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Abstract. Consider the far-field behind a body in a steady, two-dimensional uniform flow -
field. In the far-field the Oseen linearisation is valid, and in the far-field wake Imai’s asymp-
totic expansion is applicable. The fundamental solution Green’s function of the Oseen equa-
tion which represents a point force is called the Oseenlet. The drag and lift Oseenlets are
given in [1], and from this representation we determine the corresponding Oseenlet vorticity
and Oseenlet stream function. Imai [2] gives the velocity, vorticity and stream function in
the far-field wake behind a body in terms of an asymptotic expansion. We shall show that
the first terms in Imai’s expansion are the same as the drag and lift Oseenlets when approx-
imated in the wake. This demonstrates that Imai’s and Oseen’s treatments are the same
to leading order, and from this we infer that the next order terms in Imai’s expansion will
correspond to the approximation of the next order terms in Oseen’s linearisation. Future
work will be to use Immai’s result to infer the next order terms in the Oseen linearisation.

5.1 Introduction

The ultimate objective is to find an approximation to the point force in Navier-Stokes flow,
which we call the NSlet. This is a usefull solution for fluid problems for example, for modelling
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oil flow exterior to a pipe. We may also find it can be used as a Green’s function in the Green’s
integral representation in the same way as Eulerlets in Euler flow [7]. We start by investigating
obtaining the NSlet from the terms in the Oseen linearisation and how these terms are linked
to those in Imai’s far-field approximation.

Oseen obtained the Oseenlet velocity in the early 1900’s. The drag and lift Oseenlets are given
in [1]. Moreover, in [1] Chadwick employed two methods, first the velocity was decomposed into
potential and wake velocity and the second method used the Oseenlets. He further revealed
that the Oseen velocity in the far field cannot be modelled using the Lamb -Goldstein method
[10]-[11] rather by expanding each Oseenlets in a Taylor series. Thus, the velocity and pressure
expansions in the far-field are obtained.

Moreover, Chadwick [4] also studied an experimental verification of an Oseen flow slender body
theory by showing that the resulting lift equation had close agreement with experiment. It
was further revealed that in the far-field region, the Navier—Stokes flow is expected to be
approximated closely by Oseen flow. A comparison was made between the experiment, inviscid
flow slender body theory, Chadwick’s Oseen based flow theory and Jorgensen’s extension [8] to
viscous crossflow theory for slender bodies with elliptical cross-section. It was observed that
the experiments follow a gradually increasing straight line variation which closely follows Oseen
theory. On the other hand, Imai [2] gives the vorticity and stream function in the far-field
wake behind a body in terms of an asymptotic expansion. In the present paper, from the drag
and lift Oseenlet given in [1], we determine the corresponding Oseenlet vorticity and Oseenlet
stream function. We also obtain the Veloci‘cly7 vorticity and stream function from Imai [2]. We
then approximate both in the far-field and demonstrate that the Oseenlet velocity, vorticity and
stream function are the same to leading order as Imai’s first approximation.

Vorticity is defined as the curl of the velocity, w = V X u where V is the differential operator
and u is the velocity. It is the local rotation of the fluid. It is an important derived variable in
fluid dynamics that plays both mathematical and physical roles in understanding fluid dynamics
problems. However, for the 2-D flows, the vorticity vector has only one non-zero component
(in the zs-direction) where the Cartesian coordinates are given as (x1,x2,x3). In addition,
stream function ¥ also plays an important role in understanding fluid flow and therefore, it is
important to understand its concept and derivation [6]. It is related to the velocity using the
Cauchy-Riemann equations [5].

5.2 Governing equations
The Navier-Stokes equation for an incompressible fluid is given as:

Out op' 02u,t
A v 4o = 5.1
P oz Jx; 8:1:]2 (5.1)

where ;! is the fluid velocity, p' is pressure, p is the density of the fluid and 4 is the dynamic
coefficient of viscosity. In the far-field, the velocity tends to a uniform stream

I

uiTI Udin + us + wi' + ...

1 t=7

where wu;! is the second order linearisation, U is the uniform stream, dij = .
0 otherwise,
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U > O(u;) > O(w;!) > ... and 'O’ means of the order’. Indices 1 < i,j < 2 where repeated
index implies summation.

However, Oseen equation is obtained by linearising the Navier-Stokes equation. Thus, the
far-field Oseen equation is given as

Ou; B dp 0%u,
dr, Oz H Oz;0x;

giving the solution w = R >°%  C,eF1 K, (kr) "¢, where w is the vorticity, Kj, is the modified
Bessel function of order n. From this, the far-field Imai’s approximation to leading order in

p (5.2)

modified Bessel function expansion is w = R (% 6’772) + ..., where r is the 2-D radius defined by

T = \/Z;x;,0 is the 2-D polar angle § = cos™ (&), ( =& +in, § = (2k7’)% cos %9 k= g—g,
1

n = (2kr)? sin %9, ¢ is a complex constant, R represents real part and 7 is the imaginary part.

The drag Oseenlet velocity as given by [1] is

1 0
(1) _ - ka1 ki .
U; 9 [ xl (1117“ € K() (k’T’)) 2k e K()(k?’)()ll}

and the lift Oseenlet is

1 .9
w;? = W&m’?ﬁa}; (1117" +*6kI1K0(k7“))

where ¢;; is called the Levi-Civita symbol. It is a tensor of rank three defined by

0, if if any two labels are the same
Sk = 4 1, if if 1,j,k is an even permutation of 1,2,3

-1, ififi,jk is an odd permutation of 1,2,3 .

Meanwhile, Imai’s approximation as given in [2] is

r m 0
fy — - — —
v=q- logr 5 (erfn 7r>

where m =T = % for unit force and k(r — z;) = 7% =~ k% in the wake.
5.3 Vorticity Evaluation

5.3.1 The drag Oseenlet vorticity

From (5.3), it follows that

uy L [i (lnr + ekleo(kT)) ~ 2k MK (kr)}

B 2npU LOx

usM = 27T,10U [aim (lnr + MK (kr))]
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Therefore, to derive the vorticity, we use the expression

O 20 )

o= [Vl = gl - 5

Therefore,
J 1 0 0 k k
- = —{—A1 T Ko(kr)) — 2k ™1 Kg (k
Oxy “ 27 pU c%vg{aa:l( nre o(kr)) ¢ o (kr)}
J B 1 0 0 ks
or, 2 27 pU 6‘x1{8$2 (I €™ Ko(kr))

However, substituting these into (5.8) and simplifying gives

w— %{ e’“’l% (Ko(kr))} . (5.9) ,

Therefore, (5.9) is the expression for the Oseenlet vorticity.

5.3.2 Equivalence of Oseen’s and Imai’s vorticity in far-field

To demonstrate that the Oseenlet vorticity and Imai’s vorticity are equivalent, we approximate
(5.9) in the far-field and compare with Imai’s vorticity where

0 kx T
kxq K, ’ ~ 2 —k:('r—l‘l)
€ Oxo (Ko(kr)) r\ 2kr € ’

Now substituting into (5.9) we have

]. k,'Q.TQ s k( 11)
)R ——— \ e TR 5.1
v aoU "~ r 2kr ¢ } (5.10)

Therefore, (5.10) is the far-field Oseenlet vorticty, while Imai’s vorticity as given in [2] given is

2k? :
—— (5.11)

NCET

2
Therefore, putting k(r — z1) = 7% = k;%, r= 7722’752,§ = (2kr)% cos 30 and n = (2kr)% sin 36

into (5.10), it is shown that Oseenlet vorticity is the same as Imai’s approximation of vorticity.

5.4 Stream function Evaluation

5.4.1 Drag Oseenlet stream function

From the Cauchy-Riemann equations, the drag Oseenlet velocity (5.3) can be written in terms
of the stream function such that
z;
1 /
QZ) = /;( Egijug )dI]
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where 1 is the stream function, x; is the variable of integration and ugl) is the drag Oseenlet
velocity. The constant X is chosen such that ¢(x;) = 0. Integrating along z1 only gives
. 1, 43t fed :
Y= — X, U2 dz', this implies that
1 1

P = “omiT Jy (%Q(Inr' + ekxllKo (k:r’))da,/1 (5.12)
A1

where r’ = \/x2 + x92. However, (5.12) consist of the potential term and the wake term. i.e

» = Aﬁ (z/)pot + ¢u{ake)

where P! = [{! 3%(111 r')dx gives the velocity potential and yeke = x 52—2(6’“11(0 (kr'))dx)
give the wake velocity. To evaluate the potential term, we use complex analysis, letting
z=x + iz, 2 =z, +ixp and Z = X + iz, see 5.1.

kd

!
Tq

Figure 5.1: Points of integration

. —i6 irsi . . . .
Consider ¥ = 41Iny = L, = €2 — reosé=irsind  Therefore, the negative of the imaginary

dz 4 retd r 9 ks ’
part of ¥ gives —Im{fInz} =3 = 35 0T So,

Yot = —Im{ [ 8?’ Inz'dz} = -Im{[lnz’]zz} =—Im{lnz—InZ} = —Im{lnr+id —In A — ia}
= —0 + a. As 9P is a potential, we can ignore the constant o, and without loss of generality

we can let
PPt = —0. (5.13)

The wake term from (5.12) can be determined from ¢ = “#,)U ;fi 8%2( ek Ko (kr'))dz),

but %Kg (kr) = ~%K1(kr) ~ — ko2 = e~ * from Abramowitz and Stegun [9]. Therefore,

T
the approximation to the wake term is obtained as

wake 1 *1 k(L'Q s kel —a! ’
Pt %_27T,OU/X e e e, (5.14)
1

Finally, the expression for the Oseenlet stream function is obtained by adding (5.13) and (5.14)

1 L1 k‘fl?g T k(e ,
V= 2mpU {0~ / {7\/ oy € M) ey ). (5.15)
X
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5.4.2 Equivalence of Oseen’s and Imai’s stream function in far-field

The Oseenlet stream function is given by (5.15) and that of Imai’s stream function [2] is given
as

Y= {6 — wer fn} (5.16)

27 pU

To show that Imai’s stream function and Oseenlet stream function are equivalent, recall that

k _ /
k(r—z1)=n?~ k;; and erfn = \/_ fo e~ dn ‘so let ¢, = 2~rpL ;1 "R 5T e ek~ 1)d:r1,
where ¢ = -2% —11, implies that ¢n ~ Wﬁ fo nd %dn thus, ¥ = merfn. Therefore,

, 1

Thus, equation (5.17) is the Oseenlet stream function and it is shown that it is equivalent to
the Imai’s stream function given in (5.16).

5.5 Velocity ‘ ‘

5.5.1 Drag Oseenlet velocity

Recall that the drag Oseenlet is given in (5.3) as
ul) L [ - (Inr + ef1 K (kr)) — 2k e*™1 K (kr) 51‘1] where

U; 27er
1
oV = 37 [ o (lnr+ Ry (kr)) — 2k b g, (kr)] (5.18)
and
m_ _1 [8 (1 k= R (k )]  (5.19
() = 350 Loz nr+ e o (kr) (6.19)
Recall that Imai’s first approximation to the stream function is P = ﬁ{@ — merfn} where
m = /%U' We can now obtain the velocity using the relation U; = £43 gf. It follows that
U] = (%é and wuy = ~g— Therefore, Imai’s velocity can be represented as
0 1 0
M — — - 5.20
S0
1 00
1 — - 21
uy 27er( Rl 2) (5.21)
and
1 08
ugW = (5.22)




5.5.2 Equivalence of Oseen’s and Imai’s velocity in the far-field

To show that the Oseen’s velocity is equivalent to Imai’s velocity, we first show that the first
components u; from equation (5.18) and (5.21) are equivalent. Similarly, the second components
up from equation (5.19) and (5.22) are also equivalent. Now, the first terms give g;”) = 4 and

59—52 = % These are shown to be the same. However, the next terms in the velocity components
give, %( k”lKO(kr)) — 2k ek Ko (kr) =~ i( ekzl—‘/%e_kr) — 2kekz1 \/_Tr —kr But
8%1( %) = 5o z= = O \/_) which is of lower order as r — oo. Therefore,

22- (kM Ko(kr)) — 2k k™1 Ko (kr) = (K21 /T er=m) 4 |, [ emhlr—en) _ ok [T e—k(r—z1)}
Slmphfylng gives

O kaipe kxy . —k(r — 1)
6—;101(6 Ko(kr)) — 2k e Ko(kr)N—r— BT

Recall that k(r — z1) = n° =~ k;rl and r = ” [f = (QLT)% o0s30,n = (2kr)? sin 0] where
&2 +n? = 2kr,sin® 36 = O(1).Thus,

5 :
51’—1( e Ko(kr)) — 2k X1 Ko (kr) ~ —2k 2k7’ e klr—z1) (5.23)

Therefore, substituting into (5.18) give

ai( e*T Ko (kr) — 2k X% Ko (kr))
{al

1 T
27er(_ 2kr
VE
UV

e-k(r—ml))

Therefore,
U\ 27z,

This is the second term in the Oseenlet velocity. However, evaluating the second term in Imai’s

velocity, we have ﬂierfn, but 2 (er n) = = e~ Therefore, T2er n= 2L 2 (er n), but
dxa on NS dxa 2 On

~ /o5, impl iy [
7/ [ 5, T2, implies that 7= = | /5~, therefore

(5.24)

gD

1 0 k ‘

wW ~ —— ——erfn= v——\/-— e (5.25)
2pU Oxsy pU~N2mx;

Therefore, it is shown that the first components of Imai and Oseenlet velocity are equivalent.

Now, we can show that the second components are also equivalent. The second components

of Oseenlet and Imai’s velocity are given in (5.19) and (5.22) respectively. It can be seen that
Olnr) 86
dzo

in (5.19) gives 2 ( ’““1K (kr)) = (b= =e™r), but (L) =

=3, smularly = & Meanwhile, the second term in the Oseenlet velocity as given

r2\/" O(T\/_) which is of
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lower order as r — oo and a%Q(e"“) = —k%2e™* = O(1). Therefore,

9 | ke
8—352(6k IK()(]{‘T’)) ~

)

X2
N
L
T
|
3
—
+
<

%
|
|
=
o

Thus,
0 kxy \/7? -2

— Ko(kr)) ~ —1— . 5.26
5og e Ka(kr) ~ =L e (5.26)
Therefore, (5.26) is the second term in the Oseenlet velocity. However, Imai’s second term can

be evaluated as wa%lerfn, but g(erfn) = % e Therefore, Wa;glerfn = ’R‘arl 3 9 (erfn), but

RS 1/%])2, implies that %’71 = —-21—1 therefore,

0 T
T—erfn= —£n e (5.27)

Oxq T
‘Therefore, it is shown that Oseenlet velocity and Imai’s first appoximation of velocity are
equivalent.

5.6 Conclusion

We derived the Oseenlet vorticity and stream function, evaluated the far-field approximations
and compared with Imai’s first approximation of vorticity and stream function. We further
obtained the far-field approximation of velocity from Imai’s approximation of stream function
and compared with the Oseenlet velocity. The results show that the derived Oseenlet vorticity,
velocity and stream function are equivalent to the Imai’s approximations to leading order.

The future work will be to infer the corresponding second order term in the Oseen linearisation

Oseenlet Imai’s approximation
Velocity Ui = gr [5‘—2—1, (Inr + 1 Ko (kr)) | w = eijg,%{“#werfn + 23
—2k eh1 Ky (k) 5i1]
Stream function | ¢ = #ﬂU{H - ;i 3as ek*1 Ko (kr) dz} = 27T1pU{0 — merfn}
Vorticity w= %{ ekzl o (Ko(kr))} w= "p(%]i_ 522772 e

Table 5.1: Comparison between Oseenlet and Imai’s first approximation

from Imai’s second approximation to the Navier-Stokes equation. This is the second order term
in the NSlet expansion, which has not yet been given in the literature to the best knowledge of
the authors.
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