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Abstract: Ubiquitous mobile edge computing (MEC) using the internet of things (IoT) is a promising
technology for providing low-latency and high-throughput services to end-users. Resource allo-
cation and quality of service (QoS) optimization are critical challenges in MEC systems due to the
large number of devices and applications involved. This results in poor latency with minimum
throughput and energy consumption as well as a high delay rate. Therefore, this paper proposes a
novel approach for resource allocation and QoS optimization in MEC using IoT by combining the
hybrid kernel random Forest (HKRF) and ensemble support vector machine (ESVM) algorithms
with crossover-based hunter–prey optimization (CHPO). The HKRF algorithm uses decision trees
and kernel functions to capture the complex relationships between input features and output labels.
The ESVM algorithm combines multiple SVM classifiers to improve the classification accuracy and
robustness. The CHPO algorithm is a metaheuristic optimization algorithm that mimics the hunting
behavior of predators and prey in nature. The proposed approach aims to optimize the parameters
of the HKRF and ESVM algorithms and allocate resources to different applications running on the
MEC network to improve the QoS metrics such as latency, throughput, and energy efficiency. The
experimental results show that the proposed approach outperforms other algorithms in terms of QoS
metrics and resource allocation efficiency. The throughput and the energy consumption attained by
our proposed approach are 595 mbit/s and 9.4 mJ, respectively.

Keywords: internet of things; resource allocation; quality of service; hybrid kernel random forest;
ensemble support vector machine; crossover-based hunter-prey optimization

1. Introduction

The challenges include ineffective resource utilization to process data and latency in the
data processing. The end-node devices induce these challenges in big data. To overcome the
problem of analytics and big data storage caused by high quantities of cloud resources, the
primitive technology of cloud computing has been merged with these new networks [1]. It
provides lower delay and larger computing agility when compared to the strong computing
platforms in cloud data centers (CDC). At the edge of the network, about 40% of the
IoT-created data are contained and processed [2]. In a heterogeneous environment, the
research community faces several problems such as efficient data collection, network
architecture, reliable traffic management, storage, and security due to the interconnection
of these devices. In addition to this, due to the insufficiency of resources such as memory,
onboard power, processing, and communication, wireless sensors are prone to multiple
threats. Hence, with reduced resource usage, an effective communication structure of
sensor devices can increase its performance in producing results with great accuracy [3].
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The main challenge faced by mobile edge computing (MEC) is mobility issues. The risk
to the integrity of the data and interruptions to service delivery caused by security threats
can affect the MEC ecosystem in terms of reliability and loss of availability. Fault tolerance
is one of the challenges of MEC which consists of availability, dependability, and reliability.
To enhance the efficacy in dealing with time constraints, the offloading graininess and
partitioning mention the code size that must be loaded for remote execution [4]. The MEC
user remains in the coverage areas of MEC service providers only for a limited duration,
which results in the diverse user demand. Various types of users require a variety of
services which are changing rapidly based on the values of requirements. Hence, it is
necessary to establish the services in a cost-effective manner. Meanwhile, developing a
cost-effective technique is considered a challenging task because of the diverse nature of
emerging services.

QoS refers to the performance characteristics and level of service provided by a net-
work or system, which directly impacts the end-user experience. It encompasses various
metrics such as latency, throughput, reliability, availability, and energy efficiency. Achiev-
ing a high QoS in MEC systems is crucial for delivering low-latency and high-throughput
services to end-users and ensuring a satisfactory user experience. The International Telecom-
munication Union (ITU) plays a significant role in establishing standards and guidelines for
QoS in telecommunication networks. ITU-T Supp. 9 of the E.800 Series provides regulations
and recommendations related to QoS in telecommunication services. This document offers
a comprehensive framework for assessing, measuring, and monitoring QoS parameters,
facilitating the effective management and optimization of network performance.

A deployed network’s overall lifetime gets reduced due to the increased energy
consumption of the sensor devices used in high traffic rates and the heterogeneous commu-
nication infrastructure [5]. Load balancing and resource allocation play a crucial role in
optimizing network performance and enhancing system lifespan by managing heavy-duty
hours. However, it is often used as an unconstrained process, leading to side effects. The
solution lies in implementing proper admission control to ensure genuine network load
and enhance network load balancing. This can significantly improve overall network func-
tioning. To achieve optimal results, the load balancing process needs to work in tandem
with the admission control process [6]. The key contributions of this paper are described as
follows.

A novel approach has been developed for resource allocation and QoS optimization
in MEC using IoT: the proposed approach combines hybrid kernel random forest [7] and
ensemble support vector machine algorithms [8] with crossover-based hunter-prey op-
timization to optimize the QoS metrics and allocate resources to different applications
running on the MEC network. Improved QoS metrics [9]: The proposed approach aims
to improve QoS metrics such as latency, throughput, and energy efficiency by allocating
resources to different applications running on the MEC network. In the context of ubiqui-
tous mobile edge computing (UMEC) using IoT, it is crucial to optimize resource allocation
and quality of service (QoS) metrics while considering the cost implications. By efficiently
allocating resources to different applications running on the UMEC network, the proposed
approach aims to achieve cost-effective service provision. In UMEC systems, there is a
large number of devices and applications involved, leading to resource allocation chal-
lenges. Inefficient resource utilization can result in increased costs, such as higher energy
consumption and poor network performance. Therefore, optimizing resource allocation be-
comes essential for cost-effectiveness. The proposed approach combines machine learning
algorithms (hybrid kernel random forest and ensemble support vector machine) with an
optimization algorithm (crossover-based hunter-prey optimization) to achieve cost-effective
service provision. By accurately predicting and optimizing QoS metrics, such as latency,
throughput, and energy efficiency, the system can allocate resources more effectively and
reduce unnecessary costs. By optimizing resource allocation and QoS metrics, the proposed
approach aims to strike a balance between service quality and cost efficiency. This can help
service providers deliver high-quality services to end-users while minimizing operational
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costs. The cost-effective provision of services is crucial for ensuring the sustainability and
profitability of UMEC systems.

The paper organization is arranged as follows. In Section 2, past literature works are
described in the context of mobile edge computing. The ubiquitous mobile edge computing
using hybrid ensemble SVM and kernel random forest is depicted in Section 4. In Section 5,
the evaluation results are discussed. In the final section, the conclusion of the paper is
presented.

2. Literature Review

As mentioned in Table 1, Yu et al. [10] presented a method of edge computing that
implemented SAGINs for reducing the usage of satellite resources and the task comple-
tion time. Additionally, the action space size was reduced through the pre-classification
method. The proposed method used a deep imitation learning-driven caching and offload-
ing algorithm and thereby achieved real-time decision-making. They have evaluated the
developed method in a simulated environment and compared it to other existing edge
computing methods. Ai et al. [11] developed an approach, namely, a smart collaborative
framework (SCF) for creating multi-task offloading solutions and for achieving a prediction
of dynamic service. They have developed a theoretical approach and used hybrid deep
learning algorithms in a hierarchical spatio-temporal monitoring (HSTM) approach from
spatio-temporal dimensions. Additionally, they have used advanced queuing and mixed
game theories for enhancing the offloading efficiency of the scheduling approach, namely,
fine-grained resource scheduling (FRS). However, the high computational expenditure and
large memory needed by the DNN significantly diminish the deep learning usage in edge
computing with restricted resources.

Sood et al. [12] presented a smart traffic management approach for the prediction of
the inflow of traffic and time-enhanced vehicles’ smart navigation, which was based on
edge-cloud-centric IoT. The congestion at junctions was avoided through the prediction of
traffic arrival and also through avoiding long queues. They have used a baseline classifier
and analyzed the traffic arrival, the result showed that the proposed Smart management
approach was more effective in terms of road safety at junctions, smart navigation, and
best load balancing when compared to other existing methods. However, this model is not
energetically suitable for resource-restricted mobile mechanisms.

Mazumdar et al. [13] presented a three-layered fog node IoT approach to optimize
the service with regard to time. They used the load-offloading method in the load sharing
approach to enhance the security features of the proposed method, and its efficiency was
evaluated through similar existing methods. A limitation of this method is that utilized
mobile terminals can only depend on cloud graphic processing units (GPUs) to stimulate
calculating; although, the cloud computing security, the bandwidth of the wireless network,
and the communication delay will increase the network complexity.

Chien et al. [14] developed a spatio-temporal-dependency approach that was designed
for feature extraction, and which was based on a convolutional neural network (CNN).
Shah et al. [15] presented an empirical multi-agent cognitive method for the consecutive
transition of IoT APIs. They discovered a classification method for CAs which enables
the creation of CA, control, and migration. The proposed method achieved an IoT API
distribution and transparency in the heterogeneity, which provided cloud computing
optimization. However, the contrasted sensory data accumulate over a large network;
hence, the data itself may have a paradox. Bolettieri et al. [16] proposed a heuristic
algorithm with linear relaxation and rounding techniques due to optimization problem
complexity. The proposed approach was not effective in handling inconsistent traffic
demands. This method mainly involved two types of base station traffic prediction data to
enhance the hyperparameters. Mobile edge computing (MEC) was integrated with the base
station to reduce the time cost of data transmission to the cloud server. The performance
metrics such as mean absolute error (MAE), root mean square error (RMSE), and mean
absolute percentage error (MAPE) were used for evaluation. The results showed that
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training time decreased and prediction accuracy increased. On the other hand, the use of a
large amount of data significantly impacted the performance of this model [17].

Abbasi et al. [18] explained the fog computing based IoT architecture for mobile edge
computing. This method used a genetic algorithm (GA) to handle many requests and
their security and quality, and fog computing was used to enhance the management and
processing of IoT and smart grid. The results showed that this method reduced the delay
and consumption of power of devices. Meanwhile, deep neural networks were required to
solve the multi-objective optimization problems.

For edge-computing-enabled IoT systems, Liao and Cheng [19] developed a consensus
technique (RVC) based on voting and reputation. The computing resources were carried
nearer to the internet of things (IoT) and farther from the center of the cloud via edge
computing. This enhanced the growth of the IoT by minimizing the delay. Blockchain
improved the IoT’s security problems, as the devices and edge servers were scattered. A
consensus technique based on voting and reputation (RVC) was employed in this article, to
rectify issues such as reducing consensus efficiency and the safety of the existing consensus
techniques. A successful consensus rate, transaction output, and reduced time were the
advantages of this RVC. The increased number of nodes was the drawback of this RVC.

Karjee et al. [20] established split computing technology to provide a superior user
experience and alleviate the issues of partly offloading the DNN model inference task from
an IoT device to a trusted device called an edge. When compared with in-device inference
time, the results reveal that the DNN model minimizes the inference time and balances
the tasks across edge devices to significantly reduce battery drainage. The energy utiliza-
tion/battery dissipation of edge devices was examined and indicated, which minimizes the
overall execution time of each task and amends the user experience through implementing
this mechanism [21]. Due to their low computational capabilities, these tasks are arduous
to accomplish in a short period of time and provide accurate results.

Chen et al. [22] explored the concept of load balancing in mobile edge computing
(MEC) systems within ultra-dense networks. The study focused on improving the efficiency
of MEC by accurately estimating the load on different edge servers and dynamically
allocating tasks based on this estimation. The load estimation model proposed in the
study may have relied on simplified assumptions and factors, such as CPU utilization,
memory usage, and network traffic. While these factors are important, there may be other
parameters and complexities that can affect the load on edge servers. The accuracy of the
load estimation model could be further improved by considering a broader range of factors.

Poryazov et al. [23] discussed the normalization of quality of experience (QoE) models
in telecommunication systems. The study addressed the limitation of existing QoE predic-
tion models that often provide inadequate results due to variations in data collection and
presentation. The authors proposed an overall model normalization technique to improve
the accuracy and reliability of QoE predictions. Mutichiro et al. [24] discussed the Dynamic
pod-scheduling model to solve the task scheduling problem at the edge.

Table 1. Summary of various related works.

Author and Year Technique Objective Pros Cons

Yu et al., 2021 [10]

Deep Imitation
Learning-Driven

Caching and
Offloading Algorithm

To reduce the usage of
satellite resources and

the task completion
time

Achieved real-time
decision-making

Time required for
implementation was

high

Ai et al., 2023 [11]
Hierarchical

Spatio-temporal
Monitoring (HSTM)

To achieve prediction
of dynamic service

Offloading efficiency
was enhanced

High computational
expenditure and large

memory needed

Sood et al., 2021 [12] Smart traffic
management approach

To predict inflow of
traffic and to enhance

vehicle’s smart
navigation

More effective and
better load balancing

Cannot be suitable
energetically for

resource-restricted
mobile mechanism
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Table 1. Cont.

Author and Year Technique Objective Pros Cons

Mazumdar et al. 2021 [13] Load-offloading
method

To optimize the service
in suitable time and to
support only static IoT

devices

Reduces the amount
of data to be sent to

the cloud

Communication delay
as well as high

network complexity

Shah et al., 2018 [15] Empirical multi-agent
cognitive method

To attain consecutive
transition of IoT APIs

Achieves
transparency in the
heterogeneity and
distribution of IoT

APIs

The challenge is in
designing the future of
connected ecosystems

Bolettieri et al., 2021 [16]

Heuristic algorithm
with linear relaxation

and rounding
techniques

To minimize
complexity High efficiency

Not effective in
handling inconsistent

traffic demands

Chien et al., 2021 [14] Convolutional neural
network (CNN)

To reduce the time cost
during data

transmission to the
cloud server

Reduced training
time and increased
prediction accuracy

Use of large amount of
data largely impacted

the performance

Abbasi et al., 2021 [18] Genetic algorithm (GA)

To enhance
management and

processing of IoT and
smart grid

Reduced delay and
power consumption

Deep neural networks
were required to solve

the multi-objective
optimization problems

Liao et al., 2023 [19]
Reputation- and voting

based blockchain
consensus (RVC)

To rectify issues such as
reducing consensus

efficiency

Successful consensus
rate, transaction

output, and reduced
time consumption

Required large
number of nodes

Karjee et al., 2022 [20] Deep neural network
(DNN)

To alleviate the issues
of partly offloading

Minimizes the overall
execution time of

each task

Computational
capabilities

Mutichiro et al., 2021 [24] Dynamic
pod-scheduling model

To solve the task
scheduling problem at

the edge

Maximizes node
utilization, minimizes

the cost, and
optimizes the service

time

Few constraints in
resource capacity

(CPU and memory)
and total service time

The proposed approach to resource allocation and QoS optimization in mobile edge
computing (MEC) using IoT has several practical implications, including its integration
into existing MEC systems.

The proposed approach is designed to be seamlessly integrated into existing MEC
systems without requiring major modifications or disruptions. It leverages the existing
infrastructure, protocols, and interfaces, ensuring compatibility with established MEC
frameworks. This integration capability enables service providers to adopt the approach
without significant implementation challenges, reducing time-to-market and minimizing
operational complexities. The proposed approach follows a modular architecture, allowing
for flexible integration with different components of an MEC system. It can be integrated at
various layers, including edge nodes, gateway devices, and cloud servers. This modularity
enables service providers to selectively deploy and scale the proposed approach based on
their specific requirements and existing infrastructure, ensuring a customized integration
process. The proposed approach offers flexibility in configuration and adaptation to suit
different MEC environments. Service providers can customize the approach based on
their specific needs, such as defining resource allocation policies, setting QoS thresholds,
and adapting the algorithms to match their network characteristics. This configurability
enables seamless integration into diverse MEC ecosystems with varying requirements and
constraints.
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3. Proposed Methodology

The proposed system combines two machine learning algorithms, namely the ensem-
ble support vector machine (ESVM) and the kernel random forest (KRF), to optimize the
network performance. The ESVM algorithm combines multiple support vector machine
(SVM) classifiers to improve the classification accuracy and robustness. The KRF algorithm
uses decision trees and kernel functions to capture the complex relationships between input
features and output labels. The combination of these two algorithms helps to address the
limitations of individual algorithms and improve the performance of the system. In addi-
tion to the machine learning algorithms, the system also uses crossover-based hunter-prey
optimization (CHPO) to optimize the parameters of the algorithms and allocate resources
to different applications running on the UMEC network. The proposed method is given in
Figure 1.
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3.1. Resource Allocation and QoS Optimization Objective Function

The objective of the proposed model is to allocate the available resources in the MEC
network and optimize the QoS for the end-users. The objective function can be defined as:

Minimize : ω× Ra + (1−ω)×Qs (1)

where Ra is the resource allocation function that assigns the available resources to the dif-
ferent applications running on the MEC network, Qs is the QoS optimization function that
ensures the end-users’ requirements are met, and ω is a weighting factor that determines
the relative importance of resource allocation and QoS optimization.

3.2. Hybrid Kernel Random Forest and Ensemble SVM Algorithm

The proposed model combines the strengths of the kernel random forest (KRF) and
ensemble SVM algorithms to build a hybrid model that can accurately allocate resources
and optimize QoS in the MEC network. The KRF algorithm is used to generate multiple
decision trees that are then combined to make an ensemble prediction, and the ensemble
SVM algorithm is used to classify the available resources into different categories.

3.2.1. Kernel Random Forest Algorithm

The KRF algorithm aims to build an ensemble of decision trees that can accurately
predict the QoS performance of the MEC network for different combinations of resources
and applications. Each decision tree is constructed using a subset of the training data and a
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random subset of features to prevent overfitting. The decision trees can be combined using
the following equation:

K(n) =
1
D
× sum(K_m(n)) (2)

where D is the number of decision trees in the ensemble, K_m(n) is the prediction of the
mth decision tree for the input vector n. The KRF algorithm aims to build decision trees
that minimize the variance of the prediction error across the ensemble. More specifically,
random forest estimators are satisfactory, for all Y ∈ [0, 1]l ,

PU,v(Y, ΘU) =
1
U

U

∑
b=1

(
v

∑
a=1

Xa1Ya∈Gv(Y,Θb)

Vv(Y, Θb)

)
(3)

GV(Y, Θb) Signifies that the cell contains y, designed with iterations Θb and dataset
Lv, and

Vv(Y, Θb) =
v

∑
a=1

1Ya∈Gv(y,Θb)
(4)

The data points contained in the decreasing data are represented as GV(Y, Θb). The
weight ωa,b.v(Y) as well as each observation Xa is taken into consideration and specified as:

ωa,b.v(Y) =
1Ya∈Gv(y,Θb)

Vv(Y, Θb)
(5)

Dpending on the number of observations Vv(Y, Θb) is distributed as a common ran-
dom variable Θ [8]. To enhance random forest techniques and correct for the errors caused
by random forest weights, it is reasonable to use finite KRF estimations for all Y ∈ [0, 1]l .

ŨU.v(Y, Θ1 . . . . . . , ΘU) =
∑U

b=1 ∑v
a=1 Ya1Yi∈GV(Y, Θb)

∑U
b=1 Vv(Y, Θb)

(6)

ŨU.v(Y, Θ1 . . . . . . , ΘU) is equal to the mean of the Xa is dropping in the forest cell
containing Y. Each observation is weighted based on how frequently it appears in the forest
trees. As a result, when the cell is empty, it does not contribute to the calculation under this
system. The similarity of KRF estimations is ŨU.v.

3.2.2. Ensemble SVM Algorithm

The ensemble SVM algorithm aims to classify the available resources into different
categories—“busy” and “idle.” The algorithm constructs multiple SVM models using
different subsets of the training data and combines them to make an ensemble prediction.
A group of classifiers, known as an ensemble, is applied together to classify test samples
by combining the results of each individual classifier. Suppose there is an ensemble of n
classifiers: {c1, c2, . . . cn} and the classifiers are different and their faults are unrelated. As a
result, we cannot promise that an SVM will always deliver the best global classification
performance on all test examples [25]. Over the years, numerous strategies have been
devised for creating a classifier ensemble which involves the combination of multiple
classifiers to improve overall performance. In the context of generating a support vector
machine (SVM) ensemble, the most crucial aspect is to ensure that each SVM is as distinct
as possible from another SVM. This is because a set of similar classifiers may have the
same strengths and weaknesses, leading to little improvement in performance. To achieve
diversity, representational approaches such as bagging and boosting are often used.

Bagging: Bagging involves training multiple SVMs on different subsets of the training
data and then aggregating the outputs of each SVM to make a final prediction. Generally,
we have a single training set TS = {(Yn; zn)|n = 1, 2, . . . , L}. However, K training samples
are needed to build the SVM ensemble with K-independent SVMs. Figure 2 shows the
ensemble SVM.
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Boosting: Boosting, on the other hand, involves iteratively training SVMs on the same
data but with different weightings assigned to misclassified samples. By focusing on represen-
tational approaches, we can effectively create a diverse ensemble of SVMs that can improve
overall classification performance. We have a training set: TS = {(Yn; zn)|n = 1, 2, . . . , L}.
These training samples are used to train the kth SVM classifier. l represents the whole
sample. The decision boundaries can be combined using the following equation:

K(n) = ∑ wi
n + bn (7)

where: wi
n is the weight vector of the nth SVM model. bn is the bias term of the nthSVM

model.

3.2.3. Hybrid Kernel Random Forest and Ensemble SVM Algorithm

The proposed model combines the kernel random forest and ensemble SVM algorithms
to build a hybrid model that can accurately allocate resources and optimize QoS in the
MEC network. The hybrid kernel random forest algorithm is used to generate multiple
decision trees that are then combined to make an ensemble prediction, and the hybrid
ensemble SVM algorithm is used to classify the available resources into different categories.
The decision trees can be combined using the following equation:

K(n) = ω× KSVM(n) + (1−ω)× KRF(n) (8)

where: ω is a weighting factor that determines the relative importance of the SVM and
KRF algorithms. KSVM(n) is the prediction of the SVM algorithm for the input vector n.
KRF(n) is the prediction of the KRF algorithm for the input vector n. The hybrid model can
leverage the advantages of both the SVM and KRF algorithms.

3.3. Hunter-Prey Optimization (HPO)

The behavior of predators such as lions, leopards, and wolves as well as prey such
as deer and gazelles serves as the basis for hunter–prey optimization (HPO) [21]. The
HPO algorithm requires the hunter to look for prey that is distant from the herd since the
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prey frequently swarm when it is being sought after. The hunters try to catch the prey by
moving towards them, while the prey try to evade the hunters by moving away from them.
The positions of both the hunters and the prey are updated in each iteration based on their
fitness values. The goal of HPO is to find the optimal solution by gradually improving the
fitness of both the hunters and the prey. The incorporation of crossover-based strategies in
HPO can enhance its ability to search the solution space and find high-quality solutions.

Crossover-Based Hunter–Prey Optimization

Crossover-based hunter–prey optimization (CHPO) is a metaheuristic algorithm in-
spired by the hunting behavior of predators and prey in nature. The algorithm consists
of two types of agents: hunters and prey. Hunters are initialized randomly across the
search space and move towards promising regions, while prey move randomly. In CHPO, a
crossover operator is used to combine the features of different hunters and create a new off-
spring with improved characteristics. The crossover operator is applied to two hunters that
are selected based on their fitness, i.e., their ability to find promising regions in the search
space. The offspring is then evaluated and added to the hunter population. The algorithm
uses a mutation operator to introduce diversity in the population and prevent premature
convergence. The mutation operator randomly modifies a small subset of features in the
hunters’ position.

The CHPO algorithm also includes a dynamic weighting scheme that adapts the
weight of the crossover operator and mutation operator based on the performance of
the algorithm. The weighting scheme aims to balance the exploration and exploitation
of the search space and improve the algorithm’s convergence speed. In the context of
resource allocation and QoS optimization in MEC using IoT, the CHPO algorithm is used to
optimize the parameters of the hybrid kernel random forest and ensemble SVM algorithm.
The algorithm is used to allocate resources to different applications running on the MEC
network, such as CPU, memory, and bandwidth, and optimize the QoS metrics, such as
latency, throughput, and energy efficiency.

Pt
i,j = Pt

i,j + Zt
cPr (9)

where Zt
c is the weight parameter controlling the influence of Pr on Pt

i,j. Equation (10) shows
that the offspring replaces the original particle. However, to enhance integration accuracy
and speed, probe efficiency must decrease over time. Accordingly, at each iteration, the
probability of using a crossover on particles is exponentially reduced using the damping
parameter λr.

Rt
c = λr Rt

c (10)

Yt
c = λy Yt

c (11)

4. Results and Discussion

The experimental analysis was conducted on a personal computer with Intel® Xeon®

32 Gb RAM, 2.4 GHz on python 3.5 with a source code. The data collection module collects
real-time data from various sources such as IoT sensors, user devices, and network compo-
nents. The performance of the proposed model was evaluated using various performance
metrics such as throughput, latency, delay, and energy consumption.

4.1. Parameter Settings

The hyper parameter configuration of the proposed method is depicted in Table 2. For
the hybrid ensemble SVM, the kernel function was set to the radial basis function kernel.
For the kernel random forest, the number of trees in the forest was set to 50.

In Table 3 we have included four different input configurations, each with varying
settings for the number of trees in the hybrid kernel random forest (HKRF) algorithm, the
types of kernels used, and the number of iterations in the crossover-based hunter–prey
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optimization (CHPO) algorithm. The table includes performance metrics such as accuracy,
computational efficiency, convergence speed, and resource utilization. The values in the
table illustrate the impact of the input configurations on these metrics.

Table 2. Parameter settings.

Parameters Ranges

Learning rate 0.1
Total number of trees 50

Regularization parameter 1
Maximum depth of each tree 10

Size of population 20
Total number of iterations 50

Table 3. Configurations on the performance of the proposed method.

Number of
Trees (HKRF)

Types of Kernels
(HKRF)

Number of
Iterations (CHPO) Accuracy Computational

Efficiency
Convergence

Speed
Resource

Utilization

100 Linear 10 0.85 High Fast Moderate
200 RBF 20 0.87 Moderate Moderate Moderate
150 Polynomial 15 0.89 High Slow High
300 Sigmoid 25 0.82 Low Moderate Low

4.2. Performance Measures

The performances of the proposed model are evaluated using various performance
metrics such as throughput, latency, delay, and energy consumption [26,27].

• Throughput

Throughput is the amount of data that can be transmitted through the network in a
given amount of time.

• Energy consumption

Energy consumption refers to the amount of energy used by the devices or networks
to perform a specific task.

• Delay

Delay refers to the time taken for a packet or data to travel from the source to the
destination.

• Latency

Latency is defined as the time taken between initiating a network request as well as
receiving a response.

4.3. Performance Evaluation

To validate the mobile edge computing, we compare ensemble SVM, kernel random
forest, with proposed hybrid ensemble SVM and kernel random forest for the performance
metrics such as delay, throughput, and energy consumptions.

The performance analysis of the proposed model is presented in Figures 3–6. Figure 3
demonstrates the performance of the proposed approach in terms of throughput, where it
is compared with ensemble SVM [28] and kernel random forest [29]. The results show that
the proposed approach achieves a higher throughput rate with 595 mbit/s than the other
two algorithms. This suggests that the proposed approach can allocate resources more
efficiently, resulting in higher data transmission rates across the network. Figure 4 shows
the performance analysis of average energy consumption. This indicates that the proposed
approach can allocate resources more efficiently, resulting in reduced energy consumption
with 9.4 mJ by the devices and network. The performance analysis of the proposed model
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in terms of latency and delay is demonstrated in Figures 5 and 6, respectively. This implies
that the proposed model can effectively allocate resources and optimize the QoS [30],
resulting in improved network performance.
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5. Conclusions

This paper has presented a novel approach for resource allocation and quality of
service (QoS) optimization in ubiquitous mobile edge computing (UMEC) using the in-
ternet of things (IoT). The proposed approach combines the hybrid kernel random forest
(HKRF) and ensemble support vector machine (ESVM) algorithms with crossover-based
hunter–prey optimization (CHPO) to optimize the QoS metrics, such as latency, throughput,
and energy efficiency, while allocating resources to different applications running on the
UMEC network. The experimental results have demonstrated that the proposed approach
outperforms other state-of-the-art algorithms in terms of QoS metrics and resource alloca-
tion efficiency. It achieves a higher throughput rate of 595 mbit/s compared to the other
evaluated algorithms, indicating improved data transmission rates. Additionally, it reduces
energy consumption by devices and the network to 9.4 mJ, showcasing enhanced energy
efficiency.

This paper has introduced a unique combination of HKRF, ESVM, and CHPO algo-
rithms to tackle the resource allocation and QoS optimization challenges in UMEC systems.
The proposed approach effectively optimizes latency, throughput, and energy efficiency,
enhancing the overall network performance and user experience. Extensive experiments
have been conducted to evaluate the performance of the proposed approach, demonstrating
its superiority over other algorithms. The paper highlights the practical implications of the
proposed approach, such as its integration into existing MEC systems and the potential
additional benefits beyond the evaluated metrics. However, it is important to acknowl-
edge some limitations of this work. Firstly, the experimental analysis was conducted on a
specific hardware configuration, and the results may vary in different settings. Secondly,
the proposed approach relies on the accurate prediction of QoS metrics, which, in turn,
depends on the quality and availability of input data. Further improvements in data collec-
tion and prediction accuracy could enhance the system’s performance. Lastly, while the
proposed approach addresses resource allocation and QoS optimization, other aspects such
as security and fault tolerance could be explored in future research.
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