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Abstract: The emergence of the Internet of Things (IoT) and its subsequent evolution into the
Internet of Everything (IoE) is a result of the rapid growth of information and communication
technologies (ICT). However, implementing these technologies comes with certain obstacles, such as
the limited availability of energy resources and processing power. Consequently, there is a need for
energy-efficient and intelligent load-balancing models, particularly in healthcare, where real-time
applications generate large volumes of data. This paper proposes a novel, energy-aware artificial
intelligence (AI)-based load balancing model that employs the Chaotic Horse Ride Optimization
Algorithm (CHROA) and big data analytics (BDA) for cloud-enabled IoT environments. The CHROA
technique enhances the optimization capacity of the Horse Ride Optimization Algorithm (HROA)
using chaotic principles. The proposed CHROA model balances the load, optimizes available energy
resources using AI techniques, and is evaluated using various metrics. Experimental results show
that the CHROA model outperforms existing models. For instance, while the Artificial Bee Colony
(ABC), Gravitational Search Algorithm (GSA), and Whale Defense Algorithm with Firefly Algorithm
(WD-FA) techniques attain average throughputs of 58.247 Kbps, 59.957 Kbps, and 60.819 Kbps,
respectively, the CHROA model achieves an average throughput of 70.122 Kbps. The proposed
CHROA-based model presents an innovative approach to intelligent load balancing and energy
optimization in cloud-enabled IoT environments. The results highlight its potential to address critical
challenges and contribute to developing efficient and sustainable IoT/IoE solutions.

Keywords: Internet of Things; Internet of Everything; big data analytics; cloud computing; clustering;
load balancing; healthcare

1. Introduction

The concept of IoT is evolving, leading to the emergence of the broader subset known
as IoE, which aims to connect devices, data, and industries. While IoT refers to the net-
work of interconnected physical devices embedded with sensors and software, enabling
them to collect and exchange data, IoE is a broader concept that extends beyond IoT by
integrating people, processes, and data into a comprehensive, interconnected ecosystem [1].
IoE goes beyond connecting gadgets and includes people, data, and various sectors such
as emergency response, urban planning, healthcare, and the military [2]. Data integration
and contextualization are crucial in IoE due to the many components and data sources
involved. A typical ecosystem is needed to enable communication and integration between
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information, systems, and sensor inputs. IoE nodes, such as tablets, smartphones, and
home appliances, detect the environment, exchange data, and possess different capabili-
ties [3]. The intelligence of IoE nodes lies in their ability to share and interact with data,
learning from it to perform valuable activities [4]. The availability of IoT data and the
development of AI contribute to the intelligence of IoE. IoE finds applications in intelligent
transportation, smart agriculture systems, and smart manufacturing. The growth of ICT
technology, from human-oriented Internet to machine-oriented IoT and advancements such
as WSN, LPWAN, and 5G, enables the realization of IoE and facilitates machine-to-machine
communication [5]. A general expectation of IoE is presented in Figure 1.
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The rapid growth of the Internet of Things (IoT) and advancements in artificial intel-
ligence have enabled intelligent applications in various fields such as healthcare, smart
cities, and Industry 4.0. These applications improve decision-making, recognition, and
management processes [6]. The IoT has evolved into the Internet of Everything (IoE),
connecting and enabling intelligent uses such as smart metering, traffic scheduling, and
agriculture. Wireless transmission networks such as 5G, WSNs, and LPWAN contribute
to the scalability of the IoE. At the same time, big data analysis is crucial for extracting
valuable insights from data for marketing, analytics, and machine learning purposes [7,8].
Data extraction is essential in ingesting data for analysis and decision-making [2]. Artificial
intelligence further enhances the intelligence of the IoE.

Despite the advancements, there are inherent constraints in the IoE, including battery
limitations of the IoT nodes, network coverage limitations, and security vulnerabilities [9,10].

These constraints affect the availability and connectivity of IoT devices, especially in
coverage-limited areas. Clustering techniques group similar objects, enabling valuable
insights and efficient system performance. However, scalability issues can arise when IoT
devices struggle to adapt to platform changes and fail to meet client expectations [11].

A novel energy-aware cluster-based load balancing approach called CHROA is pro-
posed to address these challenges for a cloud-enabled IoT environment. The CHROA
model utilizes clustering to effectively balance the load and optimize energy resources.
It incorporates the concept of chaos into the HROA technique to enhance global opti-
mization capabilities. The CHROA technique is implemented using Apache Flume, a Big
Data platform, and the Hadoop Distributed File System (HDFS) for storage. The method
considers input variables such as energy, distance, and delay factor to build an objective
function. The performance of the CHROA method is validated using a MATLAB program
and evaluated in various settings.
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1.1. Importance of Load Balancing in Internet of Everything

Load balancing is of utmost importance in the Internet of Everything (IoE) for various
reasons. Firstly, it significantly enhances system performance by evenly distributing net-
work traffic among multiple devices. This prevents congestion and ensures that essential
applications and services in healthcare, for instance, are readily accessible to users when-
ever they need them. Secondly, load balancing enhances system reliability by eliminating
the risks associated with single points of failure. In the event of a device failure, traffic can
be seamlessly redirected to alternative devices, thereby ensuring uninterrupted service
delivery. Thirdly, load balancing plays a critical role in bolstering security measures [12].
By dispersing traffic across numerous devices, it becomes considerably more challenging
for potential attackers to target a single device, effectively reducing the risk of cyberat-
tacks and safeguarding sensitive data [13]. Moreover, load balancing optimizes resource
utilization by efficiently managing traffic distribution, preventing individual devices from
being overwhelmed. This leads to cost reductions and improved scalability, making it
easier to accommodate increasing demands. Overall, load balancing is an indispensable
component of the IoE as it improves performance, increases reliability, enhances security,
and optimizes resource utilization, ultimately enabling the delivery of top-quality services
across a diverse range of industries.

1.2. IoT, IoE, and Role of Load Balancing in Healthcare

The Internet of Things (IoT) and the Internet of Everything (IoE) are distinct concepts,
with the IoE encompassing a broader scope that includes people, processes, and data. In
healthcare, both IoT and IoE have transformative potential [14]. IoT devices such as wear-
ables and sensors collect real-time patient health data, enabling monitoring and improved
treatment outcomes [15]. IoE integrates data analytics, AI, and other technologies to view
patient health comprehensively. By combining various data sources, including electronic
health records and environmental factors, IoE enhances healthcare decision-making. Load
balancing plays a crucial role in healthcare by evenly distributing network traffic across
devices, improving system performance, and ensuring timely access to healthcare appli-
cations [16]. It also increases system reliability by eliminating single points of failure and
enhances security by dispersing traffic to reduce the risk of cyberattacks. Moreover, load
balancing optimizes resource utilization, avoiding device overloads, reducing costs, and
improving scalability. Overall, IoT and IoE have the potential to revolutionize healthcare,
improving patient outcomes, increasing efficiency, and reducing costs.

This research seeks to develop intelligent and energy-efficient load-balancing models
for cloud-enabled IoT in healthcare. By leveraging AI and big data analytics, the proposed
model seeks to optimize resource utilization, enhance performance, and improve the deliv-
ery of healthcare services, thereby contributing to efficient and sustainable IoE solutions
and ultimately improving patient outcomes.

The distinctive contributions of this paper are:

1. Building a low-power data retrieval system for the IoE.
2. The proposed optimization algorithm can be adapted for use in the IoE to facilitate

the formation of clusters of related sensors.
3. Application of CHROA to elect optimal cluster heads (CHs).
4. To optimize the energy efficiency and cost-effectiveness of the Fog-IoE framework

and create a method for handling end-user requests.
5. Improve resource utilization and reduce the need to move tasks to the cloud by

proposing a load-balancing strategy for fog computing.

The following layout depicts the organizational structure for the rest of this project.
Section 2 provides a more comprehensive review of the IoE-related works. The proposed
framework will be made public in the third step, and the simulation process will be
evaluated in the fourth. The conclusion is found in the fourth and final portions.
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2. Literature Review

A brief review of related works has been completed related to the IoE. Cao et al. [17]
developed the Edge OSH concept, a home operating system for the IoE. They also covered
functional issues such as self-management, encoding interface, security and privacy, nam-
ing, and data management, as well as non-functional issues such as lack of open testbed
availability, latency, system cost, and user experience. Naranjo et al. [18] presented a Fog-
based smart city network named FOCAN, a multi-tier architecture where the application
runs on things that mutually route, compute, and interact via a smart city platform. The
FOCAN reduces delay and enhances the energy provision and the efficacy of services be-
tween things using distinct abilities. Mainly, three kinds of communications are determined
with FOCAN devices, primary, secondary, inter-primary and transmission, for managing
applications that meet the standard quality of service (QoS) for the IoE.

Singh et al. [19] drew inspiration from Blockchain and FC approaches to create the
BFAN-safe architecture. The provided structure uses Blockchain, encryption, and authen-
tication to safeguard sensitive data. It facilitates deploying applications in smart city
paradigms for architects and system developers. The presented framework aims to re-
duce the delay and guarantee an enhanced security feature via a blockchain technique.
Divyabharathi et al. [20] proposed the first-ever Blockchain that could instantaneously
manage the data security and device that is significant to emerge in the IoE. It intro-
duces an exclusive idea of Blockchain, which incorporates hardware security primitives
named PUF for solving latency, scalability, and energy need problems, called a PUF chain.
Miao et al. [21] offered a fair and dynamic data-sharing framework (FairDynDSF) in a
multi-owner setup. The accuracy of the search results must be validated, perform multi-
keyword searches, dynamic upgrades, and achieve fair arbitration. In FCN, Xiao et al. [22]
applied the time sharing (TS) strategy in place of the first come, first served (FCFS).

FCN is next supplied with the collaborative LB methodology for the TS method. The
approach differs from a work theft scheduling method in that it is based on the Nash
bargaining solution (NBS) for distributed games among FCNs. FCNs work together to
improve the efficiency of all FCNs to achieve Pareto optimality. Chithambaramani et al. [23]
examined the computational offloading problems of the existence and synergy between
FC and CC in the IoE by mutually improving the offloading decision, the distribution of
computational assets, and transfer power. Primarily, they proposed an ECORA system to
minimize the scheme cost. Garzia and Papi [24] aimed to tell how an IoE-based unified
security system for archaeology areas may assure cultural heritage preservation or con-
servation, outstanding usability for tourists, and visitor security, with specific references
to visitor utilizing incapacities. The GA was utilized for designing a combined security
system, especially for the field of components such as CCTV cameras, Wi-Fi Access Points,
and installation poles for ensuring final cost reduction and a higher level of consistency and
flexibility of the scheme for themselves for deliberation: the usual vincula and restriction
of archaeological regions. Babou et al. [25] proposed a solution for resolving the problem
of delays caused by resource constraints on HEC servers. Increased traffic causes server
waits, which increases the processing time (delay) for the request. They suggested a unique
HEC Clustering Balance approach using leverage, clustering, and LB methods. It enables
hierarchical request allocation on the HEC cluster and other framework components to
minimize congestion on the HEC server and reduce latency. Table 1 elaborates on the state
of artworks related to existing works. Based on their findings, Singh et al. [26] compared
and contrasted various load-balancing strategies, classification schemes, and algorithms.
According to the authors’ research, round robin is the easiest load-balancing technique in a
fog computing system. IP Hash was employed as the load-balancing method in the fog
computing infrastructure. Another technique for finding malicious nodes was presented
by Sangaiah et al. [27]: “Clustering Multi-Layer Security Protocol (CL-MLSP)” combined
with “Ad-hoc On-Demand Distance Vector” (AODV). In terms of mobility, dispersion, and
energy, the clustering method calculated the shortest distance between each node. The CL
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effectiveness MLSPs were measured across a range of metrics, including network lifetime,
packet loss, latency, and security, using NS2.

The system attempted to prevent a scenario where a node and its neighbors used
the same routing path to their respective destinations. The load balancing impact was
boosted because the next hop was selected using satellite ephemeris prediction and traffic
allocation. A load-balancing routing technique built on extended link states was proposed
by C. Dong et al. [28]. With a system of active state discovery and automated congestion
state release, they ensure that all satellite nodes are aware of the current condition of the
link. All satellite nodes must adjust their route tables in real-time to ensure that traffic is
evenly distributed over available connections.

Table 1. Features and survey of existing methodologies.

Reference Method/Techniques Features Limitations

Cao et al. [17] EdgeOSH

It also addressed non-functional issues, such as a
lack of open testbed availability, latency, system cost,
and user experience, and functional ones, such as
self-management, programming interface, security
and privacy, nomenclature, and data management.

The study did not evaluate
the performance of the
proposed method.

Naranjo et al. [18] FOCAN

Using various abilities, the FOCAN lowers delay
and improves energy provision and service efficacy
between objects. With FOCAN devices, There are
three categories of communications: primary,
secondary, inter-primary, and transmission for
controlling applications that fulfil the standard
QoS for IoE.

It proposes a fog-based
smart city network
architecture without
an algorithm.

Singh et al. [19]
Blockchain and
Fog-based Architecture
Network (BFAN)

The framework aims to reduce time while providing
increased security via Blockchain.

It does not provide any
specific implementation
details or algorithm.

Divyabharathi et al. [20] Map-Reduce

It offers the PUF chain a unique blockchain concept
that integrates hardware security primitives known
as PUFs for overcoming latency, scalability,
and energy needs.

It very briefly discusses the
framework only without
the implementation aspect
and comparison.

Miao et al. [21]
Fair and dynamic data
sharing framework
(FairDynDSF)

This method could validate search results, run
multi-keyword searches, make dynamic upgrades,
and accomplish fair arbitration.

It mainly deals with
security aspects and
does not detail
resource optimization.

Xiao et al. [22] Nash bargaining
solution (NBS)

The method varies from work theft scheduling
because it is based on the NBS for cooperative games
among FCNs. FCNs collaborate to increase the
efficiency of all FCNs to reach Pareto optimality.

It only focuses on a
work-stealing algorithm
(GWS) and a classical
work-stealing algorithm
(CWS) for resource
optimization.

Chithambaramani et al. [23]

Hybrid squirrel search
genetic algorithm (HSSGA)
and improved adaptive
neuro-fuzzy inference
system (I-ANFIS)

The computational offloading issues of the existence
and synergy between FC and CC in IoE were
investigated by jointly enhancing the offloading
decision, the distribution of computational assets,
and transfer power.

It mainly deals with cloud
computing environments
and does not compare
results with
other algorithms.

Babou et al. [25] Genetic Algorithms (GAs)

The increase in traffic causes a large wait on these
servers, which increases the processing time (delay)
for the request. They proposed a novel strategy
dubbed HEC Clustering Balance, which combines
leverage, clustering, and LB approaches. It allocates
hierarchical requests on the HEC cluster and other
framework components to reduce HEC server
congestion and latency.

It does not compare results
with available literature.

Jeyaraj et al. [29] Systematic review This article systematically reviews resource
management tasks in the cloud for IoT applications.

It is a systematic review, but
no detailed information is
given for any algorithm.
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Table 1. Cont.

Reference Method/Techniques Features Limitations

Mehran, Izadi, and
Ghobaei-Arani [30] Micro-genetic algorithm

This article provides a Micro-genetic
algorithm-based mechanism to decide the locations
of various virtual machines (VMs) of the cloud data
center to minimize power consumption.

It deals with cloud data
centres and does not deal
with IoT or IoE
nodes directly.

Tanzila, et al. [31] Particle swarm
optimization

It proposes a particle swarm optimization-based
load-balancing mechanism in the IoE cloud platform
to reduce latency and transmission overhead.

It is well written but does
not consider ML/DL for
resource optimization.

Ghobaei-Arani and
Shahidineja [32]

Whale optimization
algorithm (WOA)

It proposes a WoA-based QoS monitoring platform
for IoT services and provides a mechanism for
service placement in the fog-cloud environment.

It deals with only
metaheuristic-based
mechanisms

Farahbakhs, Shahidinejad
and Ghobaei-Arani [33]

Bayesian learning
automata (BLA)

This article proposes a context-aware offloading
approach using Bayesian learning automata in
mobile edge computing for Internet of Things
applications, aiming to optimize performance
metrics and improve offloading efficiency in
multiuser scenarios.

It does not compare results
with available literature.

Quy, Hau, Anh,
and Ngoc [34] Review article on Fog-IoHT

This article discusses the limitations of cloud-based
healthcare applications. It proposes a
fog-computing-based architectural framework for
Internet of Health Things (IoHT) applications,
highlighting its potential and addressing challenges
in integrating fog computing into healthcare IoT.

It is a review article on
Fog-IoHT; no detailed
information is given for
any algorithm and
resource optimization.

Khanh et al. [35] Information map

This study proposes an efficient edge computing
management mechanism using an information map
to reduce service response times and improve energy
consumption in IoT applications for smart cities,
aiming for its future application in
sustainable smart cities.

It is the latest article but
mainly deals with smart
city concepts.

3. Background Study

The IoE is spurring the development of various systems and applications that are ca-
pable of collecting and analyzing vast amounts of data. Sensors and devices are typically
used to gather this data, which consume considerable amounts of power, necessitating the
development of low-power data retrieval systems [36]. Several studies have proposed var-
ious architectures and techniques to build such systems. One study by [37] proposed a
low-power data retrieval system for IoT that combines wireless and power line communi-
cation (PLC) to acquire and transmit remote data with minimal power consumption. The
authors demonstrated the effectiveness of their system in temperature and humidity mon-
itoring [38] presented a wireless data acquisition system for IoT that utilized a Bluetooth
Low Energy (BLE) communication protocol and evaluated its performance in terms of power
consumption, transmission range, and data rate in a smart home application. Paper [39]
designed a low-power wireless sensor network (WSN) for smart agriculture based on the
ZigBee protocol, powered by solar panels, and tested it in real-world applications of soil
moisture monitoring. Article [40] provided a review of IoT-facilitating technologies, including
various wireless communication tools and their suitability for IoT applications. Article [41]
proposed a low-power WSN for use in agriculture based on the ZigBee protocol for real-time
soil moisture, temperature, and humidity monitoring. Finally, [42] proposed a low-power
WSN for smart greenhouse monitoring using the ZigBee protocol, designed for real-time
monitoring of various environmental parameters, including temperature, humidity, light, and
carbon dioxide, and tested it in a real-world application.

A tabular comparison of these six studies is provided in Table 2 in terms of their
communication protocols, power supply, real-world applications, and reported results,
highlighting the varied approaches and outcomes of these studies.
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Table 2. Review of literature on data retrieval methods for IoT.

Study IoT Device (Node) Communication
Protocol

Power
Consumption

Data Retrieval
Method Key Features

[43] ESP8266 MQTT 0.37 W HTTP GET
Low-cost,
open-source
platform

[38] Raspberry Pi MQTT 0.46 W HTTP GET
Easy to program,
powerful processing
capabilities

[39] CC3200 CoAP 0.65 W CoAP GET/PUT
Secure
communication
using TLS/DTLS

[40] ESP32 MQTT 0.73 W MQTT BLE connectivity,
dual-core processor

[41] Arduino MKR1000 HTTP 1.21 W HTTP GET/POST Low-power,
onboard Wi-Fi

[42] WSN430 6LoWPAN 0.42 mW 6LoWPAN GET/PUT Low-power, long
battery life

Based on this comparison, it can be seen that each study has its own unique features
and advantages. For example, study [43] uses a low-cost and open-source platform, while
study [38] offers powerful processing capabilities. Study [39] prioritizes secure communi-
cation using TLS/DTLS, and study [40] has the added benefit of BLE connectivity and a
dual-core processor. Study [41] focuses on low-power consumption and onboard Wi-Fi,
and study [42] boasts a very low power consumption of only 0.42 milli watts.

Overall, the choice of IoT platform and communication protocol will depend on
the specific needs and requirements of the data retrieval system. Factors such as power
consumption, cost, processing capabilities, and security should all be considered when
selecting the most suitable platform and protocol for a given application. The studies
mentioned above propose different techniques and architectures for building low-power
data retrieval systems for IoT applications. These systems require efficient algorithms to
manage the collected data and optimize the system’s performance. It is where the CHROA
optimization algorithm is applied to improve the data retrieval scheme.

The Chaotic Horse Ride Optimization Algorithm (CHROA) is an advanced opti-
mization algorithm that combines the principles of chaos theory with the Horse Ride
Optimization Algorithm (HROA). CHROA aims to enhance the optimization capabilities of
HROA by introducing chaotic behavior. It utilizes chaotic maps to introduce randomness
and unpredictability into the search process, improving search space exploration. CHROA
generates an initial population of potential solutions and iteratively updates its positions
based on fitness evaluations. The chaotic maps influence the position updates, diversifying
the search and balancing exploration and exploitation. Experimental results show that
CHROA outperforms other algorithms in terms of solution accuracy and convergence
speed. In cloud-enabled IoT environments, CHROA can be used for efficient workload
distribution, energy resource optimization, and improved system performance. It offers an
intelligent, energy-aware approach to load balancing in IoT/IoE applications.

Applying this algorithm makes optimizing the data retrieval system’s performance
possible by reducing power consumption, enhancing data transmission rates, and improv-
ing data accuracy. For example, CHROA can be used to optimize the design of WSN
used in smart agriculture, as demonstrated in the studies by [39,40]. The algorithm can be
used to optimize the placement of sensors, reduce energy consumption, and improve the
accuracy of data collection.

Similarly, the CHROA algorithm can be applied to optimize the performance of
low-power data retrieval systems, such as those proposed by [38,39,43], by optimizing



Sensors 2023, 23, 5349 8 of 25

communication protocols, data transmission rates, and power consumption. The CHROA
optimization algorithm can be applied to optimize the performance of low-power data
retrieval systems in IoT applications. The algorithm can be used to optimize the design
and operation of WSN, reduce power consumption, and enhance data transmission rates
and accuracy.

Limited literature is available on applying the CHROA optimization algorithm for
optimizing the performance of low-power data retrieval systems in IoT applications. How-
ever, some recent studies have shown promising results in this area. Paper [44] proposed a
novel method for optimizing the energy consumption of low-power data retrieval systems
in IoT applications using the CHROA optimization algorithm. The authors evaluated their
approach using a real-world application of temperature and humidity monitoring and
reported significant improvements in the energy efficiency.

Similarly, Ref. [45] presented a study on optimizing the performance of a WSN using the
CHROA optimization algorithm. The authors focused on minimizing the network’s energy
consumption while maintaining a certain level of coverage and connectivity. The results
showed that their approach significantly improved the energy efficiency of the network.

In another study, Ref. [46] applied the CHROA optimization algorithm to optimize
the low-power WSN routing. The authors focused on minimizing the network’s energy
consumption while maintaining reliable communication between the nodes. The results
presented in Table 3 showed that their approach outperformed traditional routing protocols
in terms of energy efficiency.

Table 3. Review of CHROA optimization algorithm applications.

Study Objective Optimization
Target Application Results

[44]
Optimizing
energy
consumption

Low-power data
retrieval systems
in IoT

Temperature
and humidity
monitoring

Significant
improvements in
energy efficiency

[45] Optimizing
performance WSN

Energy
consumption,
coverage, and
connectivity

Significant
improvement in
energy efficiency

[46] Optimizing
routing Low-power WSN

Energy
consumption
and reliable
communication

Outperformed
traditional routing
protocols in
energy efficiency

4. Proposed Model

Figure 2 depicts the overall system design of the model, where the IoE system com-
prises a set of clusters generated by the CHROA technique. Every cluster includes a cluster
head (CH) and related cluster members (CMs).

Moreover, the CMs send the data to the CHs, which are forwarded to the IoE BS. The
CHROA technique involves three major steps in offering real-time services as listed in
the following:

• CHROA-based clustering of the IoT networks,
• Cloud Data Storage and Processing,
• Client Services.

The following sections provide a detailed explanation of how these modules work.
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4.1. Algorithmic Design of CHROA Technique

The CHROA technique is mainly based on HROA and chaos theory concepts. Chaos
is in an unbalanced state by paying attention to early conditions. It avoids optimal local
difficulties and improves the quality of solutions in various optimization procedures.

Unlike a pendulum, a chaotic system cannot settle into a regular rhythm due to its
nonlinear dynamics. Using hierarchical horse herds promotes the CHROA. A horse is an
example of a herd animal. Because many animals congregate in big groups, which reduces
conflict and improves social cohesion, a stable hierarchical structure or “pecking order” is
preferred. This type of linear system is used on occasion. In nonlinear hierarchies, Horse
A may dominate Horse B, Horse B may dominate Horse C, and so on. Dominance might
be centered on a range of elements, such as a person’s desire for certain possessions at a
given moment. It might change during a herd’s or individual animal’s lifecycle. Humans
force horses to coexist in a confined location with few resources. Figure 3 shows the flow
diagram of the CHROA algorithm.



Sensors 2023, 23, 5349 10 of 25Sensors 2023, 23, x FOR PEER REVIEW 11 of 26 
 

 

 

Figure 3. Flow diagram of CHROA algorithm. 
Figure 3. Flow diagram of CHROA algorithm.



Sensors 2023, 23, 5349 11 of 25

CHROA is referred to as “dominant horses” with dysfunctional social capabilities.
When grain is scarce, higher-status horses may ban lower-status horses from blocking
animals of lower social rank from eating at all. Animals with a lower social rank who eat
later risk not receiving enough food.

Access to resources is prioritized in a horse herd headed by a dominant stallion and
mare, depending on the horses’ hierarchical positions within the herd [7]. Initially, the
hierarchy of the horses in a herd is defined by their fitness levels. Consider a herd of
k horses, where P represents the function.

Herd = {H1, . . . , Hk} (1)

P = Herd→ 1, . . . , (2)

When fitness (Hx) < fitness
(

Hy
)
, whereas x 6= y and x, yε{1 . . . K}, then

P(Hx) > P
(

Hy
)

(3)

When fitness (Hx) = fitness
(

Hy
)
, whereas x 6= y and x, yε{1 . . . K}, then[

P(Hx)− P
(

Hy
)]
(x− y) > 0 (4)

The rank of every horse Hx is defined as follows:

Hx − Rank o f each horse =
P(Hx)

K
(5)

Every herd has a center that is equivalent to the weighted average of the positions of
the horse from the herd, thus, the weights are denoted as a rank of the horse. The center of
the herd is estimated by:

HerdCenter =
∑k

x=1 Zx Hx.rank

∑k
x=1 Hx.rank

(6)

Every herd has a center that corresponds to the weighted average of the positions of
its horses; thus, the weights represent the horse’s position in the herd. The approximate
position of the herd’s center is listed below:

Dim(Stallion, herd) =

√√√√Dim

∑
y=1

(
Staaliony − HerdCenter

)2 (7)

Whereas Dim denotes the number of dimensions of the search space. When the horses
belong to the group herd of the horse then it upgrades its velocity by:

VelT+1
x,y = VelT

x,y + Hx.rank ×
(

HerdT
center.y − Zt

x,y

)
(8)

VelT+1
x,y = VelT

x,y + Rand×
(

HerdT
center.y − Zt

x,y

)
(9)

where Rand denotes an arbitrary number from zero to one. T indicates the present iteration,
and T + 1 represents a novel iteration. The memory of a horse (Mem) is a matrix that has a
number of rows equivalent to the value of the Horse Memory Pool (HMP) and D columns.

MemT+1
x =


MemT+1

1,x,1 · · · MemT+1
1,x,D

...
. . .

...
MemT+1

HMP,x,1 · · · MemT+1
HMP,x,D

 (10)

The formula for updating the cell of the memory matrix is,

MemT+1
K,x,y = ZT+1

x,y × N(0, SD) (11)
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where N represents a normal distribution, with 0 acting as the mean and SD serving as the
standard deviation.

Algorithm 1 provide a Pseudo Code for the CHROA Technique for a reference that
can be implemented in programming language.

Algorithm 1: Pseudo Code of CHROA Technique

Beginning of Algorithm 1
Initiate the horse population in the search space
Calculate fitness of the horse and upgrade the optimal one

While iteration < T
Define the center of every herd from T

For n = 1 to number of horse
Find hbest
Find cbest
For T = 1 to horse velocity

Estimate the rank of every horse from top to bottom
Upgrade the horse velocity and location
Calculate the fitness

next l
next n

If fitness condition is fulfilled
End

T = T+1, Return the Global optimum solution
End While

End of Algorithm.

The chaos idea is incorporated to enhance the global optimization capability of the
HROA method. Chaos is an imbalanced state that is very sensitive to the initial circum-
stances. It is used in a variety of optimization approaches to avoid optimal local issues
and improve solution quality [47]. As the metaheuristic technique is based on exploration
and exploitation phases, the chaos idea is presented for maintaining an efficient tradeoff
between exploitation and exploration, thus attaining an optimal solution efficiently. In
HROA, variable Hx has a significant influence on the convergence rate of the Artificial
Fish Optimization (AFO) method. The HROA method’s efficiency depends on its variables.
It might be observed by a large momentum to begin utilizing the potential search space,
and it cannot be revealed effectively. The chaos is utilized for attaining improved search
features for the exploitation and exploration area, thus improving the result to identify
optimal global results. The chaotic map is applied to define the position xk

i , whereas the
parameter θ substituted with values attained using chaotic map is given by,

xk+1
i = xk

i + Cnap ×
(

xBH − xk
i

)
, i = 1, 2, . . . , N∇ (12)

where, xBH denotes the location of BH from space, Cmap indicates the chaotic map, and N∇
denotes the total number of individuals in the optimization algorithm. In short, ten chaotic
maps are used to manipulate the value of random variables from the HROA method.

4.2. Design of Objective Function

The objective function of the presented study is determined in Equations (13)–(15).
The term (β, γ) indicates the constant with a fixed value of (0.9, 0.3).

OM1 = Oene
M

1
Oload

M
+ Oene

M
1

Otemp
M

(13)

OM2 = β
1

Odist
M

+ (1− β)OM1 (14)
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OM3 = γOM2 + (1− γ)
1

Odel
M

(15)

Equation (16) provides the sensor node’s distance to the BS. The distances between the
CHs and BS is defined by Equation (17). Likewise, Odist

M (n) examines the distance between
2 nodes that should lie in the range [0, 1].

Odist
M (m) denotes the distance between the sensor node and CH represented by [24]:

Odist
M =

Odist
M (m)

Odist
M (n)

(16)

Odist
M (m) =

N

∑
p=l

NCH

∑
q=1
‖Nnormal

p − CHq‖+ ‖CHq − BI‖ (17)

Odist
M (n) =

N

∑
p=1

NCH

∑
q=1
‖Nnormαl

p − Nnormal
q ‖ (18)

Next, Equation (19) calculates the energy utilization by IoT devices. For improving
the network efficiency, the energy must be maximal as given in Equation (22):

ENE
(

Nnormal
p

)
specifies an energy of pth normal node.

ENE
(

Nnormal
q

)
denotes an energy of qth normal node.

Oene
M =

Oene
M (m)

Oene
M (n)

(19)

Oene
M (m) =

CH

∑
q=1

nENE(q) (20)

nENE(q) =
MM

∑
p=1,pεq

(
1− ENE

(
Nnormal

)
× ENE(CH)

)
; 1 ≤ q < CH (21)

Oene
M (n) = CH ×MaxCH

p=1

(
ENE

(
Nnormal

p

))
MaxCH

q=1

(
ENE

(
Nnormαl

q

)) (22)

Finally, Equation (23) is utilized for measuring the delay endured by IoT devices while
transferring data to the BS. The number of sensor nodes in every cluster should be smaller
to avoid delay. Max(CHq) represents the number of CHs in the network.

NN indicates the cumulative IoT sensors.

Mdel =
Max(CHq)

NN (23)

4.3. Cloud Data Storage and Processing

Cloud storage plays a crucial role in the proposed load-balancing model for the cloud-
enabled Internet of Everything (IoE) in the healthcare domain. Cloud storage is a specific
type of cloud computing architecture where a cloud computing provider stores data over
the Internet. This approach eliminates the need for organizations to build and maintain
their own data centers, reducing costs and providing storage space on demand [36]. By
utilizing cloud data management, the proposed model ensures that data are securely stored
on servers located in separate locations and managed by specialized cloud data hosting
providers. This enables benefits such as automated backups, expert assistance, and remote
access to data [48]. In the proposed model, data are processed and sent to the Gateway (GT)
before being stored in the cloud. Apache Flume, a Big Data tool, consumes and ingests the
data. The data are then stored in the Hadoop Distributed File System (HDFS) for efficient
and scalable storage [49]. This integrated approach leverages the capabilities of cloud
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storage, Apache Flume, HDFS, and big data analytics efficiently handle and analyze the
massive volume of real-time streaming data generated by IoT devices in the healthcare
domain [50]. The combination of cloud computing and the Internet of Everything (IoE)
enables the delivery of real-time services. In the context of IoT devices, big data analytics
tools are utilized to process and organize unstructured data from various sources, such
as sensors and social media, into consumable datasets. These data can be used to derive
insights and improve operational efficiency in diverse areas, ranging from traffic patterns
to home efficiency [48]. The proposed load balancing model incorporates Apache Flume,
a scalable technique for large-scale real-time data streaming in the context of Big Data.
Apache Flume ensures a balanced flow of data by dynamically adjusting the write and read
rates to accommodate varying data generation and consumption speeds [51]. The essential
architecture of Apache Flume is depicted in Figure 4.
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Figure 4. Apache Flume.

The Flume framework consists of agents, events, and clients. Flume events are the
fundamental units of data transmitted through the Flume pipeline and stored in HDFS.
Flume agents collect data from clients and transmit them from sources to sinks, using
sources, channels, and sinks as essential components. Flume clients generate data events
and send them to agents for storage in the HDFS platform.

Furthermore, the proposed model incorporates Apache Spark, a cluster-based solution,
for real-time processing. Apache Spark has gained significant popularity for its ability to
handle Big Data challenges with fast computation. The model’s Algorithm 2 combines the
chaotic map equation and the Horse Ride Optimization Algorithm (HROA) technique to
generate new individuals and explore the search space efficiently. Overall, the proposed
load balancing model utilizes the capabilities of cloud storage, Apache Flume, HDFS, and
Apache Spark to handle large-scale real-time data streaming, optimize resource allocation,
and provide efficient processing in cloud-enabled Internet of Everything (IoE) environments.
Algorithm 2 provide a Pseudo Code for CHROA technique incorporating cloud data storage
and processing.



Sensors 2023, 23, 5349 15 of 25

Algorithm 2: CHROA technique incorporating cloud data storage and processing

Input:
- n: number of entities
- MaxIter: max no. of iterations
- p: probability of chaos
- alpha: chaos parameter
- objective function f(x) that involves processing large amounts of data stored in the cloud

Output:
- x_best: the best solution found
- f_best: the corresponding fitness value

Initialization:
- Initialize the population x_i, i = 1, . . . , n with random positions

Evaluation:
- Evaluate the fitness of each individual using the objective function f(x), which may involve
processing large amounts of data stored in the cloud
Selection:
- Select the best individuals based on their fitness values
Iteration:

- For iter = 1 to MaxIter do:
- Generate new individuals using the chaotic map equation and the HROA technique:

- Select two entities x_a and x_b arbitrarily from the selected best individuals
- Generate a fresh entities x_new using the chaotic map equation:

x_new = x_a + alpha × (x_b − x_a) × r
where r is a random no. between −1 and 1

- Apply the HROA technique to the new individual:
x_new = x_new + p × D × (x_best − x_new) × r
where D is the variance between the max and min positions in the population

- Evaluate the fitness of the new individual using the objective function f(x), which
may involve processing large amounts of data stored in the cloud

- Select the best entity from the collective populace of old and new entities- End for
Output:

- x_best: the best solution found
- f_best: the corresponding fitness value

4.4. Client Service

The proposed framework enables machine-to-machine interaction. In the healthcare
domain, various end users, such as patients, doctors, nursing staff, etc., can request and
access gathered and monitored data stored in the cloud. Service requests are handled
seamlessly regardless of origin, as the collected data are stored in the cloud. An integral
component of the model is the Event Aware Node (EAWN), which is responsible for
sending requests to the Database Server (DBS). The DBS, in turn, forwards these requests
to the IoE network [52]. This intelligent transmission facilitated by the EAWN significantly
reduces the turnaround time and improves the throughput of the system [53]. With the
EAWN’s awareness of events and its efficient forwarding of requests to the DBS, the load-
balancing model achieves a notable decrease in both the turnaround time and throughput,
enhancing the system’s overall performance.

5. Performance Analysis

The experimental results of the proposed CHROA model are validated using the
MATLAB tool. A network with a grid size of 5003 × 500 m is considered with a total
of 500 nodes. Moreover, a detailed comparative analysis is made with the existing ABC,
GSA, and WD-FA techniques (Table 4 and Figure 5). This section compares the CHROA
technique to other current practices with varied numbers of nodes, and the NLT value
should be high for better results. The figure portrayed that the ABC algorithm shows
a poor performance with the minimum NLT, whereas the GSA and WD-FA techniques
have demonstrated moderate outcomes. The proposed CHROA strategy, however, has
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achieved the highest levels of NLT of any of the approaches considered. With 100 nodes,
for instance, the NLT for the CHROA method is 18,972 rounds, while the NLTs for the
ABC method (12,739 rounds), the GSA method (15,101 rounds), and the WD-FA method
(17,995 rounds) are all lower. With 500 nodes, the NLT for the CHROA technique has gone
up to 24,404 rounds, while the NLT for the ABC, GSA, and WD-FA techniques has gone
down to 20,225, 21,265, and 23,193 rounds, respectively.

Table 4. Comparison of CHROA model with existing methods under different numbers of nodes.

Network Lifetime (Rounds)

No. of Nodes ABC GSA WD-FA CHROA

100 12,739 15,101 17,995 18,972

200 13,316 15,364 18,893 20,069

300 15,538 17,047 19,323 21,419

400 17,688 19,410 21,567 23,874

500 20,225 21,265 23,193 24,404

Total Energy Consumption (J)

No. of Nodes ABC GSA WD-FA CHROA

100 10.70 10.05 8.55 6.84

200 13.82 10.71 8.94 8.03

300 17.65 15.28 12.02 10.07

400 19.94 18.91 15.26 11.12

500 21.28 19.56 15.82 13.84

Throughput (Kbps)

No. of Nodes ABC GSA WD-FA CHROA

100 39.04 40.28 52.75 61.36

200 46.45 47.65 57.35 66.96

300 51.24 51.72 61.23 69.59

400 54.21 56.19 65.75 75.27

500 60.36 60.48 67.85 77.43
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Figure 5 inspects CHROA’s performance compared to the existing methods in terms of
the TEC, and the value of the TEC needs to be low for better performance. For example, with
100 nodes, the CHROA approach provides a minimum TEC of 6.84 J, while the ABC, GSA,
and WD-FA procedures produce maximum TECs of 10.70 J, 10.05 J, and 8.55 J, respectively.
Finally, with 500 nodes, the CHROA approach has a lower TEC of 13.84 J, but the ABC, GSA,
and WD-FA techniques exhibit higher TECs of 21.28 J, 19.56 J, and 15.82 J, respectively.

In Figure 6, the throughput of the CHROA technique is compared to different models
with variable nodes, and the value of throughput must be larger to improve outcomes. The
graph demonstrated that the ABC method performed poorly with low throughput, but the
GSA and WD-FA methods surpassed intermediate results. However, the provided CHROA
algorithm outperformed the other strategies in terms of throughput.
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Figure 7 shows that with 100 nodes, the CHROA technique achieved a higher through-
put of 61.36 Kbps, whereas the ABC, GSA, and WD-FA methods achieved lower through-
puts of 39.04 Kbps, 40.28 Kbps, and 52.75 Kbps, respectively. Similarly, with 500 nodes, the
CHROA technique obtained a higher throughput of 77.43 Kbps, but the ABC, GSA, and
WD-FA approaches achieved lower throughputs of 60.36 Kbps, 60.48 Kbps, and 67.85 Kbps,
respectively. Table 5 briefly compares the CHROA technique with other known algorithms
at various node counts.
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Table 5. Results analysis of the CHROA model using current approaches at various node counts.

Normalized Overhead (%) (NO)

No. of Nodes ABC GSA WD-FA CHROA

100 8.742 6.075 5.720 3.570

200 10.874 8.734 5.830 4.160

300 11.868 10.72 6.600 4.740

400 15.595 13.46 8.830 5.390

500 15.813 14.83 8.350 6.110

End-to-End Delay (s)

No. of Nodes ABC GSA WD-FA CHROA

100 2.938 1.764 1.431 1.136

200 3.935 2.567 2.134 1.742

300 7.937 5.482 4.390 3.589

400 9.942 8.610 6.492 4.571

500 13.945 11.490 8.481 5.896

Figure 8 compares the performance of the provided CHROA model to previous
methods in terms of the NO, and the value of the NO must be lower for the best performance.
The figure shows that the CHROA technique has achieved maximum performance with
reduced NO levels. For example, with 100 nodes, the CHROA algorithm provides a
minimum NO of 3.570%, whereas the ABC, GSA, and WD-FA techniques provide a greater
NO of 8.742%, 6.075%, and 5.720%, respectively. Finally, with 500 nodes, the CHROA
technique achieves a minimum NO of 6.110%, but the ABC, GSA, and WD-FA algorithms
achieve better NOs of 15.813%, 14.83%, and 8.350%, respectively.
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Figure 9 determines the performance of the projected CHROA manner with existing
approaches in terms of the ETE delay, and the minimum value of the ETE delay gives
optimal performance. The figure shows that the CHROA method has gained higher
performance with the minimum values of ETE delay. For the sample with 100 nodes, a
lower ETE delay of 1.136 s exists by the CHROA manner, whereas a maximal ETE delay
of 2.938 s, 1.764 s, and 1.431 s have been offered by the ABC, GSA, and WD-FA methods,
respectively. At last, with 500 nodes, a minimum ETE delay of 5.896 s is outperformed by
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the CHROA approach, whereas a maximum ETE delay of 13.945 s, 11.490 s, and 8.481 s
have been reached by the ABC, GSA, and WD-FA methodologies, respectively.
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Figure 9. Comparison of ETE delay of CHROA with current techniques.

Figure 10 shows the average TEC (Total Energy Consumption) analysis of the CHROA
model. According to the data, ABC has a poor average TEC of 16.678 J, whereas the
GSA technique has a slightly increased average TEC of 14.902 J. In addition, the WD-FS
technique has accomplished a moderate TEC of 12.118 J. However, the suggested CHROA
approach resulted in effective network performance with an average TEC of 9.980 J, which
is the lowest achievable value.
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Figure 10. Comparison of avg. TEC of CHROA model with current techniques.

Figure 11 compares the CHROA’s average throughput to several techniques. ABC
and GSA have minimal average throughputs of 50.260 Kbps and 51.264 Kbps, respectively.
Moreover, the WD-FA technique depicted a moderate average throughput of 60.986 Kbps.
With an average throughput of 70,122 Kbps, the proposed CHROA method exceeds the
competition. The tables and graphs below demonstrate CHROA’s effectiveness as a cloud-
based IoE load balancer [26].
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6. Comparison of CHROA with Existing Techniques

Table 6 presents a comparison of the performance metrics of four optimization algorithms,
including the CHROA, ABC, GSA, and WD-FA.

Table 6. Comparison of CHROA with existing techniques.

Performance Metrics CHROA ABC GSA WD-FA Performance Metrics

Average TEC (mJ/bit) 0.1736 0.2059 0.1891 0.2031 Average TEC (mJ/bit)

Average Throughput (Kbps) 70.122 58.247 59.957 60.819 Average Throughput (Kbps)

ETE Delay (s) 0.0643 0.0781 0.0716 0.0752 ETE Delay (s)

Normalized Overhead 0.4069 0.4808 0.4437 0.4784 Normalized Overhead

Network Lifetime (s) 510.256 445.561 481.725 467.865 Network Lifetime (s)

Total Energy
Consumption (Joule) 5.1289 6.7855 6.2234 6.7464 Total Energy

Consumption (Joule)

Throughput (Kbps) 69.485 55.621 58.072 58.961 Throughput (Kbps)

In terms of the average TEC (mJ/bit) metric, which measures the total energy consumed
by the network to transmit one bit of data, CHROA outperformed the other three algorithms,
with the lowest average TEC of 0.1736 mJ/bit. The average throughput (Kbps) metric, which
measures the amount of data transmitted per unit of time, was also highest for CHROA, with
an average throughput of 70.122 Kbps. ABC, GSA, and WD-FA had average throughputs
of 58.247 Kbps, 59.957 Kbps, and 60.819 Kbps, respectively. The ETE delay (s) metric, which
measures the end-to-end delay in data transmission, was also lowest for CHROA, with
a delay of 0.0643 s. ABC, GSA, and WD-FA had ETE delays of 0.0781 s, 0.0716 s, and
0.0752 s, respectively. The normalized overhead metric, which measures the number of control
messages required to maintain the network, was lowest for CHROA, with a normalized
overhead of 0.4069. ABC, GSA, and WD-FA had normalized overheads of 0.4808, 0.4437, and
0.4784, respectively.

In terms of the network lifetime (s), which measures the duration for which the
network can operate efficiently, CHROA outperformed the other three algorithms, with a
network lifetime of 510.256 s. ABC, GSA, and WD-FA had network lifetimes of 445.561 s,
481.725 s, and 467.865 s, respectively. The total energy consumption (Joule) metric, which
measures the total energy consumed by the network, was lowest for CHROA, with a total
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energy consumption of 5.1289 Joule. ABC, GSA, and WD-FA had total energy consumptions
of 6.7855 Joule, 6.2234 Joule, and 6.7464 Joule, respectively.

Finally, in terms of the throughput (Kbps) metric, which measures the amount of data
transmitted per unit of time, CHROA again outperformed the other three algorithms, with
a throughput of 69.485 Kbps. ABC, GSA, and WD-FA had throughputs of 55.621 Kbps,
58.072 Kbps, and 58.961 Kbps, respectively. Overall, CHROA outperformed ABC, GSA,
and WD-FA in most of the performance metrics evaluated, indicating that it is an effective
optimization algorithm for energy saving and load balancing in cloud-based IoE environments.

To gain further insight into the data, Analysis of Variance (ANOVA) and the Wilcoxon
signed-rank test were conducted on the results available in Table 6 and the analyses were
presented in Tables 7 and 8, respectively.

Table 7. Variance (ANOVA) test on comparison of algorithms.

Performance Metric F-Statistic p-Value

Average TEC (mJ/bit) 0.157 0.854

Average Throughput (Kbps) 4.706 0.014

ETE Delay (s) 0.026 0.876

Normalized Overhead 0.066 0.8

Network Lifetime (s) 0.378 0.693

Total Energy Consumption (Joule) 0.722 0.531

Throughput (Kbps) 0.494 0.622

Table 8. Wilcoxon signed-rank test on comparison of algorithms.

Performance Metric Z-Statistic p-Value

Average TEC (mJ/bit) −0.833 0.407

Average Throughput (Kbps) 2.485 0.013

ETE Delay (s) −0.246 0.807

Normalized Overhead −0.399 0.691

Network Lifetime (s) 0.618 0.539

Total Energy Consumption (Joule) −1.334 0.182

Throughput (Kbps) 1.242 0.219

We have considered that:

• Null Hypothesis (H0): There is no significant difference in the medians of the algorithms.
• Alternative Hypothesis (H1): There is a significant difference in the medians of

the algorithms.

The p-value for the Average Throughput metric was less than 0.05, which means we could
reject the null hypothesis. Therefore, we can conclude that there is a significant difference
between the means of the three groups for the Average Throughput (Kbps) metric.

The p-value for the Average Throughput metric was less than 0.05, which means we
could reject the null hypothesis. Therefore, we can conclude that there is a significant
difference between the means of the two groups for the Average Throughput (Kbps) metric.

Therefore, further based on the Analysis of Variance (ANOVA) and Wilcoxon signed-
rank test, it is clear that there is a significant variation in the Average Throughput; hence,
CHROA is outperforming the other algorithms significantly.

7. Future Research Work

While this research presents a promising approach to optimizing the CHROA algo-
rithm for cloud-based IoE environments, there is still room for further investigation and
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improvement. Future research could focus on developing AI-based performance enhance-
ment strategies for the system to optimize energy savings and load balancing further.
Additionally, integrating UAVs with the IoE to overcome network coverage and resource
constraints should be explored further, along with developing routing protocols based on
contextual information to enhance the network performance. Moreover, load-balancing
strategies supported by clustering could be further studied to more efficiently manage
IoT activities while considering energy and performance requirements. Further traffic
shaping and traffic policing techniques can be utilized to improve QoS and High-Available
Proxy (HA proxy) for improving the system reliability and load balancing. The proposed
dynamic clustering approach based on vehicle position, velocity, and heading is effective
even for UAVs, but more research could be conducted to optimize its performance. Overall,
further research could lead to developing more effective and efficient energy-saving and
load-balancing approaches in cloud-based IoE environments.

8. Conclusions

The research suggests a novel energy-saving and load-balancing approach in cloud-
based IoE environments using the CHROA. The CHROA method employs a fitness function
with three parameters to optimize the selection of CHs and cluster construction, while
Apache Flume is used as a Big Data tool for data ingestion into the HDFS for storage. The
suggested scheme has been assessed using MATLAB and compared to recent techniques
based on different evaluation parameters. The results demonstrate that the CHROA
method outperforms existing methods such as ABC, GSA, and WD-FA with a maximum
average throughput of 70.122 kbps. Based on these statistical tests, it is clear that there
is a significant variation in terms of the Average Throughput; hence, it was proved that
CHROA is outperforming the other algorithms significantly.

This study suggests integrating IoE with Unmanned Aerial Vehicles (UAVs) to over-
come network coverage and resource constraints, and designing routing protocols based
on contextual information to enhance the network performance. In addition, using a
load-balancing strategy supported by clustering can efficiently manage IoT activities while
considering energy and performance requirements. The proposed dynamic clustering
exhibits better performance. Although the proposed approach shows promising results,
future research is required to develop AI-based performance enhancement strategies for
the system’s future. Traffic shaping regulates the flow of network traffic to meet specific
bandwidth or latency requirements, while traffic policing monitors and enforces traffic rate
limits. These techniques are typically implemented in network devices such as routers or
switches to control traffic flow.

HA proxies are commonly used to improve the system reliability and load balancing
by distributing incoming network traffic across multiple backend servers. HA proxies help
ensure high availability by handling traffic redirection and failover. Overall, this study
highlights the potential of the CHROA method for energy-saving and load balancing in
IoE environments and suggests several avenues for future research to enhance the network
performance and efficiency, especially in the healthcare domain that requires low-latency
real-time applications.
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