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Abstract: A theoretical and computational study of an improved Fourier and Fickian model for 

locally non-similar magnetohydrodynamic Maxwell (non-Newtonian) nanofluid convective flow 

under thermo-solutal buoyancy forces in a non-Darcian (Darcy-Forchheimer) porous medium is 

presented. Heat sink/source is included. Buongiorno’s two-component nanofluid model is used to 

simulate nanoscale characteristics featuring thermophoresis and Brownian diffusions. The 

problem under consideration is formulated utilizing fundamental relations of fluid dynamics. The 

primitive partial differential expressions (PDEs) are transfigured to ordinary ones with apposite 

transformations. The emerging locally non-similar boundary value problem is solved via series 

expansions utilizing a homotopy algorithm. Characteristics of sundry parameters on velocity, 

temperature, nanoparticle concentration and skin-friction coefficients are interpreted graphically. 

Convergence results acquired via homotopy algorithm are presented. Comparison results are 

included for the authentication of the homotopy solutions. The velocity distribution is increased 

with greater mixed convection and non-Newtonian material parameters whereas velocity 

distribution is reduced with increment in Hartmann (magnetic) number, porosity and buoyancy 

ratio parameters. The temperature distribution is reduced when Prandtl number and thermal-

relaxation (non-Fourier) parameter are augmented whereas temperature distribution is increased 

for larger Brownian diffusion and thermophoresis. Additionally, it is observed that increment in 

the heat absorption variable diminishes temperature whereas an enhancement in the heat 

generation variable augments temperature.  Nanoparticle concentration is enhanced subjected to 

higher values of thermophoresis factor whereas it reduces with larger Schmidt number, Brownian 

movement and solutal-relaxation (non-Fickian) parameters. Furthermore, it is noticed that 

elevation in Hartmann number, porosity and inertial (non-Darcy) coefficient parameters increase 
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the skin friction coefficient whereas elevation in Deborah number and buoyancy ratio is found to 

suppress skin friction. The simulations are relevant to hydromagnetic nano-materials processing 

operations for coatings deployed in multi-functional tribological systems and surface protection. 

Keywords: Non-Fourier; non-Fickian; magnetohydrodynamics; Darcy-Forchheimer porous 

media; Maxwell viscoelastic nanofluid; Heat sink/source; Homotopy algorithm; non-classical 

non-similar symmetry; magnetic nano-materials processing. 

 

Nomenclature 

 

Fr  
Forchheimer inertia coefficient 

parameter; BD  
Brownian diffusion coefficient (

2 1m .s− ); 

tD  
Thermophoretic diffusion coefficient (

2 1m .s− ); 
,u v  velocity components ( 1ms− ); 

2  Solutal relaxation parameter; fC  Skin friction coefficient; 

S  heat generation/absorption; 1  Thermal relaxation parameter; 

T  Fluid temperature ( K ); Rex  Local Reynolds number; 

Pr  Prandtl number;   Dimensionless temperature; 

1  mixed convection parameter;   Dimensionless concentration; 

  Deborah number; f  Density of base-fluid ( 3kgm− ); 

C  Ambient fluid concentration (Moles); Sc  Schmidt number 

T  Ambient fluid temperature ( K ); f  Dimensionless velocity; 

  Darcian permeability parameter; tN  Thermophoresis parameter; 

bN  Brownian motion parameter; N  buoyancy ratio; 

  Similarity variable; ,x y  coordinate axes (m) 

 

 

1. Introduction 

Heat and mass transport processes feature in a diverse spectrum of engineering and 

industrial systems including power generation, energy production, pharmaceutical synthesis, 

refrigeration, cooling of atomic reactors, tribology, heat exchangers and materials fabrication. 

Scientists simulating thermo-solutal transport processes have generally established mathematical 

models under the classical theories of Fourier thermal conduction and Fickian mass diffusion. 

These theories are insufficient where more complex energy and concentration relaxation aspects 

are involved in many engineering problems. In providing more refined estimates of thermal and 

mass characteristics in for example materials processing, it is important to incorporate non-Fourier 

and non-Fickian methodologies. Keeping in mind such significance, Cattaneo [1] introduced the 
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idea of "thermal relaxation." To improve Fourier's parabolic heat conduction theory which ignores 

thermal waves, he developed the so-called hyperbolic Maxwell-Cattaneo law. Christov [2] further 

worked on the Cattaneo model to improve this theory and introduced the upper-convected 

derivative formulation. A similar refinement in mass diffusion physics based on the classical 

Fickian approach has also taken place leading to non-Fickian formulations which feature solutal 

relaxation effects. Subsequently many researchers have adopted these improved approaches to 

study more precisely the heat and species diffusion in a range of industrial flow problems for both 

Newtonian and non-Newtonian fluent media. Ijaz et al. [3] computed the effects of Cattaneo–

Christov heat-mass flux models on Walters-B viscoelastic squeezing lubrication transport. They 

solved nonlinear systems using a shooting technique and concluded that thermal and solutal 

relaxation effects result in a decline of the temperature along with concentration of the squeezed 

motion. Hafeez et al. [4] deployed the modified Fourier and Fick diffusion models for swirling 

flow from a rotating disk with heat generation/absorption. Analytical series solutions were 

obtained by applying the homotopic approach and verified with numerical approaches. Rawat et 

al. [5] numerically examined the Oldroyd‐B nanoliquid flow across an elongating surface in the 

presence of activation energy via RKF (Runge–Kutta–Fehlberg) shooting scheme with modified 

Fourier and Fickian diffusion models. They showed that temperature decreases with growing 

thermal relaxation parameter. Further, Haider et al. [6] scrutinized the impact of the non-Fickian 

and non-Fourier models on the time-independent 2D flow of second grade nanoliquid towards an 

extending sheet by via Bvp4c in MATLAB. Chu et al. [7] computed double-diffusive non-

Fourier/Fickian convection in Maxwell nano liquid with Stefan blowing and bioconvection. Khan 

et al. [8] inspected the magnetized viscous nanoliquid flow with convective boundary conditions 

using the non-Fickian and non-Fourier diffusion theories. Their examination was focused on 

numerous geometries (cone, wedge, and plate). They reported that thermal and solutal relaxation 

factors induce a decreasing trend against temperature and solutal characteristics. Ibrahim and 

Gadisa [9] evaluated the characteristics of Fourier and Fickian diffusion on Oldroyd-B fluid with 

heat source/sink using a Galerkin finite element technique (GFEM). Khan et al. [10] explored the 

influence of the non-Fickian and non-Fourier solutal and thermal relaxation effects on the 

Williamson fluid flow from an elastic surface in porous media under a magnetic field. Thy showed 

that velocity and concentration distributions show opposing behavior for Fourier thermal and 

Fickian solutal relaxation time variables.   
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Analysis of heat transport in viscous flow from a stretchable surface (linearly or nonlinearly 

extending) has stimulated considerable attention as it is fundamental to materials fabrication 

technologies which are important in the manufacture of various functional materials of use in for 

example, modern tribology. Examples include coating deposition, extrusion of polymer sheets, 

fiber spinning, injection moulding, plastic and rubber sheet synthesis, metallurgical purification, 

chocolate and toffee manufacture and galvanic finishing of metallic surfaces in a bath. Crane [11] 

initiated the mathematical modelling of fluid flows induced by the stretching of a sheet. 

Subsequently many investigators extended Crane’s Newtonian model to consider a multiplicity of 

effects including magnetic fields, heat transfer, mass transfer, non-Newtonian liquids and complex 

surfaces. which was later extended by other researchers. Models have increasingly become more 

refined to embrace the novel materials synthesized by engineers including smart polymers, 

functional nanomaterials and intelligent coatings. These materials feature responsiveness to 

external magnetic fields, complex rheology and nanoparticle embedding. Via the use of bespoke 

metallic nanoparticles, special characteristics can be achieved and performance in engineering 

systems can be enhanced.  Jafarimoghaddam [12] simulated the magnetized Maxwell nanoliquid 

porous flow of along a bidirectional moving surface with convective boundary layer conditions. 

Recently, Habib et al. [13] scrutinized the comparative behaviour of different non-Newtonian 

constitutive models (Williamson, micropolar and Maxwell) in polymer dynamics from a 

stretchable surface with double diffusion and activation energy effects. Prasannakumara [14] 

performed a numerical simulation of the flow of functional electro-conductive Maxwell nanofluids 

with magnetic dipole effects from an extending sheet. Many different numerical and semi-

numerical approaches have been deployed in solving the nonlinear boundary-layer flows 

characterizing multi-physical stretching sheet transport phenomena. Sequential linearization 

methods were utilized by Daoud et al. [15] to study the boundary-layer flow of viscous fluid across 

a stretchable surface. Furthermore, Kumar et al. [16] used Runge-Kutta numerical quadrature to 

compute the flow of upper-convected Maxwell nanoliquid confined by extending sheet under the 

impact of a magnetic dipole. Recently, numerous articles regarding the study of stretchable 

boundary flows for a wide spectrum of chemo-physical and magnetic effects have been 

communicated [17-22].  

A major improvement in 21st century functional materials has been the emergence of 

nanotechnology‐based heat transport liquids. Nanofluids have become very popular as nano-
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engineered colloidal suspensions and were developed by Choi and Eastman [23] to develop the 

thermal conductivity and performance of ordinary fluids. They have been deployed in many 

technologies including biomedicine, coating, renewable energy, environmental protection and 

propulsion systems. Many theoretical and computational studies of nanofluids have therefore 

appeared in the literature in recent years. These have addressed both Newtonian and non-

Newtonian behaviour, the latter important due to the doping effect of nanoparticles which can alter 

the rheology of suspensions. The dynamics of Carreau nanofluids across a stretching surface was 

investigated numerically by Eid et al. [24].  Furthermore, heat source/sink and mixed convection 

on the 2 3 2Cu Al O H O− −  hybrid nanoliquid via permeable medium toward an 

elongating/shrinking sheet were inspected by Jamaludin et al. [25], who showed that local Nusselt 

number is modified strongly with copper nanoparticle doping. Salawu et al. [26] evaluated the 

hydromagnetic reactive Maxwell nanoliquid streaming flow induced by extending and nonlinear 

thermophysical properties. Some further recent studies of nanofluid mechanics are documented in 

Refs. [27-42]. 

Mixed convection flow includes a combination of free and forced convection. It arises in a range 

of technical and industrial procedures comprising nuclear reactors, fan-cooled electronic devices, 

drying, lubrication processes, wind current-exposed solar central receivers, heat exchangers 

mounted in low-velocity environments and also nanomaterials fabrication. Recently Qaiser et al. 

[43] scrutinized the mixed convection flow of Walters-B nanofluid with chemical reaction and 

Newtonian heating across an extending surface. The non-Newtonian mixed convection nanofluid 

transport from a permeable stretchable surface was examined numerically by Patil et al. [44].  

Puneeth et al. [45] studied the 3D dual convective hybrid Casson nanoliquid flow across a 

stretching sheet. Mixed convection in hybrid nanofluids flow across stretching and shrinking 

sheets were examined by Waini et al. [46] who confirmed that when nanoparticles are 

incorporated, the heat transfer rate increases. Additional inquiries on the mixed convection in a 

variety of nanofluid configurations are provided in [47-49]. 

The above-mentioned literature did not consider improved Fourier and Fickian analysis and 

nonlinear rheological nanofluid characteristics in porous media adjacent to a stretchable surface. 

This regime is of considerable importance in the manufacture of modern tribological coatings 

which are instrumental in mitigating and controlling wear effects. The precision synthesis of thin 

film ionic and magnetic coatings via stretching and electromagnetic field tuning successfully 
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modifies superficial properties without affecting the basic bulk material characteristics, as noted 

by Suleiman [50]. In particular, functional rheological nano-coatings can be produced to improve 

the hardness and toughness of the substrate surface and can be adapted strategically via adjusting 

the stretching rate to improve durability, friction, and/or wear characteristics [51-57]. These 

complex lubricants during and subsequent to extrusion manufacturing feature a plethora of multi-

physics effects which require sophisticated models for their simulation.  

Motivated therefore by evolving a more comprehensive model featuring Fourier and Fickian 

diffusion for nonlinear rheological nanofluids, as a simulation of functional nanomaterial coating 

operations, the present work simulates using an improved Fourier and Fickian analysis the 

hydromagnetic reactive Maxwell viscoelastic nanoliquid flow via vertical stretchable surface to a 

non-Darcian permeable medium under thermo-solutal buoyancy forces. The non-Fickian and non-

Fourier diffusion formulations are deployed for the conservation of energy and species. The 

innovation of present research is thus the simultaneous deliberation of multiple effects, i.e., 

Cattaneo–Christov heat-mass flux, non-Darcy permeable medium drag, heat 

generation/absorption, mixed convection, magnetic body force and non-Newtonian nanofluid 

characteristics on vertical stretching surface flow. A boundary layer formulation is utilized. A 

boundary layer approach is used which was originally based on symmetry in the parabolic Prandtl 

boundary layer equations. Non-classical symmetry was emphasized in the Sparrow-Yu approach. 

This is the approach adopted in this research work. To solve the dimensionless ordinary differential 

expressions, an analytical method is used, i.e., the homotopy analysis method (HAM) [58-62]. 

Graphical and tabular results are utilized to show the influence of various control variables on 

momentum, heat transfer and nanoparticle mass heat transfer characteristics. Validation with 

previous simpler models is also included. Furthermore, a convergence assessment is conducted for 

the HAM solutions. A comparison of HAM with earlier literature is also included. Extensive 

interpretation of the results is presented.  

2. Mathematical model for tribological magnetic nano-coating flow   

Laminar, steady state magnetohydrodynamic (MHD) thermo-solutal non-similar mixed 

convective Maxwell non-Newtonian nanoliquid from a vertically stretchable surface subject to 

revised diffusion aspects (Cattaneo-Christov heat-mass flux) is considered. The vertical surface 
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stretches with linear velocity ( )wu x cx= (where c represents stretching rate constant). The x-axis 

is in direction of stretching of the vertical sheet and the y-axis is normal to it. Darcy's model is 

used to simulate the effect of bulk matrix drag in the porous medium. Thermal and solutal 

relaxations are taken into account. The model also includes the heat generation/absorption effect. 

The two-component Buongiorno model is deployed which is based on the consideration of a 

number of slip mechanisms between the nanoparticles and base liquid. It emphasizes the 

nanoparticle haphazard (Brownian dynamics) movement and thermophoresis under temperature 

gradient which controls the migration of nanoparticles from hotter zones to cooler zones. It is 

highly compatible with the boundary layer framework and the two main parameters are 

representative of actual nanoscale phenomena. Larger values of Brownian motion parameter 

physically imply smaller nanoparticle diameters which influences micro-convection around the 

nanoparticles and globally affects thermal diffusion in the nanofluid. The non-Newtonian 

nanofluid is electrically conducting owing to magnetic nanoparticle doping and a transverse 

magnetic field is imposed. Hall current, electrical polarization and magnetic induction effects are 

neglected. Under the above assumptions, the conservation equations for mass, momentum, energy 

and concentration of nanoparticles, using the Buongiorno nanofluid model, may be derived by 

extending the analysis of Turkyilmazoglu [63] and Sadiq and Hayat [64]. The regime studied is 

visualized in Figure 1 and is relevant to nano-materials fabrication processing. 

 

Fig. 1. Flow configuration model. 
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Here the following notation applies: kinematic viscosity
f






 
=  
 

, fluid density 
f , dynamic 

viscosity  ,  relaxation time 1 , electrical conductivity , inertia coefficient of a porous 

medium 
1/2

bC
F

xK
= , gravitational acceleration g , magnetic field strength 0B , thermal 

expansion coefficient t , solutal relaxation time coefficient c , porous medium permeability K , 
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thermal diffusivity 
( )

f

k

c



= , concentration expansion coefficient c , heat capacity ratio

( )

( )
p

f

c

c





= , through liquid heat capacity ( )

f
c , thermophoresis diffusion coefficient TD , thermal 

conductivity k  , nanoparticle heat capacity ( )
p

c , heat absorption/generation coefficient 0Q  , 

Brownian diffusion coefficient BD , thermal relaxation time coefficient t , temperature ambient 

liquid T , liquid concentration C , stretching velocity ( )wu x , liquid temperature T , stretching rate 

c  , concentration ambient liquid C  , and ,u v  are the components of velocity in the ( ),x y  

direction respectively. 

Introducing the following similarity transformations [64]:   
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Eq. ( )1  is justified instinctively, while Eqs. ( ) ( )2 6−  yield: 
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Here ( )'  signifies differentiation with respect to  ,  Deborah number   , Schmidt number

Sc , Fr is Forchheimer inertia coefficient parameter (wherein the quadratic drag coefficient is cb), 

Brownian motion parameter bN , modified Hartmann (magnetohydrodynamic body force) number 

Ha , Reynolds number Rex ,  buoyancy ratio N ,  Prandtl number Pr , Darcian permeability 
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parameter  , thermal buoyancy parameter xGr , heat absorption variable 0S   and heat 

generation variable 0S  , (thermal, solutal) relaxation time ( )1 2,  . concentration buoyancy 

parameter 
xGr , mixed convection parameter 1 , thermophoresis variable tN  . 

These parameters are defined as follows:  
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3. HAM solutions and convergence analysis 

HAM [58] employs an analytical power-series expansion approach which can 

accommodate many types of linear and nonlinear differential/algebraic equations.  The concept of 

series solutions is also utilized in HAM. Liao [59] was the first who proposed this technique. To 
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where ( )1 7iD i = −  show the undefined constants. 
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3.1 Zeroth-order deformation problems  

         The zeroth order deformation problems are 
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where  0,1q is embedding parameter and 
fh  , h  and h  are the non-zero auxiliary parameters 

 

3.2 mth-order deformation problems  

 

                                        1 ,( ) ( ) ( )  f m m f f mL f f h R   −− =                                                       (25) 

 

                                       1 ,( ) ( ) ( )    f m m mL h R     −− =                                                       (26) 

 

                                    1 ,( ) ( ) ( )   m m mL h R      −− =                                                       (27) 

 

                               (0) 0, (0) 0, ( ) 0   m m mf f f  = = =                                                       (28) 

 

                                 (0) 0, ( ) 0, (0) 0, ( ) 0.   m m m m     = = = =                              (29) 
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0, 1

1, 1
m

m

m



= 


                                                     (33) 

General solutions are:  

                                            

( ) ( )

( ) ( )

( ) ( )

*

1 2 3

*

4 5

*

6 7

,

,

,

F F A A e A e

A e A e

A e A e

 

 

 

 

   

   

−

−

−

 = + + +


= + +


= + +

                                          (34) 

Here ( )*F  , ( )*   and ( )*   are particular solutions. The convergence control variables ,f 
 

and 


 in-series solutions accelerate the convergence of skin friction ( )0f  , temperature gradient 

( )0  , and nanoparticle concentration gradient ( )0 . Hence so-called -curves for these 

variables i.e. ( )0f  , ( )0  , ( )0  have been depicted in Figure 2a. The convergence interval for 

,f   and   are 1.6 0.2, 1.4 0.3f −   − −   −  and 0.9 0.2−   −  respectively. The 

convergent solutions of ( )0f  , ( )0  , ( )0  are finalized at the 35th order of deformations 

respectively (see Table 1). 

 

Fig. 2a.  –curve impression on ( )0 ,f   ( ) ( ) ( )0 , ' 0 ' 0 .and    
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Table 1. Convergence series solution of HAM when 0.1,r t bHa F N N S = = = = = =

1 1 2Pr 1.1, 0.2.Sc    = = = = = =  

Order of 

approximations 
( )0f −  ( )0−  ( )0−  

5 0.91565 0.5368 0.3513 

10 0.91101 0.5178 0.3549 

15 0.91248 0.5242 0.3459 

20 0.91291 0.5263 0.3429 

25 0.91272 0.5254 0.3450 

30 0.91259 0.5248 0.3466 

35 0.91262 0.5250 0.3458 

40 0.91262 0.5250 0.3458 

45 0.91262 0.5250 0.3458 

 

4.Code validation of HAM 

Tables 2-4 show comparison results of HAM for verification with other previous 

simulations. The solutions are compared with Turkyilmazoglu [63], Sadiq and Hayat [64], Hayat 

et al. [65], Irfan et al. [66], and Khan et al. [67]. The analytical results of skin friction
1

2Refx xC
−

−  

are in very good agreement over a wide range of different parameter variations. Confidence in the 

present Mathematica-based HAM code is thus validly very higher.  

 

Table 2. Comparison of 
1

2Refx xC
−

−   with Turkyilmazoglu [63] and Sadiq and Hayat [64] for 

various values of  .  

  
Turkyilmazoglu [63] 

 

Sadiq and 

Hayat [64] 
Present study 

0.0 -1.0000 -1.0000 -1.0000 

0.5 -1.22474487 -1.01980 -1.2247 

1.0 -1.41421356 -1.11803 -1.4142 

 

Table 3. Comparison of 
1

2Refx xC
−

−   with Sadiq and Hayat [64], and Hayat et al. [65] for various 

values of Ha .  
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Ha  
Hayat et al. 

[65] 

Sadiq and 

Hayat [64] 
Present study 

0.0 -1.00000 -1.00000 -1.00000 

0.2 -1.01980 -1.01980 -1.01980 

0.5 -1.11803 -1.11803 -1.11803 

0.8 -1.28063 -1.28063 -1.28062 

1.0 -1.41421 -1.41421 -1.41421 

1.2 -1.56205 -1.56205 -1.56205 

1.5 -1.80278 -1.80278 -1.80278 

Table 4. Comparison of 
1

2Refx xC
−

−   with Irfan et al. [66] and Khan et al. [67] for different values 

of  .  

  Irfan et al. [66] 
Khan et al. [67] 

(bvp4c) 

Khan et al. [67] 

(HAM) 

Present study 

(HAM) 

0.0 -1.0000 -1.0000 -1.0000 -1.0000 

0.1 -1.02618 -1.02618 -1.02618 -1.02618 

0.2 -1.0519 -1.0519 -1.0519 -1.0519 

0.3 -1.07712 -1.07712 -1.07712 -1.07712 

0.4 -1.1019 -1.1019 -1.1019 -1.1019 

0.5 -1.12623 -1.12623 -1.12623 -1.12623 

0.6 -1.1501 -1.1501 -1.1501 -1.1501 

0.7 -1.17362 -1.17362 -1.17362 -1.17362 

0.8 -1.1967 -1.1967 -1.1967 -1.1967 

0.9 -1.21941 -1.21941 -1.21941 -1.21941 

1.0 -1.24175 -1.24175 -1.24175 -1.24175 
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5.Results and discussion  

In this section, extensive visualization of homotopy method solutions computed in the 

Mathematica symbolic software is presented. The influence of key physical parameters i.e. 

Deborah number (Maxwell fluid parameter)  , buoyancy ratio parameter N , Schmidt number Sc

, mixed convection parameter 1  , thermophoresis parameter tN , heat generation/absorption 

parameter S , inertia coefficient parameter rF , Hartmann number Ha , Darcian permeability 

(porous medium) parameter  , Prandtl number Pr , solutal relaxation parameter 2 , Brownian 

motion diffusion parameter bN , thermal relaxation parameter 1  on velocity ( )f  , temperature 

( )  , nanoparticle concentration ( )  , skin friction 
1

2Refx xC
−

−  is depicted in Figs. 3a-6e. Unless 

otherwise mentioned, the default parameter values 0.1,r t bHa F N N S = = = = = =

1 1 2Pr 1.1, 0.2.Sc    = = = = = =  are presumed. This data is consistent with actual 

nanomaterials deployed in materials processing [68]. It is also verified by scrutiny of earlier studies 

e.g. [44, 46, 50]. 

 

5.1 Velocity distributions  

5.1-1 Influence of Deborah number 

Fig. 3a. exhibits the characteristics of Deborah (Maxwell fluid) number   against velocity 

distribution ( )f  . with greater values of Deborah number
 
 , there is an increment in the velocity 

( )f  . The term Deborah number   arises in the hydrodynamic boundary layer equation (8) with 

mixed derivative i.e., ( ) ( )2 22 ff f f f Ha f ff    − − −  . The Deborah number shows the ratio 

between the flow time scale and the relaxation time. In the case of viscoelastic materials, the fluid 

relaxation parameter is also called the Maxwell parameter. Smaller values of the Maxwell 

parameter represent Newtonian and viscous fluid behavior, while greater values emphasize non-

Newtonian elastic fluid features. Thus, improvement in the Deborah number  , fluid velocity 

( )f   is observed and strong acceleration is induced via the upsurge in elastic forces relative to 

viscous forces in the boundary-layer. Momentum boundary-layer thickness therefore decays. 
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5.1-2 Influence of Forchheimer number 

 Figure 3b. displays the impact of the Forchheimer number (local inertial force) rF on 

velocity ( )f  . It is found that a reduction in velocity ( )f   is witnessed for an enhancement in 

rF . The local inertial force has an inverse relation with porous medium permeability, therefore as 

the inertial force increases. Furthermore, the Forchheimer quadratic drag is accentuated implying 

that inertial drag effects suppress momentum diffusion. This impedes the percolation of 

magnetized viscoelastic nanofluid in the porous medium and decelerates the flow. Momentum 

boundary-layer thickness is augmented. The strong damping effect induced by quadratic drag 

therefore in not trivial and justifies the inclusion of a non-Darcy formulation. Earlier models have 

generally neglected this effect and have focused on viscous-dominated low Reynolds number 

transport for which the Darcian drag component is sufficient. However, the neglection of 

Forchheimer effects implies that Darcian models over-predict the damping effect on the boundary 

layer flow. This can have implications for coating quality and deposition rates of nanomaterials. 

A non-Darcy formulation therefore provides a more comprehensive framework for analyzing 

transport in sheet stretching nanomaterials fabrication flows.  

 

5.1-3 Influence of Hartmann number 

Fig. 3c. reveals the strong retarding influence on the velocity profile ( )f   with increment 

in Hartmann number Ha  values. It is obvious that increasing magnetic field accentuates the 

transverse Lorentzian force which diminishes velocity magnitudes ( )f   and increases 

momentum (hydrodynamic) boundary layer thickness decrease for higher Ha . The strong 

damping effect of a transverse static magnetic field therefore offers an excellent and non-intrusive 

mechanism for manipulating momentum characteristics.  Flow reversal however is not induced 

since magnitudes are consistently positive for the velocity field. Asymptotically smooth profiles 

are achieved at all Hartmann number in the freestream verifying the prescription of a sufficiently 

larger boundary condition at infinity in the Mathematica HAM code.  

 

5.1-4 Influence of Darcian number 

The impact of the Darcian permeability (porous medium) parameter   on velocity profile 

( )f   is portrayed in Fig. 3d. When this parameter is elevated, a declining trend is observed since 
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the Darcian drag is escalated as the permeability is reduced. The presence of more solid fibers in 

the porous medium offers greater resistance to the percolating nanofluid at lower permeability 

values. This damps the velocity field and enhances momentum boundary layer thickness. Again, 

the selection of appropriate porous filtration media for the stretching sheet regime provides a 

powerful mechanism for regulating the flow. The magnetic field and porous medium do not 

interfere in this regard and either or both are useful approaches becoming increasingly popular in 

nanomaterials fabrication [68].  

 

5.1-5 Influence of mixed convection parameter 

Fig. 3e. delineates the effect of mixed convection parameter 1  on the velocity  ( )f  . The 

velocity of the fluid ( )f  rises substantially with increasing the values mixed convection 

parameter 1 . It is attributable to the accentuation in thermal buoyancy effect with greater values 

mixed convection parameter 1 . This mobilizes an intensification in thermal convection currents 

which accelerate the flow strongly. The momentum (hydrodynamic) boundary layer is depleted 

with stronger thermal buoyancy.  

 

5.1-6 Influence of buoyancy parameter 

Fig. 3f shows the impact of the buoyancy ratio parameter, i. e., 

( ) ( )( )T CN T T C C  = − + −  on velocity evolution. The relative contribution of solutal 

buoyancy force to thermal buoyancy force is defined by the (buoyancy ratio parameter) N . It is 

found that velocity ( )f   is higher for greater N  since the momentum development is assisted 

with buoyancy effects. Momentum boundary layer thickness however is reduced. The sturdiest 

reformation is at intermediary distance from the vertical sheet (wall). At the wall and in the free-

stream a weaker influence is computed. The delicate interplay between solutal and thermal 

buoyancy forces is clearly important in controlling the velocity behaviour. When N >> 1, solutal 

buoyancy strongly dominates the velocity evolution. For N = 1 the solutal and thermal buoyancy 

contribute equally. This leads to strong deceleration. The molecular diffusivity of nanoparticles is 

instrumental in manipulating the solutal buoyancy force. Materials designers therefore can select 
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appropriate nanoparticles to manipulate the momentum development in the stretching sheet 

regime. 

 

5.2 Temperature distributions 

 

5.2-1 Influence of Prandtl parameter 

Impact of selected parameters on temperature distributions are depicted in Figs. 4a-4e. The 

impact of the Prandtl number Pr on temperature distribution ( )   is depicted in Fig. 4a. It is 

observed that here temperature ( )   decreases with increment in Prandtl number Pr . The Prandtl 

number Pr  has an opposite relationship with thermal diffusivity, indicating that increasing the 

Prandtl number causes a decrease in thermal diffusivity i. e. heat diffuses at a slower rate relative 

to momentum. This cools the regime and depletes fluid temperature ( )   and thermal boundary 

layer thickness. The presence of metallic nanoparticles significantly reduces the Prandtl number, 

and therefore values less than 2 have been studied. Prandtl number is also contrariwise proportional 

to thermal conductivity. Since nanoparticles increase thermal conductivity significantly, much 

lower Prandtl numbers are investigated in the plot.  

 

5.2-2 Influence of nanoscale parameters 

Figs. 4b and 4c depict the effects of the Buongiorno nanoscale parameters i. e. 

thermophoresis factor 
tN  and Brownian motion factor bN , on temperature ( )   . Here the 

temperature profile ( )   and thermal boundary-layer thickness are both elevated with both 

parameters increasing. Physically, the migration of nanoparticles is intensified under thermal 

gradient (thermophoresis, 
tN ) into the boundary layer. This heats the regime and boosts 

temperature profile ( )  . Heat transportation from wall to the boundary-layer is amplified for the 

non-Newtonian nanofluid. With increasing Brownian motion parameter bN , ballistic collisions 

between nanoparticles are exacerbated in the regime. This generates heat generation via 

transfiguration of kinetic energy into thermal energy. Micro-convection around the nanoparticles 

will also be boosted. Thermal boundary-layer thickness is therefore increased.  
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5.2-3 Influence of non-Fourier thermal relaxation parameter 

Fig.4d portrays the influence of the (non-Fourier thermal relaxation parameter) 1  on 

temperature distribution ( )   . One can notice that fluid temperature ( )    and thickness of the 

thermal boundary-layer are decreased through higher 1  . With stronger thermal relaxation, the 

temperature is reduced since there is a delay in heat transfer to nanofluid molecules. Alternatively, 

by fixing 1 0 = , for the classical Fourier model, heat is distributed instantaneously throughout the 

nanofluid. This approach therefore produces higher temperatures and a greater thermal boundary-

layer thickness, and essentially over-predicts the temperature distribution. The revised Cattaneo–

Christov (non-Fourier) heat flux theory, avoids this over-prediction and also achieves a more 

appropriate estimate of thermal boundary-layer thickness.  The cooling effect with thermal 

relaxation is properly captured with the non-Fourier law and materials designers can therefore 

achieve a more precise appraisal of the thermophysics [68].  

 

5.2-4 Influence of heat source/sink parameter 

Fig. 4e represents the effect of heat generation/absorption factor S  on dimensionless 

temperature ( )  . The thermal boundary-layer Eqn. (9) contains two terms viz, ( 1S S f  + + )  

for this parameter S .  These are non-Fourier and classical Fourier terms, respectively. The (non-

Fourier) thermal relaxation time  1  is featured in this latter. It is evident that with positive 

enhancement in S  (heat generation 0S  ), the temperature profile ( )   decreased dramatically 

and thermal boundary-layer thickness is reduced. However, the differing scenario is observed for 

enhancement in negative S  (thermal absorption 0S  ) which actually elevates temperatures and 

thermal boundary-layer thickness. The non-Fourier behaviour therefore produces a very different 

overall influence of thermal generation (and sink) compared with classical Fourier approaches.  

 

5.3 Nanoparticle concentration profiles 

Figs 5a-5d show the development in nanoparticle concentration profiles with selected parameters.  

5.3-1 Influence of Schmidt number  

Fig. 5a demonstrates the variations in nanoparticle concentration ( )   for several values 

of Schmidt number Sc . It is known that Schmidt number defines the ratio of viscosity to molecular 
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(nanoparticle species) diffusivity ratio. A strong intensification in Schmidt number, therefore, 

corresponds to a decrement in mass diffusivity i. e. the diffusion rate of nanoparticles relative to 

momentum diffusion is suppressed. As a result, the nanoparticle concentration ( )   and thickness 

of the concentration boundary layer are reduced. Again, the selection of appropriate nanoparticles 

is critical in manipulating mass transfer characteristics.  

 

5.3-2 Influence of nanoscale parameters  

Figs. 5b and 5c demonstrate the collective impact of the nanoscale parameters i.e. 

Brownian motion diffusion parameter bN and thermophoresis parameter 
tN  on nanoparticle 

concentrations ( )  . A stronger thermophoresis effect results in a boost, whereas greater 

Brownian motion results in a decrement. In opposite to species diffusion, the enhanced ballistic 

collisions of nanoparticles with stronger Brownian motion inhibits the spread of nanoparticles and 

manifests in a thinner concentration boundary layer thickness. However, as the (thermophoretic 

body force) effect increases (higher 
tN ) stimulates the movement of nanoparticles in the boundary 

layer from hotter to colder areas under the driving temperature gradient. This enhances the 

concentration of nanoparticles, resulting in a stronger concentration boundary layer.  

 

5.3-3 Influence of non-Fickian solutal relaxation parameter 

The influence of non-Fickian solutal relaxation parameter, 2 on concentration, ( )  is 

demonstrated in Fig. 5d. Higher values of the (non-Fickian) solutal relaxation parameter result in 

a lower concentration profile. The solutal relaxation effect delays the diffusion of nanoparticle 

species. This also decreases the thickness of the nanoparticle solutal boundary layer. Again, for 

the Fickian case nanoparticle concentrations will be over-estimated since the relaxation effect is 

ignored ( 2  = 0). 

 

5.4 Skin friction distributions  

Figs. 6a–6e display the impact of the Maxwell rheological viscoelastic parameter  , 

inertia coefficient parameter rF , Hartman number Ha , Darcian permeability parameter   and the 

buoyancy ratio parameter N ) on skin friction 
1

2Refx xC
−

− versus mixed convection parameter 1  . It 



22 
 

is evident that an augmentation in the (Hartmann number Ha , inertia coefficient rF , and Darcian 

parameter,   parameters) yields a stronger intensification in the skin friction 
1

2Refx xC
−

−  magnitude 

as shown in figs. 6b-6d. However, in these graphs, the profiles decrease linearly as the dual (mixed) 

convection variable 1  increases. On the other hand, there is an extensive reduction reported in 

1

2Refx xC
−

− with enhancement in (Maxwell liquid parameter   and buoyancy ratio factor N - see 

Fig 6e). Both figures again show a linear decay of the profiles as the mixed convection variable 1  

increases. 

 
Fig. 3a. ( )f   against .  

 

 
  Fig. 3b.  ( )f   against .rF   

 

 
Fig. 3c. ( )f  against .Ha  

 

 
Fig. 3d. ( )f  against .  
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 Fig. 3e. ( )f  against 1 .  

 

 

  Fig. 3f. ( )f  against .N  

 

Fig. 4a. ( )   against Pr.  

                                                                                  

 

 
Fig. 4b. ( )   against .tN  

 

 
 Fig. 4c. ( )  against .bN   

 

 
Fig. 4d. ( )   against 1 .  
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Fig. 4e. ( )   against .S  

 

 
Fig. 5a. ( )   against .Sc  

 

 

Fig. 5b. ( )   against .bN  

 

 
Fig. 5c. ( )   against .tN  

 

 

Fig. 5d. ( )   against 2 .  

 

 

Fig. 6a. 

1

2Rex xCf
−

 against .  
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Fig. 6b. 

1

2Rex xCf
−

 against .rF  

 

Fig. 6c. 

1

2Rex xCf
−

 against .Ha  

Fig. 6d. 

1

2Rex xCf
−

 against .  

 

Fig. 6e. 

1

2Rex xCf
−

 against .N  

 

6.Conclusions  

Motivated by simulating more realistically magnetohydrodynamic nanomaterials manufacturing 

processes, a mathematical model has been established for non-Fourier and non-Fickian electro-

conductive mixed convection thermo-solutal Maxwell viscoelastic nanopolymer flow induced by 

stretching vertical surface adjacent to a non-Darcian porous medium. Buongiorno’s nanofluid 

model has been to simulate the nanoscale effects of Brownian motion diffusion and 

thermophoresis. Heat generation/absorption effects have also been included. For the porous 

medium, which is anticipated to be isotropic and homogenous, the Darcy-Forchheimer drag force 

model has been deployed. To scale the non-similar flow problem, appropriate transformations are 

and the primitive partial differential equation boundary value problem is reformulated as a 
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nonlinear ordinary differential one. The dimensionless sets of nonlinear differential equations with 

associated wall and free stream boundary conditions are then solved with the power-series 

expansion approach in the homotopy analysis methodology (HAM). Numerical evaluation of 

series solutions is conducted in Mathematica software. A thorough parametric investigation is 

carried out to elucidate the characteristics of key control variables on velocity ( )f  , temperature 

( )  , nanoparticle concentration ( )   and skin friction 
1

2Refx xC
−

− . Comparison results of HAM 

for the authentication of analytical technique with the literature is also included and a convergence 

study is furthermore included. The findings of this study can be described consequently:  

(i) An increasing trend is witnessed in velocity ( )f   and momentum boundary-layer 

thickness with greater estimations of Maxwell non-Newtonian material parameter   and 

mixed convection parameter 1 . 

(ii) Temperature ( )  is strongly reduced with increment in non-Fourier thermal relaxation 

variable 1 and Prandtl number 𝑃𝑟. The classical Fourier model ( 1 =0) which is parabolic is 

shown to over-predict temperature and thermal boundary-layer thickness indicating that it 

is inaccurate for realistic nanomaterials manufacturing processes.    

(iii) A stronger (heat absorption variable 0S  )  boosts temperature magnitudes whereas an 

enhancement in the (heat generation variable 0S  ) diminishes temperature and also 

reduces the thermal boundary-layer thickness. 

(iv) The concentration of nanoparticles ( )  and temperature ( )   are both decreasing 

functions of the thermal relaxation variable 1 and solutal 2 relaxation variable. 

(v) The concentration of nanoparticles ( )   exhibits an opposite trend with increment in 

Brownian movement diffusion parameter bN and thermophoretic tN  variable.  

(vi) Concentration along with boundary-layer thickness decrease with increasing estimations 

of Schmidt number Sc , and this is related to the decrease in molecular diffusivity of 

nanoparticles.  

(vii) Elevations in Hartmann (magnetic) number Ha , Darcian permeability parameter   , and 

Forchheimer inertia coefficient parameter rF  all increase the skin friction coefficients 
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1

2Refx xC
−

− . However, the contrary behaviour is computed with an increment in Maxwell 

fluid variable   along with buoyancy ratio variable N .  

(viii) HAM has been shown to be an exceptionally accurate semi-numerical technique which 

achieves faster convergence and excellent accuracy and is very suitable for nonlinear multi-

physical transport problems in nano-materials processing. 

   

Overall, the current study has demonstrated that non-Fourier and non-Fickian models in 

conjunction with nonlinear rheological (viscoelastic) nanofluid behaviour are important in more 

realistically simulating nanomaterial coating flow characteristics in stretching sheet manufacturing 

processes. Future studies may consider chemical reaction along with activation energy aspects 

under revised Fourier and revised Fickian's theory and also examine hybrid nanofluids for both 

stretching and shrinking surfaces [69].   
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