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Universal closed-tube barcoding
for monitoring the shark and ray trade
in megadiverse conservation hotspots

Andhika P. Prasetyo,1,2,3,10,* Marine Cusa,1 Joanna M. Murray,4 Firdaus Agung,5 Efin Muttaqin,6

Stefano Mariani,7,9 and Allan D. McDevitt1,8,9,*

SUMMARY

Trade restrictions for endangered elasmobranch species exist to disincentivise
their exploitation and curb their declines. However, trade monitoring is chal-
lenging due to product variety and the complexity of import/export routes. We
investigate the use of a portable, universal, DNA-based tool which would greatly
facilitate in-situmonitoring. We collected shark and ray samples across the Island
of Java, Indonesia, and selected 28 commonly encountered species (including 22
CITES-listed species) to test a recently developed real-time PCR single-assay
originally developed for screening bony fish. In the absence of a bespoke elasmo-
branch identification online platform in the original FASTFISH-ID model, we em-
ployed a deep learning algorithm to recognize species based on DNA melt-curve
signatures. By combining visual and machine-learning assignment methods, we
distinguished 25/28 species, 20 of which were CITES-listed. With further refine-
ment, thismethod can improvemonitoring of the elasmobranch tradeworldwide,
without a lab or species-specific assays.

INTRODUCTION

Biodiversity is depleting more rapidly than at any time in human history. Within the last 50 years, animal

species have declined by an average of almost 70% due to continued and increasing anthropogenic

stressors.1,2 Shark and ray populations (hereafter referred to as ‘‘elasmobranchs’’) have one of the highest

extinction risks across the animal kingdom due to fishing pressure, whether targeted or as by-catch,3–5

compounded by their conservative life histories.6 Although some elasmobranch fisheries can be sustain-

ably managed,7 the market demand for shark and ray products typically leads to overexploitation.3,8

The rapid global decline of elasmobranch populations requires collaborative management and conserva-

tion measures to ensure the long-term benefits of these populations to the wider ecosystem, including,

where sustainable, for human resource use. Binding international trade consortia, such as CITES (Conven-

tion on International Trade in Endangered Species of Wild Fauna and Flora), regulate and provide the

framework to restrict the international trade of species of priority conservation concern by creating species

listing (CITES appendix I and II). Indeed, there has been an increasing number of elasmobranch listings in

CITES Appendix II over the last decade with 38 of the 47 species regulated by CITES added at the 16th

(2013), 17th (2016), and 18th (2019) Conference of the Parties conventions (Booth et al., 2020). The number

of Appendix II listings then more than tripled at the 19th Conference of the Parties (CoP19) in 2022 where

parties agreed to add all remaining (54) species of requiem sharks (Carcharhinidae spp.), 6 species of

hammerhead sharks, and 37 species of guitarfishes to Appendix II. Seven species of Brazilian freshwater

stingrays were also adopted for Appendix II listing. The scale and pace of these listings (now 151 species)

present an important implementation challenge for countries with large and diverse landings of sharks and

rays, such as Indonesia.

As a result of substantial bycatch, Indonesian fisheries hold the world’s largest volume of elasmobranch

landings.9,10 This exploitation contributes to the high vulnerability rate of elasmobranch populations in

Indonesian waters,11 including the populations in its coral reef ecosystems.4 This is particularly concerning

as Indonesia harbors almost a quarter of the world’s elasmobranch diversity.12,13 Several measures have

been established by the Indonesian authorities to reduce the decline of elasmobranch populations,
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such as: increasing the number of protected species, extensive outreach programmes, improvement of

data collection and stock assessment, expansion of marine protected areas, as well as the establishment

of port state measures to combat illegal fishing.14–17

The issue around elasmobranch fisheries is rendered even more challenging by the myriad of shark and

ray product derivations, which add another layer of complexity.18–20 Due to their similarity in appearance

and the lack of distinctive features in most derivative products, elasmobranch species can be deliberately

or accidentally mislabeled by those involved in the trade (Figure 1). The general lack of transparency in

the trade of living resources is an ongoing concern for fisheries and conservation management21 and can

have a negative impact on stock management and damages the reputation of entire sectors and coun-

tries.21,22 Furthermore, the continuous increase of elasmobranch species listed in the CITES Appendices

requires constant improvements of national and transnational capabilities in monitoring the supply

chain.23

The rapid development of DNA-based diagnostic tools offers an ever-expanding option for wildlife iden-

tification, which have greatly assisted elasmobranch biology and forensics. Established DNA barcoding24

and mini-barcoding25 approaches can robustly identify species in fresh and processed samples. However,

these traditional DNA-barcoding methods require longer processing time and high costs for their

sequencing processes. More recently, advances in real-time PCR have eliminated the sequencing stage,

thereby allowing species identification to be conducted in the field. This approach uses target-specific

primers and fluorescent dyes to detect the presence of the targeted nucleic acid template during PCR

amplification and has been successfully applied to detect several CITES-listed shark species in a single

run tube26 and Multiplex LAMP.27 However, given their reliance on species-specific primers and probes,

these methods are better suited to screening large numbers of specimens from one or few target organ-

isms rather than from awide variety of species. Thus, the need remains for a fast and easy way to identify any

sample, by-passing the need to design species-specific assays.

This issue is particularly glaring when inspectors are dealing with multiple types of products from different

species across many locations and with a limited time frame to investigate species compositions.28 This

year, the magnitude of the challenge has more than tripled, with the number of CITES-listed species going

from 47 to 151.29,30 Since CITES regulations still allows species listed on Appendix II to be traded by

Figure 1. Various types of derivative shark and ray products are being traded

Condition of inspection and some derivative products from sharks and rays i.e. large volumes of mixed cartilages waiting for inspection (A); two containers

full of dried shark and ray skin (B); inspectors checking a mixed bag of small fins and finding some hammerhead species’ fins (C); caudal fins being dried (D);

shark teeth (E); processed ray skin (F); shredded fins ‘‘hissit’’ in brine ready for exporting to Japan (G); blue shark cartilages soaked for processing (H); dried

meat from small sharks (I); dried meat from a large shark (J); live bowmouth guitarfish for the aquariummarket; and dried fins of silky and hammerhead sharks

waiting for quota to export (L).
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considering the sustainability of exploitation through a non-detrimental findings (NDF) framework, trade

monitoring is more crucial than ever before.

In an attempt to circumvent the limits of species-specific methods, a universal single-tube assay marketed

as FASTFISH-ID was recently developed for use in the seafood industry.31 This method uses LATE (Linear-

After-The-Exponent) PCR to amplify one strand of the full 650bp COI barcoding region,32 and uses a set of

fluorescent probes to target two distinct mini-barcode regions selected for their high intra-specific vari-

ability which will then produce unique species-specific fluorescent signatures.31 The fluorescent signatures

are then compared to those kept in a cloud-based library of verified specimen signatures.

However, this approach and its libraries were originally designed and validated for bony fishes31 and no

elasmobranch fluorescence fingerprints are publicly available in the FASTFISH-ID cloud. We therefore

chose to test (i) whether the existing FASTFISH-ID diagnostics could produce a diverse range of fluorescent

signatures unique and specific to each of the 28 elasmobranch species frequently found in Indonesian

trade; and (ii) whether a deep machine learning method could quantitatively assign signatures to the cor-

rect species, irrespective of the visual appearance of the fluorescence. Deep learning algorithms are highly

flexible and well suited for undertaking these tasks,33,34 and have recently been applied in marine science,

including fish size estimation,35 bycatch detection and shark identification from photos and videos.36–38

Therefore, this study aimed to examine the power of FASHFISH-ID technology to distinguish between elas-

mobranch species from trade commodities collected in the whole trade chain (from fishing ports, local

buyers, processing plants, and export hubs) across Java Island, Indonesia. We also explore the application

of machine learning to tackle the absence of reference fluorescence fingerprints on these species. This

portable methodology that can be performed in the field allows for accelerated inspection times for local

authorities and could be a vital tool in tacking the illicit trade in endangered sharks and rays.

RESULTS

Fluorescent signature of species

After filtering and removing 33 inconsistent runs (datasets with poor probe-barcode hybridization or incon-

sistent fluorescent signature), 357 pairs of fluorescent signatures from 28 species were generated, including

14 sharks and 14 rays, with 22 of those species (12 sharks, 10 rays) being CITES-listed species. Within 2.5 h,

all types of samples—from fresh to processed samples sourced from different body parts—were amplified

and produced one or two fluorescent signatures (referred to as BS1 and BS2 for barcode segment one and

barcode segment two) (Tables S1 and S2). These two barcode segments refer to the two mini-barcode re-

gions within the amplified COI target sequence that emitted fluorescent to be read by the real-time PCR

machine.

Many species were distinguishable using a combination of both barcode segments and had unique

signatures, such as Alopias pelagicus (pelagic thresher), Alopias superciliosus (bigeye thresher), and Isurus

paucus (longfin mako shark). However, some species displayed probe-barcode hybridization difficulties

(see Methods), with more shark species (7) than ray species (3) being affected, namely Carcharhinus

falciformis (silky shark), Carcharhinus longimanus (oceanic whitetip shark), Isurus oxyrinchus (shortfin

mako shark), Lamna nasus (porbeagle shark), Carcharhinus brevipinna (spinner shark), Galeocerdo cuvier

(tiger shark), Prionace glauca (blue shark), Rhynchobatus laevis (smoothnose wedgefish), Glaucostegus

typus (giant shovelnose ray), and Pristis pristis (Largetooth sawfish). Nevertheless, some of the species dis-

playing poor probe-barcode hybridization remained distinguishable using the alternative barcode

segment (Table 1 and Figures S1–S4).

Based on visual evaluations, the generated melt curves showed different fluorescent signatures for closely

related species, such as thresher sharks (Alopias spp.) and hammerheads (Sphyrna spp.; Figure 2). Across

the two species of thresher sharks, FASTFISH-ID produced visually distinguishable curves in BS1 at the

initial stages of the hybridization process and produced a similar drop at �74–79�C, while the signatures

in BS2 were clearly distinct in the initial stages (about 42–47�C). Some species, on the other hand, have

virtually identical BS1 signatures but are distinguishable using BS2, such as in the case of zebra shark (Steg-

ostoma fasciatum) and spot-tail shark (Carcharhinus sorrah) (Figure 3). However, there are problematic spe-

cies pairs that have highly similar signatures with both segments and therefore appear visually indistin-

guishable. This is the case between the tiger shark and giant shovelnose ray, between the silky and blue
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sharks, and between the giant oceanic manta and giant devil ray (two Mobula species), which have nearly

identical signatures in both barcode segments (Figure 4). Overall, six out of 28 species were deemed visu-

ally indistinguishable, four of which are CITES-listed. We also found seven species that amplified inconsis-

tently; shortfin mako shark (I. oxyrinchus), oceanic whitetip shark (C. longimanus), porbeagle shark

(L. nasus), tiger shark (G. cuvier), largetooth sawfish (Pristis pristis), giant shovelnose ray (G. typus), and

smoothnose wedgefish (R. laevis). It was observed that the rightmost trough in the BS1 fluorescent signa-

ture labeled ‘‘TM’’ corresponds to ThermaMark, an internal marker for correction of artifactual temperature

variation (Figure S5). However, in BS2, some segments were amplified and unique for each of these species.

Half of the samples were highly processed products, but they still amplified well. In some of these, there

were differences in the intensity of the signatures, as reflected in signature variation from BS2 of great

Table 1. Amplification conditions of each species using the targeted segments using the FASTFISH-ID technology

No.

CITES

status Scientific name English name

Amplification condition Distinguishable

Barcode

segment

1 (BS1)

Barcode

segment

2 (BS2) Visual

Deep

learning

1 Yes Alopias pelagicus Pelagic thresher Yes Yes Yes Yes

2 Alopias superciliosus Bigeye thresher Yes Yes Yes Yes

3 Carcharhinus falciformis Silky shark Yes No No Yes

4 Carcharhinus

longimanus

Oceanic whitetip shark No Yes Yes No

5 Isurus oxyrinchus Shortfin mako shark No Yes Yes Yes*

6 Isurus paucus Longfin mako shark Yes Yes Yes Yes*

7 Lamna nasus Porbeagle shark No Yes Yes Yes

8 Sphyrna lewini Scalloped hammerhead Yes Yes Yes Yes

9 Sphyrna mokarran Great hammerhead Yes Yes Yes Yes

10 Carcharhinus brevipinna Spinner shark Yes No Yes Yes

11 Carcharhinus sorrah Spot-tail shark Yes Yes Yes No

12 Prionace glauca Blue shark Yes No No Yes*

13 Anoxypristis cuspidata Knifetooth sawfish Yes Yes Yes Yes

14 Glaucostegus typus Giant shovelnose ray No No No No

15 Mobula birostris Giant oceanic manta ray Yes Yes No Yes

16 Mobula mobular Giant devil ray Yes Yes No Yes

17 Mobula tarapacana Sicklefin devil ray Yes Yes Yes Yes

18 Pristis pristis Largetooth sawfish No Yes Yes Yes

19 Rhina ancylostoma Bowmouth guitarfish Yes Yes Yes Yes

20 Rhynchobatus australiae Whitespotted guitarfish Yes Yes Yes Yes

21 Rhynchobatus laevis Smoothnose wedgefish No Yes Yes Yes*

22 Rhynchobatus springeri Broadnose wedgefish Yes Yes Yes Yes*

23 No Galeocerdo cuvier Tiger shark No No No No

24 Stegostoma fasciatum Zebra shark Yes Yes Yes No

25 Gymnura poecilura Longtail butterfly ray Yes Yes Yes Yes

26 Himantura imbricata Bengal whipray Yes Yes Yes Yes

27 Neotrygon orientalis Oriental bluespotted

maskray

Yes Yes Yes Yes

28 Telatrygon zugei Pale-edged stingray Yes Yes Yes Yes

Total distinguishable species 22 23

Amplification condition denotes whether the species amplified at either or both segments (BS1 and BS2) and whether the species was distinguishable from all

other species by its fluorescent signature(s) and deep learning.

Note: species with Asterix "*" mark have probability of mis-assignment by the deep learning model.
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hammerhead, zebra shark, and bowmouth guitarfish (Figures 2, 3 and S4), which may in part be ascribed to

the actual state of degradation of the original DNA template.

Machine learning for species assignment

We transposed data for the training sets and then used fluorescence values at 8,152 temperature intervals

(>4,000 per each barcode segment) as variables and identified variable importance as a key feature for spe-

cies assignment. We ranked variable states according to their relative importance, scaled importance and

percentage of variance explained, for each barcode segment (see Table S3). We generated 301 potential

deep learning models, aiming for high accuracy and minimizing error. The best deep-learning model was

chosen as the one with the highest accuracy (98.20%; Table S4). When the model was applied to melt curve

data from the independent specimens, accuracy dropped to 79.41%, with 54 out of 68 specimens correctly

assigned (Figure 5). Misassignments were consistent with the species that also proved problematic during

visual assessments, i.e., the spinner and blue shark. The model also misidentified spot-tail shark as zebra

shark despite it visually having a unique signature in BS2 (Figure 3). During the testing, some samples

from hammerhead sharks (Sphyrna spp.), smoothnose wedgefish (R. laevis), and broadnose wedgefish

(Rhynchobatus springeri) were assigned to the wrong species, even though each of these species had their

own unique fingerprint (Figures S1–S4).

Figure 2. Some species that have visually distinguishable signatures in both barcode segments i.e., pelagic

thresher, bigeye thresher, scalloped hammerhead, and great hammerhead
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DISCUSSION

Within a couple of hours and without the need to adjust the existing FASTFISH-ID assay from teleost

fish to elasmobranchs, this real-time PCR method offered a portable monitoring tool that reliably

enabled the identification of 25 elasmobranch species (20 of which are CITES-listed). The device

used to conduct the runs, the MIC, is a convenient portable real-time PCR thermocycler weighing

no more than 2 kg and allowing for the simultaneous inspection of 48 specimens per run.31 More

importantly, the use of probes targeting mini barcodes with high inter-specific variation offers a uni-

versality that other qPCR-based assays do not currently provide, and the automatic amplification of

the full COI barcode as part of the same reaction offers downstream opportunities for further in-depth

screening, if necessary.

While existing genetic-based monitoring tools continue to be useful in many situations,24–27 FASTFISH-ID

seems poised to significantly expand the horizons of DNA-based control: alongside its speed, portability,

and universality, the method exhibits single nucleotide resolution39 which can minimize the risk of similar

fluorescent signatures, particularly when more species are added to a reference library.31 This is a partic-

ularly compelling argument for its implementation, as CITES lists are likely to continue to expand in the

future. Additionally, the amplification of the whole COI universal barcode segment embeds a forensic

dimension40 that is not necessarily afforded by other portable tools.

A difficulty typically encountered in genetic-based trade monitoring is the handling of processed prod-

ucts, and this is particularly true for elasmobranchs which tend to be heavily processed in a variety of

ways.41,42 Despite the issues of fragmented DNA due to the effect of various processing techniques,43

FASTFISH-ID shows notable robustness and reliability, with 83.6% of processed samples yielding reliable

melt curve profiles (51 of 61 processed samples). Since FASTFISH-ID uses real-time PCR and relies on

fluorescent signatures, some species display variation in signature amplitude (the variation in peak

heights and valley depths) especially when the DNA was degraded, as observed with processed prod-

ucts and displayed by the signature of both hammerhead species on BS2 (Figure 2). This deviation

may be problematic for species assignment, especially when the assignment depends on a deep

learning algorithm. The high probability of the features being similar to those of other species caused

misassignments. Other issue that may have occurred is variation in the fluorescence signature from

the same species. This could be due to single nucleotide polymorphisms (SNPs) within species or

possibly to contamination in the case of the BS2 signature of the pale-edged stingray (Telatrygon zugei;

Figure S4).

Figure 3. Some species that have similar signature in one barcode segment but visually unique in other segment

i.e., zebra and spot-tail shark
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Figure 4. Problematic species that visually have highly similar signatures at both barcode segments i.e., tiger

shark and giant shovelnose ray; giant oceanic manta ray and giant devil ray; silky shark and blue shark
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Visual assessment could distinguish 22 species out of 28 with more than half of these (N = 17) being CITES-

listed. Even in this preliminary phase, the method could therefore readily be applied by inspectors—

without the application of computational tools—and reliably reveal cases of illegal activities. Three pairs

of species had spectral features that are difficult to distinguish, e.g., these ambiguities were present be-

tween tiger shark and giant shovelnose ray, between two species of Mobula rays (giant oceanic manta

ray and giant devil ray), and between silky and blue shark (Table 1 - Visual). Thus, it must be acknowledged

that the barcode segments have the same sequence of nucleotides and produced similar signatures for

those species. The technology was originally designed for bony fish,31 and the database is currently being

expanded to various important species that are globally traded as seafood. Yet, the much lower diversity of

elasmobranchs (�1/30th that of teleosts) will make any effort to produce spectral reference databases a far

less onerous task than that currently encountered with bony fishes. While it has been known that the COI

gene is more slowly evolving in chondrichthyans than teleosts,44–46 this is seldom amajor issue inmost DNA

barcoding applications,47–49 so an optimized iteration of the FASTFISH-ID method is poised to be trans-

formational for elasmobranch conservation and management. A qualitative investigation on the full length

of COI sequences (Sanger sequencing results) based on visual and simple comparison (https://www.

bioinformatics.org/sms2/ident_sim.html) revealed that for those problematic three pairs of species

mentioned above for that particular segment, there is a sufficient level of divergence in their sequence

(70–98%) to allow discrimination via this sensitive method50 using a modified set of probes.

In the absence of an online reference database of elasmobranch fluorescent signatures, machine learning

was developed for this study. One of the machine learning applications is pattern recognition.38,51 Deep

learning (also known as deep structured learning) is broadly applied in machine learning applications,

especially pattern recognition38,51 and has advantages in its flexibility to develop learning styles i.e., super-

vised, semi-supervised, or unsupervised.33,34 Deep learning models have been chosen and deployed with

independent testing datasets to measure their accuracy. We found that the accuracy of our test model was

79.41%, which is lower than the training accuracy (98.20%; Table S5), and yet the model could identify

similar species that could not be distinguished visually. In fact, the model enabled us to differentiate the

two Mobula species that have similar signatures in both barcode segments. Machine learning could also

recognize silky shark, a problematic species for the authorities as the species belongs to the Carcharhini-

dae, a diverse family that has plenty of look-alike species. In particular, the silky shark spectral profiles

Figure 5. Confusion matrix of 28 shark and ray species assignment
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appeared visually indistinguishable from blue shark. However, the new CITES listing agreed during CoP19

added all requiem sharks into Appendix II (including blue shark along with the other 53 species shark from

Carcharhinidae family) will make implementing action manageable since requiem sharks make up a large

proportion of the products found in the global shark fin trade hubs in China.52 Although international trade

in all requiem sharks will now be regulated, a non-detriment finding (NDF; CITES’s mechanism that allows

certain species listed in Appendix II to be traded with strict quotas) which is specific to each species will still

require the capability of identification at the species level.

Five out of 28 species could not be assigned accurately using the model, i.e., between spot-tail and zebra

shark as well as mis-assignments among oceanic whitetip shark, tiger shark, and giant shovelnose ray

(Table 1 – Deep Learning). Curiously, there were also misassignments for species that had quite unique

fluorescent signatures. We argue that these misassignments could be due to variation in amplitude, where

some species actually have similar signatures but different amplitudes,53 the cause of which is undeter-

mined, but could be due to degraded DNA. For instance, the signature in BS2 of zebra shark has high-

amplitude variations that may challenge the model to assign the species (Figure 3). Increasing training da-

tasets may be required as this should improve the robustness of themodel,33 while future re-tailoring of the

barcode regions to elasmobranch variation may also remove some of the within-species noise. Despite the

assignment problems, when we combine visual and deep-learning assignments, we could distinguish 25

out of 28 species, 20 of which are listed in CITES Appendix II.

Limitations of the study

The probe hybridization problems (which occurred when the barcode segments have a high degree of mis-

matches with the designed probes) encountered in seven species prevented the machine learning tool

from adequately assigning fluorescent signatures to a given species. Since BS1 failed to hybridize for

most of these species, the species assignment in these cases was solely reliant on BS2, which, in many cases

also exhibited poor hybridization. To address this issue, it seems that going forward the designing of new

probes tailored to elasmobranch sequence variation will be a necessary solution to increase the versatility

and reliability of FASTFISH-ID, this process may also consider the evaluation of other gene regions, such as

NADH2,45,54,55 which has proven to be highly diagnostic in elasmobranchs. An increased set of elasmo-

branch species may also inflate misassignments due to the higher degree of similarity among species in

both visual-based and machine learning-based systems. There are also limitations in using fully supervised

deep-learning approaches in the selection of important features from highly variable training sets (e.g., sig-

natures from the two barcode segments).56 The addition of more species to the database will require more

training images. However, with such improvements, this method will help authorities (i.e., fish inspectors,

customs, and quarantine officers) by providing a single, agile testing option, at any point in the supply

chain, to disentangle the complexity of the shark and ray product trade, and ultimately reduce the conse-

quential risk of extinction for these endangered and iconic taxa.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Andhika Prasetyo (a.p.prasetyo@edu.salford.ac.uk) and/or A. D. McDevitt (allan.

mcdevitt@atu.ie).

Materials availability

This study did not generate new unique reagents. FASTFISH-ID reagents were manufactured by Ecologe-

nix, LLC. Natick, MA - USA.

Data and code availability

d All original code is deposited at the Github repository and are publicly available of the date of publica-

tion database: https://github.com/andhikaprima/FastSharkID.

d The datasets associated with the study are provided in a dedicated Zenodo repository: https://doi.org/

10.5281/zenodo.7997300.

d Any additional information required to reanalyse the data reported in this paper is available from the

lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Tissue sample of shark and ray specimens were collected in several sites nested in six locations across cities

on Java Island, the most populous island in Indonesia (Figure S6, namely Jakarta, Indramayu, Tegal,

Cilacap, Surabaya and Banyuwangi. Collected specimens were gathered without prior knowledge of their

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

198 tissue samples (specimens) belonging to

28 species

This paper https://www.ncbi.nlm.nih.gov/sra/?

term=PRJNA850687

Chemicals

Mu-DNA extraction reagents 57 https://www.protocols.io/view/mu-dna-a-

modular-universal-dna-extraction-method-a-

6qpvryj2gmkn/v2

Critical commercial assays

FASTFISH-IDTM Probe Mix Ecologenix, LLC. Natick, MA - USA https://www.fastspecies-id.com/

Deposited data

Training and testing datasets This paper https://doi.org/10.5281/zenodo.7997300

Software and algorithms

H2O H2O.ai https://h2o.ai/platform/ai-cloud/make/h2o/

pandas The pandas development team Library https://pandas.pydata.org

Deep learning algorithm for species

recognition

This paper https://github.com/andhikaprima/FastSharkID

Oligonucleotides

M13F primer Macrogen� Ecologenix, LLC. Natick, MA - USA

Fish02 primer sets Macrogen� 58

Leray-XT primer sets Macrogen� 59
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exact harvest location and were available for collection at a variety of sites, such as fishing ports (FP), tradi-

tional markets (TM), processing plants (PP), export hubs (EH) and an inspector station (AU).

Sample collection was granted by research permit no.251/BRSDM/II/2020 issued by Agency for Marine and

Fisheries Research and Human Resources AMFRAD, the Ministry of Marine Affairs and Fisheries (MMAF),

Republic of Indonesia. Research ethics no. STR1819-45 issued by the Science and Technology Research

Ethics Panel, University of Salford. Export permits no. 00135/SAJI/LN/PRL/IX/2021 (CITES-listed speci-

mens) and 127/LPSPL.2/PRL.430/X/2021 (non-CITES-listed specimens) were granted under the authority

of the Ministry of Marine Affairs and Fisheries (MMAF), Republic of Indonesia. Sample were imported

into the UK under import permit no. 609191/01-42 from the Animal and Plant Health Agency (APHA), United

Kingdom.

METHOD DETAILS

Sample collection and DNA extraction

579 specimens were opportunistically collected at the above-mentioned sites and processing factories

throughout January and February 2020. The tissue, which could either be fresh, frozen, partially or heavily

processed, was then stored in 2.0mL screw-cap microcentrifuge tubes, submerged in 90% ethanol and

stored at 4�C. DNA was extracted from samples following the Mu-DNA protocol for tissue samples57

with an overnight incubation at 55�C on the thermomixer with a medium mixing frequency and a final

elution volume of 100 mL. All surfaces were sterilised with 50% bleach and then washed with 70% ethanol,

in-between and after extracting each sample, to reduce cross-contamination risks (Figures S7A–S7B).

Of these, we excluded specimens of unclear taxonomy, and all species represented by less than 3 individ-

uals. We refined the collection to 130 tissue samples (specimens) belonging to 28 species; for each species,

we used three replicates per specimen as training sets (390 runs) (Table S1). We also had another 68 tissue

samples without replication and used them as testing datasets (Table S2). As sampling was conducted

opportunistically, we did not have an equal number of samples per species. Some species had a limited

number of specimens, so we took out some training sets to be used as testing datasets. Datasets were

then filtered, and ambiguous qPCR runs (i.e. poor probe-barcode hybridisation or inconsistent fluorescent

signature) were removed. A poor probe-barcode hybridisation was checked using a reference point

created by ThermaMarkTM (TM) in the signature produced from BS1. If only ThermaMarkTM (TM) amplified

in the BS1 fluorescent signature, those runs would have failed to hybridize. Inconsistent fluorescent signa-

tures within a replication or species were re-run a second time. If the re-runs kept failing, those runs were

removed. In the end, we used 357 (number of replications varied by specimens) and 68 runs for training and

testing datasets, respectively.

FASTFISH-IDTM closed-tube barcoding protocol

PCR reaction and amplification conditions

In the first instance, the FASTFISH-IDTMmethod requires the amplification of the full cytochrome c oxidase I

(COI) gene (�650 bp) and in the second instance, it targets the two mini-barcodes (�80 bp) using a set of

probes. PCR master mixes were prepared in low-adhesion Eppendorf tubes.31 The major components of

this method are ThermaStopTM, ThermaMarkTM and FASTFISH-IDTM Probe Mix (Ecologenix, LLC.).

ThermaStopTM is a novel hot-start reagent that prevents non-specific amplification prior to the start of

the reaction, while ThermaMarkTM (hereafter referred as TM) is a temperature-dependent marker for

correction of melt-curve analysis (Ecologenix, LLC.). The FASTFISH-IDTM probe mix consisted of two sets

of positive/negative probe pairs labelled in two different colours that hybridize along the length of two

mini-barcode regions within the amplified COI target sequence, hereafter referred to as Barcoding

Segment 1 (BS1) and Barcoding Segment 2 (BS2). A M13 primer was used as a priming site that facilitates

the sequencing process for eventual species validation through Sanger sequencing.

FASTFISH-IDTM uses asymmetric PCR to produce more single stranded amplicons which allow the probes

to hybridize more easily.32 After amplification, mismatch tolerant positive/negative probe pairs bind to

their single-stranded DNA targets. Each positive-probe is formed of a target binding sequence that is

20–35 nucleotides long and has a higher fluorescent signal when it is bound to its target sequence but a

low background fluorescence when it is not. Negative-probes are only quenchers that reduce the fluores-

cent signal when they are bound next to their paired positive-probe. Positive/negative probe pairs can bind
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to both perfectly matching strands and target sequence variants with one or more nucleotide polymor-

phisms. This means that they can tolerate mismatches, which is one of the most important features of

this technology as a single set of reagents can be used to identify a large number of species.31 Target se-

quences that are similar but different, even if only by one nucleotide, almost always have different fluores-

cent signatures. Positive/negative probe sets therefore have the potential to discriminate among thou-

sands of fish species and their variants.31

PCR amplification was performed on a Magnetic Induction Cycler (MIC) which is a real-time PCR thermo-

cycler designed by BioMolecular SystemsTM (Upper Coomera, Queensland, Australia). Thermocycling con-

ditions were 94�C for 2 mins, 5 cycles of 94�C for 5 secs, 55�C for 20 secs, 72�C for 45 secs, then 65 cycles of

94�C for 5 secs, 70�C for 45 secs (in total: 2 hrs, 20 mins and 44 secs). Following a total of 70 amplification

cycles, the reaction leads to a 10- to 20-fold excess of single-stranded DNAwhich is critical for probe/target

hybridization in a single closed tube.32,60 At the completion of PCR, the temperature was decreased down

to 40�C for 10 mins to enable the fluorescent probes in the FASTFISH-IDTM probe mix to hybridize to the

excess single-strandedDNA. This step was followed by amelting curve analysis where the temperature was

gradually increased from 40�C to 87�C at 0.1�C /secs with sequential fluorescent acquisition first in the MIC

PCR Cycler’s Orange Channel (suitable for detection of CalRed 610- labelled probes; max excitation:

590 nm; max emission 610 nm) and then detection in the Red Channel (suitable for detection of Quasar

670-labelled probes; max excitation: 647 nm; max emission 670 nm). The first derivative of the melt curve

was then used as the fluorescent signature. Species assignment was revealed by comparing a distinct mix

of Cal-Red 610 and Quasar 670 fluorescent signatures (Figures S7C–S7F). Those multiple combinations

allow FASTFISH-IDTM to identify a large number of species with the same reagents.31,39,50

DNA barcoding and species validation

The same single strand DNA products used to generate a fluorescent signature can also be sequenced by

DNA barcoding for further investigation. The sequencing protocol uses the M13 tail sequence in the

FASTFISH-IDTM FISH COI HBCts excess primer (5’ CACGACGTTGTAAAACGAC 3’, a modified version

of the M13F primer) as a sequencing primer to generate the sequence of the excess primer strand. By

design, the excess primer-strand sequence can be queried directly in the NCBI nucleotide database61

or the Barcode of Life Database62 for species identification. In addition, we also used Fish F2 (5’

TCGACTAATCATAAAGATATCGGCAC 3’) and Fish R2 (50 ACTTCAGGGTGACCGAAGAATCAGAA 30)
primer sets58 for several initial specimens for comparison with HBCts excess primer (M13). Sequencing

was outsourced to Macrogen EuropeTM. Samples were prepared according to the service provider proto-

cols (https://www.macrogen-europe.com/services/sanger-sequencing). We also added species and/or

specimens after identification using a highly degenerated primer set using a high throughput barcoding

(HTB) method (A.P. Prasetyo et al., unpublished data); Leray-XT primer sets (313 bp). This set

included the primers jgHCO2198 (50 TAIACYTCIGGRTGICCRAARAAYCA 30) and mlCOIintF-XT (50 GGWA

CWRGWTGRACWITITAYCCYCC 30).59

QUANTIFICATION AND STATISTICAL ANALYSIS

Machine learning for species assignment

Since the two probing barcode segments and the algorithm were developed for teleost fishes, they are not

expected to maximise differentiation among the melt curves of elasmobranch species. Furthermore, the

existing cloud-based reference library does not contain any elasmobranch signatures. We therefore devel-

oped our own species identification system by using machine learning using the H2O platform

(Figures S7G and S7H). H2O is an open source, fast and scalable machine learning and predictive analytics

platform that allows building machine learning models on big data, and improving reproducibility.63 The

deep learning algorithm was deployed to address the problem of species assignment by considering its

capability to arrange multiple nonlinear transformations to model high-level abstractions in data. H2O’s

Deep Learning is based on a multi-layer feedforward artificial neural network (FANN) that is trained with

a stochastic gradient descent using a backpropagation environment.63 Deep learning is also advantaged

by extracting the optimal input representation from raw data without user intervention.64

The fluorescent signature datasets (BS1 and BS2) were extracted, with the species identity serving as the

‘‘response’’, and the transposed PCR profile temperature values being used as the predictor ‘‘variables’’

(each barcode fragment is recorded at about 4,000 temperature values), and fluorescent values serving

as the ‘‘feature’’. In deep learning, ‘‘response’’ refers to the individual value that served as the output
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(species name in our case); while ‘‘variable’’ refers to properties of the ‘‘response’’ and is evaluated through

the ‘‘feature’’.

The performance of deep learning algorithms depends heavily on the extracted features, so it’s important

to choose the right group of features that best represent the input data.65 Data filtering was conducted to

exclude poor probe-barcode hybridisation or inconsistent fluorescent signature datasets and provided the

best representative of the data input. Two datasets (BS1 and BS2) were then merged by specimen ID with

species name used as an input to the model. Our model was divided using a 70–30 ratio of training data to

validation data (i.e. 246 and 111 runs respectively) and then tested with 68 independent datasets. Default

parameters of H2O’s Deep Learning were optimized, with a process called ‘‘grid-search’’, this process tried

to adjust several parameters to find the optimal ‘‘stopping criteria’’ (list of parameters provided on

Table S6). We setup a ‘‘stopping criteria’’ to limit the computational load in searching for the best deep

learning algorithm, which was based on random discreteness, the number of generated models, and

model runtime (Table S7). The best model was chosen based on model accuracy and Root Mean Square

Error (RMSE) optimization. A confusion matrix is used to visualize model accuracy.

As for other algorithms, larger databases are required to improve predictive abilities by optimizing distrib-

uted representation, activation function non-linearity, and flexible architecture depth in terms of hidden

layers and nodes.66 The main challenges in applying deep learning is overfitting due to a dominant influ-

ence on the generalization ability of a deep neural networkmodel.67 However, regularizationmethods such

as Ivakhnenko’s unit pruning68 or sparsity (l1-regularization) or weight decay (l2-regularization) can be

applied during training to combat overfitting.69 The sparsity and weight decay were used in this study.
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