues as only tie-points 226 

rather than image chip control points were used when generating CGLS L4 products from Level 2 inputs 227 

(Prikaziuk et al., 2021)  These geolocation error is generally less than 333, and its impact on 228 

intercomparisons is reduced in our study by using 5x5 pixel CGLS product averages during 229 

intercomparison.   However, the error has inhibited CGLSv1 OLCI product validation against in-situ 230 

measurements.    Nevertheless, CGLS ProbaV products using a virtually identical algorithm adapted for 231 

ProbaV spectral bands has been extensively validated  (Supplementary Material Table S3) .  Brown et al., 232 

2020 reported ProbaV uncertainty of 0.25 to 0.91 for LAI and 0.05 to 0.09 for FAPAR for 538 samples at 233 

18 sites across North America.  Over the same sites, Fuster et al. (2020) reported much larger residuals 234 

for ProbaV products (often exceeding ±1 LAI and ±0.1 fAPAR) but did not use spatial weighting with 235 

ancillary layers when upscaling in-situ RM.  Information regarding the OLCI PIFOV variation is not 236 

available but it is likely less than MODIS  given the smaller 68.5˚ field of view of OLCI (Bourg et al., 2021). 237 

 238 

 239 

 240 

 241 

2.1.6 MSI L2A 242 

 243 

https://sciprofiles.com/profile/818248
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MSI L2A data corresponds to bottom-of-atmosphere reflectance (ρ) processed from MSI top-of-244 

atmosphere L1B products by ESA from the MSI on S2A or S2B satellites, using version 2.10 or higher of 245 

the Sen2Cor algorithm (Müller-Wilm, 2018).  Clear sky pixels over land and water are mapped with 98% 246 

accuracy and radiometric uncertainty is better than 0.005 + 0.05ρ for flat surfaces (Doxani et al., 2018); 247 

although the latter could increase substantially over terrain with adjacent slopes exceeding 10° (Djamai 248 

and Fernandes, 2019).    The geolocation uncertainty is less than 12.5m (95 percentile of the circular 249 

error) (Gascon et al., 2017).  The full width half maximum point spread function ranges from 22.0 m for 250 

the 10m Band 4, to 33.4 m and 39.1m for Band 5 and Band 11 respectively (Radoux et al., 2016).  PIFOV 251 

variation is far less than the pixel size as the field of view is only 20.6˚ (Gascon et al., 2017).   252 

2.2 In-Situ Reference Measurements 253 

 254 

In-situ RM spanning 2019 and 2020 were acquired from the Ground-Based Observations for Validation 255 

(GBOV) component of the CGLS (Brown et al., 2021b) and by the authors at Canada Centre for Remote 256 

Sensing (CCRS) (Table 5).  Elementary Sampling Units (ESUs), corresponding to the spatial footprint of a 257 

RM, were located within long term monitoring sites (GBOV) or regional transects (CCRS).   ESUs were 258 

centred within patches of ~100m x 100m that were qualitatively assessed as having similar canopy 259 

characteristics based on high resolution imagery and in-situ survey. 260 

 261 

2.2.1 GBOV 262 

 263 

The fraction of intercepted PAR (fIPAR), fCOVER and LAI RM were derived from Digital Hemispherical 264 

Photographs (DHPs) for 142 Elementary Sampling Units (ESUs) at 14 forest or shrubland sites within the 265 

National Ecological Observatory Network (Barnett et al., 2019) in North America (Table 5, Figure 1) using 266 

the method described in Brown et al. (2021a).  GBOV fIPAR is defined as the black-sky PAR intercepted 267 

by overstory and understory vegetation at 10:00 local solar time and LAI as the one-sided leaf area per 268 

unit ground surface area.  In fact, GBOV LAI actually corresponds to half the total plant area per unit 269 

horizontal ground area (PAI). 270 

 271 

At each site, three 20m by 20m square ESUs, located within 1km of NEON tower locations, were 272 

sampled bi-weekly from leaf-out to senescence.   In each ESU, 12 co-located upward and downward 273 
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looking DHP images were acquired with 4m spacing in North-South and East-West transects through the 274 

plot centre (Figure 2)using 36.3MPixel Nikon D810 or D800 cameras (https://en.nikon.ca/nikon-275 

products/product-archive/dslr-cameras/d810.html)  with a Nikon 16mm Fisheye 276 

lens(https://en.nikon.ca/nikon-products/product/camera-lenses/af-fisheye-nikkor-16mm-277 

f%252f2.8d.html ) giving a 180° diagonal field of view (FOV). The ESU centre location was determined 278 

within 1m 90% circular error probable.  Five sites included additional intensive sampling dates at up to 279 

20 additional ESUs distributed throughout the dominant vegetation types across each site (land cover 280 

types < 5% of total site area were not sampled).  Details regarding the estimation of gap fraction from 281 

DHP images, and subsequently fIPAR and PAI, are given in Appendix B. of Brown et al. (2020).   Briefly, 282 

upwards and downward images were processed separately.  fIPAR (fCOVER) was estimated as one 283 

minus the mean gap fraction within ±5° of the solar zenith angle at 10:00 local solar time (±5° of nadir).   284 

PAI was estimated as the average of effective PAI estimates for 10° azimuthal intervals within ±5° of 285 

57.5° zenith angle to minimize sensitivity to leaf angle.  The effective PAI for each azimuth interval was 286 

estimated as the negative logarithm of the gap fraction divided by the cosine of the zenith angle.  The 287 

effective PAI for the entire image was also quantified using the mean gap fraction for all azimuths at 288 

57.5° zenith angle.  ESU mean PAI or PAIe was determined by the sum of the mean PAI or PAIe for 289 

upward and downward DHPs. The 1 uncertainty of each RM was computed following Fiducial 290 

Reference Measurements for Vegetation guidelines, by propagating the variability in gap fraction at the 291 

ESU level through each measurement equation (Brown et al., 2021b), whilst uncertainty due to 292 

instrument levelling was based on Origo et al. (2017).  293 

 294 

2.2.2 CCRS 295 

 296 

fIPAR, fCOVER and PAI RM were derived from DHPs acquired for 133 ESUs in Natural Resources Canada’s 297 

Cumulative Effects study sites across Canada (Table 5, Figure 1).    ESUs were located within the 298 

dominant land cover types at each site with replication where logistics permitted.  For each ESU, seven 299 

co-located upward and downward DHP images were acquired every 5m along two parallel transects 300 

spaced 15m apart (Figure 2) using 45.7Mpixel Nikon D850 cameras (https://en.nikon.ca/nikon-301 

products/product/dslr-cameras/d850.html#tab-ProductDetail-ProductTabs-Overview)  with a Nikon 302 

8mm Fisheye lens (https://en.nikon.ca/nikon-products/product/camera-lenses/af-s-fisheye-nikkor-8-303 

15mm-f%252f3.5-4.5e-ed.html ) giving a 180° FOV in all directions .   The ESU centre was located to 304 

https://en.nikon.ca/nikon-products/product-archive/dslr-cameras/d810.html
https://en.nikon.ca/nikon-products/product-archive/dslr-cameras/d810.html
https://en.nikon.ca/nikon-products/product/dslr-cameras/d850.html#tab-ProductDetail-ProductTabs-Overview
https://en.nikon.ca/nikon-products/product/dslr-cameras/d850.html#tab-ProductDetail-ProductTabs-Overview
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within 5m 90% circular error probable.  In addition, the IGBP land cover class and the approximate 305 

surface cover fraction of bryophyte, lichen, mineral soil or litter was noted. 306 

 307 

DHPs for each ESU sampling date were quality controlled visually, contrast enhanced using ViewNXi 308 

software (https://en.nikon.ca/nikon-products/product/imaging-software/viewnx-i.html) and masked to 309 

remove the field operator.  CANEYE V6.45 (https://www6.paca.inrae.fr/can-eye/Download/ ) was used 310 

to derive RM estimates as well as PAIe and associated 1 uncertainties for either the upward or 311 

downward looking DHPs acquired during a ESU visit.  CANEYE uses the same approach as GBOV to derive 312 

the RM but also provides an alternate PAIe and PAI estimate that minimises the difference of the 313 

observed gap fraction for each position in the hemisphere and the modelled gap fraction with a penalty 314 

function proportional to the deviation from the PAIe estimate within ±5° of 57.5° zenith.     Agreement 315 

of the GBOV and CANEYE algorithms is a necessary condition if indeed the canopy was sufficiently 316 

sampled and DHPs were adequately processed.  As part of the CCRS protocol, ESU measurements where 317 

these two approaches differed in excess of their average standard error were processed after further 318 

quality control and enhancement.   This approach also ensured a level of consistency between GBOV 319 

and CCRS RM.    320 

 321 

The standard error of RM estimates for each DHP sampled during an ESU visit was used to quantify RM 322 

measurement error using the same approach applied with GBOV.  However, as CANEYE does not directly 323 

provide the fIPAR for each DHP, the fCOVER within plot relative standard error was used to approximate 324 

the fAPAR standard error, recognizing that this will be pessimistic as the former is based on gap fraction 325 

within ±10° of nadir and the latter at 10:00 local solar time.    326 

 327 

https://en.nikon.ca/nikon-products/product/imaging-software/viewnx-i.html
https://www6.paca.inrae.fr/can-eye/Download/
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 328 
Figure 2.  Schematic of a. NEON and b. CCRS Elementary Sampling Unit (ESU) design.  Star: ESU centre; dark green shaded 329 
circles: understory DHP 60° FOV for 50cm canopy; light green shaded circles: overstory DHP 60° FOV for 20m tall canopy; blue 330 
open circle: 30m radius SL2P product sampling buffer. 331 

 332 

 333 

 334 

 335 

 336 
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Table 5.  In-situ sites.  ESU: Elementary Sampling Unit.  IGBP Class defined in Table 4. 337 

Site  Ecoregion IGBP 
Class 

Lat. 
°N 

Long. 
°E 

Elev. 
(m  
a.s.l.) 

Date 
Start 

Date 
End 

#ESU Network 

Bartlett Exp. 
Forest 

Temperate 
continental forest 

MF 44.06 -71.28 232 2019-
05-13 

2020-
10-12 

3 GBOV 

Blandy Exp. 
Farm 

Temperate 
continental forest 

DBF 39.08 -77.95 183 2019-
03-26 

2020-
10-14 

22 GBOV 

Dead 
Lake 

Subtropical humid 
forest 

DBF 32.53 -87.8 22 2019-
03-13 

2020-
08-07 

22 GBOV 

Disney 
Wilderness 
Preserve 

Tropical moist 
Forests 

MF 28.12 -81.44 15 2019-
01-03 

2020-
12-15 

24 GBOV 

Geraldton Boreal coniferous 
forest 

ENF 49.85 -86.88 348 2020-
07-15 

2020-
07-21 

56 CCRS 

Guanica 
Forest 

Tropical Dry Forests ENF 17.97 -66.87 143 2019-
01-07 

2020-
12-16 

3 GBOV 

Harvard 
Forest 

Temperate 
continental forest 

MF 42.54 -72.17 351 2019-
05-08 

2020-
10-06 

3 GBOV 

Hay River Boreal coniferous 
forest 

ENF 60.57 -116.12 165 2019-
09-05 

2019-
09-07 

28 CCRS 

Jones Ecological 
Research  

Temperate 
continental forest 

ENF 31.20 -84.47 44 2019-
01-10 

2020-
12-08 

24 GBOV 

Joronarda Subtropical steppe SH 32.59 -106.84 36 2019-
01-10 

2020-
12-08 

3 GBOV 

Labrador Boreal tundra 
woodland 

DBF 52.65 -66.13 12 2019-
07-24 

2019-
07-31 

7 CCRS 

Mer Bleue Temperate 
continental forest 

ENF 45.40 -75.57 86 2019-
09-18 

2019-
09-18 

3 CCRS 

Moab Temperate desert SH 
 

38.25 -109.39 1799 2019-
01-10 

2020-
12-08 

3 GBOV 

MtPolley Temperate 
mountain system 

SH 52.52 -121.55 917 2019-
08-12 

2019-
08-15 

6 CCRS 

Nova 
Scotia 

Temperate oceanic 
forest 

SH 45.18 -63.03 34 2021-
06-09 

2021-
08-27 

7 CCRS 

Oak 
Ridge 

Subtropical 
mountain system 

SH 35.96 -84.28 334 2019-
04-16 

2020-
10-24 

3 GBOV 

Onaqui 
Ault 

Temperate desert SH 40.18 -112.45 1685 2019-
03-20 

2020-
08-26 

3 GBOV 

Ordway Subtropical humid EBF 29.70 -81.99 45 2019- 2020- 3 GBOV 
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Swisher 
Biological Stn. 

forest 01-28 11-13 

Peace 
River 

Boreal Mountain 
System 

ENF 56.74 -118.35 330 2019-
08-12 

2019-
08-12 

9 CCRS 

Santa 
Rita 

Subtropical desert MF 31.91 -110.84 983 2019-
03-04 

2020-
10-06 

3 GBOV 

Smithsonian 
Conservation 
Biology Inst. 

Subtropical humid 
forest 

ENF 38.89 -76.56 361 2019-
05-21 

2020-
10-15 

3 GBOV 

Talladega 
National 
Forest 

Subtropical humid 
forest 

ENF 32.95 -87.39 135 2019-
03-19 

2020-
07-01 

3 GBOV 

Turkey 
Point 

Temperate 
continental forest 

DBF 42.68 -80.46 222 2019-
06-25 

2019-
06-27 

4 CCRS 

University  
Notre Dame 
Conservation 

Temperate 
continental forest 

DBF 46.23 -89.54 518 2019-
05-08 

2020-
09-30 

23 GBOV 

Vancouver 
Island 

Temperate oceanic 
forest 

MF 49.84 -125.54 50 2019-
08-09 

2019-
08-10 

7 CCRS 

Yellowknife Boreal Tundra 
Woodland 

ENF 62.56 -113.99 206 2019-
08-09 

2019-
08-12 

6 CCRS 

 338 

3. Methods  339 

 340 

3.1 Reference Measurements 341 

 342 

RM were uploaded to GEE as feature collections (Fernandes et al., 2023).   PAIe, PAI, fIPAR and fCOVER 343 

were converted to LAIe, LAI, fAPAR and green fCOVER, respectively, by multiplying the measured value by 344 

woody area to total area ratios given in Brown et al. (2021a) for the overstory and 0.05 (±0.025 1) for 345 

the understory.  The understory value was selected assuming herbaceous and shrub understory cover 346 

have non-zero woody to total area ratio that is typically less than trees due to absence of trunks.  Total 347 

LAIe, LAI, fAPAR and fCOVER were estimated by combining understory and overstory values as in Brown 348 

et al. (2021a).  Clumping was calculated as the ratio of total LAIe to total LAI (Chen and Cihlar, 1996).  A 349 
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clumping of one corresponds to a canopy with random foliage locations while lower values indicate foliage 350 

that has increasing spatial clumping. 351 

 352 

The 1 uncertainty of overstory or understory components of each RM was estimated as the Euclidean 353 

sum of the 1 uncertainties due to levelling error, sampling variability, the applied woody to total area 354 

ratio, and for LAI, a 0.025 1 uncertainty due to clumping.  The clumping uncertainty is the Euclidean sum 355 

of the half the reported 0.03 root mean square error difference between the Liang and Yuequin (1986) 356 

and Chen and Cihlar (1995) clumping estimates for a range of sites and the ~0.02 change in estimated 357 

clumping when using 10 versus 20 sampling points in a plot reported in Ryu et al. (2010).  This approach 358 

assumes that the two methods for estimating clumping are equally uncertain although their accuracy 359 

varies with canopy type (Leblanc et al., 2005; Woodgate et al., 2017).   The 1 uncertainty of the 360 

corresponding total RM value was estimated as the Euclidean sum of the constituent understory and 361 

overstory 1 uncertainties weighted by their proportion of the total RM. 362 

 363 

3.2 Validation 364 

 365 

SL2P uses separate non-linear regression predictors to estimate the expected value (retrieved estimate) 366 

and the standard error (theoretical precision) of LAI, fAPAR and fCOVER given L2A ρ and associated 367 

acquisition geometry (Weiss and Baret, 2016).  Each non-linear regression is calibrated using a database 368 

of 42,378 simulated L2A ρ with associated canopy variables produced by applying the turbid spatially 369 

homogeneous (i.e. clumping=1) PROSAILH radiative transfer model (RTM)  (Verhoef et al., 2007) to a 370 

database of canopy parameters sampled from globally representative priors.  Additionally, retrievals are 371 

flagged as out of domain (out of range) if the inputs (outputs) fall outside of the domain (range) of the 372 

calibration database simulations with a 10% tolerance as described in Djamai et al. (2019).  The LEAF-373 

Toolbox implementation of SL2P was used to map LAI, fAPAR and fCOVER and associated quality control 374 

and theoretical precision layers at 20m resolution for clear sky land pixels whose centroid fell within a 375 

30m radius of the centre of each ESU and ±7d interval of each RM.    376 

 377 

 The SL2P implementation in SNAP was not used as two bugs were identified in the MATLAB libraries 378 

provided to SNAP and subsequently verified by their author (M. Weiss , personal communication): i)  379 

incorrect truncation of the prior probability distributions used to specify realizations of simulated 380 
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canopies for calibration of the regressions used to estimate product values, and ii) a coding error in the 381 

algorithm used to flag out of domain retrievals that significantly overestimated the frequency of samples 382 

falling outside the domain.    To demonstrate the impact of these bugs for current users of SNAP, SNAP 383 

and LEAF-Toolbox products were compared over the validation site used in Djamai et al. (2019).   384 

 385 

 The ±7d interval for matches ensured at least three MSI acquisitions for each sample date given the <5d 386 

revisit of Sentinel-2A and 2b MSI imagers.   Both temporal differences in SL2P matches during the start 387 

and end of season or during rapid disturbance or drought and SL2P measurement error due to 388 

geolocation or atmospheric correction uncertainty could result in some matched dates having much 389 

larger residuals than others.  In circumstances where multiple dates were matched to a single RM, these 390 

errors were reduced by discarding dates where at least half the samples exceeded the 50%ile absolute 391 

residual of all matched pixels for the 15d period at the ESU.   392 

 393 

Ideally, the spatial footprint of matching product pixels should correspond to the spatial footprint of in-394 

situ measurements (Fernandes et al., 2014).   This was not possible to implement here as spatially 395 

explicit canopy height information was not available for CCRS ESUs.  Also, product pixel footprints will 396 

vary with the L2A pixel PIFOV that in turn depends on actual geolocation, view zenith angle and spectral 397 

band (Gascon et al., 2017).  To avoid these complexities a fixed 30m radius was used corresponding to 398 

the approximate footprint of the ESUs with the tallest canopies measured.  This choice assumes that, for 399 

shorter canopies, the ESU RM also applies within the spatial footprint of matching product pixels. 400 

 401 

The 1 uncertainty of the mean SL2P estimate for a given match-up was modelled as the Euclidean sum 402 

of the mean SL2P theoretical and the standard error of the matching SL2P samples.  For each variable, 403 

statistics for A, U, P and uncertainty agreement ratio (UAR) and coefficient of determination (r2) were 404 

computed as in Brown et al. (2021a) both for the entire population of RM and by IGBP cover class.   405 

 406 

Good practice requires reporting thematic error metrics as a function of the RM value to allow for 407 

comparisons of validation results across studies with different sampling distributions (Fernandes et al., 408 

2014; Doxani et al., 2018; Brown et al., 2021a).  To do so, A, P and U were modelled using third order 409 

polynomial weighted least squares regressions fitted to quantities based on residuals between the mean 410 

of matching SL2P product pixels and RM values for each sampled ESU.  For A (U) the residual (absolute 411 

residual) between SL2P estimates and RM was regressed against the RM.  For P, the SL2P estimates 412 
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were first corrected by adding the modelled A followed by regressing the absolute residuals between 413 

the corrected SL2P estimates and RM against the RM.   Weighting was inversely proportional to the sum 414 

of squares of the 1 uncertainty of the mean SL2P estimate and the 1 uncertainty of the RM.  The 415 

expected conditional value and ±95%ile confidence intervals of each regression were computed using 416 

statsmodel version 01.3 (https://www.statsmodels.org/stable/index.html).   Population level statistics of 417 

A,P,U and UAR were also computed as: 418 

 419 

𝐴 =  
1

𝑁
∑ (�̂�𝑖 − 𝑦𝑖)𝑁

𝑖=1          (1) 420 

𝑈 = √
1

𝑁
∑ (�̂�𝑖 − 𝑦𝑖)2𝑁

𝑖=1          (2) 421 

𝑃 = √
1

𝑁
∑ (�̂�𝑖 − 𝑦𝑖 − 𝐴)2𝑁

𝑖=1         (3) 422 

𝑈𝐴𝑅 =  
1

𝑁
∑ 𝐼 (|

�̂�𝑖−𝑦𝑖

𝑦𝑖
| ≤ 𝜀𝑟𝑒𝑙 ∪ |�̂�𝑖 − 𝑦𝑖| ≤ 𝜀𝑚𝑎𝑥)𝑁

𝑖=1      (4) 423 

 424 

Where �̂�𝑖 , 𝑦𝑖  are, respectively, the SL2P estimate and RM for the 𝑖th of 𝑁 comparisons; 𝜀𝑟𝑒𝑙 , 𝜀𝑚𝑎𝑥 are, 425 

respectively, the relative and maximum target uncertainty requirement (Table 1) and 𝐼 is the indicator 426 

function. 427 

 428 

 429 

Brown et al. (2020) demonstrated that accuracy of local SL2P LAI and fAPAR maps can be improved by 430 

bias correction using empirical relationships between SL2P retrievals and local RM.  Here, for each 431 

variable, this approach was extended to all sites by fitting a third order polynomial weighted least 432 

squares regression to predict the RM given the corresponding SL2P estimate using all match-ups.  The 433 

weights were inversely proportional to the Euclidean sum of the 1 uncertainty of the mean SL2P 434 

estimate and the 1 uncertainty of the of the RM. The fitted polynomials were validated by fitting and 435 

applying similar hold out site specific calibrations to the SL2P estimates at each site and then applying 436 

the same validation protocol used for uncorrected SL2P estimates.  The hold out approach was used to 437 

ensure statistical independence between validation RM and the bias correction.   438 

 439 
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3.3 Intercomparison 440 

 441 

Product intercomparison should be performed over replicate regions sampled within unique land 442 

surface conditions (Fernandes et al., 2014).   The BELMANIP2 sampling design was previously developed 443 

to sample regions based on strata representative of global biomes, land cover and phenology together 444 

with the constraint that sample regions minimize conditions not relevant to the stratum and have 445 

relatively flat terrain (Weiss et al., 2014).  The last condition reflects the fact that complex terrain can 446 

result in both radiometric and geolocation uncertainty that can mask differences in the retrieval 447 

algorithms.  BELMANIP2 was not used here for three reasons: i) it misses two North American forest 448 

ecozones, ii) even within a forest ecozone, BELMANIP2 regions are located to match the expected 449 

distribution of all land cover rather than only forest cover, and iii) BELMANIP2 does not consider the 450 

number of valid product intercomparisons available within forested regions.  Instead, since our study 451 

only considers North American forests, we relied on the North American forest ecozone map to stratify 452 

by geographic location, forest type, and phenology.  Sample regions were restricted to 100km x 100km 453 

Military Grid Reference System (MGRS) tiles (Defence Mapping Agency, 1990) since they offer a global 454 

equal area grid and because L2A products are formatted using these tiles.   455 

 456 

MGRS tiles were scored using the product of four relative criteria scores to select tiles that maximise 457 

potential valid intercomparisons (Table 6).  Each relative criteria score corresponds to a raw criteria 458 

score  divided by the sum of the same raw score of all tiles overlapping the ecozone.  The product of 459 

relative scores ensured that the selected MGRS tile would not rank low on any one of the relative 460 

scores.   For each forest ecozone, all MGRS tiles with at least 50% overlap with the ecozone were scored 461 

and the two tiles with the highest score selected.  462 

 463 

Table 6.  Raw criteria scores for selecting MGRS tiles.   464 

Name Definition Inputs 

Forest Area Average forest area within 3x3 MCD15 pixel footprints. NALC2015, MCD15 

Land Area Average land area within 3x3 MCD15 pixel footprints. NALC2015, MCD15 

Elevation Deviation 1𝜎 of MERIT elevation within 3x3 MCD15 pixel footprints. MERIT DEM, MCD15  

Vegetation Growing season average of 1𝜎 SL2P NDVI within a 3x3  MSI L2A Products April-September, 
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Homogeneity MCD15 pixel footprints 2019, MCD15 

Clear Sky Count Number of dates with >90% coverage of clear sky MSI L2A 
retrievals in each 3x3 MCD15 pixel footprint. 

MSI L2A Products April-September, 
2019, MCD15 

 465 

Match-ups were extracted for each L2A product acquired during 2019 over the selected MGRS tile using 466 

aggregated valid coarse resolution product pixels to reduce uncertainty due to geolocation or spatial 467 

footprint variability.  For each match-up sample of non-overlapping 3x3 (for MODIS) or 5x5 (for CGLS) 468 

coarse resolution product pixels, areas labelled as either water in the L2A scene classification mask, 469 

water or built-up in the NALC2015 land cover, or L2A normalised difference vegetation index less than 470 

0.1, were assigned biophysical parameter estimates of zero.   SL2P was applied to other areas in the 471 

footprint, using the corresponding 20m L2A product, to estimate canopy biophysical parameters and 472 

associated theoretical precision.  Intercomparisons were considered valid if at least 90% of the match-up 473 

footprint area was mapped with valid SL2P retrievals or zero values and with 100% coverage of valid 474 

highest quality coarse resolution product retrievals. For each match-up, the expected value of the SL2P 475 

product estimate was estimated using area-weighted binning followed by dividing by the mapped 476 

match-up footprint area.  Additionally, the standard deviation of valid retrievals and the proportion of 477 

each MCD15 biome type was determined for each MODIS or CGLS pixel using SL2P output and a 478 

NALC2015 land cover respectively. 479 

4. Results 480 

4.1 Verification 481 

 482 

Comparisons of SNAP and LEAF-Toolbox implementations of SL2P indicated differences in both LAI and 483 

quality masks (Figure 3). SNAP overestimates (underestimates) LEAF-Toolbox for LAI>4 (LAI< 2) (Figure 484 

3e).   SNAP also typically designates >50% of retrievals as invalid due to being ‘Out of Domain’ of the 485 

calibration dataset in comparison to only ~10% for LEAF-Toolbox (compare Figure 3c. to Figure 3d).  486 

Further, SNAP maps all L2A reflectance measurements including clouds while LEAF-Toolbox only maps 487 

clear sky land using the L2A cloud mask. 488 
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 489 
Figure 3. Comparison of SL2P LAI and quality mask implemented in (a. and c.) SNAP and  (b. and d ) LEAF-Toolbox. as well as a 490 
(e.) scatterplot of SNAP versus LEAF-Toolbox LAI for the agricultural region reported in Djamai et al. (2019). 491 

  492 
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4.2 Sampled SL2P and RM Estimates 493 

 494 

On average, 8.07 (range [6.5,28]) matching SL2P pixels were found over each of 1107 RM samples of 495 

LAIe, LAI, fCOVER and fAPAR (Supplementary Material Table S4).   RM values spanned 0.01 to 7.41 for 496 

LAI and 0.002 to 0.95 for both fAPAR and fCOVER (Figure 4).   The RM measurement uncertainty was 497 

typically on the order of ±1 unit for LAIe and LAI and ±0.05 units for fAPAR and fCOVER (Supplementary 498 

Material Figure S1)   499 

 500 

The modal LAI value for MF and DBF was ~4.5 although the DBF sites had second mode of ~1.5 due to 501 

the inclusion of early season NEON sampling.  ENF sites had a lower modal LAI than other forests (~1.5) 502 

due to the northern latitude CCRS sites.  Closed SH (CSH) sites showed a relatively uniform distribution 503 

of LAI between ~2-3 while open SH (OSH) sites had a narrow mode at ~0.5 LAI.   504 

 505 

As expected, fAPAR and fCOVER RM were almost linearly related (r2=0.98) since both are weighted gap 506 

fraction estimates from the same DHP samples.  Both quantities were logarithmically related to LAI 507 

(r2>0.91) as expected from the relationship between gap fraction and LAI (Monteith and Unsworth, 508 

2014).  Except for shrublands, where clumping was always near 1, there was no clear relationship 509 

between clumping and land cover; although clumping was generally lower for CCRS sites versus NEON 510 

sites even though both use the same method to estimate clumping (Figure 4). 511 

 512 

Univariate and bi-variate distributions of SL2P estimates (Figure 5) were similar to their RM counterparts 513 

but with somewhat greater range and stronger linear relationships between fAPAR and fCOVER (r2 514 

=0.99)  and logarithmic relationships between these variables and LAI (r2>0.95).  The stronger 515 

relationships reflect the fact that SL2P assumes homogenous turbid canopies while the RM include 516 

variations in spatial clumping and crown shape that also impact gap fraction (Stenberg et al., 2014).   In 517 

contrast to the RM distributions, there was no visible distinction in bivariate distributions of SL2P 518 

products between CCRS and NEON sites since all products were derived using the same radiative 519 

transfer model and therefore have same biases due to clumping and crown shape. 520 

 521 

 522 

 523 

 524 
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 525 

 526 

 527 

 528 

 529 

 530 

 531 

 532 
Figure 4.  RM scatter plots by measurement network (upper diagonal figures) and IGBP land cover class (lower diagonal figures) 533 
together with relative frequency kernel density histograms for each variable by land cover (diagonal) 534 

 535 
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.  536 

 537 
Figure 5.  Scatter plots of SL2P retrievals by measurement network (upper diagonal figures) and IGBP land cover class (lower 538 
diagonal figures) together with relative frequency kernel density histograms for each variable by land cover (diagonal). 539 

 540 

4.3 Comparisons of RM and SL2P 541 

 542 

4.3.1 Population Level Statistics 543 

 544 

While not a GCOS requirement, it is useful to compare SL2P LAI to both RM LAIe and RM LAI since lower 545 

error for LAIe versus LAI would supports the hypothesis that SL2P is not properly accounting for 546 

clumping.  Scatter plots of SL2P LAI versus RM LAIe (Figure 6a) and LAI (Error! Reference source not 547 
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found.b) indicate relatively linear relationships (r2 =0.65 for LAIe and r2 =0.64 for LAI).  A U of 0.68 and 548 

UAR of 58% was observed for LAIe and 0.99 and 48%, respectively, for LAI.  LAIe was consistently 549 

overestimated but with only a modest bias of 0.33.   LAI was relatively unbiased for LAI<2 and 550 

underestimated for LAI>2 so the population level LAI bias of -0.38 was not representative of local 551 

performance.  Both fCOVER and fAPAR exhibited relatively linear relationships (r2≥0.7) but fAPAR had 552 

lower slightly lower A than fCOVER (-0.07 versus -0.02) that translated into a lower UAR (31% versus 553 

37%) even though U for both was ~0.15.   554 

 555 

Qualitatively, there was no evidence of systematic differences in residuals when comparing CCRS and 556 

GBOV networks for the same land cover and RM value (Error! Reference source not found.).  557 

Quantitative tests were not performed due to the imbalance of sample sizes between networks.   In 558 

terms of land cover classes, for all variables the closed SH were typically estimated with low uncertainty 559 

(e.g. <0.5 LAI U, <0.05 fAPAR and fCOVER U) while open SH tended to be overestimated by between 0.5 560 

LAI to 1 LAI and  between 0.05 and 0.2 fAPAR and fCOVER) ( Error! Reference source not found. and 561 

Table 7).  Error metrics were similar across the forest classes with the exception of EBF where both 562 

fAPAR and LAI were unbiased (Table 7). 563 

 564 

 565 

 566 

 567 

 568 
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 569 

Figure 6.  Scatter plots of ESU SL2P estimates versus matching RM for each variable together with population validation metrics.  570 
Symbol shape indicates network and symbol colour indicates IGBP class.  Dashed lines bound target user requirement around 571 
solid 1:1 line.     572 

 573 

4.3.2 Accuracy, Precision and Uncertainty as a Function of RM Value 574 

 575 

SL2P LAI estimated RM LAIe with bias decreasing from 0.5 LAI at LAI~0 to -0.5 LAI at LAI~4 (Error! 576 

Reference source not found.a.).  However, when compared to RM LAI, SL2P LAI was nearly unbiased (for 577 

LAI<2) but increasingly underestimated larger RM LAI; reaching an underestimate of -3 LAI units at LAI 6 578 

(Error! Reference source not found.b).  In contrast the precision of SL2P LAIe and LAI was approximately 579 

~0.5 LAI units for all levels of LAI.  As a result, uncertainty of SL2P LAI as an estimate of RM LAIe was 580 

within target requirements, assuming LAI could be replaced by LAIe, but SL2P LAI fell outside LAI target 581 

requirements for LAI>3. 582 

 583 

SL2P estimated RM fCOVER and fAPAR with a bias of ~0.1 for the lowest RM values, to ~0 for mid-range 584 

RM values (~0.3 fCOVER and ~0.5fAPAR) and ~-0.15 for high (>0.8) RM values (Error! Reference source 585 

not found.c. and Error! Reference source not found.d).  SL2P fCOVER and fAPAR precision was relatively 586 



28 
 

constant ranging from ~0.05 at extreme RM values to ~0.1 for mid range RM values.  For both fCOVER 587 

and fAPAR, the combination of relatively constant precision and changing accuracy resulted in greater 588 

uncertainty at low and high RM values; although uncertainty was typically between 0.08 and 0.15 for all 589 

retrievals. 590 

 591 

The 95% confidence intervals of the A, P and U model fits were narrow for fAPAR and fCOVER (<±0.05) 592 

and for LAI<5 (<0.2) but was wider for high (>3) LAIe and high (>5) LAI due to increased non-linearity and 593 

decreased sample density.  However, in these latter cases the magnitude of both A and U also increased 594 

so the A, P and U model confidence interval widths were approximately constant relative to 595 

corresponding regression line magnitudes. 596 

 597 

Bias correction maintained or reduced accuracy error and increased UAR for LAI and fAPAR with the 598 

exception of EBF LAI, that was unbiased prior to correction (Table 7).  Bias correction also preserved or 599 

increased UAR for land cover other than EBF; with substantial increases in UAR for fAPAR.  The MF class 600 

showed the largest improvement in accuracy and UAR due to bias correction.  In contrast, bias 601 

correction results in little change in error statistics for open shrubs.   Bias correction equations without 602 

hold-out were also produced (Supplementary Material Table S5). 603 

 604 

For all variables, the relationship between clumping and A was weak and non-monotonic (Figure 8).  The 605 

weak relationship spanning our entire sample follows since, for all parameters, A was correlated to the 606 

RM magnitude (Error! Reference source not found.) which in turn was not correlated to clumping but 607 

rather the ground reference network (Figure 4).  However, both P and U error decreased as clumping 608 

index increased in a relatively linear manner, as evidenced by r2<-0.4 in all but one case; reflecting the 609 

increase in scatter of residuals as clumping index decreases.   610 

 611 

 612 

 613 

 614 

 615 

 616 
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 617 
Figure 7.  Residual plots of SL2P estimates versus matching RM as a function of RM value together with fitted models of 618 
Accuracy, Precision and Uncertainty (solid colours) and their 95%ile confidence intervals (dashed colours) Symbol shape 619 
indicates network, symbol colour indicates IGBP land cover and symbol size indicates clumping.  Dashed lines bound target user 620 
requirement around solid 1:1 line. 621 

 622 

 623 

 624 

 625 

 626 

 627 

 628 

 629 

 630 

 631 

 632 

 633 

 634 

 635 
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Table 7.  Thematic error statistics for validation of original and bias corrected SL2P retrievals with in-situ reference 636 
measurements for all data and by IGBP biome.  For A,P,U  the grey shading indicates absolute change less than the greater of 637 
10% of mean estimate or  0.02  For UAR, the grey shading indicates a change less than 10% UAR.  Green (gold) shading indicates 638 
improved (worsened) metric due to bias correction. 639 

Variable Biome Number of 
comparisons 

Mean 
estimate 

Original Bias Corrected 

A P U UAR A P U UAR 

LAI 

ALL 1107 2.31 -0.38 0.71 0.91 0.51 -0.03 0.74 0.82 0.54 

CSH 66 0.08 0.11 0.08 0.14 1.00 0.03 0.04 0.05 1.00 

DBF 203 3.05 -0.42 1.07 1.15 0.36 0.16 1.06 1.08 0.40 

EBF 104 2.04 0.01 0.39 0.39 0.85 0.42 0.72 0.84 0.46 

ENF 297 1.86 -0.20 0.76 0.78 0.63 0.02 0.71 0.71 0.58 

MF 297 3.82 -1.12 0.82 1.39 0.20 -0.56 0.84 1.01 0.48 

OSH 140 0.27 0.37 0.39 0.54 0.68 0.38 0.49 0.62 0.65 

fAPAR 

ALL 1107 0.55 -0.07 0.11 0.15 0.31 -0.03 0.11 0.13 0.43 

CSH 66 0.04 0.06 0.02 0.06 0.32 0.04 0.02 0.05 0.64 

DBF 203 0.67 -0.05 0.14 0.15 0.34 0.00 0.14 0.14 0.49 

EBF 104 0.52 0.00 0.07 0.07 0.55 0.08 0.08 0.12 0.31 

ENF 297 0.55 -0.12 0.13 0.18 0.21 -0.07 0.13 0.15 0.34 

MF 297 0.78 -0.15 0.11 0.18 0.26 -0.10 0.10 0.14 0.47 

OSH 140 0.14 0.05 0.09 0.10 0.42 0.06 0.11 0.12 0.44 

fCOVER 

ALL 1107 0.50 -0.02 0.12 0.13 0.37 -0.03 0.12 0.14 0.42 

CSH 66 0.03 0.04 0.03 0.05 0.58 -0.01 0.02 0.02 0.95 

DBF 203 0.63 0.00 0.15 0.15 0.39 0.00 0.15 0.15 0.45 

EBF 104 0.45 0.07 0.10 0.12 0.38 0.08 0.13 0.15 0.25 

ENF 297 0.47 -0.05 0.13 0.14 0.25 -0.07 0.14 0.15 0.26 

MF 297 0.73 -0.09 0.12 0.15 0.42 -0.09 0.12 0.15 0.43 

OSH 140 0.11 0.07 0.10 0.12 0.41 0.05 0.10 0.12 0.58 

 640 

 641 

 642 

 643 

 644 

 645 

 646 

 647 

 648 

 649 

 650 

 651 

  652 
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 653 
Figure 8.  Residual plots of SL2P estimates versus matching RM as a function of clumping together with fitted models of 654 
Accuracy, Precision and Uncertainty (solid colours) and their 95%ile confidence intervals (dashed colours). Symbol shape 655 
indicates network, symbol colour indicates IGBP land cover class. Pearson correlation coefficient (significant at p<=0.002.) 656 
between modelled A, P and U and in-situ clumping index indicated in each panel.  657 

4.3.3 Validation of SL2P Theoretical Precision 658 

 659 

For all variables, SL2P theoretical precision was poorly related to the P estimated from observed 660 

residuals (Figure 9).  For LAIe and LAI, SL2P generally overestimates P with an almost uniform 661 

distribution below the 1:1 line.  In contrast, SL2P theoretical precision was almost constant at ~0.04 for 662 
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fAPAR and fCOVER over forests and uncorrelated (r2<0.1) with the modelled precision.  It was only for 663 

fCOVER over shrublands that SL2P theoretical precision was relatively unbiased and within ±0.05 of P. 664 

 665 

Figure 9.  Scatter plots of SL2P modelled precision based on comparisons to RM versus theoretical precision based on the 666 
retrieval algorithm for in-situ sites.  1:1 line indicated in black 667 

 668 

4.4 Intercomparison 669 

 670 

 The number of intercomparisons for a given aggregated SL2P product estimate value ranged from 500 671 

to 10000 for CGLS versus SL2P and from 1000 to 15000 for MODIS versus SL2P (Supplementary Material 672 

Figure S2).  The larger number of MODIS comparisons was due to the higher temporal revisit frequency 673 

of MODIS on Aqua and Terra in comparison to the OLCI imagers on Sentinel 3A and 3B.   Sub-pixel 674 

variability in LAI was small for both MODIS and CGLS pixels used for intercomparison; with a coefficient 675 

of variation <0.2 for LAI>1 (Figure 10a. and Figure 10c.).    Sub-pixel biome type variation was also low 676 

between shrubs and forest, with shrub dominated pixels containing at least 80% shrub cover (Figure 677 
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10b. and Figure 10d.).  The majority of forested pixels had at least 75% cover of either broadleaf or 678 

needleleaf forests but there was also a lesser number of mixed forest pixels.   679 

 680 

For brevity, we summarise intercomparison results across all ecozones (Figure 11) since between 681 

ecozone variations were correlated to the magnitude of aggregated SL2P estimates (not shown) .  682 

MODIS and CGLS comparisons to SL2P were remarkably similar: SL2P underestimates both by ~50% LAI 683 

for SL2P LAI between 0.5  and 3.5 and by ~20% for SL2P fAPAR between 02 and 0.8.  However, MODIS 684 

and CGLS LAI and fAPAR saturated with respect to SL2P LAI for SL2P LAI>4. This agrees with results 685 

indicating MODIS and CGLS products saturate when in-situ LAI >4 (Brown et al., 2020).   For low (<0.5) 686 

LAI and (<0.25) fAPAR, both MODIS and CGLS showed good agreement (within ±0.25 LAI) with SL2P but 687 

were still overestimating SL2P fAPAR by between 0.05 and 0.1 units.  Results for CGLS and SL2P fAPAR 688 

comparisons were similar to those for fCOVER as expected given the similarity of SL2P fCOVER and 689 

fAPAR (Figure 5) and the fact that CGLS fCOVER is a deterministic function of CGLS fAPAR.   690 

 691 

 692 

 693 
Figure 10. Density contour plots of sub-pixel fraction forest biome type for intercompared  (a) MODIS (a) and (b) CGLS products 694 
and sub-pixel LAI standard deviation versus LAI for intercompared  (a) MODIS (c) and (d) CGLS products together with linear 695 
regression fits (black lines).  Contour intervals range from quantiles of 0.1 to 1.0 in  steps of 0.1.  696 
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 697 

 698 

Figure 11. Density plots of the conditional probability of CGLS (left column) or MODIS (right column) comparisons given a 699 
matching aggregated SL2P estimate for 1.5km x 1.5km grid cells.  Colours correspond to conditional probability of reference 700 
product variable given the aggregated SL2P match-up value. 701 

 702 

 703 

 704 

 705 

 706 
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5.Discussion 707 

 708 

This study focussed on SL2P both because it is being used for science and applications and because it 709 

serves as a free and open baseline for benchmarking new approaches.  We further considered forests 710 

because previous studies have shown SL2P typically meets user requirements over croplands but not 711 

over forests (Supplementary Material Table S1).  Brown et al. (2021a) showed that SL2P underestimated 712 

forest LAI even with uniform calibration priors; suggesting a systematic limitation in either L2A inputs or 713 

PROSAILH.  We hypothesized the lack of clumping within the PROSAILH was the cause of the bias as 714 

empirical algorithms using similar input imagery are unbiased for LAI over North American forests 715 

(Fernandes et al., 2003).   We also wanted to determine if the bias seen for LAI also occurred for fAPAR 716 

and fCOVER, and if the bias could be corrected using empirical models of bias as a function of SL2P 717 

retrievals.   To address these questions, we expanded the spatially limited sample used in Brown et al. 718 

(2021a) to include 133 new northern latitude forest ESUs and refined the validation approach of Brown 719 

et al. (2021a) to quantify thematic error as a function of RM and a function of clumping. 720 

 721 

This study began with a code verification that included a review of the SNAP and LEAF Toolbox 722 

implementations of SL2P by a software engineering team at CCRS not involved in authoring either 723 

implementations.  Two bugs were found in the MATLAB code provided to the SNAP developers: i.   724 

incorrect truncation of priors used to specify radiative transfer model simulations and ii.  incorrect logic 725 

when checking if inputs fell within the domain of the calibrated regression predictors and associated 726 

quality control masks.  These bugs result in systematic errors in high and low product estimates and 727 

reduced the consistency and replicability of products and validation studies (Figure 3).   Code verification 728 

is not currently part of CEOS good practices but should be applied prior to product validation.   729 

 730 

The RM dataset sampled all North American forest ecozones except tropical forest and steppe ecozones 731 

(Figure 1,Table 5).  The tropical forest ecozones are of global importance and should be incorporated in 732 

future validation but are of limited extent over North America.  The RM samples covered the typical 733 

range of LAI (0 to 7.5) (Scurlock et al., 2001; Fernandes et al., 2003), except for Douglas Fir forests on the 734 

Pacific coast that approach values of 10.  On the other hand, this is the only study that validates SL2P 735 

over forests using a representative range of fAPAR and fCOVER.  Simultaneous validation of all three 736 

variables is important since they are closely related in-situ (Figure 4) and for SL2P (Figure 5), with r2>0.9 737 
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between variables.  Indeed, the close SL2P relationships suggest that there may be a benefit to using 738 

variables that are estimated with low bias (e.g. fCOVER) to constrain other variables such as LAI.   739 

 740 

The CCRS network sites provided increased sampling of lower clumping index and a broader range of 741 

ecozones that used in Brown et al. (2021).  This, together with intercomparison, allowed us to achieve a 742 

CEOS Stage 3 validation.  The CCRS sites provided broad spatial coverage with a single date sampling 743 

while the subset of NEON sites selected for this study provided the obverse.  Current in-situ survey 744 

networks do not provide dense sampling in space and time, and it seems that most networks prefer the 745 

latter since they are typically related to long term measurement sites.  However, we suggest that a 746 

broad spatial sample is desirable, as it will eventually include temporal variability if sampling dates are 747 

allowed to vary, while a fixed network will never improve spatial coverage.   748 

 749 

The combination of CCRS and GBOV RM was possible due to their similar acquisition and processing 750 

protocols and a shared theoretical basis for estimating RM from gap fraction.  Validation of the RM 751 

methods is beyond the scope of this study but consistency between networks was supported by their 752 

similar bi-variate distributions (Figure 4).  Ad hoc intercomparisons over 6 plots found random 753 

differences less than 5% for GBOV versus CCRS data processing (not shown) suggesting that the 754 

uncertainty between networks is far less than the total uncertainty of each RM (e.g. Supplementary 755 

Material Figure S1). 756 

 757 

Both the NEON and CCRS ESUs were situated in the centre of large (≥100m x 100m) patches (Figure 2) 758 

that were qualitatively assessed as spatially homogenous both to minimize error in DHPs whose FOV 759 

extend past the nominal ESU footprint and to reduce the impact of geolocation errors on match-ups.  760 

This limited our ability to quantify SL2P error in heterogenous landscapes, including disturbed and 761 

developed areas where forested pixels may be adjacent to non-forested areas.  It is likely our error 762 

estimates are optimistic for these circumstances since SL2P does not consider heterogenous mixed 763 

pixels (clumping≠1) since the RTM used for SL2P calibration does not account for spatial heterogeneity 764 

of vegetation.  Even pure forested pixels may have increased error if they are adjacent to different 765 

vegetation since the input L2A BRF to SL2P does not correct for lateral fluxes between pixels below the 766 

top of the canopy.  Simulations indicates that one requires ~100m pixel resolution to ensure the ratio of 767 

later scattering to BRF is below 0.1 in the worst case where a forest is surrounded by absorbing 768 

boundaries (Widlowsk et al., 2008).  In reality, forests usually only have one pixel edge adjacent to a low 769 
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vegetated pixel so a ~25m pixel size should correspond to the same error.  Nevertheless, this error is not 770 

accounted for either in the input L2A products or the SL2P algorithm.  Ideally, new technologies to 771 

permit automated regional estimates of RM using airborne surveys should be developed; especially 772 

those that include measurement approaches such as LIDAR or structure from motion that can map three 773 

dimensional canopy structure over heterogenous landscapes (Fang et al., 2019).   774 

 775 

LAI validation indicated similar precision and bias as reported in Brown et al. (2021a) but here included 776 

forests up to LAI 7.5.  In contrast to LAI, we noticed a curious almost sinusoidal pattern to LAIe, fAPAR 777 

and fCOVER bias that shifted from positive to negative with increasing RM value.  This result may explain 778 

why previous studies found SL2P to be negatively biased for high fAPAR forests (Putzenlechner et al., 779 

2019) but relatively unbiased for moderate fAPAR over crops (Djamai et al., 2019).  Our analysis also 780 

indicates that statistics based on the entire population of RM can be misleading for bias and uncertainty 781 

and should be accompanied with breakdowns into sub-populations of  land cover and reference value in 782 

future validation studies.   All variables were estimated with relatively consistent precision that, in the 783 

absence of bias, would result in uncertainty falling within user requirements for most levels of each 784 

variable.  This is encouraging since it indicates that the propagation of measurement error from inputs 785 

to product is modest.  In fact, precision errors may even decrease further with temporal or spatial 786 

smoothing although this was beyond the scope of our study.  The main challenge, especially for LAI, 787 

remains reducing bias.   788 

 789 

Our novel approach of using regression to model the expected value of A,P and U as a function of 790 

reference value differs from previous good practice of using binned or population statistics (Fernandes 791 

et al., 2014).  Regression naturally provides an unbiased estimator with prediction confidence intervals 792 

that can be used to identify where further RM sampling is required.  However, it is good practice to 793 

examine patterns in regression residuals due to factors such as clumping or biome type.  While we did 794 

not observe effects due to clumping it is clear that SL2P performance varies with biome.  Specifically, the 795 

uncorrected SL2P resulted is almost no bias for EBF.  EBF correspond to relatively high fCOVER that may 796 

satisfy the turbid medium assumptions within the SL2P radiative transfer model better than other 797 

validated biomes.  Ideally, our experiment should be replicated using large samples over each biome to 798 

verify the observed structure in residuals. 799 

 800 
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Bias correction using empirical regression models generally improved LAI and fAPAR accuracy and UAR 801 

over forests other than EBF (Table 7).  The observed improvements are conservative since i) we 802 

completely held out each site when fitting and applying the bias correction and, ii) our RM sample were 803 

not optimized for bias correction in that they did uniformly sample the range of possible SL2P retrievals 804 

for a given variable.   805 

 806 

Our attempt to test the hypothesis that SL2P LAI bias was due to clumping had mixed results.  There was 807 

weak to moderate quantitative evidence (r2<0.52) that errors in fAPAR, fCOVER or LAI were related to 808 

clumping (Figure 8).  The covariation of clumping with land cover and LAI (e.g. shrub clumping close to 1 809 

in Figure 4) meant that we could not separate these two effects from clumping.  Indeed, it may be 810 

impossible to control for these effects when using undisturbed sites and may require real or numerical 811 

canopy manipulation experiments (e.g. Stenberg et al., 2014; Widlowski et al., 2015).  However, there 812 

was qualitative evidence that, for forests other than EBF, LAI bias increases as the clumping index 813 

decreases.  For example,  for similar RM LAI underestimation was worse for the CCRS network versus the 814 

GBOV network (Figure 7).  Furthermore, the relatively unbiased estimation of LAIe (Figure 7) suggests 815 

that SL2P LAI is actually mapping the LAI for a spatially homogenous canopy.  This may be expected 816 

given that SL2P is calibrated with a homogenous radiative transfer model.  An alternative test of the 817 

hypothesis that clumping causes SL2P LAI bias would be to determine if replacing PROSAILH in SL2P with 818 

an accurate heterogeneous radiative transfer model, that consider the realistic three dimensional 819 

canopies, reduces LAI bias while increasing LAIe bias. 820 

 821 

Estimates of theoretical precision provided by SL2P are not sufficiently accurate for fAPAR and fCOVER 822 

or precise for LAIe and LAI to be of practical use (Figure 9).  Indeed, it is contradictory to assume that 823 

precision could be predicted for each retrieval with low uncertainty since if that were the case one could 824 

use this prediction to improve retrievals.  Nevertheless, one could expect an unbiased estimate of 825 

precision if cross validation was sufficiently robust during SL2P calibration.  The current cross validation 826 

approach is to test retrievals for PROSAILH simulations drawn from the same priors used for calibration.  827 

At a minimum, precision should be modelled using different priors and ideally using an ensemble of 828 

model simulations.  One alternative may be to use perturbations of paired RM and satellite 829 

measurements, based on the associated uncertainties, to quantify precision using the validation 830 

approach presented here. 831 

 832 
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Intercomparison of medium and coarse resolution products needs to control for differences due to the 833 

spatial scale of their respective inputs.  Coarse resolution reference products will typically have 834 

additional uncertainty due to sub-pixel variation in land cover or vegetation density (Yan et al., 2016; 835 

Dong et al., 2022).  Our intercomparison involved objective criteria to sample MGRS tiles and to reject 836 

samples without sufficient forest cover in each coarse resolution product pixel.  Both of these criteria 837 

resulted in low sub-pixel variability for sampled MCD15 and CGLS pixels (Figure 10).  Uncertainty in 838 

intercomparisons due to sub-pixel variability was further reduced during intercomparison due to the use 839 

of 1500m x 1500m averages of reference and SL2P products.  Hence, the error in the aggregated coarse 840 

resolution reference products should be approximately their reported accuracy error of <0.5 LAI and 841 

<0.1 fAPAR (Supplementary Material Tables S2 and S3).    This indicates that the SL2P underestimation of 842 

both MODIS LAI (Figure 11a) and CGLS LAI (Figure 11b.)  cannot be attributed to uncertainty in the 843 

reference data. The SL2P LAI underestimation also agrees with observations over in-situ sites.  SL2P also 844 

consistently underestimates MODIS fAPAR (Figure 11c.) and CGLS fAPAR (Figure 11d.) with magnitude 845 

similar to underestimates observed when compared to RM data  (Table 7).   846 

 847 

SL2P fCOVER comparisons to CGLS indicate a similar pattern as seen with fAPAR.  However, we are 848 

hesitant to draw further insights for comparisons with for two reasons: i) CGLS retrievals of LAI and 849 

fAPAR are either heavily weighted to the MCD15 values for LAI>2 and essentially based on the SL2P 850 

algorithm for LAI<1 since SL2P shares a similar calibration database and inversion approach as the 851 

GEOV1 products used by CGLS  and, ii) CGLS fCOVER is a functional transformation of CGLS fAPAR so 852 

fCOVER intercomparisons provide no new insights compared to fAPAR intercomparisons.   853 

 854 

The intercomparison was limited to sample regions due to our initial concern regarding computation 855 

demands of having to generate SL2P products over larger areas.  Ongoing work with GEE is generating 856 

Canada wide monthly SL2P products that could be extended globally with modest costs.  This suggests 857 

that future intercomparison could be done using exhaustive sampling.  Additional sampling may be 858 

useful to understand product differences at high LAI where precision is low and for specific land cover 859 

conditions such as regeneration or disturbance.  Areas with poor agreement could also be useful to 860 

focus new in-situ measurements.  An objective approach is required to design a sampling design for 861 

these cases. 862 

 863 

This study built on the large number of previous coarse resolution product validation studies as well as 864 

recent medium resolution validation studies (Supplementary Materials Tables S1, S2 and S3)  by 865 
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developing new good practices for survey, code verification, validation, and intercomparison.  However, 866 

there remain three elephants in the room when it comes to the practice of land parameter validation: 867 

 868 

i. Agencies invest significant funding into observing systems, algorithm development, and services but 869 

limited amounts to the acquisition of reference measurements.  Even GBOV, the Copernicus validation 870 

service, does not itself operate systematic survey systems other than for benchmarking.  Satellite 871 

validation has relied primarily on long term networks.  These may be sufficient for publishing a new 872 

algorithm but do not have enough spatial coverage to meet CEOS requirements.  CEOS and designers of 873 

new systems and services need to require proof that quality can be assured within the design of new 874 

satellite observing systems. 875 

 876 

ii. There is no accepted approach to track the quality assurance of algorithms and mapping systems.  ISO 877 

and IEEE standards are widely used for analogous systems across other industries but we have only seen 878 

such standards for radiative transfer models in terms of land surface mapping with satellite earth 879 

observation (Widlowski et al., 2015).  The lack of standards can influence downstream services.   For 880 

example, the SNAP implementation of SL2P has yet to be updated to address the bugs identified in our 881 

study.   CEOS is in a position to require algorithm developers to adopt standards and to publish the level 882 

of standards met by various systems.  This is especially important as future systems may not be in the 883 

public domain.   884 

 885 

iii. Both product generation and validation rely on computer code that is often not public.  This prevents 886 

replication of results in an efficient and accurate manner and understanding if product differences are 887 

due to bugs in code.   We were fortunate to have access to the original SL2P code. The MCD15 product 888 

had six revisions that vastly improved efficiency and performance.  However, the MCD15 algorithm and 889 

its associated RT models are not published in a free and open manner so future science may have 890 

limited access to the progress of this work.  We feel it is critical for the scientific community and funding 891 

agencies to embrace the free and open publication of code (our code is pubished at Fernandes et al. , 892 

2021) 893 

 894 

 895 

 896 

 897 

 898 

 899 
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6. Conclusions 900 

 901 

This study validated SL2P for mapping LAI, fAPAR and fCOVER over North American forests using 902 

Sentinel-2 MSI data.  It enhanced previous studies by increasing the spatial coverage of in-situ reference 903 

measurements so they represented most forest ecozones, by quantifying thematic error metrics for all 904 

three variables simultaneously and by conducting product intercomparison.  These steps and the 905 

publication of this work meet necessary conditions for CEOS Stage 3 validation.   The study had four 906 

goals: report on thematic error of SL2P, determine if biases are due to clumping, evaluate empirical bias 907 

correction, and provide new good practices. 908 

 909 

Code verification of SL2P identified bugs in the SNAP implementation that affect both product retrieval 910 

and quality control flags.  The SNAP implementation should not be used until revision.  The verified SL2P 911 

implementation within the LEAF-Toolbox underestimated in-situ LAI by between 20% and 50% and 912 

MODIS LAI by ~50% for LAI>2. Compared to in-situ measurements, SL2P fAPAR and fCOVER bias trended 913 

from approximately +0.1 to -0.1 as both variables increased.  The fAPAR underestimation was also 914 

observed when comparing to MODIS for fAPAR>0.5.  Precision was relatively constant at <0.1 units for 915 

fAPAR and fCOVER and <0.5 units for LAI.  SL2P satisfied target uncertainty requirements for 48% of LAI, 916 

37% of fCOVER and 31% of fAPAR comparisons to in-situ data.  The low level of agreement reflects both 917 

biases in products and stringent requirements for fCOVER and fAPAR.  Reducing product bias is 918 

fundamental to reducing thematic error. 919 

 920 

Clumping showed only weak to moderate linear relationships (|r2|<0.5) to bias for all variables and even 921 

these were at times counterintuitive, with bias increasing as canopies were less clumped.  Our sample 922 

was not able to control for the covariation of clumping and the SL2P estimates to quantify the impact of 923 

clumping on SL2P bias.  Further studies are required in disturbed landscapes or with simulations.  924 

Nevertheless, as in Brown et al. (2021a), the fact that SL2P estimates LAIe with little or no bias but 925 

underestimates LAI suggests the absence of clumping in PROSAILH is to blame for LAI bias.  Scatterplots 926 

of residuals also indicated the CCRS network sites tended to show greater negative LAI bias than the less 927 

clumped GBOV network sites at comparable LAI.   928 

 929 
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Empirical bias correction preserved or improved SL2P validation metrics for all land cover classes except 930 

evergreen broadleaf forests.  Ideally, SL2P should be updated to include calibration using simulations 931 

from heterogenous radiative transfer model simulations when mapping forests.  Until that time, with 932 

the exception of EBF, empirical bias correction may be useful for SL2P LAI and fAPAR over forests similar 933 

to those in our in-situ sample.   934 

 935 

This study promoted new good practices for validation of canopy biophysical variables that may benefit 936 

future studies.  We acquired a representative sample or RM from networks that followed consistent 937 

acquisition and processing standards and that included uncertainty propagation.  We used regression to 938 

model thematic error metrics as a function of the mapped value.  We applied strict sampling criteria to 939 

minimize sub-pixel heterogeneity when using coarse resolution products.    Finally, we provided all code, 940 

including SL2P and the validation methods and data, in a free and open manner.   941 

 942 

We conclude by noting that the publishing of new algorithms and products is becoming both easier and 943 

more frequent with on-line journals and free and open computing platforms.  These algorithms and 944 

products represent complex hypotheses about the physics and structure of our environment.  The value 945 

of these hypotheses should be measured in our ability to test and potentially defeat them.  Validation 946 

data, methods and the human activity of publishing the validation results is fundamental for users to 947 

understand the limitations of algorithms and products and for developers to make improvements. 948 

 949 

 950 

 951 

 952 

 953 

 954 

 955 

 956 

 957 

 958 

 959 

 960 

 961 

 962 
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