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A class of basis functions so called well-conditioned RBF (WRBFs) has been introduced. This basis has
been manipulated by adding cardinal functions to the conditionally negative definite RBFs of order 1,

1+ (er)® (MQ) and log(1 + (er)*) (LOG). The condition number of the

1. Introduction

Historically, RBFs interpolation were first proposed by Roland
Hardy in 1968 [1]. This method allows scattered data to be easily
used in computations. Franke [2] then deduced that the RBFs inter-
polations were accurate, comparing well with other available
methods. Kansa [3,4] first used RBFs to solve differential equations
(DEs) as an approximation to the solution. However, in recent
years RBFs have been extensively researched in a wider range of
analysis and applications [5-20].

In the case of Multiquadric (MQ) ¢(r) = /1 + (er)* and (LOG)

#(r) = log(1 + (er)?), the interpolation matrices have one positive
eigenvalue and the rest are distinctly negative [21]. Madych and
Nelson [22] show that interpolation with MQ is exponentially con-
vergent from the Native space. But the interpolation matrix of neg-
ative definite RBFs of order 1 are ill-conditioned. The condition
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number of the matrix exponentially grows as the number of nodes
increases, meanwhile the shape parameter decreases and this often
prevents the RBF method from attaining reasonable spectral accu-
racy [23]. For smooth functions, a reasonable accuracy for a given
number of nodes may be achieved when the shape parameter is
small, but the instability associated with small shape parameters
leads to an unreliable approximation. Fornberg and Wright [24],
Fornberg and Piret [25], Fornberg and Larsson [26] developed some
algorithms to overcome the instability arising from small shape
parameter. Also Larsson et al. [27] introduced the RBF-QR algo-
rithm which is computationally stable for flat RBF interpolation,
and it is easier to implement rather than Contour-Padé and also
it can be implemented for a large number of nodes. A stabilization
process to improve the accuracy of the positive definite kernel,
such as the Tikhonov regularization, has been investigated by
Wendland and Rieger [28] and Sarra [29]. Also there exist some
classical techniques which allow us to change the original space
basis by using the reproducing kernel of the associated native
space for conditionally positive definite functions to get an inter-
polation matrix with condition number depending only on the
number of data points [30, chp. 34]. This approach was suggested
by Beatson, Light and Billings [31], using the result of [32].

In this work, a new family of functions involving the condition-
ally negative definite RBFs of order 1 and also cardinal functions,
has been introduced. The result of this basis is an interpolation

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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matrix with condition number of O(N) and independent of small
shape parameter.

2. Conditionally negative definite RBFs of order 1

Let f be a real function defined on a domain in RY if
{x;,i=1,2,...,N} is a set of nodes belong to its domain, then an

RBFs approximation fy to f would be defined as follows:

N
=Y aig(®) = 0 (x)a, (1)
i=1

where  ¢;(X) = $(|X — Xil|,), D' (X) = [ (X), $2(X), ..., py(X)] and
a=[a;,d,,...,ay]". a will be determined through the linear system
®a = f, where, f = [f(X;),f(X2),....f(xy)]" and @ = (i(Xj)) .y 1S SO
called interpolation matrix. Powell [21] shows that in the cases of
Multiquadric (MQ) and (LOG), the interpolation matrices have one
positive eigenvalue and the rest are distinctly negative, therefore
we may sort them out as follows

/11>O>22>...>;LN.

This kind of RBFs are known as conditionally negative definite RBFs
of order 1.

Narcowich and Ward [33] present some upper bounds for con-
dition numbers, x(®) = ||®|,||®"||,, of MQ and LOG interpolation
matrices as follows:

d=2 d=3
5.95G(q, D)e3/” 8.55G(q,D)e*?  MQ, (2)
Ko (g) Ko (g)
where,

G(q,D) =

V1+D? (D + 26q>

p 2eq
D+ 2¢eq\? eq?
H(q.D) = lo 1+D2< ) SN —
(q.D) = log( ) 7¢q Eapr=

Ko(.) is the zero order modified Bessel function of the second kind,
q = 3min;;[|X; — Xi[|, and D = maxi;|[X; — Xj{l,.

The following theorem provides bounds for eigenvalues of
interpolation matrices arising from MQ and LOG basis.

Theorem 1. Let A, >0 > 4y > ... > iy be all eigenvalues of the
matrix ® subordinate to Multiquadric and Logarithmic bases, then
K(®) = 21/|42| and also there hold,

x]<1+(N—1)\/@. n>1-(N—1)\/1+eD* MQ,

21 < (N—=1)log(1 + €*D?), in > (1—N)log(1+€*D*),  LOG.

S di(xi) =

matrix @, we have
— >, %], and therefore

Proof. For

Yk =

N N
b= i)+ D |l
i=1 i=2

Since in cases MQ and LOG, ¢;(x;) is equal to 1 and O respectively,
then

trace(®) =

N N
=N+>J4l, MQ, & A=) |4, LOG.
i=2 i—

Obviously 41 > |%,i=2
singular, we have

.,N, and since ® is symmetric and non-
|®], =% and |[®'|,=1//| hence

K(®) = 41/|%2|. According to Gershgorin circle theorem, for each
i=1,...,N there holds

N N
_Zd)i(x}) i) < Z¢i(xj),

applying to functions MQ and LOG yield

T+e2|x—xl3 <A<1+ Z 1+ €|x; — xi[[3, MQ,
J=1j#i J=1j#i
N N
-3 log (1 +62\|xj—x,-H§) <i< Y 1og(1 +52ij7xiug), L0G. O
f= =

Theorem 1 implies that the biggest eigenvalue of ® increases
linearly, in number of nodes and shape parameter. But according
to (2) and (3), k(®) increases exponentially in terms of N and e.
Therefore an increase in N or decrease in € leads to an exponential
decrease in |4;| (Figs. 1 and 2).

3. Well-conditioned RBF basis

Here we wish to define another approximation f to f based on
WRBFs, as follows:

N
X) = bui(x), (4)
where

l#i(x): 7PC1’(X)’ p>0a Ci(xj):5U7 iaj:1727"'7N7

(5)
¢(].]l,) is the conditionally negative definite RBFs of order 1, C;(X) is
a cardinal function and ; denotes the Kronecker delta. We call the
parameter p, effective parameter. Any changes on this parameter
will directly affect function interpolation. Unknown vector
b = [by, by, ... 7bN}T is determined through the linear system
Wb = f, where the interpolation matrix ¥ = (;(X;)) ..y 15 also equal
to ¥ = @ — pl. Obviously if p < 4; then the matrix ¥ is nonsingular
and conditionally negative definite of order 1.

P(lIx —Xill)

Theorem 2. Let Ay >0 > /J; >...> iy be all eigenvalues of the
matrix ® subordinate to Multiquadric and Logarithmic bases, if
Y =® —pl, forap < 4, then

1 1
K(¥) < M max 6
00 < sman {5 p-;z} ©
where =[1-p|+(N-1)V1+eD* for MQ basis and
M=p+ ( —1)log(1 €2D2) for LOG basis.

Proof. As well as ®, the matrix ¥ is also symmetric and then

I¥]l; = max|2;(¥)].
Applying the Gershgorin circle theorem to W, yields

<3 0w

Jj=1j#i

¥l <1 -pl+(N-1)y1+eD  MQ,

¥, <p+ (N—1)log(1+€D*,  LOG.

AlSO
/’Liip 2]7p7p7/12 '

(7)

14| = 1i(%i) = p| <[4+ P — di(Xi)]

hence

[l = max|2(¥"")| = max
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Fig. 2. /min = |/2| of interpolation matrix on [0, 1] with uniform grid for different shape parameters €, MQ (left), LOG (right).

Accordingly, we deduce

1
K(¥) = |||, max< ——, ,
(9 = el max {11

and the proof is now complete.

Corollary. For positive p < (41 + 22)/2, there hold

_1-pl+(N- 1)V1+eD?

K(P) ; MQ,
o) < 14 0= 1)1052;7(1 €0%  log

These bounds show that the order of condition number of the WRBFs
interpolation matrix is O(N). Using these bases also removes any influ-
ences of the small shape parameter in ill-conditioning of the interpola-
tion matrix. In Table 1, k(\V) (denoted by k(p)) has been computed for
MQ and LOG-WRBFs interpolations with uniform grid on [0,1] and
€ = 0.1. This Table shows that the growth of the condition number of
WRBFs interpolation matrix is linear when N increases. Also in this
Table the values of 1, Z2, M and the values of U(p) the upper bound
of k(¥) mentioned in (6), are provided. The condition number of ¥
in domain [0,1)* and [0,1)® with random nodes for various values N
and € have been displayed in Figs. 3 and 4. Fig. 5 shows the influences
of shape parameters in condition number of matrix ¥, accordingly the
small shape parameter does not increase k (V) arising from pure RBF
basis.

We now compare the results of our proposed basis in terms of
the condition number and also RMS errors with the well condi-
tioned basis which is constructed by using the reproducing kernels
of thin plate splines in R? [30,31].

Table 2 indicates a comparison between the condition number
of the interpolation matrix for standard MQ and LOG and also
the WRBFs bases with the reproducing kernels of thin plate splines

[31] obtained by uniform grids on the unit square [0, 1] In this
Table, the number of nodes and the separation distance h change
from one row to the next.

In Table 3, the number of nodes is fixed but the separation dis-
tance h varies from one row to the next. This Table shows that
decrease in the separation distance does not cause an increase in
the condition number of the new bases against the standard ones.

In Table 4, the RMS errors for interpolating Franke’s function via
different bases are reported. According to this Table, increasing the
scaling parameter has no significantly effect in accuracy on the
new bases, in spite of it being shown in this Table that the accuracy
of MQ-WRBF interpolation improves as the scale parameter a
decreases.

3.1. Gaussian cardinal functions

Let us to define the Quasi-Cardinal Gaussian RBF as follows

2 2
x5 ,

Qix)=e .d; min

= o >0,
je{1.2,...N}—{i}

IX; — xXill,,i=1,...,N,

obviously, Q;(x;) =1 and Q;(x;) < e *. For large enough «, these
type of functions generate near diagonal interpolation matrices.



2590 S. Kazem et al./Ain Shams Engineering Journal 9 (2018) 2587-2598

Table 1
The values of condition number ¥ (denoted by x(p)) for MQ and LOG-WRBFs interpolations with uniform grid on [0, 1] and € = 0.1 and also the values of /1, ,, M and the value
of U(p) upper bound of x(¥) in Theorem 2.

N-1-— 4 8 16 32 64 128 256
MQ-WRBF:
K(mfﬁ) 5.01e+06 9.01e+06 1.70e+07 3.30e+07 6.51e+07 1.29e+08 2.57e+08
¢(10°8 5.00e+08 9.02e+08 1.71e+09 3.32e+09 6.54e+09 1.30e+10 2.57e+10
K(107°)
K(m*w) 4.90e+10 9.01e+10 1.70e+11 3.30e+11 6.51e+11 1.29e+12 2.58e+12
A 5.006 9.009 17.016 33.029 65.056 129.110 257.216
—Ja 2.17e-12 9.14e—17 4.39e-17 3.03e—17 3.31e-17 1.10e-17 6.28¢—18
M 5.020 9.040 17.080 33.160 65.319 129.638 258.277
U0~ .02e+ .04e+ TleH 32e+ .53e+ .30e+ .58e+
(107%) 5.02e+06 9.04e+06 1.71e+07 3.32e+07 6.53e+07 1.30e+08 2.58e+08
U0~ .02e+ .04e+ TleH 32e+ .53e+ .30e+ .58e+
(107%) 5.02e+08 9.04e+08 1.71e+009 3.32e+09 6.53e+09 1.30e+10 2.58e+10
U(]O’m) 4.91e+10 9.04e+10 1.71e+11 3.32e+11 6.53e+11 1.30e+12 2.58e+12
LOG-WRBF:
K(]ofﬁ) 14346 21779 37165 68219 1.30e+05 2.55e+05 5.04e+05
K(10~ 43eH .18e+ 72eH .88e+ 32e+ .59e+ .04e+
(10°8) 1.43e+06 2.18e+06 3.72e+06 6.88e+06 1.32e+07 2.59e+07 5.04e+07
K(m*m) 1.23e+08 2.17e+08 3.71e+08 6.82e+08 1.30e+09 2.55e+09 5.05e+09
A 0.014 0.022 0.037 0.068 0.130 0.255 0.504
) 1.64e—-11 1.84e—-17 1.12e—-18 2.81e-19 1.00e—-19 1.01e-20 2.28e-21
M 0.040 0.080 0.159 0.318 0.637 1.274 2.547
-6 39801 79603 1.59e+05 3.18e+05 6.37e+05 1.27e+06 2.54e+06
U107
U(]O*S) 3.97e+06 7.96e+06 1.59e+07 3.18e+07 6.37e+07 1.27e+08 2.55e+08
U(10*10> 3.42e+08 7.96e+08 1.59e+09 3.18e+09 6.37e+09 1.27e+10 2.55e+10

. 10"
o> [
2 o
£ E1o®
2 c
< c
é % 108
5 5. s
o © 10 o
400 2 400 >
600 1 600 1
N 800 0 Shape parameter N 800 0 Shape parameter

Fig. 3. x(¥) when MQ and LOG-WRBFs interpolate random nodes on [0, 1] with p = 10°%, MQ (left), LOG (right).
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Fig. 4. 1(¥) when MQ and LOG-WRBFs interpolate random nodes on [0, 1]3 with p = 108, MQ (left), LOG (right).

The cardinal functions using the Quasi-Cardinal Gaussian RBFs can Fig. 6 shows the condition numbers of matrix Q for three values

be simply constructed by o, and different numbers of random nodes in [0, 1]?, according to
_ these results the matrix is well-conditioned for o > 1.
C0)=Q'Qx), QX =[Q:(X),....Qnx)]",

o
Qj=¢ (E lIx; — xin). 3.2. Convergence of WRBF
1

Q is the interpolation matrix due to Quasi-cardinal Gaussian Now we are going to prove that the convergence of WRBF basis
RBF which is close to Identity matrix and hence Q' is easy to behaves the same as RBF interpolation when p tends to zero.
compute. For this purpose, let us denote fy(x) = >V.f;Ci(x) as Cardinal
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approximation to the function f, (f; = f(x;)) as well as in (1) we

considered fN(x) as an RBF approximation to f, then we will have
the error bounds for these approximations as follows

If = full <k(Fiw, — |If —Full < k(Fiw, (8)

where ||.|| denotes the maximum norm, k(f) and k(f) are positive
constants depend on f,uy and iy are positive sequences indepen-
dent of f and depend on the number of nodes or fill distance. We

may consider iy = exp (h;—;), k(f) = [flyy and also for Cardinal

basis constructed by Gaussian basis k(f) = |If| No@» Where [] o
and ||.]ly, are semi-norm and norm in the Native space No(Q)

respectively, h, q is the fill distance and c is a positive constant (The-
orem 15.1 [30]).

Table 2
Condition numbers for different thin plate spline bases [E] and MQ and LOG-WRBFs on [0, 1]2 with € = 0.1, p = 10™® and increasing number of points and varying separation
distance h.
h standard TPS reproducing kernel TPS homogeneous TPS MQ LOG MQ-WRBF LOG-WRBF
1/8 3.515800e+03 1.839030e+04 7.583833e+03 9.9693e+18 4.5784e+18 6.4137e+07 2.9708e+05
1/16 3.893850e+04 2.651373e+05 1.108581e+05 3.4772e+19 6.1499e+17 2.5648e+08 1.0509e+06
1/32 5.136252e+05 4.000679e+06 1.686431e+06 8.3443e+19 4.8160e+18 1.0258e+09 3.9519e+06
1/64 7.618277e+06 6.202918e+07 2.626402e+07 1.0740e+21 2.6430e+19 4.1031e+09 1.5325e+07
Table 3
Condition numbers for different thin plate spline bases [E] and MQ and LOG-WRBFs on [0, a)* with € = 0.1, p = 10"® and fixed number of 25 points.
a standard TPS reproducing kernel TPS homogeneous TPS MQ LOG MQ-WRBF LOG-WRBF
0.001 2.434883e+08 8.463509e+08 5.493771e+02 1.1931e+26 2.3630e+18 2.5000e+07 1.2285
0.01 2.436378e+06 8.464002e+06 5.493771e+02 3.7585e+23 8.9288e+16 2.5000e+07 12.5118
1 3.645782e+02 1.366035e+03 5.493771e+02 3.0852e+17 4.5910e+14 2.5062e+07 1.3448e+05
100 1.151990e+11 1.139634e+05 5.493771e+02 419.7601 88.8807 419.7590 88.8806
1000 3.548239e+15 1.138572e+07 5.493771e+02 161.9042 37.1090 161.9042 37.1090
Table 4
RMS errors for different thin plate spline bases [C] and MQ and LOG-WRBFs on [0,a]® with € =5, p=10""? and fixed number of 25 points.
a reproducing kernel TPS homogeneous TPS MQ LOG MQ-WRBF LOG-WRBF
10°° NaN 2.969478e—02 NaN NaN 2.5091e-11 4.03e-02
106 2.970740e—-02 2.969478e—02 4.9653e-11 6.3187e—-06 4.2232e-10 1.14e-03
1073 2.969478e—02 2.969478e—02 1.8014e—-09 1.3641e-10 9.7949e-10 1.24e-09
1 2.969478e—02 2.969478e—02 2.66e—02 2.79e-02 0.0266e—02 2.79e-02
103 2.969478e—-02 2.969478e—02 6.79e—02 4.06e—-02 0.0679e—-02 4.06e—02
108 2.969218e—-02 2.969478e—02 6.78e—02 3.47e-02 0.0678e—02 3.47e-02
10° 1.207446e+03 2.969478e—02 6.78e—02 3.29e-02 0.0678e—02 3.29e-02
40 T T T T
351 o ______-4
3or 7 b
/
3 o5t .
€ - - -o=1 1]
>
c o=1.
§ %[ —o—o-2 ||
= )
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o 4
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0 DO ‘ ‘ ‘ ‘
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N

Fig. 6. The condition number of Q for « = 1, 1.5 and 2.
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We now investigate the convergence of WRBF according to the
error bounds (8). It should be noted that these error bounds are not
only applicable for constructing Cardinal functions based on the
Gaussian basis, but they can also be used for any Cardinal functions
for which the error bounds are expressed by maximum norm.

Lemma 1. Any cardinal function C;(x),i=1,2,...,N has an approx-
imation C;(x) in terms of radial basis functions ¢j(x) such that
Ci(x) = ®; '®(x), where ®; ' denotes the i's row of matrix &' [34].

Proof. Define
N
X) =Y v¢y(X) = V] D(X), 9)
=

applying N collocation nodes x;, j=1,...,N in (9) and using the
cardinal property E‘,—(xj) = g; yields el =vI®, i=1,2,... N, where
e; is the unit vector with all entries zero unless, one at i's place.
Hence v] = e/®! is the i's row of ®'. O

Take C(x) = [C1(X),...,Cn(X)]”
ing bound for C;(x) as follows

, then Lemma 1 gives the follow-

ICix) - @7 (| = |Citx) - < k(Cy)iiy, (10)

x|

where k(C;) is a positive constant depends on C; as well as has been
explained for (8). Following theorem shows that f) tends to f when
p—0.

Theorem 3. If fy and fn are two approximations to f, due to WRBF
and RBF bases, respectively, with p < (A1 + 72)/2, then there holds

If = Fll < k()i + Koo [£]l; VNI,

where Kpex = max,-fc(Ci).

Proof. From (1), (4) and (5) the following identities are obtained:
fn=aTox), fn=b"¥x) =b'O(x) — pb' C(x),
Y=@®_-plb=%""fanda=ad'f.
Now we can write
fy—fn = (b—2)'®(x) - pb'C(x)
=f (¢ -0 HO(x) - pf ¥ 'C(x),

substituting b’ = f'¥~! and ¥ = ® — pl in recent result, yields

fny—Fn=b"[(I - ¥ )®(x) — pC(x)] = pb’ [®~'D(x) — C(x)],
and then
Iy —Full = pr’ - o o) |

g I}maxﬂNHprlv (11)

< PZ\deCi(X) — @ O(x)||
P

using the matrix norm equivalence, yields
Ipbll, = [IP¥~"Ell, < IP¥ "1 1Ifll, < VNIPE [l

P! is symmetric and non-singular, recalling that 1, is negative,
according to (7), we get

p p
— = — <
p—72 P+l

¥l =

and therefore

HfN __fN” < i<max\/N“f||]ilN.

Recent result together with (8) deduce
IF = Full = [l = Fo -+ F =i < |IF = F| + I = 1]
< k()i + ko VNI 1y,

and now the proof is complete. OJ

Theorem 3 clarifies that the convergence of WRBF when p tends
to zero is similar to RBF approximation. Following theorem (Thm.
4) asserts that the error of WRBF interpolation may be considered
as a convex combination of the errors obtained by the RBF and the
cardinal bases.

Theorem 4. For the approximation fy to f defined in (4), and
p < (21 + 42)/2, there holds

k() +pa pfc(f)+éc

—fll <

iy, (12)

where & = YN, |bi|k(C) and & = SN, |bilk(¢y).

Proof.
IF =l = [[f = Fo -+ v = ]| < Kt + |[f — F (13)
I = Full = |If = Foe+Fv = | < kP + [y = (14)
Multiplying both sides of Eq. (14) by p and adding to Eq. (13) yields
(f) l(f)
If =l < g B Py 1+prN |
T 19
n (11) we have
B N
I = | < PY_IBilICix) - @ o)
i=1
which together with (10) yield
~ N ~
I = Fu| < P Ibilk(Copan. (16)
i=1
Also, from (4) we have f* = b"¥, and then
fn—fn=b"®(x) — pb'C(x) — f'C(x) = b"d(x) — b’ (pI + ¥)C(x)
=b'(®(x) - ©C(x)),

therefore

N
= F| = [[b (@00 — @) < S bilgix) — @Cx)],
i=1
where ®@; denotes the i’s row of ®. Let ¢;(x) be the Cardinal approx-
imation to ¢;, then ¢;(x) = ®;C(x) and according to (8) we will have

5(%) — LX) = |12 — Bilx)]| < k($p)in, (17)
eventually
v - fNH |bu<< 91)in (18)

Applying (16) and (18) in (15) completes the proof. O

Another result from Theorem 4 states that when p tends to zero
the function approximation f, (WRBF approximation) approaches

to the RBF approximation fy and according to inequality (15) the
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convergence of WRBF becomes similar to the RBF approximation,
same result will be obtained when p tends to infinity. Therefore
the convergence of WRBF is same as the cardinal approximation.

Therefore the conditionally negative definite RBFs of order 1
such as MQ and LOG bases, which are exponentially accurate
[35-37], are appropriate candidates to construct WRBF bases with
small p. In this algorithm p needs to be:

(1) large enough to improve conditioning.
(2) small enough to provide fast convergence.

Such as Riley’s algorithm [38], the practical suggestion for p is
p~ 107", where q is desired precision, and v = 2 or 3 or bigger
according to increasing in the number of nodes [32].

3.3. Test problems

Problem 1. Consider the second-order differential equation
u” — (2u=0,x € [-1,1], with exact solution u = e/*. The maxi-
mum error obtained by the solutions of pure MQ, pure LOG and
WRBF with p¢=0.1, 50 and uniform grid for various shape
parameters and € = 0.2 is displayed in Fig. 7.

Also Fig. 8 shows the error due to increasing in number of nodes
without any changes in shape parameter. In practice these figures
corroborate the Quasi-Cardinal-WRBF method with small effec-
tive parameter p works better than pure RBFs for this problem.

Problem 2. We now test the 2d Poisson equation with exact
solutions

u; = 105/(105 + x*> +¥?) and u, = y(1 — y)x°
10724 p=10""
........... p=10""
1034~ _ —_——p=107""
~o == MQ-RBF
10741 TN -"\ !
~ __,'/'\' " A ! I
03— == (R bt |
Error| *-.. S | \ g .'\_ 'f\![|- A " []1, .
10-69 > :
it
1
1071
10781
109

0.01  Shape parameter 0.05 01 0.5 1
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on [0, 1]* with Dirichlet boundary condition. 400 uniform grid, MQ,
LOG and WRBFs, have been applied to this problem, the maximum
errors corresponding to various shape parameters have been illus-
trated in Figs. 9 and 10.

Problem 3. Consider 3d Poisson equation with exact solutions

vy =135/(135 + x* + y* +7%) and
vy = (1/372) sin(7x) sin(7y) sin(7z)

on [0, 1]* with Dirichlet boundary condition. 1000 uniform grid, MQ,
LOG and WRBFs, have been applied to this problem. For various
shape parameters the corresponding maximum errors have also
been shown in Figs. 11 and 12. All Figs. 9-12 state that the Quas
i-cardianl-WRBF method with small effective parameter p works
better than pure RBFs for these particular problems.

3.3.1. A comparison with RBF-QR

To corroborate the stability and reliability of the proposed basis,
we compare the errors using a stable evaluation method such as
RBF-QR [26,27] and the WRBF basis to 2d Poisson equation with
exact solutions

wy =1, w, = exp(x +y) and ws = sin(57x) sin(57y)

on [0, 1]* with Dirichlet boundary conditions.

Fig. 13 shows the condition numbers and errors using RBF-QR
method and the WRBF basis, as a function of N, with fixed shape
parameter € = 0.01 and uniform grid, applied to Poisson equation
with exact solution wy. This figure verifies that the WRBF with

p=10""
~. B p=10""2
’ =1071°
A LOG-RBF

1074 1 Lo

1073 1

—— 0

105 1
Error |,

1076 1

107 4

0.01  Shape parameter 0.05 01 0.5 1

Fig. 7. The I, error for solution of test 1, using 50 uniform grid for effective parameters p = 107'°, 107", 10~'* with MQ (left) and LOG (right).

10-3 1074 1
1074 A 10°5 A
10°5 1
Error [ 1076
1076 1 Error
-7 4
1077 1 10
10°8 1 108 -
5 10 N 50 100
Fig. 8. The [,

5 10 N 50 100

error for solution of test 1, with € = 0.2 for MQ (left) and LOG (right).
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Fe + — - —p=-10"12
- p=10
o L 10° T SN s W
2 o % HF "+
| v ;
10° +
107° ' 1077 :
102 10™ 107 10”
Shape parameter Shape parameter
Fig. 9. The [, error for solution of the 2d Poisson equation (u;) using 400 uniform grid with MQ (left) and LOG (right).
10° 10° :
MQ-RBF LOG-RBF
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w |
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Fig. 10. The [, error for solution of the 2d Poisson equation (u,) using 400 uniform grid with MQ (left) and LOG (right).
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Fig. 11. The [, error for solution of the 3d Poisson equation (7;) using 1000 uniform grid with MQ (left) and LOG (right).

small shape parameter for solving the Poisson equation is stable for
large numbers of nodes.

In Fig. 14, the RBF-QR method and the WRBF basis have been
applied to Poisson equation with exact solution w,, and shape
parameter € = 0.5. Also this figure shows the condition numbers
and maximum errors corresponding to different number of nodes.

Errors and condition numbers for solutions of Poisson equation
with exact solution ws, and shape parameters € = 0.01, 0.5,1 and
1.5 corresponding to various number of nodes have been illus-
trated in Fig. 15. For this problem the reasonable solution was
obtained for € > 1. We now apply a time dependent problem.

Problem 4. Consider the Caputo sense time-fractional diffusion
equation [39]

Pu(x, t) = YU (x,t) + f(%, 1), x€[0,1],t>0, (0,1, (19)

and Dirichlet boundary condition with exact solution
u(x,t) = Eg(—t")g(x),

where f(x, t) = —E(—t")(g(x) + 78" ().
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Fig. 12. The [, error for solution of the 3d Poisson equation (2,) using 1000 uniform grid with MQ (left) and LOG (right).
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Fig. 13. The condition number and [, error for solutions of 2d Poisson equation with exact solution 1, with RBF-QR method, MQ-WRBF and LOG-WRBF basis with € = 0.01

and p=10"".
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Fig. 14. The condition number and [, error for solutions of 2d Poisson equation with exact solution w,, with RBF-QR method, MQ-WRBF and LOG-WRBF basis with € = 0.5

and p=10""%
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Fig. 16. The [, error and condition number of C for WRBFs and standard RBFs with € = 0.01, At = 1/100, p = 10""" and g = 0.5 (left) and § = 1 (right).

Applying the Riemann-Liouville integral operator to both sides B 1 Bt -1
of (19) gives the following Volterra integral equation U(X, 1) _u(x,0)+r(ﬁ)/0 (P, D) +f (X, T)(E-T)" dT - (21)

t
ux.0) = uix 0)+ o [ (unx 1) +fxo)e- 0 de. (20)
F(ﬁ) 0 0 Atﬁ k+1 -
=U(X,0)+—=——5 ) Gj U (X, ) +f(X,t))),
Discreatising this integral by a uniform time step and using the ®.0) F(/H—Z); et (7/ . G) 1 ])) @2)

trapezoidal quadrature rule at time t;,; yields
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where
K — (k= py(k+ 1), j=0.
Guerr =4 (k—j+ 2" =20k —j+ 1) + k-, 1<j<k,
1, j=k+1.
(23)

By applying Kansa’s method and using a uniform grid of any step of
time, the problem converts to the following system of equations:

Chy,q =d“, (24)
where

¥ (0) u(0, tis1)
C= C , &k+1 _ dk+1 ,

wi(L) u(L, tiy1)

k
A = u(x:,0) + SF(Xi, tiar) +5>_ @it hi(x),

=0
Cij:n//j(xi)—syw;'(xi), i=2,....N-1, j=1,...N,
and
At
= TB+2) hie(x) =y (%, te) + f (X, o).

At each step of time, the system (24) is solved for finding the
unknown vectors by, ;. It is noted that we only one time compute
the Pseudo inverse of the matrix € by the Matlab command pinv(C).

The condition number of € and the L, error for y=1, =05,
g(x) =65/(65 +x%), € = 0.01 and final time are equal to 1, rele-
vant to the WRBFs bases and standard RBFs presented in Fig. 16.
This figure demonstrates that WRBFs can remove the instability
arising from flat RBFs.

4. Conclusion

A special class of interpolation functions has been introduced.
The structure of this class is based on adding the negative definite
RBFs of order 1 to cardinal functions, and the advantages of this
basis is, decreasing the condition number of the interpolation
matrix while the convergence of the method remains similar to
the RBFs methods. The new basis have a well-conditioned interpo-
lation matrix whose condition number grows linearly with increas-
ing N. Our method has been applied to four problems and
numerical experiment corroborates our results. Therefore, the
new basis overcomes the deficiencies of the flat RBFs, and we sug-
gest it as an alternative for problems where these deficiencies pre-
vent an accurate solution.
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