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Abstract 

Smart cities, businesses, workplaces, and even residences have all been converged by the Internet of Things (IoT). 

The types and characteristics of these devices vary depending on the industry 4.0 and have rapidly increased 

recently, especially in smart homes. These gadgets can expose users to serious cyber dangers because of a variety of 

computing constraints and vulnerabilities in the security-by-design concept. The smart home network testbed setup 

presented in this study is used to evaluate and validate the protection of the smart cyber-physical system. The 

context-aware threat intelligence and response model identifies the states of the aligned smart devices to distinguish 

between real-world typical and attack scenarios. It then dynamically writes specific rules for protection against 

potential cyber threats. The context-aware model is trained on IoT Research and Innovation Lab - Smart Home 

System (IRIL-SHS) testbed dataset. The labeled dataset is utilized to create a random forest model, which is 

subsequently used to train and test the context-aware threat intelligence SHS model's effectiveness and performance. 

Finally, the model's logic is used to gain rules to be included in Suricata signatures and the firewall rulesets for the 

response system. Significant values of the measuring parameters were found in the results. The presented model can 

be used for the real-time security of smart home cyber-physical systems and develops a vision of security challenges 

for Industry 4.0. 

Keywords: smart homes; cyber-physical systems; context-aware IoT security; network traffic analysis; machine 

learning 

1. Introduction 

The exponential rise in IoT devices has also resulted in the enhancement of communication services 

[1]. Our way of life, including how we live, work, communicate, study, manage our health, and enjoy 

ourselves, has been revolutionized and simplified by IoT devices. It is predicted that there will be more 

than 13 trillion connected IoT devices by 2030 [2]. As a result of this exponential growth, more security 

challenges are emerging. One of the most well-known applications of the Internet of Things is the smart 

home, which poses a significant security problem in preventing threats from unidentified sources. Smart 

home gadgets are being used by over two-fifths of developed countries, which is more than nearly twice 

the percentage of developing countries, according to the latest survey [3]. Even though 98% of 

respondents are cautious about confidentiality linked with their gadgets, more than 50% have taken no 

action to safeguard them [4]. The most prevalent attacks on IoT devices are creating a center for bitcoin 

mining as well as cybercrime, data leaks, man-in-the-middle attacks, DDoS attacks, and spamming [5]. 

Furthermore, an IoT device in a smart home might be exploited to access and formulate a combination of 

actions to intrude into other devices of the house. Even without physical intrusion, silent surveillance 

through a hacked or malfunctioned gadget can result in a strategic campaign to compromise other 

vulnerable devices and run an intimate cyberstalk on the residents [6]. Smart home defense is an evolving 

notion with no well-defined threat detection and response model that fits different threat scenarios. 

                  



The context is any knowledge or information that may be used to comprehend the situation of the 

underlying environment in which the application is running [7]. Three crucial context factors, according 

to the authors [8] are where you are, who you are with, and what resources are close by. Location, time, 

identity, environment, network, history, and activity are the major context used for the development of 

any context-aware system.  

A smart home is envisioned as a novel environment where the Internet of Things (IoT) is widely 

used. The Internet of Things (IoT), which is built on communication and information technology (ICT), 

fundamentally alters how we live by changing virtual interactions between people in a variety of 

scenarios, from the workplace to interpersonal connections [9]. Consequently, the creation of a smart 

home necessitates the seamless integration of user interactions, physical items, and human engagement. 

Particularly a smart house is thought to offer individuals a new kind of smart environment and lifestyle, 

greatly enhancing our quality of life [10]. Figure 1 shows the context-aware smart home system.  

 

 

 
                                      Figure 1: Context-aware Smart Home System. 

The Internet of Things is a dynamic network with continually changing things and   mobility of 

users and conventional fixed security solutions are found ineffective as a result. The context-aware 

defense has brought interesting aspects to classical security by making use of context information to make 

decisions [11]. Various machine learning methodologies have been proposed to control and expedite the 

process of creating context-specific access control for IoT devices [12]. The contextual information from 

the past records of ambient IoT access was used to determine whether to grant or deny a certain IoT 

direct access request in the future [13]. There were many network-based security solutions proposed but 

previously proposed technologies offer restricted assistance in deciphering the traffic in between the 

internet-connected system environment and they necessitate in-depth knowledge of the network 

standards and the unique infrastructure set-up that leads to the context-aware threat detection system 

[14]. Context-aware security models had to contend with the question of whether context features will 

generate more precise and determined security results [15]. Consequently, mapping the context of the 

device and the network into a model that delivers the best results in terms of security breach detection 

and decreasing false positive rates in alert generation is a huge challenge. 

Numerous methods currently in use were designed primarily for static networks and are therefore 

unable to detect IoT devices mobile activity [16]. Most methods guarantee the accuracy of contextual data 

and the seamless transfer of that data between devices via the cloud, which is not assessed in a 

comprehensive scenario [17]. Some methods encrypt data using pricey cryptographic algorithms like 

Advanced Encryption Standard and Rivest-Shamir-Adleman RSA, however, these are inefficient for IoT 

devices with limited resources because they demand more computational power to function [18]. 

Moreover, most research studies tested and refined their proposed context-aware security models using 

publicly available datasets [19].  

                  



To address the deficiencies of current threat detection systems and to achieve the objectives, we 

proposed an effective context-aware threat intelligence and response model for smart home systems. The 

existing threat/ attack detection models lack real-time smart cyber-physical systems’ datasets which 

challenges the advancement in the optimization of intelligent methods for context-aware threat detection 

and response. The development of state-of-the-art tracking and detection methods requires instantaneous 

access to sensors’ data. To track deployed IoT devices' whereabouts and take prompt action in the smart 

home, this novel research study employed the idea of the context-aware system which collects network-

related dynamic information from the equipped IoT devices. The dynamic rule writing technique is then 

used for the response model. This research also provides an innovative smart home network testbed 

architecture which is used to analyze and secure smart cyber-physical systems. With the deployed IoT 

Research and Innovation Lab - Smart Home System (IRIL-SHS) testbed, the proposed context-aware 

threat intelligence model identified the states of the connected smart devices and built a contextual model 

to differentiate between real-world normal and attack scenarios. With the contextual features extracted, 

the labeled dataset is later used to train and validate the efficiency and performance of the context-aware 

threat intelligence SHS model. 

The remaining sections of the research are structured as follows: Section 2 presents a comprehensive 

overview of the available context-aware threat detection and response mechanisms literature along with 

a comparative analysis. Section 3 describes dataset generation using the topology of IoT devices. The 

context-aware threat detection and response model is presented in section 4. Section 5 presents the 

performance analysis through results and a discussion of our suggested model with the comparison of 

previous studies. Finally, this paper outlines the conclusion in section 6 and talks about future work. 

2. Literature Review 

Many studies on context awareness have been conducted to build various context-aware systems 

that considerably improve people's daily lives. Starting with obtaining expertise in context, acquiring 

context, and defining the rules, the system must determine what adaptations are required [20]. When 

adopting and accessing context-aware systems, a lot of variables contribute to consumers developing 

substantial privacy concerns and potential security risks. Users are also exposed to a range of threats, 

such as processing enormous amounts of data, spending a lot of energy, and coping with data leakage. 

As a result, the need for adequate security solutions is growing [21]. Intrusion detection systems, 

intrusion prevention systems, context-aware security systems, firewalls, and other systems have been 

used to combat these threats. Context-aware security systems can adequately manage security 

mechanisms associated with constant context changes [22].  

2.1. Background 

A contemporary research area is context-awareness in the IoT for threat intelligence. Context is any 

information that may be used to comprehend the situation of the underlying environment in which the 

application is running [23]. Location, time, identity, environment, network, history, and activity are the 

major contexts used for the development of any context-aware system [24]. When adopting and accessing 

context-aware systems, many variables contribute to consumers developing substantial privacy concerns 

and potential security risks. As a result, the need for adequate security solutions is growing [9]. Context-

aware security systems can adequately manage security mechanisms associated with constant context 

changes [25]. In recent research, context-aware security systems were introduced in smart grids, smart 

cities, smart industries, smart health care, smart home, and smart transportation systems to provide 

security against a variety of assaults, including data loss, phishing, service disruption (DoS/DDoS), power 

losses, unsecured ports, and other issues, utilizing various approaches such as machine learning, 

anomaly detection, and artificial intelligence. The term "cyber threat" describes the potential for a 

successful cyberattack with the intent of gaining unauthorized access to, destroying, disrupting, or 

stealing a computer network, proprietary information, or any other type of personal information. Cyber 

threats may originate from a company's own trusted employees or may come from distant, unidentified 

                  



parties [26]. There are numerous detective strategies available to cope with cyber threats. These 

techniques can be roughly divided into host-based and network-based categories. 

 

2.1.1. Host and Network-based Detection Technique 

To identify potential threats at the system level, the host-based detection technique gathers and 

analyses information about the internal operations of the computing device, such as log files, register 

data, API calling patterns, etc. [27]. The host-based detection software, as opposed to a network-based 

approach, provides the advantage of detailed insight because detection software is installed and running 

on the host. Numerous host-based tools and approaches have been created to detect bots, worms, and 

other hazardous threats [28]. Another method of identifying malicious software that might dodge the 

effects of packers, polymorphism, and deformation technologies is a dynamic behavioral analysis based 

on the API hook. The protected host's performance is impacted by host-based methods, which also 

provide incompatible network filtering signatures [29]. The network-based technique is a surveillance 

strategy that seeks to locate cybersecurity risks by monitoring network traffic for specific network 

portions or devices, analyzing the network, and using protocol activity to identify odd behavior [30]. The 

two primary categories of network-based approaches are those that rely on signatures and those that 

analyze network traffic [29]. 

 

2.1.2. Signature and Traffic-Based Threat Detection Techniques 

An attack or intrusion may be recognized by a signature-based IDS if the attack's fingerprint is 

currently stored in the prevailing database. These methods are often used in the field because they can 

reliably identify known assaults [31]. To identify cyber dangers, data transmission can be observed and 

analyzed. The two types of surveillance are active surveillance and passive surveillance [32]. Active 

monitoring detects activity from malicious traffic. This technique actively injects packets into the network 

or employs network scanners [33]. For instance, Nmap is a well-known tool that actively collects location 

and remote information from the Internet. It can do this automatically or manually and includes the 

domains and servers of this malicious software. The biggest drawback of this approach is how easy it is 

to discover a network scanner's IP address. 

One of the primary categories of passive monitoring is the anomaly-based threat detection 

technique, which is based on passively observing network traffic [34]. Based on network traffic 

anomalies, such as excessive network latency, large traffic volumes, traffic on unusual ports, unexpected 

DNS responses, and traffic behavior characteristics, anomaly-based detection tries to discover malicious 

code [35]. Three essential steps typically comprise this strategy: First off, some malicious software can be 

easily captured because it is used in a controlled setting (like a particular honeypot). Second, network 

security defense software analyses the network traffic generated by the malicious software, and both its 

static and dynamic characteristics are modeled using mathematical or statistical tools. Finally, models are 

used to carry out this identification process using data mining and machine learning approaches [28]. 

 

2.1.3. Machine Learning Techniques 

In intrusion detection and prevention systems, malicious traffic can be detected using machine 

learning (ML) techniques [36]. A component of artificial intelligence (AI), machine learning (ML) aims to 

utilize algorithms to learn from data and produce predictions using that data. Deep learning is 

computationally expensive due to the massive amount of training data required, as well as sophisticated 

hardware and software [37]. The functioning of devices and the processes must be checked regularly in 

industry 4.0 settings in order to spot or anticipate errors or other circumstances that could lead to 

unfavorable outcomes. Machine learning algorithms can be developed on existing facts to comprehend 

the hidden aspect of integrated applications and then evaluated to forecast their new state provided by 

the data. Network threat analysis, which is the process of identifying dangers to the network, is one of the 

many uses of ML in the field of cybersecurity [38]. Due to its capability to track both incoming and 

outgoing traffic and identify possibly suspicious activity, machine learning can be useful in this endeavor 

                  



[39]. ]. ML tasks can be carried out using a variety of ML models, each of which uses its mathematical 

equations to analyze the provided data. Different machine learning (ML) methods, such as K-nearest 

neighbor, XG boost, decision tree, and random forest, are frequently employed for threat detection. The 

K-nearest neighbor supervised learning model is one of the most basic ML models that are currently 

available. KNN is referred to as a lazy learner because it does not require training and instead makes 

predictions about the data to categorize it using the training data [40]. The supervised learning algorithm 

Decision Tree is beneficial for displaying a model's visual representation. A Decision Tree employs a 

hierarchical architecture with multiple connected nodes, much like a flowchart [41]. This network 

contains evaluations of the dataset's features, and each one has a split that either goes to another node or 

makes a classification judgment for the data. The predicted data is processed via the nodes of the tree that 

was constructed using the training data until the data can be categorized [42].  

The Random Forest-supervised learning algorithm is thought to perform better than the DT model. 

The randomness of the model comes from two core concepts [43]. The first is that when the model is 

being trained, each tree is given a random sampling of the data, which can result in some trees using the 

same data more than once [44]. The goal is to narrow the gap between the scores for the expected 

outcomes by lowering the model's variance. The second concept suggests utilizing a sparse subset of the 

features to separate the nodes in the trees [45].  

The XG Boost structure of the GBRT model is an enhancement. The sequential ensemble method is 

used to create the boosting model known as GBRT from a series of simple regression trees [46]. More 

trees can be adaptively added to the model to expand its capacity. Decision trees are used by XG and RF 

as classifiers in an ensemble [47]. Examples include using regularization, a technique for working with 

sparse and balanced data, and adopting a block structure for parallel learning [48].  

2.2. Critical Analysis  

The smart home is among the contender’s well-known applications on the Internet of Things 

dominant paradigm, with approximately 27 billion IoT devices in 2017, and this chain is intended to 

increase rapidly by 12% per year until it reaches more than 13 trillion devices by 2030. It also presents a 

significant security problem of escalating threats from anonymous sources that devastate customer 

experience [49]. Many researchers are working on this challenge and have modeled workable security 

systems for smart homes to overcome it and highlight the limitations of home automation in terms of 

detecting and responding to cunning attackers.  

In [50], an approach for detecting intrusions in general, with a low false positive rate, is presented for 

Smart Home Systems (SHS). The authors dynamically modeled the SHS's variegated information into 

contextual arrays of location and time features for behavior analysis, which is centered on one-class 

learning to detect various forms of abnormal behaviors. A web interface was used to keep track of the 

daily usage of household equipment to collect 8,110 normal records throughout the course of 90 days. 

Premised on the baseline model for authentic detection, they revealed that a context sequence of a length 

with 3 attributes (time slot, gateway availability, and physical location) yields a 2.1 percent false positive 

ratio. More than 98 percent detection accuracy was achieved for normal usage, involving various related 

behaviors, but for DoS, asset manipulation and break in attacks involving more than two behaviors, they 

obtained a detection ratio of more than 94 percent. In terms of future study, researchers suggested that for 

attacks involving only one behavior, the proposed technique should take detection accuracy into account 

and make it possible to operate properly for resources that don't require any context information to 

operate and can conduct complex state changes. 

The researchers in [51] monitored the configurations of sensors and devices in a smart home for 

various user behaviors and utilization of patterns and constructed a context-specific model to distinguish 

between harmful and benign behavior. They consider context awareness as an understanding of variation 

in the statuses of sensors and devices as a result of continuing user behavior. The framework uses the 

machine learning technique of Markov Chain-based to analyze suspected malware by analyzing the 

present state of smart home assets and comparing it to previously learned user behavior. They tested 

                  



Aegis in a variety of smart home environments, including with real-life individuals, genuine SHS devices 

(such as the Samsung Smart Things platform), and various day-to-day routines. By putting Aegis through 

its paces against a variety of malicious behaviors like impersonation, false data injection, denial-of-service 

and triggering a malicious app, they were able to obtain more than 95% accuracy with minimal overhead 

in a variety of smart home situations, detecting threats regardless of smart home designs, user counts, or 

imposed user regulations.  

The authors of [52] emphasized trustworthy context manufacturers and customers, who should 

secure confidential material in smart surroundings from disclosure or inspection. They have used the 

attack scenarios of eavesdropping communications between sensors, system components, and 

applications. The upgraded Cerberus approach is proposed to provide context suppliers and recipients 

with authentication while also protecting the integrity of the context-specific data and its convenient 

movement among gadgets. Confidentiality is provided by a symmetric key cryptographic approach, and 

the integrity of data is ensured using a hash function based on a digital signature. After authentication, 

the new context providers and recipients were dynamically inserted by the proposed unique method. The 

strategy is based and evaluated in a genuine cloud platform with six actual devices, proving efficiency, 

authentication methods, negligible energy usage, and extensibility of multiple portable devices operating 

in perfect sync, and overall control of the system's privacy rights. The lowest power usage of around 

0.35% is reported even without data transmission and while transferring 207.5 B/s toward the cloud.  

Another research [32] focused on network-based tracking methodologies and proposed a 

fundamental structure HomeSnitch for increasing smart home control and visibility by categorization of 

IoT device exchange mechanisms based on semantic efficacy. Patterns in correlation datagram unit 

transfers that indicate application-layer interactions between network nodes are searched by 

HomeSnitch. The model, which was based on a typical wireless router and employed software-defined 

networks (SDN) primitives to impose connection restrictions, can characterize device behavior by 

employing destination and content-agnostic features. Using a Random Forest classifier, the model 

classified behavior from an independent data set of normal and man-in-the-middle attack pcap traffic 

with greater than 99 percent accuracy. Through all these initiatives, researchers proved the effectiveness 

of computer networks in classifying behaviors and imposing control on IoT devices.  

Furthermore, by relying on IoT device consumption data, the authors in [53] developed a machine 

learning method to autonomously train contextual access policies from observed social behaviors in 

home automation. LoFTI is a federated multi-task learning system that identifies six main categories of 

attributes to record contextual access privileges and trains tailored context-aware rules from numerous 

smart homes. By designing a novel data augment strategy to handle the problem of outliers in learning, 

the model achieved a favorable trade between performance and computational power in distributed 

learning. The results showed that LoFTI may achieve a few false alarms; the false negative rate dropped 

by 24.2% while the false positive rate dropped by 49.5% when compared to the explicitly stated solo 

learning to all methods of learning. 

Many researchers proposed a context-aware robust intrusion detection system using publicly 

available datasets such as NSL-KDD, UNSW-NB15, and AWID [54] having attacks scenarios of DoS, 

eavesdropping, MITM, false data injection, impersonation and triggering a malicious app but did not 

implement any preventative measures. For effective detection and categorization of innovative and 

complex assaults, multiple independent deep reinforcement learning agents should be dispersed over the 

network, producing a model with higher accuracy and a lower false-positive rate than existing systems 

[55]. The scarcity of real-time smart cyber-physical systems’ datasets challenges the advancement in the 

optimization of intelligent methods for context-aware threat detection and response. 

3. Dataset Generation 

The dataset generation comprises a few sections. In section 3.1, the proposed testbed setup is 

discussed. In 3.2, benign and attack scenarios with tactics, techniques, and procedures (TTP) are 

                  



explained, while section 3.3 gives a comparison between the IRIL-SHS dataset and other popular publicly 

available datasets. 

3.1 Testbed Setup 

A detailed description of the IRIL-SHS dataset, including the architecture design, smart devices, and 

security protocols used, is provided in this section. For this research study, eighteen IoT and non-IoT 

devices were connected to a Linksys smart Wi-Fi Router WRT1200AC in a star topology within a real 

testbed of a smart home. Four of them were IoT devices: a TUYA smart plug, a Things access smart hub, a 

TUYA smart door lock, and a v380 smart Wi-Fi camera that were controlled by homeowners using their 

mobile and web applications. These IoT devices are shown in Figures 2, 3, 4 & 5.  Seven desktop personal 

computers and mobile phones were connected to the router working in normal routine by the home 

users. The Thingz access smart hub was connected to and controlled the fans (3), lights (5), and ACs (2) in 

smart home architecture. The topology of connected devices in the smart home is shown in Figure 6. 

 
Figure 2: v380 Smart Wi-Fi Camera 

 
Figure 3: TUYA Smart Door Lock 

 
Figure 4: Thingz Access Smart Hub  

Figure 5: TUYA Smart Plug 

 

 

 
Figure 6: Network Topology. 

Table 1 shows the connected device types in the network topology with their protocols and 

placement. A brand-new collection of network traffic statistics from internet of things (IoT) devices is 

titled the IRIL-SHS dataset. The data were collected over six days in a medium-sized smart home setup, 

with 10 attacks captured pcap files and 16 benign captured pcap files. In the IoT Research and Innovation 

Lab (IRIL) at the Al-Khwarizmi Institute of Computer Science (KICS), University of Engineering and 

                  



Technology, Lahore [56], this IoT network flow of smart home systems was recorded. Its objective was to 

provide researchers with a sizable dataset made up of real-time, labeled IoT attacks and IoT benign traffic 

for training and testing machine learning models. In particular, the residents of the smart homes behaved 

normally throughout the first two days of the collecting period, and the associated traffic records showed 

the system to be in a normal state. Three distinct anomalous behavioral scenarios of DoS, DDoS, and 

reconnaissance attacks, as explained in section 3.2.2 and 3.2.3, were put into action over the course of the 

experiment's last four days to imitate device failure or malicious attacker activity.  

 
Table 1: Devices Deployed in the Smart Home. 

                              

 

 

 

 

Researchers carried out a specific attack sample utilizing several tools that made use of various 

protocols and carried out various operations in each harmful situation. In a controlled network 

environment with an unrestricted internet connection, just like any other actual IoT device, both harmful 

and benign situations were tested.  

3.2 Benign and Attack Scenarios 

We had twenty-six scenarios for this dataset. The pcap files were recorded for normal and attack 

traffic scenarios. We had 16 scenarios for normal traffic captured at random timing of different days and 

10 scenarios for attacks captured at random timing of different days. All devices in a network used 

different protocols. The dataset contains TCP, DNS, HTTP, TLS, QUIC, MDNS, UDP, and ARP protocols. 

DDoS attacks were captured from inside as well as outside the network performing HTTP and TCP 

flooding. 

3.2.1 Tactics, Techniques, and Procedures (TTP) 

DoS (Denial of Service), DDoS (Distributed Denial of Service), and reconnaissance attacks of three 

different sorts were carried out against the network. DoS and DDoS attacks were performed within the 

network as well as outside the network using the HOIC tool [57]. The reconnaissance was performed 

using the Nmap tool [58]. All the data were captured by the Wireshark tool and saved into pcap files. 

Table 2 shows the malicious activities performed. 

 
Table 2: Malicious Activities Description. 

Malicious Activity Tools Duration Pcap Files 

DoS/DDoS HOIC 3 Days 8 

Reconnaissance Nmap 1 Day 2 

 

 

3.2.2 Denial and Distributed of Service (DoS/ DDoS) Scenario 

Any fake flooding endeavor to compromise IoT/ IIoT network and service infrastructure is referred 

to as a DoS [59]. On several IoT and non-IoT devices in the setup SHS, attackers, including an IP address 

Device Type Devices Protocol Placement 

DESKTOP 7 Ethernet Close to the Router 

Android Mobile 7 802.11 (Wi-Fi) Wandering across the House 

Smart Hub 1 Ethernet Close to the Router 

Smart Switch 1 802.11 (Wi-Fi) Living Room 

Smart Lock 1 802.11 (Wi-Fi) Entrance Door 

IP Camera 1 802.11 (Wi-Fi) Entrance Door 

                  



of 10.177.1.108, performed HTTP flooding and TCP flooding from both inside and outside the network 

for arbitrary lengths of time. As the smart home system connected with a router having IP 192.168.1.1, a 

DoS attack was performed from outside the router by port forwarding. The targeted systems were made 

the victim of many DDoS attacks. Network and IoT devices that were infected with malware turned into 

a zombie or bots [60]. The attacker then gained remote control of a network of automated devices known 

as a botnet [61]. Attackers including IP 10.177.1.108, 10.10.38.224, and 192.168.1.145 performed HTTP 

flooding and TCP flooding on different IoT and non-IoT devices in the SHS from outside the network as 

well as within the network at random duration. 

3.2.3 Reconnaissance Scenario 

An attack known as a scanning assault, sometimes referred to as reconnaissance or probing, is the 

first step in the cyber death chain model or penetration testing [62]. This attack's goal was to gather victim 

systems' data, including system vulnerabilities and current IP addresses. On a variety of IoT and non-IoT 

devices in the SHS from outside the network, an attacker with IP 192.168.1.159 executed a Computer OS 

Fingerprint Probe, Network/Port scan, TCP Null scan, TCP SYNFIN scan, and TCP Xmas scan for a 

random amount of time. 

3.2.4 Validation of the IRIL-SHS dataset 

         To validate the IRIL-SHS dataset developed in this study, it was evaluated with random forest, 

decision tree and K-nearest neighbor classification models with 12 selected network features. The same 

technique was utilized on the publicly available dataset like UNSW-NB15 and KDD99. The motive of 

adopting these datasets was that (i) they do not contain record duplication while collecting modern 

network traffic, and (ii) they resolve the issue of imbalances between normal and attack observations. The 

UNSW-NB15 and KDD99 datasets both contain normal and malicious network traffic activity and have 

2,57,673 and 4,66,530 records in total, respectively. Each record is distinguished by 49 attributes, 

including class labels. The collected 12 attributes, which are common in IRIL-SHS, UNSW-NB15 and 

KDD99 datasets, were passed to the classification model after data was divided into a 70:30 ratio, with 

70% utilized for training and 30% afterwards used for testing. The classification techniques are 

implemented using the Google collaborative environment in Python language. Table 3 depicts the key 

difference in the output of classification model between the IRIL-SHS dataset and publicly available 

datasets to provide usefulness and correctness of the IRIL-SHS dataset.  
Table 3: Comparison of classification model results with publicly available dataset. 

 Random Forest Decision Tree K-Nearest Neighbour 

Dataset Accuracy Precision F1- 

Score 

Accuracy Precision F1- 

Score 

Accuracy Precision F1- 

Score 

IRIL-

SHS 

0.964 0.96 0.96 0.9239 0.93 0.92 0.9548 0.96 0.95 

UNSW-

NB15  

0.953 0.95 0.95 0.9445 0.94 0.94 0.952 0.96 0.95 

KDD99  0.955 0.95 0.95 0.952 0.95 0.95 0.945 0.95 0.95 

 

According to the results in table 3, random forest model performed the best on all performance metrics, 

indicating that it is the most effective model for predicting attack traffic. When compared to baseline 

dataset performance, the IRIL-SHS dataset outperforms, demonstrating the dataset's usefulness and 

correctness for addressing the challenge at hand. 

 

3.3. Comparison with Popular Security Datasets 

The design and development of credible datasets remain a key area of research to develop accurate 

intrusion detection methods able to identify and prevent threats/ attacks. Existing datasets, while useful 

in some contexts, present a number of problems including lack of consistently labelled data, lack of attack 

                  



variety such as DDoS attack from outside the network, redundancy of traffic, and the absence of ground 

truth [67]. This research study has carefully compared the IRIL-SHS dataset with other popular datasets 

namely KDD99 [63], TUIDS ISCX [64, 65], UNSW-NB15, and CICIDS2017 [66]. These datasets have been 

extensively used in many research studies to provide security solutions. The analysis showed that the 

KDD99 dataset is now obsolete and does not reflect current network traffic. The TUIDS ISCX, UNSW-

NB15, and CICIDS2017 [66] datasets were collected from actual situations and contain comprehensive 

packet capture with a range of security events. However, they lack heterogeneous data sources and traffic 

(normal and attack) from outside the network in consideration. In contrast, the IRIL-SHS dataset provides 

heterogeneous data sources (Table 1) with many malicious activities (Table 2) from both internal and 

external networks. The generated dataset captures authentic network traffic from actual networks of IoT 

devices created by router configuration and consists of heterogeneous data sources gathered from IoT 

device telemetry datasets, Windows and Linux-based datasets, and network traffic datasets. Table 4 

depicts the key differences between the IRIL-SHS dataset and other common datasets to provide a fair 

comparison. 
Table 4: Comparison of popular datasets & IRIL-SHS dataset. 

DS RNC RNT HDS FPC ONA MMS 

KDD99 True False False True False False 

TUIDS 

ISCX 

True True False True False True 

UNSW-

NB15 

True True False True False False 

CICIDS201

7 

True True False True True True 

IRIL-SHS True True True True True True 

Dataset: DS; Realistic Network Configuration: RNC; Realistic Network Traffic RNT; 

Heterogeneous Data Sources: HDS; Full Packet Captures: FPC; Outside the Network Attack: ONA; 

Many Malicious Scenarios: MMS 

4. Context-aware Threat Detection and Response Model 

The IRIL-SHS dataset gathered from the communication of various IoT devices in the proposed 

testbed setup is used in our approach. Our context-aware threat detection and response model consists of 

three major modules as illustrated below in Figure 7. 

 

                  



           
Figure 7: Context-aware Threat Detection and Response model. 

The contextual feature generation module contains the network and flow features extracted from the 

pcap to CSV files using NFStream and Tshark. After data preprocessing, we performed the feature 

selection to get the high-performance features. In the threat detection module, we used machine learning 

algorithms to validate the dataset and detect the threats accurately. The response module performed the 

dynamic rule writing against the detected attacked traffic.  

4.1 Contextual Features Generation Module 

The notion of context modeling, which is to represent the data obtained from the IoT devices and 

resources that may explicitly explain the system's behavior, is the foundation for the construction of the 

contextual feature-generating module [50]. By tracing the key information into a high-level context that is 

highly specific and accurate, the diversity of IoT device information may be characterized. The context 

mapping for the smart home system's hierarchical structure is shown in Figure 8 below. 

 

 

 
         Figure 8: SHS's Context Mapping Hierarchical Structure. 

The topmost hierarchy uses pairs in the following order to define the structure for the context [68]: 

Who: is  involved? 

What: is current the situation? 

How: they behave? 

Several context classes are formed in the second tier of SHS's context mapping to execute grouping 

methods on the IoT data. The classes created using grouping techniques, such as the sender context class, 

                  



are set up to accept the input of the following data: 1) the IP address, authentication data, and HTTP 

cookies of the sender, all of which are taken from the packet stream. 2) account info for individuals, 

obtained from the configuration log. 3) The sender's precise location, as determined by a GPS signal [50]. 

It is essential to note that if a device’s position is maliciously changed, like an IP camera captures traffic 

from a restricted database or a server room, its location context can be utilized in determining the threat 

or attack scenario. Furthermore, a trucking company that transports items throughout the country with a 

fleet of vehicles. Each vehicle is fitted with a GPS device and a telematics system that tracks the vehicle's 

location, speed, and other critical data. This contextual data can be utilized to determine the malicious 

scenario, such as sudden changes in the vehicle's route, unexpected stops or detours, or unusual driving 

behavior. The information from a real-world situation allows human-oriented decision-making by 

utilizing a number of machine-learning approaches such as feature extraction, learning, and inference. 

Finally, all class features containing network flow information are stored in a low-level hierarchy. 

Behavior sequence and behavior set are formed by the pair set of information captured in the traffic 

related to each other like Close Door number 1 D1C, Turn off Light number 1 L1O etc. If length of 

behavior sequence is 3 then we can get different pair set as {“D1C”, “L2O”, “D3O”}. Figure 9 shows the 

flow diagram for the contextual feature generation module. Figure 9 shows the flow diagram for the 

contextual feature generation module. This research used NFStream [64] and Tshark [65] to construct the 

features for the IRIL-SHS dataset.  

 

 
          Figure 9: Flow Diagram of Contextual Feature Generation Module. 

All features obtained from NFStream and Tshark were then combined to get complete possible 

information about the proposed context-aware smart home system. To get high-performance contextual 

features, a feature selection technique, explained in section 4.1.2, was utilized by consuming only relevant 

data, getting rid of the noise in the data, and passing them to the model. To make live and unconnected 

network data more comprehensible, NFStream, an open-source Python API library, allows simple and 

customizable feature conversion [66]. The library should act as a common network packet analytics 

platform for academics, enabling data repeatability between studies, according to the authors' main goal. 

The following advantages are provided by NFStream: 

1. Extraction of statistical features: 

Regarding feature engineering, NFStream provides both early flow features and post-mortem 

statistical features (such as the minimum, mean, standard deviation, and maximum packet size and inter-

arrival time) as well as a sequence of the first n packet sizes, inter-arrival times, and directions [66]. 

2. Flexibility: 

Extending NFStream is simple. The work is open-sourced, and the feature selection technique can be 

done via NFPlugins. 

 

Based on the configurations defined by NFStreamer (a driver process), new flow characteristics were 

developed. The driver's main responsibility is to set the entire workflow, which is mostly an arrangement 

                  



of concurrent metering tasks. The features that were extracted using NFStreamer are listed in Appendix 

A, Table A1. 

 

From the network pcap files, we retrieved 86 flow features/attributes using NFStream and stored 

them as a CSV file. Tshark is a function of Wireshark that is used to monitor network protocols and 

analyze traffic. Although Wireshark has limited export abilities, it can examine pcap files that record 

network data [67]. Besides static feature extraction, TShark offers a more versatile, potent export 

capability that can produce analytical, calculated data. We used the TShark discussions export option to 

retrieve several fundamental, traffic- and connection-based features [68]. We also used Tshark for 

extracting TCP, HTTP, and UDP information. The following command on the Kali Linux extracted TCP, 

HTTP, and UDP features. 

[tshark -r input.pcap.pcapng -T fields -e tcp.window_size -e tcp.flags -e tcp.len -e tcp.seq -e 

tcp.stream -e tcp.ack -e ip.ttl -e http.request -e udp.port -E header=y -E separator=, > output.csv] 

The features that were retrieved using TShark are listed in table 5. 

 
Table 5: Extracted Features using TShark. 

Feature Data Type Description 

tcp.window_size Integer TCP flow Window Size 

tcp.flags String TCP flags (SYN, FIN, URG, and RST) 

tcp.len Integer TCP packet length 

tcp.seq Integer TCP packet sequence 

tcp.ack Integer TCP packet acknowledged 

tcp.stream Integer TCP packet stream 

ip.ttl Integer Time to live for a packet 

http-request Integer Number of HTTP requests 

udp.port Integer UDP port number 

 

A total of 10 features, extracted by Tshark, and all files of these features were merged with the 

NFStreamer files having 86 features of different data types containing a total of 96 features set. These 

features were good enough for extracting context-aware features to provide a heterogeneous security 

system and model for SHS. All CSV files were labeled manually and merged into one file using a python 

script. It is important to highlight that each record, whether normal or attack, was tagged using an 

authentic tagging procedure. Manual tagging/labeling was done by stamping 0 to Normal traffic, 1 to 

DoS Attack traffic, 2 to DDoS attack, and 3 to Reconnaissance attack traffic. 

4.1.1 Preprocessing of Labeled Dataset 

The IRIL-SHS dataset contains 608,500 records of real-time traffic, including both attacks and 

normal events, with far more normal records than anomalous records. To avoid overfitting and examine 

the generalisation capacity of each model, all redundant records were eliminated from the dataset to 

reduce the imbalance impact. To address the imbalance issue in the dataset, an experiment was 

conducted where the performance of the proposed model was compared using the original dataset and a 

balanced dataset by utilizing oversampling and under-sampling techniques. Specifically, the synthetic 

                  



minority over-sampling technique (SMOTE) was used for oversampling and random under-sampling 

(RUS) for under-sampling. For oversampling, SMOTE was applied to the minority class in the dataset to 

create synthetic samples, resulting in a balanced dataset. For under-sampling, some samples were 

randomly removed from the majority class in the dataset to balance the dataset. The model was then 

trained using both the original and the balanced datasets and evaluated the performance using the same 

metrics.  

The experiment showed that the performance of the model improved significantly when using the 

balanced dataset compared to the original dataset. Notably, the accuracy improved from 88% to 99%, and 

the F1-score improved from 0.7 to 0.85. These results indicate that dataset imbalance can have a 

significant impact on the performance of the model and that addressing this issue using oversampling 

and under-sampling techniques can improve the overall performance. Converting categorical data into 

numerical information and removing any anomalies and incorrect data from the dataset are the first steps 

in the data pre-processing process. As a result, we encoded the categorical features using an ordinal 

encoder, thereby increasing the feature count.  

4.1.2 Contextual Features Selection  

Throughout this step, we selected a set of attributes that yielded the greatest performance. By 

lowering the number of features and removing unwanted or loud characteristics, feature selection speeds 

up training [69]. The Extra Tree classifier approach, an ensemble learning feature selection methodology 

also known as the Extremely Randomized Trees Classifier, is employed in this study as feature selection 

[70]. It aggregates the results from various pattern decision trees from a forest to display the outcomes of 

its classification. Random samples from the training dataset are used to construct each decision tree in the 

Extra Trees Forest. Then, a random number of K-featured samples are distributed to each decision tree 

test node. Using the GINI index or Information Gain, also known as feature importance, each decision 

tree selects the best features to differentiate between meaningful and irrelevant aspects of the data. This 

forest layout's features are presented in declining order of feature importance [71]. Each feature from this 

forest layout is arranged in descending order of feature relevance. The top K features are then chosen 

from this feature order, with the other features being ignored [72]. The following formula can be used to 

determine the entropy of a feature: 

                                 ( )   ∑        (  )
 
                                          (1) 

 

Where   is the number of distinct class labels and    is the probability that a class   exists in the 

dataset. In this study, the top 10 dataset features were chosen using information gain, shown in Figure 10. 

 

 
Figure 10: Comparison of Feature Importance. 

According to the figure, 10 features were chosen for the IRIL-SHS datasets, which represents an 86% 

reduction in the size of the feature set for the entire dataset. This results from the Extra Tree classifier 

                  



strategy selecting the pertinent features like packet TCP stream and window size values that indicate the 

propensity of cyberattacks to have distinct packet dimensions when contrasted to usual traffic, offering 

the most details about the class [73]. Table 6 illustrates the 10 contextual features that were chosen for all 

attack types with their importance. 

 
Table 6: Contextual Features Importance of IRIL-SHS Dataset. 

Selected Features Importance 

id 0.060025 

dst_ip 0.069980 

tcp.window_size 0.048890 

tcp.stream 0.047596 

bidirectional_max_piat_ms 0.050000 

src2dst_max_piat_ms 0.042230 

src2dst_syn_packets 0.030000 

bidirectional_duration_ms 0.037870 

requested_server_name 0.031120 

bidirectional_stddev_piat_ms 0.031120 

 

Table 6 lists the top 10 features that have an impact on our model. Identification, Destination IP, TCP 

window size, TCP stream, source to destination and bidirectional Inter-packet maximum time, Syn 

packets from source to destination, duration in both directions, Bidirectional standard deviation packet 

inter-arrival time and the requested server name which is most useful for indicating DoS, DDoS and 

Reconnaissance traffic classification. 

4.2 Threat Detection Module 

The second module of our research trains the various machine learning models that are utilized to 

identify malicious behaviors in SHS using contextual characteristics provided in the contextual features 

generation module as input. Many learning approaches are used to identify cybersecurity threats, 

including decision trees, random forests, naive Bayes, support vector machines, K-nearest neighbors, 

deep belief networks, artificial neural networks, and XG-Boost [73]. Decision Trees, Random Forests, K-

Nearest Neighbors, and XG Boost are the four techniques that have been considered. Each tactic is briefly 

discussed below. This approach aims to assess the effectiveness and performance of different machine-

learning approaches against distinct attack types. The data was divided into a 70:30 ratio, with 70% 

utilized for training and 30% afterward used for testing. The classification techniques are implemented 

using the Google collaborative environment in Python language. The libraries employed in this work 

include sklearn, pandas, matplotlib, and NumPy. 

 

 4.2.1 Decision Tree Classifier 

The decision tree functions by splitting the data points into a representation of (D), and each split is 

carried out in a way that maximizes the related features while minimizing informational entropy (E). The 

splits are known as leaves (L), and the terminal leaf is the last split [38]. We chose a minimum sample 

split of two, a maximum depth of ten, and a random state of zero for our decision tree classifier. Consider 

G to be the sample split metric that needs to be maximized. R is the possible range of values. Let   be a 

user-defined confidence value state and let n be the total number of training samples that are available. 

The classifier may be calculated as follows: 

 

                      ∑  √
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  4.2.2 Random Forest Classifier 

                  



The output of several machine learning algorithms is combined in ensemble learning, which 

improves predicted performance and makes use of additional machine learning algorithms. As a result, 

the random forest method incorporates many decision tree methods. Implementation of random forest 

involves the following steps: 

Step1: Choose B arbitrary data points from the practice set. 

Step 2: Building the decision tree connected to these B data points. 

Step 3: Decide how many trees to construct and repeat steps 1 and 2. 

Step 4: Forecast the category for each branch of the decision tree for a new data point, and then 

predict the category that received the majority of votes [39]. Class prediction of the random forest 

includes: 

 

                                                 
               *  ( )+ 

                                             (3) 

 

      4.2.3 K Nearest Neighbor Classifier 

The KNN algorithm determines how to assign a new data point (D) to one of the categories by using 

the subsequent steps. Step 1: Decide how many neighbors there will be; we chose K=7. Step 2: Using the 

Euclidean distance, get the K-nearest neighbors of the new data point. Step 3: Count the number of data 

points in each category among these K neighbors. The fourth step is to assign the new data point to the 

category with the greatest number of neighbors [36]. Euclidean distance (d) between sample   and    (l=1, 

2, 3, …, n) is defined as 

 

                     (     )   √(       )  (       )    (       )                         (4) 

 

 4.2.4 XG Boost Classifier 

Accuracy problems, data loss, and resulting discrepancies can all be managed via XG Boost. The 

following steps make up the XG Boost process. Step 1: A decision tree is initially created. Step 2: The 

majority decision is then examined in a Bagging operation to produce predictions. Step 3: Trees are 

independent; hence random forest is used to form forests. Step 4: Boosting is carried out to find losses (L). 

Step 5: Gradient boosting is used to overfit a dataset. Step 6: XG Boost offers parallel tree boosting (GBDT, 

GBM) [43]. 

 

After applying all classifiers, we got the Random Forest classifier classifying the attack traffic and 

normal traffic 99.177211% accurately. We got the forecast model that could distinguish between various 

sorts of traffic thanks to the machine learning analysis. We could now carry out several add-on tasks for a 

model trained to distinguish between good and bad traffic e.g.: 

 Based on the outcomes of the random forest, create extra firewall rules to block offending traffic. 

 Create IDS rules based on the outcomes of the random forest to identify malicious traffic. 

 Review logs or traffic captures regularly, reporting any high-priority malicious traffic that is 

found [74]. 

4.3 Response Module 

The final section of our study offers a straightforward set of rules for finding correlations in the 

information collected through our Random Forest model. By integrating these rules into already-in-use 

defenses like IDS, firewalls, specially-written detection scripts, or classification software, malicious traffic 

or data can be prevented from entering our SHS [74].  

For rules, we used the WEKA tool which is a collection of machine-learning techniques for data 

mine. Obtained data modeling, categorization, grouping, mining, and presentation techniques are all 

included. Weka is simple to use and can be expanded using Java programming [75]. 

JRip is indeed a WEKA version of RIPPER, a classifier method that tends to make use of its 

categories as they increase in size before generating basic rules set for a subclass. Every decision event in 

                  



the learning dataset is treated by JRip as a class, and it then generates a set of rules that apply to group 

individuals of that class. Once all classes have already been completed, it moves on to the next one and 

performs necessary operations [76]. This research work used JRip due to its prominence and widespread 

use in earlier studies for rule set generation [77, 78]. To differentiate between DoS, DDoS, Reconnaissance, 

and normal traffic, we obtained a total of 9 rules. Simple rules in the form of a tree outlined the metrics 

values that may be used to identify the sort of attack in the traffic. These rules aided in establishing the 

precise values to be included in the Suricata rules while creating an SHS prevention system. 

5. Results and Discussion 

Based on contextual features, the categorization model forecasts whether the incoming traffic will be 

harmful or benign. As the proposed model predicts the type of attacks and determines the correlation 

between the 10 variables. The chosen attributes showed a high correlation with a value near to or equal to 

-1 or 1. Figure 11 shows the Pearson correlation matrix of the selected features for our dataset. 

 

 
Figure 11: Pearson Correlation of Contextual Features. 

The evaluation of performance is typically an important factor in machine learning. Numerous 

indicators have been considered when evaluating the model used in this research [79]. To measure the 

model's performance in the multi-class classification, we employed metrics for precision, recall, F1 score, 

and accuracy. Precision is the number of positive predictions divided by the total number of positive class 

values predicted. Recall is the number of positive predictions divided by the number of positive class 

values in the test data. F1 score is the weighted average of precision and recall while accuracy is defined 

as the number of correct predictions, including true positive (TP) and true negative (TN) predictions, 

divided by the total number of predictions. A low recall could signify a high proportion of false negative 

(FN) predictions, whereas a low accuracy could signify a high proportion of false positive (FP) 

predictions. A high F1 score could suggest low FP and low FN predictions because it combines precision 

and recall [80]. 

                  



True Positive (TP) is the number of anomaly traffic that has been identified after an attack. True 

Negative (TN) is the number of detectable normal traffic that is considered to be benign traffic (normal). 

False Positive (FP) is the number of anomaly traffic (attacks) that have been identified as benign traffic 

(normal). False Negative (FN) is the quantity of detectable benign traffic that is identified as attack traffic 

(attack). Table 7 provides definitions of the measures in terms of positives and negatives. 
Table 7: Metrics Definitions. 

Precision 
  

     
 

Recall 
  

     
 

F1 Score     
                 

                
 

Accuracy 
     

           
 

 

This research study represented multi-class classification using the confusion matrix of all models 

applied to the dataset. Table 8 shows the confusion matrix comparison of the threat detection machine 

learning module. 
Table 8: Confusion Matrix Comparison of Threat Detection Module. 

Decision Tree Classifier 

Actual/Predicted Normal DoS DDoS Reconnaissance 

Normal  17787 223 47 81 

DoS  480 71044 239 5 

DDoS  617 1055 85308 3 

Reconnaissance 486 67 21 5087 

Random Forest Classifier 

Actual/Predicted Normal  DoS  DDoS  Reconnaissance 

Normal  17968 86 52 32 

DoS  306 71340 107 15 

DDoS  471 108 86385 19 

Reconnaissance 259 25 22 5355 

K Nearest Neighbor Classifier 

Actual/Predicted Normal  DoS  DDoS Reconnaissance 

Normal  17362 247 195 334 

DoS  436 71071 252 9 

DDoS  662 206 86105 10 

Reconnaissance 461 26 39 5135 

XG Boost Classifier 

Actual/Predicted Normal  DoS  DDoS  Reconnaissance 

Normal  18040 12 12 74 

DoS  601 70958 196 13 

DDoS  760 763 85453 7 

Reconnaissance 755 6 10 4890 

 

The classification of legitimate packets and malicious packets from three different attack groups is 

accomplished using the random forest model with high accuracy of 99.177%. The model can detect 99% 

of the genuine regular packets in the usual stream. The model can detect more than 98% of malicious 

packets as detection of the relevant type for DoS, DDoS, and reconnaissance attacks, but it cannot 

                  



discriminate packets of DDoS attacks, as 10.9% of DDoS traffic was classified as normal traffic,) because 

of sufficient training packets for DDoS attacks. So, enhancing the number of packets will help detect 

attacks accurately. Precision, Recall, and F1 Score comparison of our threat detection module is shown in 

Figure 12. 

 

 
Figure 12: Threat Detection Model Comparison. 

It is evident from the trials and outcomes above that there is a trade-off between being able to 

identify destructive behaviors and upholding a low percentage of false alarms (FPR). Most of the time, 

Random Forest obtained the lowest false positive rates, which explained its successful F1-score 

performance. The comparison of the accuracy we achieved in our models is shown in figure 13. 

 

 
             Figure 13: Comparison of the different machine learning algorithms. 

When compared to these machine learning techniques, Random Forest's performance exhibited a 

notable improvement. The best KNN reached 98.4239% accuracy, whereas the Decision Tree classifier 

and XG Boost obtained 98.1791% and 98.2421% accuracy, respectively. The Random Forest model, 

however, has the highest accuracy of 99.1772%. 

5.1 Comparison with the previous study 

The most pertinent research in the field of machine learning is described in [69], where the authors 

used the UNSW NB15 data set to apply supervised machine learning (ML) methods such Random Forest 

75

80

85

90

95

100

DoS DDoS Recc DoS DDoS Recc DoS DDoS Recc DoS DDoS Recc

Decision Tree Random Forest K Nearest Neighbor XG Boost

Threat Detection Results 

Precision Recall F 1 score

98.1791 

99.1772 

98.4239 
98.2421 

97.5

98

98.5

99

99.5

Decision
Tree

Random
Forest

K Nearest
Neighbor

XG Boost

Models Accuracy 

                  



(RF), Support Vector Machine, and Artificial Neural Networks to the clusters. A dataset for networking 

attacks is UNSW-NB15 and there are 9 distinct assaults in it, including malware, open ports, DoS attacks, 

and packet sniffing. Crude datagrams are included in the collection. The training set has 175,341 data, 

whereas the test set contains 82,332 data of the two main types, attacked and ordinary. They used 37 

features and divided them into clusters based on the MQTT and TCP protocol types. Using the random 

forest classifier, they were able to classify several classes with 97.37% accuracy. We have applied their 

techniques of data preprocessing and feature selection on the IRIL-SHS dataset to validate and compare 

their results with the proposed context-aware threat detection model. Following table 9 describe the 

comparison of context-aware and simple feature selection for Random Forest Model. 

 
Table 9: Comparison of classification rates with existing approach. 

Paper Dataset Feature Selection 
Random Forest Model 

Results 

[69] UNSW NB15 
Feature importance technique 

using RF 
97.37% accuracy 

IRIL-SHS Dataset IRIL-SHS 
Feature importance technique 

using RF 
97.99% accuracy 

Proposed Context-
aware Threat 

Detection Model 

IRIL-SHS 
GINI index or Information Gain 

using DT 
99.1772% accuracy 

 

By applying the developed IRIL-SHS dataset to the straightforward machine learning model, as in 

the prior study without integrating context aware features, 97.99% accuracy was obtained against the 

random forest model. However, the proposed context-aware threat detection model was improved by 

achieving 99.1772% accuracy. 

For the response module, nine rules were gained using JRip classifier for the developed dataset. The 

best feature set was obtained with defined values against each feature using the JRip classifier [70], which 

is beneficial for generating Suricata signatures. For instance, if the bidirectional duration is less than or 

equal to 94 and the bidirectional maximum packet inter-arrival time is greater than or equal to 13, and the 

destination IP is 877, and the source to destination maximum packet inter-arrival time is less than or 

equal to 0, the traffic is reconnaissance and should be blocked from entering the smart home system. 

                  



 
                         Figure 14: JRip Rules of IRIL-SHS Dataset. 

 Using these metrics, we made some Suricata emerging threats rules for our prevention system as 

shown in figure 14. The IRIL-SHS dataset is based on the same benchmark datasets, KDD99, TUIDS ISCX, 

UNSW-NB15, and CICIDS2017. It offers a variety of data sources and traffic, including a lot of malicious 

actions from both internal and external networks. The conclusion section discusses the stages of Random 

Forest model deployments on the IRIL-SHS dataset and how contextual feature generation, and transfer 

learning improve threat detection accuracy to 99.177%. Based on the generated Random Forest model, the 

conversion rules will be developed in our response module to automatically generate Suricata signatures. 

7. Conclusion and Future Work 

For diverse varieties of online threats, various learning models are applied. In contrast, limited 

researchers have sought to draw attention to the limitations that machine learning techniques encounter. 

To test the most recent developments in machine learning for cyber-attacks, we observed and advised 

that an inclusive benchmark dataset which would not only include data from the heterogeneous smart 

IoT devices but also attack data from internal as well as external network should be created. This dataset 

was then used for context-aware feature generation in the random forest model, which conclusively 

showed that the accuracy of threat identification on the IRIL-SHS dataset was increased. When context-

aware results are considered, the system obtained a high rate of detection and level of precision. Out of 

the four ML algorithms, RF performed better than the others by consistently achieving excellent detection 

                  



performance and F1-score with low false positive rates. To prevent malicious traffic from accessing the 

smart home system, this study suggested rule-set generation from the open-source tool, Suricata. To add 

emerging threat rules into Suricata for system defense, JRip rules helped to get the metrics values. This 

research study acknowledges the limitations of the performance of the developed machine learning 

model against a limited set of attack types. While the researchers believe that the results demonstrate the 

robustness of the model against the attacks that were tested, they also recognize that there may be other 

types of attacks that were not included in the intensive experiments. Additionally, as they rely on 4-tuple 

information, consisting of source and destination IP addresses and ports, the model may not be able to 

extract additional features like payload or application layer information from the encrypted traffic. 

Further research is needed to fully evaluate the performance of the proposed model in real-world 

scenarios where a variety of attack types may be present along with advancements in encryption and 

decryption technologies to improve the ability to extract features from encrypted traffic for critical 

analysis. Based on the real-time IRIL-SHS dataset using IoT devices, future studies can also concentrate 

on generating the intended Industry 4.0 dataset which could include data from industrial IoT devices like 

distributed control systems (DCS), programmable logic control (PLCs) and gateways with attack data like 

Modbus protocols attacks etc., and from an encrypted traffic the feature extraction would be a unique 

task. As the presented model performs well for smart homes and small offices, it can also perform 

effectively for industry 4.0 dataset. In future, based on various threat scenarios and zero-day attacks, we 

also intend to enhance our contextually aware model for the industry 4.0 dataset. 

Appendix A 

Table A1: Extracted Features Using NFStreamer. 

NFStream Features Data 

Types 

Explanation NFStream Features Data 

Types 

Explanation 

id  Data Flow indicator expiration_id Data 
Flow expiration 

trigger identifier.  

src_ip  String 
String 

representation of 

the source IP 

address. 

src_mac  String 
String 

representation of 

source MAC 

address. 

src_oui  String 
String 

representation of 

the source 

organization 

unique identifier. 

src_port  Integer 
Port used for the 

transport layer. 

dst_ip  String 
String 

representation of 

the destination IP 

address. 

dst_mac  String 
String 

representation of 

destination MAC 

address. 

dst_oui  String 
String of 

destination 

organization 

unique identifier. 

dst_port  Integer 
Destination Port 

used for the 

transport layer. 

protocol  Integer 
Protocol for the 

transport layer. 
ip_version  Integer IP address 

version 

vlan_id  Integer 
Identifier for a 

virtual LAN. 
biD_first_seen_ms  Integer 

Millisecond 

timestamp on the 

first bidirectional 

                  



flow packet. 

biD_last_seen_ms  Integer 
Millisecond 

timestamp on the 

last bidirectional 

flow packet. 

biD_duration_ms  Integer 
Milliseconds of 

flow in both 

directions. 

biD_packets  Integer 
Flow accumulator 

for bidirectional 

packets. 

biD_bytes  Integer 
Bi-directional 

bytes 

accumulator flow. 

s2d_first_seen_ms  Integer 
Timestamp on the 

initial flow 

src2dst packet in 

milliseconds. 

s2d_last_seen_ms  Integer 
Timestamp on the 

last flow src2dst 

packet in 

milliseconds 

s2d_duration_ms  Integer 
Duration of the 

flow src2dst in 

milliseconds. 

s2d_packets  Integer 
Src2dst flow 

packet 

accumulation. 

s2d_ bytes Integer 
Flow src2dst 

bytes 

accumulator. 

d2s_first_seen_ms  Integer 
Millisecond 

timestamp on the 

initial flow 

dst2src packet. 

d2s_last_seen_ms  Integer 
Millisecond 

timestamp on the 

last flow dst2src 

packet. 

d2s_duration_ms  Integer 
Milliseconds of 

flow between 

dst2src. 

d2s_packets  Integer 
Accumulator for 

dst2src packet 

flow. 

d2s_bytes  Integer 
Flow dst2src 

bytes 

accumulator. 

app_name  String 
Application name 

found by nDPI. 
app_category_name  String 

App class name 

found by nDPI. 

app_is_guessed  Integer 
Set if detect 

result relied on a 

port-based guess 

or just on 

dissection. 

req_server_name  String 
Requested server 

name (SSL/TLS, 

DNS, HTTP). 

client_fingerprint  String 
Client fingerprint 

(DHCP 

fingerprint for 

DHCP, JA3 for 

SSL/TLS and 

HASSH for SSH). 

server_fingerprint  String 
User Agent 

Identifier for 

QUIC or 

extracted user 

agent for HTTP. 

content_type  String 
HTTP content 

type extracted. 
biD_min_ps  Integer 

Flow bidirectional 

min packet size. 

biD_mean_ps  Float 
Flow bidirectional 

mean packet size.  
biD_stdev_ps  Float 

Flow bidirectional 

packet size 

sample standard 

deviation. 

biD_max_ps  Integer 
Flow bidirectional 

max packet size. 
s2d_min_ps  Integer 

Flow src2dst min 

packet size. 

s2d_mean_ps  
Float Flow src2dst 

mean packet size. 
s2d_stdev_ps  Float 

Flow src2dst 

packet size 

sample standard 

                  



deviation. 

s2d_max_ps  Integer 
Flow src2dst max 

packet size. 
d2s_min_ps  Integer 

Flow dst2src min 

packet size. 

d2s_mean_ps  Float 
Flow dst2src 

mean packet size. 
d2s_stdev_ps  Float 

Flow dst2src 

packet size 

sample standard 

deviation. 

d2s_max_ps  Integer 
Flow dst2src max 

packet size. 
biD_min_piat_ms  Integer 

Flow bidirectional 

min packet inter 

arrival time. 

biD_mean_piat_ms  Float 
Flow bidirectional 

mean packet inter 

arrival time. 

s2d_stdev_piat_ms  Float 
Flow src2dst 

packet inter 

arrival time 

standard 

deviation. 

biD_stdev_piat_ms  Float 
Flow bidirectional 

packet inter 

arrival time 

sample standard 

deviation. 

s2d_max_piat_ms  
Integer Flow src2dst 

maximum packet 

inter arrival time. 

biD_max_piat_ms  
Integer Flow bidirectional 

maximum packet 

inter arrival time. 

d2s_min_piat_ms  
Integer Flow dst2src 

minimum packet 

inter arrival time. 

s2d_min_piat_ms  
Integer Flow src2dst 

minimum packet 

inter arrival time. 

d2s_mean_piat_ms  Float 
Flow dst2src 

mean packet inter 

arrival time 

s2d_mean_piat_ms  Float 
Flow src2dst 

mean packet inter 

arrival time. 

d2s_stdev_piat_ms  
Float Flow dst2src 

packet inter 

arrival time 

standard 

deviation. 

d2s_max_piat_ms  Integer 
Flow dst2src 

maximum packet 

inter arrival time. 

s2d_cwr_packets  Integer 
Flow src2dst cwr 

packet 

accumulators. 

biD_syn_packets  Integer 
Flow bidirectional 

syn packet 

accumulators. 

s2d_ece_packets  Integer 
Flow src2dst ece 

packet 

accumulators. 

biD_cwr_packets  Integer 
Flow bidirectional 

cwr packet 

accumulators. 

s2d_urg_packets  Integer 
Flow src2dst urg 

packet 

accumulators. 

biD_ece_packets  Integer 
Flow bidirectional 

ece packet 

accumulators. 

s2d_ack_packets  Integer 
Flow src2dst ack 

packet 

accumulators. 

biD_urg_packets  Integer 
Flow bidirectional 

urg packet 

accumulators. 

s2d_psh_packets  Integer 
Flow src2dst psh 

packet 

accumulators. 

biD_ack_packets  Integer 
Flow bidirectional 

ack packet 

accumulators 

s2d_rst_packets  Integer 
Flow src2dst rst 

packet 

accumulators. 

                  



biD_psh_packets  Integer 
Flow bidirectional 

psh packet 

accumulators 

s2d_fin_ Integer 
Packets Flow 

src2dst fin packet 

accumulators. 

biD_fin_packets  Integer 
Flow bidirectional 

fin packet 

accumulators. 

d2s_syn_packets  Integer 
Flow dst2src syn 

packet 

accumulators. 

s2d_syn_packets  Integer 
Flow src2dst syn 

packet 

accumulators. 

d2s_cwr_packets  Integer 
Flow dst2src cwr 

packet 

accumulators. 

d2s_urg_packets  Integer 
Flow dst2src urg 

packet 

accumulators. 

d2s_ece_packets  Integer 
Flow dst2src ece 

packet 

accumulators. 

d2s_ack_packets  Integer 
Flow dst2src ack 

packet. 
d2s_rst_packets  Integer 

Flow dst2src rst 

packet. 

d2s_psh_packets  Integer 
Flow dst2src psh 

packet. 
d2s_fin_packets  Integer 

Flow dst2src fin 

packet. 
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