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Abstract: Irrigation systems are a crucial research area because it is essential to conserve fresh water
and utilize it wisely. As a part of this study, the reliability of predicting the usage of water in the
present and future is investigated in order to develop an effective prediction model to communicate
demand. In order to improve prediction, we develop a prediction model and share the updated
model with nearby farmers. In order to forecast the irrigation requirements, the recommended model
utilizes the Internet of Things (IoT), k-nearest neighbours (KNN), cloud storage, long short-term
memory (LSTM), and adaptive network fuzzy inference system (ANFIS) techniques. By collecting
real-time environmental data, KNN identifies the closest water requirement from the roots and
its surrounding. In order to predict short-term requirements, ANFIS is used. To transfer the new
requirements for better prediction, transfer learning is used. Time-series-data updates are predicted
using LSTM for future forecasting, and the integrated model is shared with other farmers using
cloud environments to enhance forecasting and analysis. For implementation, a period of nine
to ten months of data was collected from February to December 2021, and banana tree was used
to implement the planned strategy. Four farms, with measurements, were considered at varying
intervals to determine the minimum and maximum irrigation needs. The requirements of farms
were collected over time and compared to the predictions. Future requirements at 8, 16, 24, 32, and
48 h were also anticipated. The results indicated were compared to manual water pouring, and,
thus, the entire crop used less water, making our prediction model a real-world option for irrigation.
The prediction model was evaluated using R2, MSLE and the average initial prediction value of R2

was 0.945. After using transfer learning, the prediction of the model of Farm-2, 3 and 4 were 0.951,
0.958 and 0.967, respectively.

Keywords: sustainable irrigation system; IoT; LSTM; ANFIS; soil sensing; transfer learning

1. Introduction

With increasing population growth and the need for food production, the agriculture
sector utilizes around 70% of fresh water [1]. A huge amount of water and energy is
wasted in irrigation systems. A total of 40% [2,3] of water is wasted because of evaporation,
poor water management and poor irrigation systems. The water–energy–food (WEF)
nexus is an interdependent approach which provides mutual integration for a sustainable
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ecosystem. Particularly, an effective irrigation system optimizes the usage of water and
reduces the consumption of energy. WEF ecosystem nexuses provide the solution to
achieve long-term environmental, economic and social goals. Effective, sustainable water
utilization is achieved for irrigation systems and reduces water usage. In addition, due
to global changes, lower rainfall rates, and climatic changes, a huge amount of water is
also required for plants. Requirement analysis and management of water supply to plants
are important to research in today’s agricultural society. Based on varying environmental
changes, water requirements for plants are managed using an irrigation system. Different
water-optimization techniques and effective water-management systems are used to reduce
water usage and achieve an effective water-requirements prediction system for plants, to
increase production yields. Effective irrigation and scheduling systems are needed for
society, and they increase productivity and reduce water usage.

Recent technologies are used to effectively manage sustainable irrigation systems
and decision-making. Artificial intelligence plays a major role in decision-making and
requirement predictions in recent technologies such as IoT. The combination of IoT, the
cloud and artificial intelligence constitutes a new methodology for decision-making because
interconnected technologies such as firmware and mechanical and programming techniques
are used to manage irrigation systems. IoT devices are used to sense the data from their
surroundings, a cloud environment is used to process the data, and artificial-intelligence
techniques are used to make decisions and predict the time-series data. Importantly,
recent machine-learning and deep-learning techniques play a vital role in decision-making
systems. Dominant techniques for decision-making include neural networks, KNN, support
vector machines, decision tree (DT), LSTM, deep neural networks, etc.

The combination of machine learning and IoT in a smart irrigation system has three lay-
ers for processing the entire application [4]: data gathering, data processing and intelligent
system, and application layers.

1. Data gathering and transmission: in the first layer of an effective irrigation system,
the layer collects all the information using sensors and transmits it using networking
devices [5].

2. Data processing and intelligence layer: in the second layer, intelligence techniques are
used for processing and decision-making.

3. Application layers: the third layer performs planning, optimization and implementa-
tions using the second layers’ decision [6].

The data-processing layers are used to collect the data and perform the processing
steps in the initial stages. The data-processing steps collect all the inputs from the sensors,
atmosphere and other inputs. The data-processing layers apply the initial processing
of surrounding information and intelligence techniques. The data-processing layer uses
intelligence techniques such as machine-learning models and other statistical techniques
to process the data. The application layer helps to connect to the real world. The first and
second layers are interconnected to processing and decision-making.

Similarly, the second and third layers are connected to decision-making applied to
the real world. The previous research [7] shows different challenges and limitations in
irrigation systems. Some of the dominant limitations are as follows.

i. The irrigation system must be fully automated from the end-to-end process.
ii. The integrations of different functionalities of irrigation systems cannot be intercon-

nected from data collection to processing.
iii. The real environment inputs (rain, soil moisture and atmosphere inputs) are not

interconnected.
iv. The current- and future-requirements prediction is still one of the main research gaps

in smart irrigation systems.
v. The predicted features and requirements are not shared with the neighbour farmers. .

To overcome the above challenges, the key contribution of the proposed work is
as follows:
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1. In this work, IoT sensors and k-nearest neighbours are used to sense and collect the
requirements.

2. We also propose a system to predict the short- and long-term sustainable prediction
requirements of the irrigation system using ANFIS and LSTM techniques.

3. The proposed model shares the sustainable requirements of the prediction using
the cloud environment and shares the features with the nearest farmers for better
requirements prediction using transfer learning.

4. The proposed model reduces and optimizes the sustainable irrigation requirements
of the crops. It reduces by 42% to 50% the freshwater requirements compared to
the previous traditional methods. The proposed work reduces water usage because
the short- and long-term usage of irrigation requirements are calculated using the
sensors, weather and history. Compared to the previous methods, the coefficient of
determination (R2) is better (0.955), and mean squared logarithmic error (MSLE) is
less (0.439).

5. Compared to previous methodologies, this work is the first to introduce transfer
learning to an irrigation system and forecast irrigation requirements using transfer
learning to predict one farm from another. Compared to the previous method of
irrigation requirements prediction [8], our method of LSTM and ANFIS with transfer
learning reduces by 30.24% the water requirements in the single node of a banana
tree in the implementations. Our method was tuned to consume 1.16% less water in a
single banana-tree node than in ref. [8].

The rest of the manuscript is organized as follows. Section 2 presents different irriga-
tion methods and requirement analysis methods. Section 3 presents the materials, working
methodology, and optimized methods. Section 4 presents implementation results and
comparison with dominant existing methods and the paper finishes with the Section 5.

2. Related Work

This section presents different existing smart irrigation models, frameworks, tech-
niques, machine-learning and deep-learning techniques, transfer learning, and a compari-
son of different irrigation systems for supporting the proposed work. Different researchers
have presented various works related to machine learning, deep learning, the Internet of
Things, cloud computing, and highly integrated technologies for smart irrigation. Initial
data processing and decision-making are performed using these technologies.

2.1. Irrigation Techniques

This section on related work presents how previous techniques are supported for
centralized storage, data processing, and decisions. The authors of [9] present an IoT struc-
ture for processing, storing, and analyzing data using a decision system. An intelligence
application system using an IoT system with different dimensions, such as moisture, water
evaporation, and land slope, is considered for decision-making processing. The authors
of [10] present two models, geography and climatology, and use different parameters for
prediction, including moisture, wetness, daily and monthly soil requirements rates, evapo-
ration of moisture and weather reports. The authors of [6] propose a CWSI framework for
irrigation management using temperature distributions, and, with the help of this structure,
water requirements are reduced. The requirement optimization is performed using time
intervals and continuously checking the requirements of the plants. The authors of [11,12]
propose an irrigation system using control-based scheduling to manage different factors
such as humidity, wind speed, wind velocity, soil moisture, etc. The sensor-based predic-
tion for managing irrigation and soil moisture sensor senses different soil conditions, and
mobile applications are used to measure and monitor different activities of the irrigation
system. Different recommendation systems such as statistical, machine-learning, and deep-
learning models are used to manage the prediction. The authors of [13,14] present different
activities-based machine- and deep-learning, regression model, GBT and DNN methods to
increase the prediction rate. In this model, the accuracy of predictions is increased by 93%
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using various parameters. The authors of [15] present an intelligence system which em-
ploys thermal images to analyze the various requirements of an irrigation system. Various
parameters are measured using thermal images, and leaf potential is calculated. The main
drawback of this work is that soil-moisture measurement is difficult to analyze.

The authors of [16] propose machine-learning and IoT techniques to manage smart
irrigation with the help of different parameters, such as various soil conditions, environ-
mental parameters, temperature and nearest features, which are considered for requirement
calculation. The authors of [8] propose a system for optimizing the water requirement of
crops using the WSN and different node sensors. Control devices are used to manage the
crop using mobile and web applications. With the help of mobile and web applications,
soil moisture and future requirements are calculated. The IoT with multiple sensors is
used for water management [17,18] using different parameters such as soil properties,
moisture, temperature, and rain sensors. In this work, the output is predicted and operated
automatically and manually. The authors of [19,20] propose different monitoring and
control systems for irrigation systems. Different energy models and IoT platforms are used
to analyze parameters and use a decision pumping schedule. The authors of [21] propose
a LoRa network structure with an energy-efficient model to cover up to 5 km with smart
control. All the information is transferred to different places using the LoRa structure.

The various machine- and deep-learning approaches analyze the requirements, mois-
ture analysis, and future recommendations of irrigation systems. The authors of [4] propose
a model, with the help of genetic techniques, to increase yields and analyze various rec-
ommendations. The genetic model [22] provides the solution using sequential inputs and
non-continuous scheduling. The authors of [9] propose a system using metrological data
and created a weekly irrigation-requirement plan using regression and classifier techniques.
This system achieves 95% and 93% accuracy using classification and regression techniques.
The authors of [23] propose a location-based optimized irrigation system using a genetic al-
gorithm with the help of previous data. The location-based water-requirement analysis for
irrigation systems using the KNN algorithm with an intelligent IoT sensor is used to plan
irrigation systems [5]. In addition, this work is fully automated with machine-to-machine
data transmission for effective decision-making. The heterogeneous data management in
irrigation systems uses machine learning and IoT, and this work predicts the requirement
for irrigation using the related data. The time-to-time irrigation requirements are also
calculated using logical regression analysis. The authors of [11,12,24] calculate humidity
and temperature using a decision tree. The future requirements for the prediction of irriga-
tion systems are calculated using the SVM algorithm, but the requirements for prediction
accuracy are very low. The summary of the different IoT frameworks, models, and machine-
learning algorithms is presented in Table 1. The authors of [25] presente a comparative
study for precision agriculture using deep learning and IoT. In this work, authors have
gathered and analysed disease, weeds, and soil yields using deep learning techniques. And
also, the authors analysed different components of agriculture, such as sensors, UAVs, data
acquisition, annotations and datasets used for predictions. Finally, pest detection is per-
formed using VGG16 and transfer learning, which achieves 96.58% accuracy in prediction.
The authors of [26] presented the state of the art for managing water using IoT devices.
Using the connecting devices, the authors address water-planning and water-distribution
issues. This case study is planned with the help of IoT-enabled devices. The author of [27]
propose a smart and green irrigation system using gradients and regression trees, which
are used for the implementation part. The authors of [28,29] use different parameters such
as temperature, humidity and weather data, which are used for the prediction of irrigation
requirement. The SVR and K-means are used for soil-moisture prediction.

The different limitations are summarized using the above-related works. Most of
the work did not address the requirements of roots, and the nearest features were not
considered for the irrigation-system requirement analysis. The recent works do not consider
all parameters, such as wind, moisture, and temperature, for requirement prediction.
The previous systems need to be integrated with the full automation system. In this work,
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we planned the different irrigation parameters to predict and analyze the requirement of
the irrigation system based on the crop requirements.

Table 1. Summary of advantages and limitations of supporting works.

Previous Models Advantages Limitations

IoT framework [5,8,9,16,23]

The site-specific variable-rate sprinkler
irrigation [9] (SS-VRT) used crop and soil

conditions for irrigation, KMO [23] is
used to analyse the factors of irrigations,
SWAMP [5] architecture provides better

scalability, Federated learning [16] is used
for irrigation without sharing the data,

using machine learning.

SS-VRT does not support long-term
application, KMO is not considered as a

real factor affecting the irrigation,
SWAMP is not considered as one of the
the multiple features for irrigation and

the Federated learning [8].

Irrigation models [6,10,11,24,30]

A sprinkler–solid, centre pivot, travelling
irrigator, and micro-spray are used for

spatial-based irrigation. Automatic
sensors and evaporation-based models
are used to predict the requirements.

The spatial-based irrigation model is only
supported at particular locations. Central
data storage, irrigation scheduling, and

root moisture are not considered for
processing an effective system.

Recommendation system for
irrigation [13]

Irrigation performed based on climate
change, water availability, and a policy

of productivity.

Considers area-wise irrigation and not
irrigation technology, makes way for

better decision-making.

Optimization and machine-learning
algorithms [4,5,9,11,12,22–24]

Genetic algorithm, KNN, logical
regression, SVM and decision-tree

algorithms are considered for irrigation
requirement predictions.

Effective sensor data and data on weather
should be combined for

effective predictions.

2.2. Transfer Learning for Agriculture and Irrigation System

Transfer learning is a knowledge-storing problem which applies similar and related
tasks for prediction and classification problems. The transfer of learning is used in different
applications, classification problems, knowledge transfer, agriculture, etc. In agricul-
ture [31], it is used in plant disease prediction, species detection, plant-domain-knowledge
transfer and plant classification and information sharing. Recently, different researchers
have addressed different problems related to transfer learning in agriculture. The authors
of [32,33] proposed a knowledge-transfer model to classify different crops and reduce the
retraining and labelling time. In this work, authors reduced 20% of the time compared to
the normal time.

Similarly, the authors of [34] use transfer learning for weed identification among
different plants and achieved an accuracy of 99.29%. Similarly, the authors of [35] propose
deep transfer learning for trash classification. In this framework, the authors achieved
94% and 98% accuracy using different datasets. The authors of [36] propose a model for
identifying bale detection using deep transfer learning and a domain-adaptation approach,
which transfers the source images to target domain images. The authors of [37] propose a
CNN and transfer-learning model for identifying crop-attacking pests in the early stages
of crop growth. Transfer learning is used to create fine-tuned pre-trained models. The
authors of [38] propose a transfer learning for transferring a base model, characterized
using different samples/features, from one place to another. In this framework, the transfer
of features is performed in two places in the context of the irrigation mapping of time-series
features in two locations. The authors of [39] propose transfer learning with IoT to train the
model better using soil moisture and transfer the soil conditions from one soil to another,
with the two soils having different distributions.

The previous works [31–37] on transfer learning are used in classification based on
features, which are transferred within the framework and between the models. The authors
of [38,39] proposed models for transferring the features from one spatial location to another
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spatial location using IoT technologies. In addition, the author of [39] transfers the soil
features from one place to another using models.

3. Materials and Method

This section presents the materials and methods for the proposed work. The proposed
work uses live data and historical datasets to predict the requirement for the present
and future irrigation systems. Live weather data is used to correlate current and future
requirements. IoT devices are interconnected for present-requirement collecting, and
different components are used for future-requirement collections. The proposed method
uses k-nearest neighbours, cloud storage, LSTM, and ANFIS to predict an irrigation system.
The IoT devices must collect the data from the environments, for which KNN find the
nearest water requirements from the root and surroundings, and ANFIS predicts short-term
conditions. The LSTM is used to predict time-series-data updates for future prediction,
and the transfer learning is used to transfer the learning features information from one
cultivation field to another.

3.1. Materials

In the proposed method, materials are collected in three ways: IoT sensors, past
data collected from previous years, and live data collected from the weather data. The IoT
sensors and components to collect soil moisture, air moisture, temperature and soil moisture
are presented in Table 2. The sensor and IoT devices are also used to transfer the data from
one machine to another and to the cloud environment.

Table 2. Components and their usages.

S. No Components Usages

1 HPT675 Used to measure water level.
2 FC-28 Used to sense soil moisture.
3 HTM2500LF Used to measure the humidity and water vapour.
4 THERM200 Used to sense soil temperature.
5 SHT11 Used to measure root moisture.
6 WSN Used to surveil and manage the transmission of data and monitoring.
7 Digital inclinometer Measures the gradient and slope of the land
8 M2M (ZigBee) Personal communication network

The live-data collection location and the latitude and longitude of the experimental lo-
cation is 8.2473502, 77.2743729, 345. The data was collected from Kanyakumari, Tamil Nādu,
India. This location has seasonal rainfall, and basic requirements were collected using IoT
devices. Three basic components, such as IoT devices, gateway and cloud, were intercon-
nected to communicate and transfer data from the physical location to the cloud. Four
different fields were used for collaboration and decision-making in the mentioned location.

The basic requirements for prediction were measured using various sensors. Figure 1
shows the different requirements predictions presented in 3 h time intervals. Similarly,
the basic requirements were also measured between 5 h, 8 h and 10 h. The cultivation
requirement of the Plantain Banana or Red Dacca (Australia) from the beginning to the end
is represented in Table 3. The entire cultivation of the species started in February and ended
in October. Table 3 [40,41] summarises the basic water requirement from the beginning
of February till the end of the cultivation in October. This basic requirement is plotted
manually with the help of farmers, and four farmers were involved in the cultivation.
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Figure 1. Collections of atmosphere requirements.

Table 3. Monthly water requirement for banana cultivation.

S. No Month Water Req Lit/Interval/Plant

1 February 3–4
2 March 4–5
3 April 5–6
4 May 6–8
5 June 10–12
6 July 8–10
7 August 6–8
8 September 10–12
9 October 12–14
10 November 16–18

3.2. Method

This proposed work used IoT devices, k-nearest neighbours, cloud storage, LSTM,
and ANFIS to predict an irrigation system. The IoT devices must collect the data from
the environments, for which KNN find the nearest water requirements from the root and
surroundings, and ANFIS predicts short-term conditions. The LSTM is used to predict
time-series-data updates for future prediction, and the Spearman rank correlation method
correlates the needs in different intervals. The proposed work’s basic goal is to predict
current and future requirements for different time intervals, such as 3 h, 8 h, 12 h and 24 h
and 48 h.

The basic structure of the proposed work is presented in Figure 2. The proposed
structure of the prediction model consists of three main parts: initial-value predictions,
integrated prediction model and transfer learning. The initial-requirements prediction
is performed using the group of sensors. The group of sensors sensed soil-moisture,
root-moisture, and weather data. In the integrated model, KNN, ANFIS and LSTM algo-
rithms were used for sensing nearest values and short-term and long-term predictions.
The prediction values and features were shared using transfer learning.

3.2.1. KNN Algorithm

KNN is a supervised algorithm to find the nearest values predicted using sensors with
many assumptions [42,43]. The dataset inputs considered the real values, taking the values
from the certain k nearest distance from the input dataset. The prediction output is the aver-
age distance between the input taken and the given sensed input using the average voting
of the nearest prediction. The trained data of multiple inputs consist of multiple features,
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and different classes are labelled using a supervised KNN algorithm. The nearby sensed
values depend on the discrete or continuous distance. The different features’ relationship
or distance between the features is predicted using Euclidean distance. The discrete values,
such as soil moisture, atmospheric moisture and weather data, are evaluated using the
Euclidean distance. The recommendation of the features is also evaluated and considered
as the input value for the integrated prediction model. The Euclidean distance vector
evaluated the different region-wise and root-moisture values considered as the input.

Figure 2. Structure of the proposed work.

3.2.2. ANFIS

The ANFIS is an artificial neural network with a combination of neural-network
and fuzzy-logic properties. The inference system is a set of if-then rules with non-linear
functions [44,45]. The ANFIS was constructed using five layers: an antecedent layer, three
hidden layers, and a consequent layer. The antecedent layer is an input layer, and the
consequent is an output layer. The three hidden layers are based on rule-based and fuzzy
logic applied to these three layers. The first input layer between 0 and 1 is called the
“premise parameter”. The second layer estimates the income for each neuron using the
product operator. The third layer normalizes the input signal, and the fourth layer is
fuzzification. The fifth layer is a summarized weighted output layer. The ANFIS is an
optimal and intelligent way to manage the energy system [46] .

3.2.3. Long Short-Term Memory

LSTM is a recurrent neural network which predicts and classifies data requirements
using time-series data. It consists of input, output and forget gates. The different gates
control the flow of information and help exit and enter the gates. The LSTM predicts future
time-series data in short- and long-term predictions [47,48].

3.2.4. Transfer Learning

Transfer learning is used to train the system to perform the relevant similar learning of
the existing model. The main part of the learning is generalized, and the different scenarios
or relevant conditions are transferred from one model to another. The main advantages
of transfer learning are saving resources, timing to complete similar learning, increasing
the learning model’s efficiency, and avoiding the negative prediction from the pre-trained
model [38,49].
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3.3. Working Principle

This proposed work predicts various requirements of irrigation using IoT sensors
and weather inputs and helps in finding short- and long-term predictions. The flow of
the representation of the proposed work is presented in Figure 3. The working process
of the proposed work consists of four main parts: data collection from various sources,
nearest requirement prediction, short-term prediction (ANFIS), long time-series prediction
(LSTM) and predicted knowledge sharing to nearest farms (transfer learning). The working
process of the proposed work uses four steps: processing the inputs and storage, short-term
prediction, long-term prediction and transfer learning and sharing features from one data
source to another data source. Initially, the data is collected from the sensors, with the help
of KNN algorithms for predictions. With the collected data, weather forecasts and previous
data are used as the input. The processed data is applied for short-term prediction using the
ANFIS. The short-term prediction of irrigation recommends water pumping. For long-term
prediction, the LSTM technique is used, and, if required, it recommends water pumping.
This prediction is performed on a single farm for short- and long-term prediction. Once the
farming location requirement is predicted, the features are transferred to another farm for
better predictions. The second farm processes the new input data from a particular location
and processes the farm 1 features for better performance.

Figure 3. Workflow representation of proposed work.

The entire working procedure is described in Algorithm 1. The processing steps of the
algorithms consist of data processing, and prediction and sharing of knowledge gained
from other farmers, as well. Initially, the sensor data from farm 1 and weather data are
transferred to the cloud storage. The history data and collected data are initially processed
for the prediction of requirements. The processed data predicts the short-term (Sp) and
long-term (Lp) requirements using ANFIS and LSTM techniques. Using these techniques
and collected data, initial requirements are predicted in the long term and short term.
The first farm (X1) gains the knowledge, and so the stored model weight is shared with the
nearest second farm for better prediction. A detailed description of the working process is
as follows.
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Algorithm 1 Requirement Prediction and Features Transfer
Input:
Xm: Data Collection Using Sensors (Moisture);
Xw: Weather details ;
TT: Temperature ;
X1, X2, X3, and X4: Farms Prediction Details;
Output:
Short- and Long-term Prediction Details (Sp, Lp);
Generating algorithm Begin:
Moisture (Xm), Weather details (Xw), Temperature (TT) > 0
X1, X2, X3, and X4 > 0
Calculate (Xm), (Xw), (TT);
{
if Xm, Xw, TT > 0
Predict of Each Farm Requirements Details
N = C (Prediction of Nearest features with respect to weights and time)
D = Prediction of distance features between two terminals
Sp = Tp -AP // Short- term prediction
Lp = Tp -AP // Long- term prediction
}
End of Each Farm Prediction
Share the month-wise history data
Y = X1 (End prediction of single Farm)
Share X1 to X2
T = [Y, f(.)] //Start Transfer Learning
if X1 > X2/X2 > X1
State Share the Y values
if Xw = Rainy
Stop // Stop sharing, Sensors in Sleep Mode
end

Initially, the input collected from various input sources is real data, with the help of
IoT devices, past data and weather information from the nearest weather stations. In this
work, four farms for banana cultivation were considered. Each farm is considered as X1,
X2, X3, and Xn. The output of four farms with the input process model is represented in
Equation (1).

Y = X1, X2, . . . . . . Xn (1)

Each farm used three input sources: past cultivation data (x1); weather data (x2); and
current data, collected with the help of IoT and sensors (x3). The combination of inputs
and output is represented in Equation (2).

Y = X1(x1, x2, x3), X2(x1, x2, x3), X3(x1, x2, x3), and X4(x1, x2, x3) (2)

The x3 combines the nearest features, short-term requirement predictions, long-time
predictions and knowledge transfer from one farm to another. Initially, the nearest features
are predicted using the KNN algorithms. The nearest features are calculated based on
the distance between the roots from the initial prediction to the next nearest prediction.
The distance is calculated using the Euclidian distance. The mathematical representation of
nearest features calculation and distance measurement between the features are represented
in Equations (3) and (4).

N = Cw
n (x1, x2, . . . . . . x3) (3)
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N denotes the predicted nearest values, C denotes features, n denotes different features,
w denotes weight, and x1, xn denotes different input features. The distance between the
initial root prediction features and the next feature distance is as follows.

D =
√
(x2 − x1

2)− (y2 − y1
2) (4)

D denotes distance features. The moisture is measured based on the starting and ending
points of the roots. Based on the nearest features, past data and weather information,
short-term inferences are calculated using ANFIS. The inference model and short-term
learning prediction are represented in Equations (5) and (6).

Sp =
n

∑
i=0

(Tp − Ap)
2 (5)

Sp denotes short-term prediction, Tp denotes the targeted prediction, and Ap denotes actual
prediction. Similarly, the learning rate of ANFIS representation is as follows.

σ =
k√
δE
δσ

(6)

σ denotes the learning rate, k denotes the learning size, δE denotes the error rates and δσ
denotes the training data. Based on Equations (5) and (6), the short-term inference result
is calculated. If the short-term inference result is not required, long-term prediction is
performed using the LSTM algorithm. The LSTM algorithm predicts long-term series data
[27,28] with the help of three types of inputs, as mentioned earlier. The LSTM algorithm
consists of three gates: forget gate; remember cell; activation sigmoid function and new
states of prediction, represented as 7 to 10.

ft = σq(w f xt + u f ht − 1 + b f ) (7)

ft—activation function, ht − 1 denotes previous unit output t − 1, xt denotes input data, b f
denote bias. Sigmoid function, denoted as S(t), is represented as follows.

S(t) =
1

1 + et (8)

The remember cell and new state function are as follows.

it = σ(wt(ht − 1) + bt) (9)

S(n) = ft ∗ St − 1 + tt (10)

With the help of KNN, ANFIS and LSTM, prediction is performed using the short-
term and long-term prediction of the requirements. The requirements of X1, X2, X3, and
X4 are shared using the knowledge transfer. The knowledge transfer is represented in
Equation (11) [50]. The initial learning is performed from the X1 (x1, x2, x3) and predicted
values or known values are considered as Y. The transferring learning is denoted as

T = [Y, f (.)] (11)

T denotes the learning task transferred to the next node or prediction task, Y denotes the
prediction output, and f (.) denotes the prediction function with the different instances.
This predicted task is transferred to the other farm using different thresholds or different
conditions.
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4. Result and Discussion

For experimental and implementation requirements, the specification is described
in Tables 2 and 3. Data was collected from India’s metrological deportment and banana
cultivation research centre. Initially, the requirements, such as X1, were collected from
the IoT sensors. Using the sensor, surrounding moisture, root moisture and humidity
values were also collected. In addition, minimum and maximum water requirements were
collected manually from the farmers. The maximum 50 L of water requirements for a month
and intervals of irrigation of 5 to 7 days were collected for fixing the threshold values for
training and testing. Some of the fixed and basic parameters considered for irrigation are
shown in Table 4.

Table 4. Basic parameters for irrgation.

S. No Parameters and Requirements Values

1 Number of farms 4
2 Number of trees in each farm 300
3 Maximum requirement of water per month 50 L
4 Irrigation interval Feb to November
5 Minimum temperature 0 ◦C
6 Maximum temperature 37 ◦C
7 Interval of irrigation 7 Days
8 Average requirement of water per month 36 L

In our work, cloud computing is used for data storage and sharing of data. Using
cloud computing, we deployed models and real predictions are shared with farmers for
betterment. With the help of artificial intelligence as a service (AIaaS), the model was
deployed and executed for better predictions. The predicted results were transferred for
decision-making using IoT devices. For the implementation process of cloud computing in
our work, we employed data collection using sensors; Raspberry Pi (ThingSpeak), which
transfers the data from the physical devices to cloud environments; and AIaaS to predict
data which has to be transferred to controlling devices and farmers.

The dataset consists of Year, Month, Date, Hour, minute, moisture0 (Atmosphere),
moisture1 (Plant Surface Moisture), Soil Moisture (Sensor 1), Root Moisture (Sensor 2),
Temperature, Humidity, Wind Speed (mph), Rain, and irrigation. The dataset should be
pre-processed using the one-hour time interval and the data should be mapped within one
hour. All the data fields converted the data a pure value and dimensionless value. Finally,
different magnitudes or units, comparisons of indexes and weighing, were considered
in the pre-processing of the dataset. In this research work, a zero-mean standardization
pre-processing method was used for processing the raw-data fields. The missing values
happened due to maintenance, failure of instrumentation, invalid values and manual check-
in. Our work uses the Akima [51] method for supplementary values, for time-series data
and filling in the missing values for smooth curves. In our work, we validated the proposed
method using accuracy, coefficient of determination (R2), mean squared logarithmic error
(MSLE) and earned values (EV).

Initially, the basic requirement of prediction training, testing and validation accu-
racy was predicted using the combination of ANFIS and LSTM. Figure 4 represents the
training and testing accuracy of 97 iterations and 100 nodes’ data. The implementation
hyperparameters are presented in Tables 5 and 6.
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Table 5. Hyperparameters of LSTM.

S. No Hyperparameters of LSTM Values

1 Number of layers 2 Layers
2 Units 96 (64 + 32)
3 Feature points 10
4 Activation function Sigmoid
5 Time steps 20
6 Loss function Binary cross entropy
7 Total parameters 34,242

Figure 4. Training and testing accuracy of prediction.

Table 6. Hyperparameters of ANFIS.

S. No Hyperparameters of ANFIS Values

1 Hidden layer size 2 Layers
2 Input layer size 10
3 Activation function Sigmoid
4 Time steps 20
5 Range of influence 0.7
6 Acceptance ratio 0.5

7 Number of maximum
iterations 100

Figure 1 shows various live indicators, such as temperature, humidity, rain possibility,
and wind speed, taken from three calculations. The past cultivation data (x1), weather data
(x2), and current data collected with the help of IoT and sensors (x3) and root moisture
were also calculated continuously with the help of THERM200 and SHT11. In this work,
irrigation requirement is predicted in terms of 8 h, 16 h, 24 h, 48 h and 60 h. Two main
requirements directly affect the requirements: temperature and humidity.

In this work, three types of requirements are predicted: short-term (8 h, 16 h), long-
term (24 h, 48 h and 60 h) and changes implemented after transferring learning from one
farm to another. The shortest inference result is predicted with the help of ANFIS, and
long-term prediction is carried out with the help of LSTM. The shortest term prediction



Sustainability 2023, 15, 8260 14 of 20

analysis was carried out in two months, March and July. The reason for the prediction of
March and July is that rainfall is low during March. Similarly, in July, the rainfall starts, and,
thus, the atmospheric temperature is low. The moisture and humidity of the current and
the short-term requirement prediction of March and July’s requirement prediction, using
ANFIS, are presented in Table 7. The shortest term prediction requirements are shown in
Figure 5. The month-wise temperature and humidity are the two main requirements of
short- and long-term predictions, such as temperature and humidity for 8, 16, 24, 32, and
48 h. The figure describes the minimum and maximum temperature and humidity, starting
from 8 am and continuously measuring up to 48 h. Transfer learning is used for knowledge
gained in the initial model in farm 1 and the knowledge gained by farmer 1 is used to
retrain the farmer-2 models for better prediction using the changes from the farmer-1 data.

Table 7. Short-term prediction of requirements.

Months Min and Max/Time Interval 8 16 24 32 48

March Min (Litres) 8 3 1 2 3
July Min (Litres) 0 1 1 3 1

March Max (Litres) 3 4 2 3 4
July Max (Litres) 1 2 2 1 2

Based on the minimum and maximum temperature and humidity, the requirements of
irrigation for March and April are summarized in Table 7. Compared with Table 3, the maximum
requirement per day in March is 6 to 7 L, and in the requirement, prediction is also according to
the maximum requirement per day, which is about 6 to 7 days. Similarly, July received 2 to 3 L
per day based on the ANFIS prediction. Similarly, the long-term prediction was performed with
the help of the LSTM algorithm, and prediction intervals are 24, 48, 72, etc. Using the long-term
prediction, irrigation is performed because generally banana-irrigation intervals are between 3
days to 5 days. Based on the long-term prediction, irrigation was scheduled. The long-term
prediction of farm-1 is presented in Table 8.

Figure 5. Minimum and maximum temperature and humidity in March and July.
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Table 8. Long-term prediction of requirement.

Months Min and Max/Time Interval 24 48 72 96

March Min (Litres) 2 3 1 2
July Min (Litres) 0 1 1 0

March Max (Litres) 3 4 2 3
July Max (Litres) 1 2 2 1

Based on Tables 7 and 8, the entire prediction requirements of irrigation in March and
April are in Table 9. This prediction requirement is calculated between four-day intervals.
Four-day intervals correlate the short-term and long-term prediction. Table 9 and Figure 6
present the minimum and maximum requirements of irrigation.

Table 9. March and July irrigation dates and requirement.

Months March/July Dates Interval 4/2 8/6 12/10 16/15 20/18/ 24/22 28/26 Total Requirements

March Min (Litres) 2 4 5 4 4 5 4 28
March Max (Litres) 3 5 6 5 5 5 5 34

July Min (Litres) 0 1 1 0 1 2 2 7
July Max (Litres) 1 2 2 1 3 3 3 16

Tables 7–9 are the short, long and month-wise requirement prediction of farm 1’s
prediction. In this prediction, ANFIS and LSTM are used. In addition, based on these
two techniques, the month-wise prediction is presented in Table 9. Table 9 presents the
minimum and maximum irrigation requirements in four-day time intervals. The four-day
time interval is measured with the help of ANFIS and LSTM and the corresponding corre-
lation of long- and short-term prediction. In March, the humidity, temperature and other
parameters such as weather, wind speed and previous-year information are considered for
prediction. Generally, the parameters mentioned earlier are very high in March, and wind
speed is also very low compared to the other months in the specified location. The maxi-
mum irrigation requirement was higher that year, and the minimum requirement is similar
to the maximum requirements. The difference between the minimum and maximum re-
quirements is 8 L. Similarly, July is monsoon season, and if it rains in the specified location,
the requirements for irrigation decrease automatically. The requirements mostly decrease
in July, as the humidity is very low.

Our proposed work was used different combinations of data, such as root moisture,
atmosphere moisture, temperature, humidity, and weather data. While taking all these
data, normal model prediction produces prediction error. To avoid the prediction error, our
model used the ANFIS method and error rates for short-term predictions. The ANFIS used
forward and backward passes in each layer for processing different data.

The minimum irrigation requirement is nine, and the maximum is 16. Similarly,
requirements are very low in the next three months, but during the summer, the irrigation
requirements are very high in April, May and the middle of July. The entire year-wise
irrigation requirements of farm 1 are presented in Figure 6. In this Figure 6, minimum
and maximum requirements are summarized for farm 1. The maximum requirements are
higher in March, April and May.

Similarly, with the help of transfer learning, from farm 1 prediction is transferred to
farm 2. Based on farm 1, the basic information is shared with farm 2. The basic irrigation
requirements in March and April are shown in Table 10, and year-wise predicted results are
presented in Figure 6. Transfer learning helps to reuse the model for new task prediction.
Table 10 and Figure 7 show the differences after applying the first prediction and after
transferring the prediction features of farm 1 and the new prediction of farm 2. Figure 7
shows the difference between applying transfer learning and reducing the consumption of
water usage. Comparing Tables 9 and 10, the requirement prediction is reduced because it
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produced better optimization and saved the irrigation requirements of two months. Overall
requirements are also reduced in farm 2.

Figure 6. Month-wise requirement prediction of irrigation—Farm 1.

Table 10. March and July irrigation dates and requirements (farm 2) using transfer learning.

Months March/July Dates Interval 4/2 8/6 12/10 16/15 20/18/ 24/22 28/26 Total Requirements

March Min (Litres) 2 3 3 4 4 3 4 23
March Max (Litres) 3 4 4 5 5 5 5 31

July Min (Litres) 0 1 1 0 2 3 2 9
July Max (Litres) 1 2 2 1 3 4 3 16

Figure 7. Month-wise requirement prediction of irrigation—farm 2.

Comparing farm 1 to farm 2, the irrigation requirements are reduced to 7 L per banana
plant. Farm 1’s total requirement was 200 L per plant, and after applying the transfer
learning, the total requirement of irrigation was 193. After applying transfer learning, the 7
L irrigation requirement was reduced in farm 2. In the overall irrigation process, everyday
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prediction was transferred from farm 1 to farm 2 at a delay of 5 min time intervals, and,
after that, farm 2’s irrigation requirement was predicted.

The proposed work was evaluated using the coefficient of determination (R2). The R2

determines the model prediction measurements when increasing the iterations. Initially,
the model was predicted to be 0.920 at 15 epochs and 0.958 at the 75th epochs. After
applying the transfer learning, the farm-2, farm-3 and farm-4 values gradually increase.
Figure 8 shows that the model prediction and relationship accuracy values increase after
transferring the features.

Figure 8. Comparison of R2, MSLE and EV.

Comparison with Other Methods of Estimation and Transfer of Learning

The proposed method was compared to the existing approach, which decreased the water
consumption of a single node by 31.4% in the period of 2020. When compared to the previous
approach, our method optimized 30.24% of water after applying transfer learning on a single
node of the banana tree. Our method was tuned to consume 1.16% less water in a single
node of a banana tree. Comparing our suggested method to the manual and technology-based
approaches, we find that it optimized 41% to 50% more water in the farm. Using transfer
learning, the proposed method reduced from 31.4% to 30.24% the water of a single node tree.
Tables 9 and 10 clearly illustrate the optimization of water usage following the implementation
of transfer learning. Our proposed work was compared with the recent work [8,27–29], and
it optimized the irrigation requirements. Compared to previous work, total water usage is
reduced. Table 11 shows the water usage of our work and its comparison with previous work.
Compared to the previous work, total irrigation requirements were reduced.

Table 11. Comparison of requirement predictions.

S.No Methods Accuracy

1 GBRT [27] 87.23
2 SVR + K means [28] 88.13
3 LSTM + GBT [8] 92.04
4 RBFN [29] 89.0
5 Our Method 94.0

5. Conclusions

This work integrates IoT, machine-learning and transfer-learning techniques to achieve
sustainability and predict irrigation-system water requirements. The main finding of this
work is that it reduced water usage and transferred the features of the prediction model
and exchange for better prediction and requirement analysis. IoT sensor devices collected
basic requirements such as humidity, temperature, and moisture. The weather data and past
data collected from the banana research centre were used for implementation. The proposed
work used ANFIS for short-term predictions, such as 8, 16, 24, etc. The LSTM predicted
long-time requirement predictions such as 24, 48, 72, etc. Based on short- and long-term
predictions, the entire requirement was predicted in 4 days. In this work, data of two months,
March and July, was predicted and analyzed. The entire requirement of overall cultivation
was predicted and calculated in the short and long term, with the help of weather and past
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data. The farm-1 data features were transferred to farm two, and, thus, it predicted the
irrigation requirement. Comparing farms 1 and 2, after irrigation, farm 2 had lower irrigation
requirements in July, a change from 16 to 15; during May, the requirement increased from
31 to 34. Similarly, comparing the year-wise requirement of farm 1 to farm 2, we see that it
reduces the requirements from 200 to 193 for a single banana tree. This work reduces the
irrigation requirement and predicts the short- and long-term requirements of an effective
irrigation structure at a particular interval. In the future, this approach will be extended
to multiple farms. Based on that, the requirements can be optimized. In addition, further
implementation of this work is being carried out using Federated learning, sharing the farm
data, which predicts and shares the model for further irrigation.

Author Contributions: Conceptualization, A.B., A.K., A.A. and S.B.K.; Project administration, A.A.
and S.B.K.; Resources, A.I.A.; Validation, A.I.A.; Software, A.Q.M.; P.A., Validation; Writing—original
draft, A.B. and A.K.; Writing—review & editing, S.B.K. and A.A. All authors have read and agreed to
the published version of the manuscript.

Funding: This research is supported by Princess Nourah bint Abdulrahman University Researchers,
Supporting Project number PNURSP2023R432, Princess Nourah bint Abdulrahman University,
Riyadh, Saudi Arabia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used in the study are available to other authors who require
access to this material.

Acknowledgments: This research is supported by Princess Nourah bint Abdulrahman University
Researchers Supporting Project number (PNURSP2023R432), Princess Nourah bint Abdulrahman
University, Riyadh, Saudi Arabia.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Managing Water Sustainably Is Key to the Future of Food and Agriculture. Available online: https://www.oecd.org/agriculture/

topics/water-and-agriculture/ (accessed on 8 May 2023).
2. Samjstria, A.G. Efficiencies of Florida Agricultural Irrigation Systems; University of Florida: Gainesville, FL, USA , 1988.
3. The Current Water Crisis and the Need for Alternative Farming Solutions. Available online: https://www.edengreen.com/blog-

collection/water-crisis-drought (accessed on 8 May 2023).
4. Abioye, E.A.; Hensel, O.; Esau, T.J.; Elijah, O.; Abidin, M.S.Z.; Ayobami, A.S.; Yerima, O.; Nasirahmadi, A. Precision Irrigation

Management Using Machine Learning and Digital Farming Solutions. AgriEngineering 2022, 3, 70–103. [CrossRef]
5. Samian, M.; Mahdei, K.N.; Saadi, H.; Movahedi, R. Identifying factors affecting optimal management of agricultural water.

J. Saudi Soc. Agric. Sci. 2015, 14, 11–18. [CrossRef]
6. Ahansal, Y.; Bouziani, M.; Yaagoubi, R.; Sebari, I.; Sebari, K.; Kenny, L. Towards smart irrigation: A literature review on the use of

geospatial technologies and machine learning in the management of water resources in arboriculture. Agronomy 2022, 12, 297.
[CrossRef]

7. Blessy, J.A.; kumar, A. Smart Irrigation System Techniques using Artificial Intelligence and IoT. In Proceedings of the 2021 Third
International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV), Tirunelveli, India,
4–6 February 2021; pp. 1355–1359. [CrossRef]

8. Vianny, D.M.M.; John, A.; Mohan, S.K.; Sarlan, A.; Ahmadian, A. Water optimization technique for precision irrigation system
using IoT and machine learning. Sustain. Energy Technol. Assess. 2022, 52, 102307.

9. Evans, R.G.; LaRue, J.; Stone, K.C.; King, B.A. Adoption of site-specific variable rate sprinkler irrigation systems. Irrig. Sci. 2013,
31, 871–887. [CrossRef]

10. Kamienski, C.; Soininen, J.-P.; Taumberger, M.; Dantas, R.; Toscano, A. Smart water management platform: IoT-based precision
irrigation for agriculture. Sensors 2019, 19, 276. [CrossRef]

11. Messaoud, S.; Ben Ahmed, O.; Bradai, A.; Atri, M. Machine learning modelling-powered IoT systems for smart applications.
In IoT-Based Intelligent Modelling for Environmental and Ecological Engineering; Springer: Cham, Swizterland, 2021; pp. 185–212.

12. Abba, S.; Wadumi Namkusong, J.; Lee, J.A.; Liz Crespo, M. Design and performance evaluation of a low-cost autonomous sensor
interface for a smart IoT-based irrigation monitoring and control system. Sensors 2019, 19, 3643. [CrossRef]

13. Evett, S.R.; Colaizzi, P.D.; Lamm, F.R.; O’Shaughnessy, S.A. Past, present, and future of irrigation on the US Great Plains. Trans.
ASABE 2020, 63, 703–729. [CrossRef]

https://www.oecd.org/agriculture/topics/water-and-agriculture/
https://www.oecd.org/agriculture/topics/water-and-agriculture/
https://www.edengreen.com/blog-collection/water-crisis-drought
https://www.edengreen.com/blog-collection/water-crisis-drought
http://doi.org/10.3390/agriengineering4010006
http://dx.doi.org/10.1016/j.jssas.2014.01.001
http://dx.doi.org/10.3390/agronomy12020297
http://dx.doi.org/10.1109/ICICV50876.2021.9388444
http://dx.doi.org/10.1007/s00271-012-0365-x
http://dx.doi.org/10.3390/s19020276
http://dx.doi.org/10.3390/s19173643
http://dx.doi.org/10.13031/trans.13620


Sustainability 2023, 15, 8260 19 of 20

14. Mukherjee, D.; Nandy, S.; Mohan, S.; Al-Otaibi, Y.D.; Alnumay, W. S. Sustainable task scheduling strategy in cloudlets. Sustain.
Comput. Inform. Syst. 2021, 30, 100513. [CrossRef]

15. Schoups, G.; Addams, C.L.; Minjares, J.L.; Gorelick, S.M. Sustainable conjunctive water management in irrigated agriculture:
Model formulation and application to the Yaqui Valley, Mexico. Water Resour. Res. 2006, 42, 1–19. [CrossRef]

16. Durrant, A.; Markovic, M.; Matthews, D.; May, D.; Enright, J.; Leontidis, G. The role of cross-silo federated learning in facilitating
data sharing in the agri-food sector. Comput. Electron. Agric. 2022, 193, 106648. [CrossRef]

17. Mahato, S.; Rakshit, P.; Santra, A.; Dan, S.; Tiglao, N.C.; Bose, A. A GNSS-enabled multi-sensor for agricultural applications. J. Inf.
Optim. Sci. 2019, 40, 1763–1772. [CrossRef]

18. John, A.; Sugumaran, M.; Rajesh, R.S. Performance analysis of the past, present and future indexing methods for spatio-temporal
data. In 2017 2nd International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 19–20
October 2017; pp. 645–649.

19. Abioye, E.A.; Abidin, M.S.; Mahmud, M.S.; Buyamin, S.; Ishak, M.H.; Abd Rahman, M.K.; Otuoze, A.O.; Onotu, P.; Ramli, M.S.
A review on monitoring and advanced control strategies for precision irrigation. Comput. Electron. Agric. 2020, 173, 105441.
[CrossRef]

20. López-Morales, J.A.; Martínez, J.A.; Skarmeta, A.F. Improving Energy Efficiency of Irrigation Wells by Using an IoT-Based
Platform. Electronics 2021, 10, 250. [CrossRef]

21. Sánchez-Sutil, F.; Cano-Ortega, A. Smart Control and Energy Efficiency in Irrigation Systems Using Lo-RaWAN. Sensors 2021, 21,
7041. [CrossRef]

22. Whig, P.; Kouser, S.; Velu, A.; Nadikattu, R.R. Fog-IoT-Assisted-Based Smart Agriculture Application. In Demystifying Federated
Learning for Blockchain and Industrial Internet of Things; IGI Global: Hershey, PA, USA, 2022; pp. 74–93.

23. Mahmoudi, N.; Majidi, A.; Jamei, M.; Jalali, M.; Maroufpoor, S. Mutating fuzzy logic model with various rigorous meta-heuristic
algorithms for soil moisture content estimation. Agric. Water Manag. 2022, 261, 107342. [CrossRef]

24. Shekhar, Y.; Dagur, E.; Mishra, S.; Sankaranarayanan, S. Intelligent IoT-based automated irrigation system. Int. J. Appl. Eng. Res.
2017, 12, 7306–7320.

25. Saranya, T.; Deisy, C.; Sridevi, S.; Anbananthen, K.S.M. A comparative study of deep learning and Internet of Things for precision
agriculture. Eng. Appl. Artif. Intell. 2023, 122, 106034. [CrossRef]

26. Khamparia, S.; Jabade, S.; Kulkarni, S.; Nakade, P.; Bhatkhande, D. IoT for Water Management: A Sustainable Solution. In Internet
of Things: Applications for Sustainable Development; Chapman and Hall/CRC: London, UK, 2023; Volume 109.

27. Campos, N.G.S.; Rocha, A.R.; Gondim, R.; Coelho da Silva, T.L.; Gomes, D.G. Smart & green: An internet-of-things framework
for smart irrigation. Sensors 2019, 20, 190.

28. Goap, A.; Sharma, D.; Shukla, A.K.; Krishna, C.R. An IoT-based smart irrigation management system using Machine learning and
open source technologies. Comput. Electron. Agric. 2018, 155, 41–49. [CrossRef]

29. Sangeetha, B.P.; Kumar, N.; Ambalgi, A.P.; Haleem, S.L.A.; Thilagam, K.; Vijayakumar, P. IOT-based smart irrigation management
system for environmental sustainability in India. Sustain. Energy Technol. Assess. 2020, 52, 101973.

30. Adeyemi, O.; Grove, I.; Peets, S.; Norton, T. Advanced monitoring and management systems for improving sustainability in
precision irrigation. Sustainability 2017, 9, 353. [CrossRef]

31. Al Sahili, Z.; Mariette, A. The power of transfer learning in agricultural applications: AgriNet. Convolutional Neural Netw. Deep
Learn. Crop. Improv. Prod. 2023, 195, 16648714. [CrossRef]

32. Bosilj, P.; Aptoula, E.; Duckett, T.; Cielniak, G. Transfer learning between crop types for semantic segmentation of crops versus
weeds in precision agriculture. J. Field Robot. 2020, 37, 7–19. [CrossRef]

33. Hu, Y.; Zeng, H.; Tian, F.; Zhang, M.; Wu, B. An interannual transfer learning approach for crop classification in the Hetao
Irrigation district, China. Remote Sens. 2022, 14, 1208. [CrossRef]

34. Espejo-Garcia, B.; Mylonas, N.; Athanasakos, L.; Fountas, S.; Vasilakoglou, I. Towards weeds identification assistance through
transfer learning. Comput. Electron. Agric. 2020, 171, 105306. [CrossRef]

35. Vo, A.H.; Minh, T.V.; Tuong, L. A novel framework for trash classification using deep transfer learning. IEEE Access 2019, 7,
178631–178639. [CrossRef]

36. Zhao, W.; Yamada, W.; Li, T.; Digman, M.; Runge, T. Augmenting crop detection for precision agriculture with deep visual
transfer learning—A case study of bale detection. Remote Sens. 2020, 13, 23. [CrossRef]

37. Thenmozhi, K.; Srinivasulu Reddy, U. Crop pest classification based on deep convolutional neural network and transfer learning.
Comput. Electron. Agric. 2019, 164, 104906. [CrossRef]

38. Bazzi, H.; Ienco, D.; Baghdadi, N.; Zribi, M.; Demarez, V. Distilling before refine: Spatio-temporal transfer learning for mapping
irrigated areas using Sentinel-1 time series. IEEE Geosci. Remote. Sens. Lett. 2020, 17, 1909–1913. [CrossRef]

39. Risheh, A.; Amirmohammad, J.; Ehsan, N. Smart Irrigation IoT solution using transfer learning for neural networks. In Pro-
ceedings of the 2020 10th International Conference on Computer and Knowledge Engineering (ICCKE), Mashhad, Iran, 29–30
October 2020.

40. BANANA. Available online: https://nhb.gov.in/report_files/banana/BANANA.htm (accessed on 8 May 2023).
41. Senthilkumar, M. Weather data analysis using Hadoop. Int. J. Pharm. Technol. 2016, 8, 21827–21834.
42. Altman, N.S. An introduction to kernel and nearest-neighbour nonparametric regression. Am. Stat. 1992, 46, 175–185.
43. Friedman, J.H. Stochastic gradient boosting. Comput. Stat. Data Anal. 2002, 38, 367–378. [CrossRef]

http://dx.doi.org/10.1016/j.suscom.2021.100513
http://dx.doi.org/10.1029/2006WR004922
http://dx.doi.org/10.1016/j.compag.2021.106648
http://dx.doi.org/10.1080/02522667.2020.1714893
http://dx.doi.org/10.1016/j.compag.2020.105441
http://dx.doi.org/10.3390/electronics10030250
http://dx.doi.org/10.3390/s21217041
http://dx.doi.org/10.1016/j.agwat.2021.107342
http://dx.doi.org/10.1016/j.engappai.2023.106034
http://dx.doi.org/10.1016/j.compag.2018.09.040
http://dx.doi.org/10.3390/su9030353
http://dx.doi.org/10.3389/fpls.2022.992700
http://dx.doi.org/10.1002/rob.21869
http://dx.doi.org/10.3390/rs14051208
http://dx.doi.org/10.1016/j.compag.2020.105306
http://dx.doi.org/10.1109/ACCESS.2019.2959033
http://dx.doi.org/10.3390/rs13010023
http://dx.doi.org/10.1016/j.compag.2019.104906
http://dx.doi.org/10.1109/LGRS.2019.2960625
https://nhb.gov.in/report_files/banana/BANANA.htm
http://dx.doi.org/10.1016/S0167-9473(01)00065-2


Sustainability 2023, 15, 8260 20 of 20

44. Karaboga, D.; Ebubekir, K. Adaptive network-based fuzzy inference system (ANFIS) training approaches: A comprehensive
survey. Artif. Intell. Rev. 2019, 52, 2263–2293. [CrossRef]

45. Dehghani, M.; Akram, S.; Hossien, R.-M. Novel forecasting models for immediate-short-term to long-term influent flow prediction
by combining ANFIS and grey wolf optimisation. J. Hydrol. 2019, 576, 698-725. [CrossRef]

46. Adedeji, P.A.; Akinlabi, S.; Madushele, N.; Olatunji, O.O. Wind turbine power output very short-term forecast: A comparative
study of data clustering techniques in a PSO-ANFIS model. J. Clean. Prod. 2020, 254, 120135. [CrossRef]

47. Hua, Y.; Zhao, Z.; Li, R.; Chen, X.; Liu, Z.; Zhang, H. Deep learning with long short-term memory for time series prediction. IEEE
Commun. Mag. 2019, 57, 114–119. [CrossRef]

48. Chang, Y.-S.; Chiao, H.-T.; Abimannan, S.; Huang, Y.-P. Tsai, Y.-T.; Lin, K.-M. An LSTM-based aggregated model for air pollution
forecasting. Atmos. Pollut. Res. 2020, 11, 1451–1463. [CrossRef]

49. Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A comprehensive survey on transfer learning. Proc. IEEE
2020, 109, 43–76. [CrossRef]

50. Nowakowski, A.; Mrziglod, J.; Spiller, D.; Bonifacio, R.; Ferrari, I.; Mathieu, P.P.; Garcia-Herranz, M.; Kim, D.-H. Crop type
mapping by using transfer learning. Int. J. Appl. Earth Obs. Geoinf. 2021, 98, 102313. [CrossRef]

51. Olariu, E.M.; Tolas, R.; Portase, R.; Dinsoreanu, M.; Potolea, R. Modern approaches to preprocessing industrial data. In
Proceedings of the 2020 IEEE 16th International Conference on Intelligent Computer Communication and Processing (ICCP),
Cluj-Napoca, Romania, 3–5 September 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 221–226.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s10462-017-9610-2
http://dx.doi.org/10.1016/j.jhydrol.2019.06.065
http://dx.doi.org/10.1016/j.jclepro.2020.120135
http://dx.doi.org/10.1109/MCOM.2019.1800155
http://dx.doi.org/10.1016/j.apr.2020.05.015
http://dx.doi.org/10.1109/JPROC.2020.3004555
http://dx.doi.org/10.1016/j.jag.2021.102313

	Introduction
	Related Work
	Irrigation Techniques
	Transfer Learning for Agriculture and Irrigation System

	Materials and Method
	Materials
	Method
	KNN Algorithm
	ANFIS
	Long Short-Term Memory
	Transfer Learning

	Working Principle

	Result and Discussion
	Conclusions
	References

