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Abstract 8 

The discharge flow rate beneath sheet plies is an essential parameter in designing these water 9 

retaining structures. This paper presents a unified framework for modeling and predicting discharge 10 

flow rate using an evolutionary-based polynomial regression technique. EPR (Evolutionary 11 

Polynomial Regression) is a data-driven method based on evolutionary computing to search for 12 

polynomial structures representing a system. The input parameters in the modeling procedure 13 

included the sheet pile height, upstream water head, and the hydraulic conductivity anisotropy ratio. 14 

Due to ever-increasing demand for water, a widely held view on predicting and controlling the 15 

available water behind reservoirs, dams, barrages, and weirs is of vital importance. To this end, the 16 

sheer novelty of the current study has been worn off through the development of a comprehensive 17 

model to predict the flow rate considering the most effective variables in the seepage issue. To the 18 

best of our knowledge, the research conducted in the literature has yet to cover the whole seepage 19 

problem using a comprehensive database extracted by numerical methods; thus, a comprehensive 20 

finite element-based artificial database including 1000 data lines was created using the Scaled 21 

Boundary Finite Element Method (SBFEM) by simulating seepage beneath sheet plies covering a 22 

considerably wide range of seepage-related real-world values. The database was then employed to 23 

develop and validate the EPR flow rate prediction model. Data were divided into training (used for 24 
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creating the models) and testing (for validating the developed models) data based on a statistical 25 

process. The procedure for preparing the data and developing and validating the models is presented 26 

in detail in this paper. The main advantage of the proposed models over a conventional and neural 27 

network and most GP (Genetic Programming)-based constitutive models is that they provide the 28 

optimum structure for the material constitutive model representation as well as its parameters, 29 

directly from raw experimental (or field) data. EPR can learn nonlinear and complex material 30 

behavior without any prior assumptions on the constitutive relationships. The proposed algorithm 31 

captures and transparently presents relationships between contributing parameters in polynomial 32 

expressions providing the user with a clear insight into the problem. EPR-based model predictions 33 

demonstrated an excellent agreement with the unseen simulated data used for validating the 34 

developed model. A parametric study on the presented models was conducted to investigate the 35 

effects of the contributing parameters on model predictions and the consistency of the parameter 36 

relationships with the database. Results of the parametric study showed that the effects of variations 37 

in the contributing parameters on EPR predictions are in line with the expected behavior. The merits 38 

and advantages of the proposed technique are discussed in the paper. 39 

 40 
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1. Introduction 42 

Desirable safety of the water-retaining structures is identified as the top priority of geotechnical 43 

research attention which is foundational to broader research in the field. The discharge flow rate at 44 

the downstream side of a water retaining structure, as a seepage output quantity, remains the central 45 

part of the safe design of the structure. The high values of the discharge flow rate can endanger the 46 

water retaining structure stability. Use should be made of installed vital systems called sheet piles 47 

for reducing the values of downstream discharge flow rate at a flow region or under the foundation 48 
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of a dam. The seepage beneath the sheet pile follows a specific differential equation in calculating 49 

discharge flow rate – similar to most seepage-related problems in geotechnical engineering. Beyond 50 

that, researchers for solving the seepage governing equation and computing the flow rate discharge 51 

have employed various methods. The analytical and numerical methods have been performed more 52 

broadly. 53 

A variational iteration method with fractional derivatives as an analytical method to solve the 54 

nonlinear seepage flow into porous media was suggested by He [1]. Handling a finite difference 55 

method based on boundary-fitted coordinate transformation to analyze the steady-state seepage 56 

with a free surface in the isotropic and homogeneous embanked dam was carried out by Jie et al. [2]. 57 

In analyzing the two and three-dimensional seepage problems using finite difference methods, so-58 

called boundary polynomial interpolation was adopted by Fukuchi [3]. Relying on two practical 59 

approaches suggested in the literature, Bresciani et al. [4] applied a finite volume-based method to 60 

find out the solutions of groundwater flow through earth dams. Their proposed methods merged the 61 

most beneficial advantages of adaptive and fixed mesh techniques. A coupled finite element-based 62 

method to model the transient seepage flow beneath a concrete dam has been employed by Ouria et 63 

al. [5]. Kazemzadeh-Parsi and Daneshmand [6] have exerted a smoothed fixed grid finite element 64 

method to analyze three-dimensional unconfined seepage of complex geometries, heterogeneous, 65 

and anisotropic porous media. Rafiezadeh and Ataie-Ashtiani [7] developed a coded computer 66 

program based on the boundary element method to analyze three-dimensional confined seepage 67 

problems under dams. The unconfined seepage problems by the natural element method have been 68 

simulated by Jie et al. [8]. Mesh-free technique to analyze the free-surface seepage problem as a 69 

moving-boundary problem has been exercised by Zhang et al. [9]. The node locations were arbitrary 70 

in this meshless method letting the seepage problems with free surface be appropriately analyzed. 71 

Although analytical techniques cannot straightly apply to complicated geometries and complex 72 

boundary conditions, these methods, however, can provide exact solutions to problems [1]. 73 
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Preparing approximate analysis satisfying high accuracy to deal with the more complex issues is 74 

conducted by numerical methods. The approaches considered to be mesh-based, such as finite 75 

difference, finite volume, and finite element, are implemented to discretize the whole problem 76 

domains. An essential disadvantage of most mesh-based methods is that a domain could be 77 

encountered, in cases, consisting of singular points and sharp corners, making the further progress 78 

of numerical-based techniques towards the desired solution(s) numerically impossible [9-11].  79 

A newly developed semi-analytical method called Scaled Boundary Finite Element Method 80 

(SBFEM), proven to be capable of solving different types of differential equations, was proposed by 81 

Song and Wolf [12] to transcend the limits of some existing recent approaches. The SBFEM has 82 

merged important excellences of finite element and boundary element methods. Bazyar and Graili 83 

[13] analyzed the confined seepage problems beneath the dams and the sheet piles in steady-state 84 

conditions in anisotropic media using SBFEM. What was conducted in another part of Bazyar and 85 

Graili [13] study was a successful attempt to solve unconfined flow problems using an unknown free 86 

surface through the dam body. The SBFEM for analyzing the transient seepage problems in bounded 87 

and unconfined domains was extended by Bazyar and Talebi [14]. The proposed method was capable 88 

of solving the seepage problem for heterogeneous and anisotropic porous media without extra 89 

endeavor. Reliability analysis of seepage in several numerical problems through stochastic SBFEM 90 

was handled by Johari and Heydari [15]. Su et al. [16] utilized drainage substructure and nodal virtual 91 

flux method to simulate drainage holes and analyze complex seepage fields. The advantages of the 92 

SBFEM outweigh other methods. Hence, it seems to be a practical method to analyze the seepage 93 

beneath sheet plies and to acquire the discharge flow rate. 94 

Despite the efficiencies of the SBFEM in obtaining the discharge flow rate, a separate analysis 95 

will be needed for discharge flow rate computing in every single condition. Furthermore, the user 96 

must be fully acquainted with the analysis procedure in order to be able to effectively and efficiently 97 

analyze the seepage problem beneath the sheet piles and subsequently acquire the discharge flow 98 
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rate. To overcome this downside, prediction models have been developed that directly relate 99 

quantities such as discharge flow rate to their contributing parameters which removed the need for 100 

tedious use of any analytical, numerical, or laboratory methods to calculate the discharge flow rate 101 

as part of solution procedures. Data-driven approaches, regression methods, artificial intelligence, 102 

and other soft computing techniques have been recently attracted several researchers to generate 103 

prediction equations for the complicated behavior of various systems. Artificial Neural Networks 104 

(ANN) [17, 18], Adaptive Neuro-Fuzzy Inference System (ANFIS) [19, 20], Ant Colony Optimization 105 

(ACO) [21], Evolutionary Polynomial Regression (EPR) [22], Genetic Algorithm (GA) [23-25], Genetic 106 

Programming (GP) [26-28], Genetic-Based Neural Network (GBNN) [29, 30], and Gene Expression 107 

Programming (GEP) [31-34] can be mentioned as the most conventional soft computing and 108 

heretofore outstanding contributions in various civil engineering problems. 109 

In this contribution, an Evolutionary Polynomial Regression (EPR) model is developed to 110 

predict discharge flow rate under sheet piles. The EPR models developed in this study were produced 111 

based on a large database comprising 1000 lines of artificial data retrieved from using the SBFEM 112 

method simulating real-world conditions of seepage under sheet piles to provide a powerful, 113 

representative, and comprehensive model that could be applied to the situations similar to the 114 

conditions underlain in the comprehensive model development database used.  115 

2. Evolutionary polynomial regression (EPR) 116 

Evolutionary Polynomial Regression (EPR) is a data-driven method based on evolutionary 117 

computing to search polynomial structures representing a system. A general EPR expression may be 118 

presented as: 119 
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where y is the estimated vector of the output of the process; aj is model parameters; F is a function 120 

constructed by the EPR process; X is the matrix of input variables; f is a function defined by the user, 121 

and n is the number of terms of the target expression. The general functional structure is constructed 122 

from elementary functions by EPR using a Genetic Algorithm (GA) strategy. The GA is employed to 123 

select the useful input vectors from X to be combined. The building blocks (elements) of the structure 124 

of F are defined by the user based on an understanding of the physical process. While the selection 125 

of feasible structures to be combined is made through an evolutionary process, the parameters aj are 126 

estimated by the least square method (Fig. 1). 127 

Start

Initialize the input matrix

Create initial population of exponent 
vectors, randomly

Assign exponent vectors to the 
corresponding column of the input matrix
(To create a population of mathematical 

structure)

Evaluate coefficient using least square 
method

(To create a population of equations)

Evaluate fitness of equations in the 
population

Is the termination criterion satisfied ?

Select individuals from mating pool of 
exponent vectors

Select two exponent vectors
(To perform crossover)

Select one exponent vector
(To perform mutation)

Create offspring generation of exponent 
vectors

GA tool

No

Output resultsYes

END

 128 

Fig. 1. Typical flow diagram for the EPR procedure 129 
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In this technique, the combination of the genetic algorithm to find feasible structures and the least 130 

square method to find the appropriate model parameters for those structures implies some 131 

advantages. In particular, the GA allows a global exploration of the error surface relevant to 132 

specifically defined objective functions. By using such objective functions some criteria can be 133 

selected to be satisfied through the search process. These criteria can be set in order to (a) avoid the 134 

overfitting of models, (b) push the models towards simpler structures, and (c) avoid unnecessary 135 

terms representative of the noise in data. EPR avoids over-fitting by penalizing the number of inputs 136 

involved in structures (model complexity); controlling the constant values whose term may describe 137 

noise when the related constant is close to zero, and controlling the variance of EPR terms with 138 

respect to noise variance in data which is estimated by model residuals [35]. A useful feature of EPR 139 

is the high level of interactivity between the user and the methodology. The user physical insight can 140 

be used to make hypotheses on the elements of the target function and on its structure (Equation 141 

(1)). Selecting an appropriate objective function, assuming pre-selected elements in Equation (1) 142 

based on engineering judgment and working with dimensional information enable refinement of 143 

final models [22].  144 

Before starting the evolutionary procedure, a number of constraints can be implemented to control 145 

the structure of the models to be constructed, in terms of length of the equations, type of functions 146 

used, number of terms, range of exponents, number of generations etc. It can be seen that there is 147 

great potential in achieving different models for a particular problem which enables the user to gain 148 

additional information. By starting to apply the EPR procedure, the evolutionary process starts from 149 

a constant mean of output values. By increasing the number of evolutions, it gradually picks up the 150 

different participating parameters in order to form equations representing the constitutive 151 

relationships. Each model is trained using the training data and tested using the testing data [22, 35].  152 

 153 
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3. Data preparation using SBFEM 154 

The EPR models developed in this study were produced based on an extensive database including 155 

1000 lines of synthetic data retrieved from the SBFEM method simulating possible scenarios under 156 

various boundary and real-world conditions of seepage under sheet piles using a robust, 157 

representative, and comprehensive model. Fig. 2 shows the geometry and the boundary conditions 158 

of the problem domain divided into non-uniform subdomains. The sheet pile is considered in the 159 

middle of the modeling domain. A 20.0m by 40.0m horizontal saturated soil layer is modeled as the 160 

domain of the problem. 161 

 

Fig. 2. The geometry of the model 

The preciseness and versatility of the model used to produce the data based on which this research 162 

was conducted are clarified by comparing the results of SBFEM with those of FEM. For this purpose, 163 

an FEM code was developed. The domain discretization used for both models is shown in Fig. 3. The 164 

domain is discretized into 450 subdomains for SBFEM.  The scaling centers related to corresponding 165 

subdomains, are located exactly at the geometry center. The contour of potential lines for the results 166 

of SBFEM and FEM is demonstrated in Fig. 4. The results indicated great compatibility between the 167 

results of SBFEM and FEM, a strong testimony for the accuracy and the reliability of the generated 168 

artificial data used in this study. 169 
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                                         (a)                                                                                            (b)                    171 

Fig. 3. Domain discretization of (a) SBFEM, (b) FEM 172 

 173 

Fig. 4. The contour of potential lines 174 

4. Developing the EPR model 175 

In pattern recognition procedures in general, for instance neural network, fuzzy logic, or genetic 176 

programming, the model construction is normally based on adaptive learning over several cases. The 177 

performance of the developed model is then evaluated using a validation data set which has not been 178 

used/participated in the model development process. In evolutionary-based modeling, how the data 179 

are divided into training and validation sets has a significant effect on the results [36, 37].  180 
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The developed model could be  applied to situations similar to the conditions underlain in the 181 

comprehensive model development database. Three input parameters with biggest influence on the 182 

seepage results are selected, including sheet pile height (D), upstream water level (H), and hydraulic 183 

conductivity anisotropy ratio of deposit materials (K). The output parameter is considered as the 184 

normalized flow rate QNor. The seepage problem is an elastic problem and based on seepage equations 185 

the only soil parameter that is involved in solving the problem is the infiltration coefficient. From the 186 

geometrical point of view, upstream water level (H) and Sheet pile height (D) are the most influencing 187 

parameters, and the modelling dimensions will have little effect on the results. Results from previous 188 

studies [40] emphasize that the sheet pile height has greater effect on the total seepage discharge 189 

compared to any other location-related parameter that may affect seepage. The parameter ranges in 190 

this study are considered to fall within the expected range for small to medium sheet piles [41] that 191 

are most used in the industry. However, the EPR model has the capability to be retrained if different 192 

ranges of parameters were the subject of interest or in case any complementary data becomes 193 

available to make sure the model stays relevant and applicable to the considered newly emerging 194 

scenarios. Table 1 states the range of parameters for the input and output parameters in this 195 

research. 196 

Table 1. Parameters involved in the developed EPR model 197 

 198 

 199 

 200 

 201 

 202 

 203 

Parameters Range 

Input parameters 

Sheet pile's height (D) 0.25-10 m 

Upstream water level (H) 1-5 m 

Anisotropy ratio of deposit materials (K) 0.2-1 

Output parameter 

Normalized flow rate QNor 1.42⨯10-6 – 8.54⨯10-5 
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The training of the EPR resulted in the development of few equations. Of these, some equations did 204 

not include the effect of all contributing parameters. Among the remaining equations, the most 205 

appropriate and efficient one based on the model performance (fitness) and complexity was selected 206 

as the final model. Equations 2 presents the developed EPR model. 207 

𝑄𝑛𝑜𝑟 = −1.24𝐷3𝐻 + 2.47𝐷2𝐻 − 1.64𝐷𝐻 − 0.17𝐷𝐾 + 0.23𝐻𝐾 + .44𝐻 + 0.14𝐾 + 0.02 (2) 

The D, H, and K are the cut-off depth, the upstream/upper head of water, and the anisotropy ratio 208 

(kx/ky) of a soil deposit respectively. Fig.5 shows the normalized flow rate predicted by EPR against 209 

the data used to develop the EPR model (training data).  210 

 211 

In this study, the dataset was split into several random combinations of training and validation sets 212 

until a robust representation of the whole population was achieved for both training and validation 213 

sets. Statistical analysis was performed on the input and output parameters of the randomly selected 214 

training and validation sets to choose the most robust representation. This was to ensure that the 215 

statistical properties of the selected data in each of the subsets (training or testing) are as close as 216 

possible to the other, and the training and testing subsets represent the same statistical population. 217 

Of the 1000 available data sets, 80% were used to train EPR. The remaining 200 (20%) was chosen 218 

to validate the developed model, meaning that these sets were unseen to EPR during the model 219 

development processes. The ratio on which the data is divided into training and testing subsets is 220 

chosen to stay consistent and comparable with the traditional approach in machine learning research 221 

[22, 36]; however, there is no limitation in EPR approach in choosing any ratio and depending on the 222 

data availability and application this could change. Many possibilities emerged, enabling the desired 223 

combination of the training and testing data. Therefore, minimum, maximum, mean, and standard 224 

deviation were calculated for all the contributing parameters for the training and testing datasets for 225 

possible cases. The one point in which the standard deviation and mean values were the closest for 226 
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the training and testing data was chosen for training and testing stages in the EPR model 227 

development process. In this way, the most statistically consistent combination was used to construct 228 

and validate the EPR model.  229 

 230 

 231 

Fig. 5: Predicted vs. SBFEM-based data used to train EPR model 232 

 233 

Fig. 6: Predicted vs. SBFEM-based data used to validate EPR model 234 
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The level of accuracy at each stage of the modelling process was evaluated based on the coefficient 235 

of determination (COD) i.e., the fitness function defined as [22, 35]: 236 

 237 
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 238 

where aY  is the actual output value; pY  is the EPR predicted value and N is the number of data 239 

points on which the COD is computed. If the model fitness is not acceptable or the other termination 240 

criteria (in terms of maximum number of generations and maximum number of terms) are not 241 

satisfied, the current model should go through another evolution in order to obtain a new model. 242 

As seen in Fig. 6, comparison of the results along with the high Coefficient of Determination (COD) 243 

values for the EPR model (Training COD: 98% - Testing COD: 97%) indicate the excellent 244 

performance of the developed model in capturing the underlying relationships between the 245 

contributing parameters and flow rate and also in generalizing the training to predict seepage 246 

behavior under sheet piles under unseen conditions. 247 

The proposed EPR model generates a transparent and structured representation of the system. 248 

One of the main advantages of the EPR approach is that there is no need to assume a priori form of 249 

the relationship between the input and output parameters. The explicit and transparent structures 250 

obtained from the proposed EPR method can allow physical interpretation of the model predictions 251 

giving the user additional insight into the relationship between input and output parameters by 252 

performing sensitivity analyses of the developed model for individual contributing parameters. In 253 

general, EPR-based modeling has several advantages, including that it provides a simple and 254 
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straightforward framework for modeling all materials. It does not require any arbitrary choice of the 255 

constitutive (mathematical) model, yield function, plastic potential function, flow rule, etc. As EPR 256 

learns the material behavior directly from raw experimental data, it is the shortest route from 257 

experimental / research-based / artificially generated data to numerical modeling.  258 

It should be noted that EPR trains and develops validated models using the data provided regardless 259 

of the way the data has been collected/generated. This study is also not an exception and the 260 

synthetic data generated along with its geometrical as well as any other aspects, which are 261 

intrinsically included in the data, is used by EPR and the presented model reflects the data – as a 262 

whole - used to train EPR and develop and validate the model, precisely as expected by the user, in 263 

the model outcomes / predictions. However, EPR has the capability to be retrained where 264 

more/different data is developed, needed, or becomes available to ensure the model stays 265 

representative, relevant, and comprehensive. 266 

4.1. Sensitivity analysis 267 

A sensitivity analysis was conducted to investigate the effects of individual contributing 268 

parameters on the predictions made by the proposed model. The aim was to verify the consistency 269 

of the behavior predicted by the model and the expected behavior for the system from the literature. 270 

To perform the analysis for every normalized contributing parameter, all the parameter values for 271 

all parameters - other than the one being investigated - were set to their average values in the range. 272 

The parameter being studied then was set to vary between the minimum and maxim parameter 273 

values. A graph was then plotted to show the variations in EPR predictions for the flow rate as the 274 

parameter in question varied in value between its minimum and maximum values. Figs. 7, 8, and 9 275 

show the sensitivity analysis results for sheet pile/cut-off wall length, upstream/upper head, and 276 

anisotropy ratio. 277 

 278 



 
15 

 

 279 

Fig. 7: Sensitivity analysis – Effect of changes in sheet pile/cut-off wall length on flow rate 280 

predictions by the EPR model 281 

 282 

Fig. 8: Sensitivity analysis – Effect of changes in upstream/upper head of water on flow rate 283 

predictions by the EPR model 284 

As seen in Fig. 7, given a certain position of the cut-off wall, increasing the cut-off depth results 285 

in a reduction in the seepage discharge, and the flow rate predicted by the EPR model decreases. This 286 
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phenomenon can be understood based on Darcy’s theory [38]. Moreover, as the opening between the 287 

cut-off wall and the impervious floor is reduced, converging flow lines add resistance to the flow, and 288 

seepage is diminished. As seen in Fig. 8, given a specific position of the cut-off wall, increasing the 289 

upstream/upper head of water results in an increase in the seepage discharge, so the flow rate 290 

predicted by the EPR model increases. If the head (h) is everywhere, there is no water flow through 291 

the soil. If the head differs in different parts of the soil mass, water flows away from points at which 292 

the head is high and towards points at which the head is lower. The flow rate is governed by the 293 

hydraulic gradient dependent directly on the water head, which is considered the essential term of 294 

the seepage force per soil volume and acts in the flow direction. When the flow is upward in the soil, 295 

pore water pressure increases, and effective stress decreases. When the flow is downward, the pore 296 

water pressure drops, and the effective stress increases.  297 

 298 

Fig. 9: Sensitivity analysis – Effect of changes in anisotropy ratio on flow rate predictions by 299 

the EPR model 300 

As seen in Fig. 9, given a specific position of the cut-off wall, increasing the anisotropy ratio of 301 

a soil deposit results in an increase in the seepage discharge, so the flow rate predicted by the EPR 302 
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model increases. It was found that increasing the anisotropy ratio of permeability leads to the 303 

formation of horizontal flow canals and increasing the seepage flow consequently at a constant 304 

vertical permeability. Variation of permeability coefficient was found to have almost no impact on 305 

mean discharge flow rate for anisotropic fields compared to the isotropic conditions. Hence, it 306 

appears that the anisotropic properties of the soil alluvium have a significant influence on the stress 307 

distribution, hydraulic conductivity coefficient, and damage zone [39]. 308 

5. Discussion and Conclusion 309 

The current study investigated an EPR model which is developed to predict discharge flow rate 310 

under sheet piles. The EPR models developed in this contribution were produced based on an 311 

extensive database comprising 1000 lines of artificial data retrieved from using the SBFEM method 312 

simulating real-world seepage conditions under sheet piles. As mentioned before, one of the 313 

important advantages of this method is modeling the singular points directly with high accuracy, and 314 

this feature can be utilized to model seepage beneath the sheet piles as a singular point. The 315 

preciseness and versatility of the model were clarified by comparing the results of SBFEM with those 316 

of FEM. The domain was discretized into 450 subdomains and 3200 elements for SBFEM and FEM, 317 

respectively.  The contour of potential lines for the results of SBFEM and FEM was shown. The results 318 

indicated great compatibility between the results of SBFEM and FEM. 319 

A robust, representative, and comprehensive model that could be applied to situations similar 320 

to the conditions underlain in the complete model development database, was developed. It was 321 

shown that the EPR model can capture the underlying relationships between various parameters 322 

directly from artificially developed SBFEM data and make predictions of very high precision for 323 

unseen scenarios (as verified by the introduced unseen testing/verification data set). The EPR model 324 

was tested using data that were not used in the training stage of the EPR model development process; 325 

thus, an unbiased performance indicator was obtained on the actual prediction capability of the 326 



 
18 

 

model. The results show the excellent ability of the EPR model in generalizing the training to predict 327 

flow rates under unseen conditions. Ultimately, the validity of the behavior consistency, signified by 328 

the model and the expected system behavior from the literature, has been assessed by sensitivity 329 

analysis. Accordingly, the Qnor predicted by the EPR model decreases when the cut-off depth increases 330 

at a particular position of the cut-off wall. The training of the EPR resulted in the development of few 331 

equations. Since some equations did not include all contributing parameters, the most appropriate 332 

and efficient one based on the model performance (fitness) and complexity was selected as the final 333 

model. After training the desired EPR model, its account was verified using 200 sets of validation data 334 

that had not been introduced to EPR during training. Then a comparison between COD values for the 335 

EPR models, including training and testing CODs (i.e., training COD: 98% - testing COD: 97%), has 336 

been drawn to prove the appropriate fitness of the developed model in capturing the underlying 337 

relationships between the contributing parameters and flow rate and also in generalizing the training 338 

to predict seepage behavior under sheet piles under unseen conditions. This obtained parameter has 339 

also increased when the upstream/upper head of water and the soil deposit’s anisotropy ratio 340 

increased. 341 

The synthetic data used to develop and verify the EPR model has been carefully generated to 342 

be robust and to represent real world problems. The developed model verification and parametric 343 

study suggest that the model predictions are in line with expectations and are highly accurate as long 344 

as the contributing parameters of any problem fall in the ranges used to create and verify the model; 345 

however, it is advised that necessary precautions and verifications to be put in place on case-by-case 346 

basis and where applying the model to real world problems to ensure safety of the structures. 347 
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