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Abstract 
Arsenic (As) is a naturally occurring, toxic trace element that can be found in irrigation water, 

soil, and crops. Rice accumulates higher concentrations of As in its grains than other cereals 

like wheat and barley. This leads to concern over dietary As exposure, especially in areas of 

India, Bangladesh, Nepal, Taiwan, Vietnam, and Thailand.  This present study has been 

undertaken to manage the risk posed by rice grown in As-contaminated areas. The objectives 

of the study were to determine guideline values for total and bioavailable As in soil, as well 

as As levels in irrigation water, using predictability models. Additionally, the efficacy of 

biochar as an amendment for As-contaminated soils in rice cultivation was assessed through 

a meta-analysis. 

 Meta-analysis of a database compiled from an extensive literature review was 

undertaken using decision tree (DT) and logistic regression (LR) machine learning models to 

evaluate the relationship between As concentrations in rice grain, soil, and irrigation water. 

Soil total As was a stronger predictor of As in rice grain than irrigation water As. Both the DT 

and LR models successfully predicted the soil concentrations above which As in grain would 

exceed the Codex recommendation. Subsequent field studies in West Bengal, India in 2021 

provided validation data, which demonstrated that 14 mg kg-1 of total As in soil was an 

appropriate guideline value for the safe cultivation of rice. 

The concentration of bioavailable As in paddy soil was predicted using random forest 

(RF), gradient boosting machine (GBM), and LR models. The LR model was the better 

performing, identifying bioavailable As, total As, available iron (Fe), and organic carbon as 

significant predictors of grain As. Based on the LR model's partial dependence plots and 

individual conditional expectation plots, 5.70 mg kg−1 was the limit for bioavailable As in soil. 

An incubation study was conducted using monolithic soil columns collected from 10 

As-contaminated sites. Results were analysed using linear discriminant analysis (LDA) and LR, 

considering the As dose, soil pH, organic carbon, clay, available Fe, phosphorus, and total As. 

The LR model performed best, predicting 190 µ L-1 as the guideline value for irrigation water. 

To support remediation of As-contaminated soil, biochar was evaluated as a potential 

soil amendment. A meta-analysis indicated that biochar could be an effective tool in the 

sequestration of As in soil, but further research is required under realistic field conditions. 
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This study has provided the first guideline values for As in soil and irrigation water and 

identified a potential management option (soil remediation using biochar). The findings have 

direct relevance to rice farmers and regulators, with the potential to deliver significant public 

health benefits in As contaminated regions. 
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Chapter 1-Introduc/on 
1.1 Background of Research 

Arsenic (As), a poten=ally toxic trace element, is of great environmental concern due to its 

presence in soil, water, plant, animal, and human con=nuum (Bhaoacharyya and Sengupta, 

2020). The origin of the word “arsenic‟ comes from the Persian word “zarnikh” and the Greek 

word “arsenikon” meaning “yellow orpiment”. Arsenic is placed in group V and period 4 of the 

periodic table with an atomic number of 33 and molecular weight of 74.92. Arsenic is a 

naturally occurring element that has both metallic and non-metallic proper=es. 

 It can be present in soil, air and water as a metalloid and as chemical compounds 

of both inorganic and organic forms (Matschullat, 2000; Laha et al., 2021). It enters soil from 

mining, coal burning, sewage sludge, and pes=cides, and is then absorbed by plants and enters 

the food chain, posing a threat to human health (Xue et al., 2017; Wan et al., 2018; 

Bhaoacharyya et al., 2021a). 

 Contamina=on of land and aqua=c systems with As is a persistent global issue, 

par=cularly in South and Southeast Asian and La=n American countries(Hussain et al., 2021). 

Numerous incidents of groundwater As contamina=on and human suffering have been 

documented in 20 countries around the world (including Argen=na, Chile, Finland, Hungary, 

Mexico, Nepal, Taiwan, Bangladesh, India, and others). Around 200 million people are thought 

to be at danger of As poisoning, either directly by drinking As-contaminated groundwater or 

indirectly via consuming As-laced food crops, primarily rice (Oryza sa=va L.) irrigated with As-

contaminated groundwater (Chowdhury et al., 2020). In India the severity of As contamina=on 

has been reported from the Indo-Gange=c plain (Chakrabor= et al., 2003). Arsenic 

concentra=on in natural waters, except groundwater is generally low, other than in the areas 

characterised by the geothermal water or mining ac=vi=es. While drinking water is considered 

as the most important source for As exposure, food is equally important exposure route and 

most important route of exposure in areas with safe drinking water. Food gets contaminated 

mainly due to contaminated irriga=on water resul=ng in soil-crop-food transfer (Mandal et al., 

2019; Kumar et al.,2021; Sengupta et al., 2021). In West Bengal, India, two methods of paddy 

cul=va=on are commonly prac=ced: Boro, which involves pre-monsoon cul=va=on irrigated 

with groundwater, and Aman, which involves post-monsoon cul=va=on that is rainfed and 

some=mes irrigated. Boro rice covers a larger area of approximately 15.12 million hectares 

compared to Aman rice, which covers around 3.93 million hectares (Chowdhury et al., 2018). 
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Both these cul=va=on methods result in a significant uptake of As in the harvested rice. The 

findings of Chowdhury et.al. (2020) strongly support this statement. 

 Apart from drinking water, rice is an important route of As exposure in endemic 

areas (Mondal et al., 2010; Mondal & Polya, 2008). Recently elevated levels of As in rice grain 

from the As affected areas of West Bengal, India have been reported (Chowdhury et al.,2020; 

Sengupta et al.,2021). In As impacted districts of West Bengal, India, Golui et al. (2017) 

reported As concentra=ons in rice grain ranging from 2 to 1260 g kg-1, with a mean value of 

146 g kg-1. Similar increased levels of As in rice have been recorded from As polluted areas in 

the Maner block of Patna District, Bihar, India (Singh & Ghosh, 2011). Ini=ally the maximum 

allowable level of As in rice grain, according to the World Health Organiza=on (WHO), was 

considered to be 1 mg kg-1 (Meharg & Rahman, 2003). In the case of the United States 

Department of Agriculture (0.15 mg kg-1) and the European Union (0.5 mg kg-1) it is stricter 

(Meharg & Rahman, 2003). Recently as per the Codex Alimentarius Commission a joint 

commioee of WHO and Food and Agriculture Organiza=on (FAO) the maximum level (ML) of 

inorganic As (i-As) in husked rice is 0.35 mg kg-1 and it is 0.2 mg kg-1 for polished rice (JECFA, 

2017). Apart from drinking water, irriga=on water contaminated with As acts as a potent 

source of contamina=on to humans through water-soil-crop food transfer. While drinking 

water, already having a permissible/safe limit, quan=fica=on of safe limit for irriga=on water 

and soil for rice is also required. However, there are a few things to keep in mind. For example, 

the soil total As, does not account for how crucial soil physio-chemical proper=es affect its 

availability. To address this issue inclusion of bio-accessible As (plant available As) as one of 

the predictor variables is required. Although total elemental concentra=ons are regarded as a 

reliable indicator for determining the long-term enrichment of the soil and es=ma=ng the 

source of the elements, they offer liole insight into the poten=al bioavailability of the 

elements (such as As), which may cause metal(loid) sequestra=on and recycling within the soil 

environment under the influence of various soil parameters. 

 Management solu=ons that are both efficient and feasible (under local 

condi=ons) for the remedia=on of As-contaminated soil is of importance to reduce human 

health risks from soil-crop-food transfer. Both phytoremedia=on and bioremedia=on of the As 

contaminated sites have been undertaken (Laha et al., 2021 & 2022; Upadhyaya et al., 2018 

and Mondal et al., 2021). Solu=ons include amendments used for the remedia=on of As-

contaminated soil such as the use of inorganic elements like phosphorus (Hossain et al., 2009), 
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silicon (Ma et al., 2008), iron (Ultra et al., 2009) and selenium (Wan et al., 2018); and 

complexa=on of As by the applica=on of organic amendments such as sugarcane bagasse 

(Mandal et al., 2019a and 2019b) and vermicompost (Sengupta et al., 2021; 2022). One of the 

limita=ons of organic amendments, however, is that they need to be applied in large 

quan==es. Biochar is an effec=ve amendment in reducing the ecotoxicity of soils that are 

contaminated with heavy metals because it can effec=vely bind metal(loid)s in water and 

immobilise them in soil (Guo et al., 2020; Ahmad et al., 2014; Tan et al., 2015; O'Connor et al., 

2018). Biochar is prepared by carbonising organic materials through pyrolysis at high 

temperatures (between 300 and 1000 °C) with liole or no oxygen (Lehman and Joseph, 2015). 

The surface func=onal groups on biochar, such as hydroxyls, carbonyls and carboxyls, serve as 

binding sites for metal(loid)s (Tan et al., 2015). Due to the presence of nega=vely charged 

surface func=onal groups, biochar can electrosta=cally bind heavy metal ca=ons and adsorb 

them. Addi=onally, the electron-rich aroma=c biochar surface may electrosta=cally draw 

electron-deficient metal ca=ons to itself through donor-acceptor interac=ons (Vithanage et 

al., 2017). The encouraging results of many studies regarding the efficacy of biochar in binding 

contaminants have s=mulated much interest in using it as a soil amendment for environmental 

rehabilita=on (Guo et al., 2020).  At present, most biochar research publica=ons looked at its 

use from a technical or economic perspec=ve in rela=on to soil quality and the remedia=on 

of surface-, ground-, and waste-water. An integrated understanding of the mechanisms of 

remedia=on of As-contaminated soils (specifically in the rice rhizosphere) through pris=ne and 

modified biochar to improve the func=onal proper=es of biochar could result in future larger-

scale applica=ons. 

1.2. Aim and Objec4ves 

The aim of this research is to determine the maximum permissible soil and irriga=on water As 

concentra=ons for rice cul=va=on accoun=ng for differences in chemical proper=es of the soil 

(pH, organic carbon, clay, iron and phosphorus) and to assess the efficacy of biochar as an 

amendment for As contaminated soils. To meet this, aim the present study has been planned 

with the following objec=ves. 

1. To build predictability models for maximum permissible soil total As through meta-

analysis. 

2. To assess the predictability of the models with field data from As contaminated sites 

of India. 
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3. To assess the role of soil chemical properties on grain As content and deriving the limit 

for bioavailable As. 

4. To propose the guideline value of As in soil and irrigation water for cultivation of rice 

in As contaminated sites of India. 

5. To assess the efficacy of biochar as an amendment for As contaminated soils for 

cultivation of rice through meta-analysis. 

 

1.3. Thesis Structure 

Chapter 1 – Introduc4on 

In Chapter 1, an overview is provided on the contamina=on of groundwater by As and its 

impact on human exposure through the transfer of As from soil to crops and food. Addi=onally, 

the chapter outlines the significance of undertaking this study, elucidates its purpose and 

primary objec=ves, and establishes the specific goals that the study aims to tackle. 

Chapter 2 - Review of Literature 

The Chapter 2 consists of a comprehensive analysis and synthesis of exis=ng research works 

undertaken regarding the origin, distribu=on of As contamina=on in groundwater, soil and 

rice. It serves to provide a theore=cal and conceptual framework for the research being 

conducted and demonstrates the exis=ng knowledge and research gap. 

Chapter 3- Materials and Methods 

In Chapter 3 a detailed descrip=on of the experimental sites, collec=on of soil and plant 

samples, analy=cal procedures followed in the laboratory, and sta=s=cal methods used in the 

research study have been provided. This chapter explains how the studies were conducted 

and allows readers to evaluate the reliability and validity of the results. 

Chapter 4 - Building predictability models for maximum permissible soil total As and 

irriga4on water As through meta-analysis. 

The Chapter 4 deals with the predic=on of soil total As and irriga=on water As guideline values 

using the meta-data from the published research papers. This chapter provides a detailed and 

in-depth analysis regarding the use of machine learning algorithms (logis=c regression and 

decision tree) in developing predictability models.   
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Chapter 5 - Assessing the predictability of the logis4c regression and decision tree models 

over field data. 

In Chapter 5 the performance of the predictability models derived from the meta-data has 

been assessed with the three sets of field data. A piece of detailed informa=on and discussion 

regarding the model performance matrices over those test data sets has been covered in this 

chapter. 

Chapter 6- Determina4on of bioavailable As threshold by random forest, gradient boos4ng 

machine and logis4c regression 

Chapter 6 deals with the predic=on of threshold value for soil bioavailable As to ensure safe 

cul=va=on of rice using the machine learning algorithms. This chapter also provides an in-

depth informa=on regarding the effect of soil proper=es on the bioavailability of As.  

Chapter 7 - Predic4ng the limit of As concerta4on in irriga4on water for cul4va4on of rice.  

This chapter provides the detailed informa=on regarding the predic=on of guideline value 

for irriga=on water As through an incuba=on study with monolithic soil columns collected 

from the As-contaminated sites. 

Chapter 8 - Evalua4on of biochar as an amendment for mi4ga4on of As contamina4on in 

rice through meta-analysis. 

The efficacy of biochar as an amendment to mi=gate As in rice soils has been assessed in this 

chapter trough meta-analysis. An in-depth analysis and discussion on the effect of biochar 

(both pris=ne and modified) on rice grain As content, frac=ons of soil As and also on the rice 

plant growth aoributes (height, =ller number, root and shoot biomass) has been covered in 

this chapter. 

Chapter 9 – Summary and Conclusion 

This chapter outlines a brief overview of the en=re thesis to provide a clear understanding of 

the research objec=ves, methodology, key findings, and their significance. The main findings 

and contribu=ons of the research has been summarized in this chapter.  

Chapter 10- References 

This chapter lists all the sources cited or consulted during the research process to provide the 

necessary informa=on for readers to locate and verify those sources. 
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Chapter 2- Review of literature 
 

2.1. Origin of Arsenic in soil and groundwater 

In order to formulate the underlying reasons of the widespread groundwater As problem four 

main hypotheses for the mobiliza=on and transporta=on of As in groundwater have been 

proposed (Bhaoacharya et al. 2015): oxida=on of pyrite, compe==ve ion exchange, reduc=ve 

dissolu=on of iron oxyhydroxides, and reduc=on and re-oxida=on. A large number of As 

bearing minerals are present in the environment including arsenical pyrite (FeAsS), realgar 

(AsS) and orpiment (As2S3) (Khosravi et al., 2019). The alluvial plains of Eastern India and 

Bangladesh subjected to widespread contamina=on have pyrite oxida=on as the major 

underlying process where excessive groundwater use for irriga=on creates an oxidizing status 

of the aquifers (Chakraborty et al. 2015). Under aerobic condi=ons, Fe oxide-hydroxide or 

ferric oxyhydroxide (FeOOH) is stable and does not release As whereas anoxic condi=ons 

results in the reduc=on of FeOOH to ferrous oxide (Fe2O3) and As is mobilised. The 

maintenance of such anoxic condi=ons is proposed to be facilitated by the widespread 

prac=ce of wetland rice cul=va=on in the As contaminated regions (Sanyal, 2017). The 

compe==ve ion exchange theory deals with the compe==on among the As oxyanions and 

phosphate ions that decipher the release of As in the aquifers (Fakhreddine et al. 2015). 

However, the most important factor of As contamina=on in India and Bangladesh is based on 

the principle of reduc=ve dissolu=on of metal oxides and Fe hydroxides, which results in the 

release of As. The fourth hypothesis behind the As menace deals with the reduc=on and re-

oxida=on theory (mobiliza=on of As via Fe oxyhydroxides reduc=on followed by pyrite re-

oxida=on). This combina=on of processes although enables As immobiliza=on yet a reduced 

environment restricts such process making As bioavailable (Bhaoacharya et al. 2015; Shukla 

et al. 2020). Overall, the background of As contamina=on suggests that under an anoxic 

condi=on of the underground aquifer, As mobiliza=on from As-bearing sediments to the 

groundwater aquifer occurs. Wetland paddy cul=va=on in the affected regions promotes this 

anoxic state. 

In West Bengal (Figure 2.1), the presence of As in groundwater in concentrations 

exceeding the maximum acceptable concentration was first detected in 1978, while the 

first case of As poisoning in humans was diagnosed at the School of Tropical Medicine 

in Calcutta in 1983 (Acharya, 1997). The effect of ingestion of inorganic As in drinking 
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water and the health effects in adults has also been well established (Guha Mazumdar 

et al., 1998). The main focus of attention, until recently, has been exclusively on As 

contamination in groundwater-derived drinking water. The As loading of the groundwater 

which is used as irrigation source varied from 0.06 to 0.53 mg/L in Nonaghata mouza of 

the Haringhata block of Nadia district in West Bengal (ICAR, 2005). A high degree of  such 

contamination was also found in different parts of the affected-belt, to name a few, 

Gotera and Ghentugachhi mouzas of Chakadaha block of Nadia district (ICAR, 2001) (ranging 

from trace to 0.89 mg/L); Ambikanagar, Chakla, Ijajpur and Chyangdana villages under 

Deganga block of North 24- Parganas district of West Bengal (varying from 0.05 to 0.50 

mg/L), etc., by a group of researchers at the Bidhan Chandra Krishi Viswavidyalaya (Sanyal 

et al., 2015). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. Groundwater As status of West Bengal (hXp://www.soesju.org)  
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2.2. Chemistry and forms of As in groundwater-soil environment 

Arsenic is released into the environment in both inorganic and organic forms. Arsenate (AsV) 

is inorganic, phyto-available forms of As in soil solu=on (Meharg & Hartley-Whitaker, 2002). 

However, microbes, which can methylate and demethylate As species in soils, may transform 

inorganic arsenic species to organic As species and vice-versa (Turpeinen et al.,1999) . As (V) 

exists in four forms in aqueous solu=on based on pH: H3AsO4, H2AsO4
-, HAsO4

2- and AsO4
3-. 

Similarly, As (III) exists in five forms: H4AsO3
+, H3AsO3, H2AsO3

-, HAsO3
2- and AsO3

3-. The ionic 

forms of As (V) dominate at pH > 3, and As (III) is neutral at pH < 9 and ionic at pH > 9. At pH 

6 – 8, in most aqua=c systems, both H2As2O4
- and HAs2O4

2- ions occur in considerable 

propor=ons in an oxidized environment (redox poten=al, Eh = 0.2 – 0.5V), while the aqueous 

acid, H3AsO3, is the predominant species under reduced condi=ons (Eh = 0 – 0.1V) (Sadiq, 

1997;  Sanyal, 2014). The toxicity follows the order: arsine (-3) > organo-arsine compounds > 

arsenites (As3+) and oxides (As3+) > arsenate (As5+) > arsonium metals (+1) > na4ve As metal 

(0) (Ghosh et al.,2004). 

 

2.3. Arsenic and Rice 

Rice serves as a primary food source for over 50% of the world's popula=on, par=cularly in 

Asian, African, and La=n American na=ons (GriSP, 2013). In Asia, rice is the basic staple food 

for majority of the popula=on, including the region’s 560 million poor (GRiSP, 2013). The Asian 

region accounts for 90% of global rice produc=on and consump=on (Sengupta et al., 2021), 

some of which occurs in As contaminated areas. In India and Bangladesh, daily consump=on 

of milled rice is high (approximately 68.2 and 173.3 kg person-1 year-1 respec=vely (Sengupta 

et al., 2021). In Bangladesh, approximately 69.6% of calorific intake comes from rice and in 

India it comprises of 29.1% (Sengupta et al., 2021). Rice is a rich source of dietary fibre and 

nutrients, including carbohydrates, proteins, vitamins and minerals (Mwale at al., 2018). Rice 

accumulates higher concentra=on of As in grains than other cereals such as wheat and barley 

(Williams et al., 2007). Rice, hydrophilic in nature uses an enormous amount of water 

throughout it’s lifecycle. The amount of water used to grow rice can be quan=fied. According 

to the Food and Agriculture Organiza=on of the United Na=ons (FAO), it takes about 2,500 

litres of water to produce one kilogram of rice (FAO, 2014). This means that growing rice is a 

very water-intensive crop. The FAO also notes that the amount of water used to grow rice can 

vary significantly depending on the specific circumstances. For example, in irrigated systems, 
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the amount of water used can be as high as 10,000 litres per kilogram of rice. In rainfed 

systems, the amount of water used can be much lower, but it can vary depending on the 

specific circumstances. In the current climate, with water scarcity becoming a more and more 

pressing issue, the amount of good quality water used to grow rice is a major concern. In some 

parts of Asia, where rice is a staple food, water resources are already stretched thin (FAO, 

2016).  

 Most rice soils, which are commonly found in the alluvial lowlands in humid 

climates, especially En=sols or Incep=sols, have undergone liole soil forma=on. A few 

chronological studies of the mineralogy of rice have indicated that the mineral composi=on of 

rice soils was almost the same as that of their parent materials. The conclusion of minimum 

chronological effects on mineral composi=on of rice soils was corroborated, except in the case 

of bio=te, which was rapidly weathered by seasonal we�ng and drying of rice soils. This laoer 

process is grown on almost all of the major soils, either exclusively or in rota=on with dryland 

crops (Brammer, 1978). Rice soils are affected by alterna=ng reduc=ve and oxida=ve 

condi=ons, resul=ng in damage to clay la�ces and/or chlori=za=on of expanding 2: 1 clay 

minerals (Brinkman, 1970; Yoshida and Itoh, 1974). This upper layer, resul=ng from ferrolysis, 

was impermeable to water percola=on. Ferrolysis results in the transforma=on of par=ally 

Fe2+ -saturated clay to par=al H+-satura=on during the period of oxida=on (Brinkman, 1970; 

Yoshida and Itoh, 1974). Exchangeable H+ reacts with the clay la�ce, resul=ng in release of 

Al3+ and par=al Al3+ satura=on. Thus, there was par=al Al3+-interlayering of the Fe2+-saturated 

clay during the seasonally wet period. This Fe2+ - H+ Al3+ replacement induces clay destruc=on 

and change in acidity in rice soils (Brinkman, 1970; Yoshida and Itoh, 1974). Another reac=on 

is observed in the rice soils, i.e., smec=te and vermiculite, which have a higher ca=on-

exchange capacity, resulted from the degrada=on of bio=te in sediments which have 

originated from the Himalayan Mountains.  

 The mechanical and chemical composi=ons of rice soils from nine tropical Asian 

countries (i.e., Bangladesh, Burma, Cambodia, India, Indonesia, Malaysia, Philippines, Sri 

Lanka and Thailand) were studied (Yoshida and Itoh, 1974). The Bangladesh samples generally 

had a higher silt concentra=on than the other samples, according to the interna=onal grain-

size limits (i.e., silt, 0.002 – 0.02 mm), due to sedimenta=on from the Ganges and the 

Brahmaputra rivers. Minerals rich in Fe, e.g., hema=te (a-Fe2O3), goethite (a-FeOOH), 

lepidocrocite (g-FeOOH), siderite (FeCO3), jarosite (KFe3(SO4)2(OH)6) and vivianite 
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(Fe3(PO4)2.8H2O), were iden=fied in rice soils from nine Asian countries (Van Breemen, 1976). 

Minerals rich in Fe o�en have higher adsorbing capaci=es for AsO4
3- than PO4

3- (Violante and 

Pigna, 2002). Alterna=ng oxida=on/reduc=on in rice might strongly impact mobility and 

accessibility of As, since the As might be co-precipitated or trapped by iron oxides precipitated 

during the oxida=on of reduced rice soils.  

 Again, redox condi=ons and pH significantly affected the availability and 

consequent phytotoxicity of inorganic and organic As species; however, it is only in wet land 

soils (rice paddies) where redox condi=ons are very different to non-wetland soils (Marin et 

al., 1993). The redox state and pH of the soil has a major influence on As specia=on and 

solubility (Carbonell Barrachina et al., 2000). 

  As contaminated groundwater are used extensively to irrigate paddy rice mostly 

during the dry season (Meharg & Rahman, 2003). The spa=al distribu=on of As in soil 

contaminated with groundwater used for irriga=on is difficult to calculate, because As 

concentra=ons may be 70 mg kg-1 in the top soil near to the inlet of irriga=on system, but may 

drop to nearly background levels of <5–10 mg kg-1 over a distance of few hundred meters form 

the inlet (Diomar et al., 2010; Panaullah et al., 2009; Takahashi et al., 2004). Even so, As in the 

soil can quickly build up because only plant uptake or erosion can reduce As in the soil. Under 

anaerobic condi=ons, arsenite (63%) is the most abundant species, while monomethylarsonic 

acid (MMA) (14%), dimethylarsinic acid (DMA) (11%), and As(V) (39%) are also present 

(Abedin et al. 2002). Arsenic toxicity influences rice plant growth; in fact, As-toxicity causes 

ATP inhibi=on and oxida=ve stress, resul=ng in decreased yield (Panaullah et al., 2009). In soils 

containing >60 mg kg-1 total As, toxicity symptoms such as stunted growth, brown patches, 

and burning on rice plant leaves were seen (Zhao et al., 2010). When soil As concentra=ons 

were increased from 12 to 60 mg kg-1 in tradi=onal paddy fields in Bangladesh, rice yields 

decreased from 7.5 to 2.5 t ha-1 (Duxbury and Panaullah, 2007). 

 

2.4. Arsenic uptake mechanism in rice plant 

Arsenic is taken up in rice roots by two mechanisms. First mechanism involves the phosphate 

(PO4
3-) transport pathway using high affinity PO4

3- transporters (Muchhal et al., 1996; Shin et 

al., 2004; Catarecha et al., 2007), which uptake As(V) from soil solu=on and subsequently to 

aerial parts of the plants (Zhao et al., 2010). The second route by which As is taken up by 

plants roots is through aquaporin channels, which uptake As(III) (silicic acid analogue) and 
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methylated As species (MMA and DMA) (Jian et al., 2008). As(III) u=lises this Si transporter in 

rice root cells because it is comparable to silicic acid; both have a high pKa (9.3 for silicic acid 

and 9.2 for arsenous acid, respec=vely) and a tetrahedral structure of similar size. A�er As(III) 

is taken up by root cells, some of it is released into the rhizosphere right away, which is 

par=ally mediated by Lsi1 ac=ng as a bidirec=onal channel (Zhao et al., 2010); the rest is 

sequestered in root vacuoles or translocated to the shoots, where it is distributed to various 

organs (Zhao et al., 2010). Methylated As species like MMA and DMA contribute very liole to 

total As in soil. The intrinsic protein nodulin 26-like may be used to absorb MMA and DMA 

(Bakhat et al., 2017). Inorganic As, on the other hand, is thought to be significantly more 

hazardous than pentavalent methylated As species (Meharg et al.,2009). It is also clear that 

DMA is less hazardous than inorganic As species (Syu et al., 2015). In soil the As exists as 

arsenite (As3+) and arsenate (As5+) forms. Arsenite is o�en found in anaerobic soils, where it is 

more soluble and more easily taken up by plants whereas As5+ is found in aerobic soils. The 

prevalence of anaerobic condi=on during rice cul=va=on results in the uptake of As in As3+ 

forms. The rela=ve abundance of As3+ and As5+ in soil depends on several factors, including 

the pH and redox poten=al (Eh) of the soil, the presence of organic maoer, and the presence 

of other metals (Hussain et al., 2020). Due to con=nuous change of pH and Eh of the soil during 

the cul=va=on of rice quan=fica=ons of the inorganic form of As ( As3+ or As5+) is a challenging  

task (Sengupta et al., 2023). Regardless of rice variety, the accumula=on of As in the root was 

found to be 28 and 75 =mes higher than in the shoot and uncooked rice grain, respec=vely 

(Rahman et al., 2007). 

 

2.5. Factors affec4ng Bioavailability of As 

2.5.1. Contaminated irriga4on water source 

The bioavailability of As for crops is dependent on various factors. One of the prime factors is 

contaminated irriga=on water. Several authors have reported the fact that irriga=on water 

significantly contributes towards the build-up of As in soil and in turn increasing the 

bioavailability (Bhaoacharya et al., 2010b; Biswas et al., 2014; Golui et al., 2017; Sengupta et 

al., 2021).  
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2.5.2. pH and Redox poten4al of soil  

The availability of As to the crops is governed by the redox poten=al (Eh), pH of the soil. The 

specia=on and solubility of As is mainly governed by pH and Eh of the soil. At high Eh values 

As5+ exists as H3AsO4, H2AsO4-, HAsO4
2- and AsO4

3- whereas at low Eh values the corresponding 

As3+ species is present. Arsenic solubility in soils is considerably low at neutral or slightly acidic 

pH and increased considerably in both strongly acidic and alkaline condi=ons. The soluble or 

rather available As level in soil should increase substan=ally with diminishing Eh and increasing 

pH as reported by (Majumdar & Sanyal, 2003). Furthermore, at a high pH, the OH- ion 

concentra=on would increase, causing displacement of As3+ and As5+ species from their 

binding sites through compe==ve ligand exchange reac=ons (Bhaoacharyya, 2004).  

 

2.5.3. Soil Organic Carbon and clay content 

 The oxidizable organic carbon plays an important role in reten=on and release of As to 

bioavailable forms. Much research looks at the mi=ga=on poten=al of soil amendments such 

inorganic fer=liser or organic manure applica=on, which can immobilise, adsorb, bind, or co-

precipitate As in situ. By producing metal-humate complexes (chelates) with varying degrees 

of stability, soil organic components such as humic acid (HA) and fulvic acid (FA) operate as 

effec=ve As accumulators (Sinha & Bhaoacharyya, 2011; Mandal et al., 2019a; Kumar et al., 

2021). The stability constant (log K) of the complexes formed by the soil  HA/FA  with As in the 

contaminated soils suggested that organo- As complexes were quite stable, even in the 

presence of compe=ng oxyanions such as phosphate and nitrate (Mukhopadhyay and  Sanyal, 

2004, Mandal et al., 2019a).  

The clay content in soil can influence the mobility and bioavailability of As. Arsenic 

tends to bind strongly to soil par=cles, par=cularly those containing Fe oxides and Al 

hydroxides. Clay minerals, which are o�en composed of Al and Si, can also adsorb As, and 

affect its mobility in soil. In general, soils with a higher clay content tend to have higher As 

reten=on capacity, which can reduce As mobility and availability to plants. However, some 

studies have suggested that high clay content can also create reducing condi=ons that release 

As from soil par=cles, making it more available for uptake by plants (Hussain et al., 2021). Lin 

and Puls (2000) suggested that aging of the clay minerals affects the adsorp=on of As greatly 

with a possible understanding that long term aging results in stronger degree of bonding of 

As to the clay minerals as a result of increase in the levels due to increasing dehydra=ons and 
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As diffusion at the soil water interface to internal pores of the clay aggregates. Low Eh in paddy 

soils can cause enhanced floccula=on and dispersion of clay par=cles, making it easier for clay 

to migrate to the booom of the plough zone and produce a hard clay pan. Clay minerals cause 

finely structured soil with a large surface area. Iron (oxy)hydroxides are primarily co-

precipitated on the surface of clay par=cles, which improves As reten=on in paddy soil and 

reduces rice plant uptake (Hussain et al., 2021). 

 

2.5.4. Soil Phosphorus 

Phosphorus (P) is an essen=al plant nutrient that is required for plant growth. As and P are 

both in Group Vb of the Periodic Table. Their interac=on in the soil-plant system is a cri=cal 

factor in As mobilisa=on. Indeed, it appears that these oxyanions would not be adsorbed 

separately in mixtures, but rather would compete for the same type of adsorp=on sites. (Raj 

et al., 2021). Several researchers found that the presence of phosphate reduced arsenate 

adsorp=on, and that the reduc=on was significantly greater for arsenate's compe==ve effects 

on phosphate adsorp=on by soil minerals, however there was a lot of variance in the degree 

of compe==on between these two oxyanions (Mukhopadhyay et al., 2002).  

 

2.5.5 Silicon (Si), Iron (Fe), Manganese (Mn) 

Silicon (Si) is the second most prevalent element in the earth's crust, and it is mostly absorbed 

by plant roots in the form of silicic acid (H4SiO4). The interac=on of Si with As has received 

some aoen=on in recent years (Chen et al., 2014; Saud et al., 2016). Bogdan & Schenk (2009) 

found that the concentra=on of Si in soil was inversely correlated with the As contents in rice. 

There is direct and indirect evidence that As is held in soils and sediments by oxides (e.g., Fe, 

Mn) with the development of inner-sphere complexes via the ligand exchange mechanism 

(Kumari et al., 2021; Woolson & Axley, 1971). Despite a high As content in the soil solu=on, Fe 

plaque proved to be quite effec=ve at sequestering As and preven=ng rice from acquiring it. 

These findings point to a high mobility of As in the soil during floods, which is regulated by the 

forma=on of oxic/anoxic interfaces at the surface of the soil in contact with flooding water 

and in the rice rhizosphere, as described by Chowdhury et al. (2018). Soil Zn and Fe affec=ng 

the As in rice grain has been previously reported by Duan et al. (2013). The As pathway in the 

rice field (from groundwater to rice grain) is depicted in Figure 2.2. 
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2.5.6. Water management strategies 

In India, par=cularly in West Bengal, two processes of paddy cul=va=on are followed: Boro 

(the pre-monsoon cul=va=on, irrigated with groundwater) and Aman (the post-monsoon 

cul=va=on, rainfed and irrigated some=mes). In terms of area Boro rice covers around 15.12 

million ha whereas Aman rice covers around 3.93 million ha (Chowdhury et al., 2018). Both 

these methods of rice cul=va=on cause a significant uptake of As in the harvested produce. 

The findings of Chowdhury et al. (2020) vehemently confirm the above fact. The methods of 

cul=va=on (rainfed or irrigated) can be ra=onalised in terms of the level of contamina=on in 

irriga=on water and the volume of water used for cul=va=on of rice to quan=fy the amount 

of As added to soil as explained by Chowdhury et al. (2020) as per the following equa=ons: 

 Total water (L) = Water discharge rate (L/h) X Weekly watering (h)………….(1) 

 Total As exposure (μg) = Total water (L) X Water As (μg L-1)…………………..(2) 

 

2.6. Limits of As in irriga4on water and soil 

The European Union (EU) recommended that As in agricultural soil should not exceed 20 mg 

kg-1 (Hussain et al., 2021; Rahman et al., 2007). Lower and upper guideline values of 10 mg kg-

1 and 50 mg kg-1 respec=vely have been prescribed by Finnish regulators (Finland, Ministry of 

the Environment, 2007; Toth et. al, 2016). However, these guideline values were not specific 

for paddy soils. For irriga=on water, a regulatory limit of 100 μg L−1 for As has been adopted 

(FAO, 1992; Pescod, 1992). This is in line with the 100 μg L−1 maximum concentra=on 

recommended by Ayers and Westcot (1985) for trace elements in irriga=on waters. The values 

recommended by the EU and the Ministry of Environment in Finland were for generic 

agricultural soils rather than for paddy soils. These guideline values will be useful for the 

policymakers and the stakeholders (farmers) to ensure effec=ve management of the 

contaminated sites. Regulatory limits will help to ensure that exposure to As is kept within 

safe levels, which can help to prevent and protect public health. By establishing clear and 

consistent regulatory limits, stakeholders can have a beoer understanding of what is required 

to comply with regula=ons and can make informed decisions about how to manage and 

mi=gate poten=al risks. It will also promote the use of safer and more sustainable prac=ces 

and products; stakeholders can help to drive innova=on and investment in new technologies 

and approaches that can benefit both the environment and the economy. These generic 
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agricultural values may not be appropriate for applica=on to paddy soil condi=ons, which are 

known to enhance As bioavailability to rice roots (Meharg and Rahman, 2003).  

 
Figure 2.2. The As pathway in rice field. (Prepared by Jaja= Mandal) 

 

2.7. Biochar as an amendment for As contaminated soils 

Biochar is a type of charcoal that is produced by hea=ng organic material, such as wood, 

agricultural waste, or other biomass, in a low-oxygen environment. The process, known as 

pyrolysis, breaks down the organic material into a carbon-rich material that is highly stable 

and resistant to decomposi=on (Yaashikaa et al., 2020).  

The yield and characteris=cs of biochar are based on thermochemical methods, 

opera=ng condi=ons, and feedstock. It is widely known that low-temperature-generated 

biochars from slow pyrolysis have low hydrophobicity and aroma=city but significant surface 

acidity and polarity. Major biomass decomposi=on occurs between 200 °C and 500 °C through 

a series of phases that include par=al hemicellulose decomposi=on, complete hemicellulose 

decomposi=on, full cellulose, and par=al lignin decomposi=on (Rutherford et al., 2012). Use 
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of a high pyroly=c temperature (>450 °C) for prepara=on of biochar has been observed in all 

the studies considered in this review. In a meta-analysis, Arabi et al. (2021) reported that low 

pyrolysis temperature biochars (≤ 450 °C) did not affect As mobility in the soil, but high 

pyrolysis temperature biochars (> 450 °C) considerably mobilised the soil As. Biochars 

pyrolysed at high temperatures are more successful than those generated at low 

temperatures for As immobilisa=on, which could be aoributed to the high aroma=city and 

porous structure, as well as the presence of mineral-phases (e.g., CaPO4, CaCO3) (Amen et al., 

2020). The presence of acidic groups such as carboxylic, phenolic, and ca=onic groups on the 

surface of biochar produced at a shorter pyrolysis dura=on result in biochar with a rela=vely 

low pH (Shaaban et al., 2014). According to Beiyuan et al. (2017), biochar generated at low 

temperature has a greater O/C ra=o than biochar produced at high temperature. These 

findings suggested that As stabilisa=on may be significantly aided by O-containing func=onal 

groups, such as carboxyl and hydroxyl groups (Shaaban et al., 2014). In contrast, a liole higher 

pH in the higher temperature pyrolysis likely led to increase As mobilisa=on (Beiyuan et al., 

2017; Zhao et al., 2018). The pH of the medium (i.e., soil solu=on) can affect the charge 

characteris=cs of the biochar surface as well as As specia=on, but not the pH of biochar. For 

example, depending on the solu=on pH, various func=onal groups such as amine, alcohols, 

carboxylic, on the surface of biochar tend to be protonated, hence altering the surface charge 

of biochar (Vithanage et al., 2017). Contrarily, the pH of the solu=on affects the specia=on of 

As into its many neutral and anionic forms such as H3AsO4, H2AsO4, HAsO4
2-, and AsO4

3-. At pH 

3-6, the H2AsO-4 species can dominate; however, at pH 8 and above, HAsO4
2- and AsO4

3- 

species become dominant (Kumari et al., 2021; Raj et. al., 2020). Consequently, mul=ple 

species of As can be adsorbed on the surface of biochar at different pH values, making it 

difficult to determine the predominant species of As. The dominant As species on the surface, 

as well as how the As-surface complexa=on takes place, varies with changing solu=on pH. 

Biochar possesses various surface func=onal groups, such as hydroxyls, carbonyls, and 

carboxyls, which enable biochar to adsorb heavy metal ca=ons through electrosta=c 

aorac=on. However, immobiliza=on of anionic metals, such as As, has been challenging, and 

modifica=on or engineering of biochar is recommended to tailor its characteris=cs to 

overcome this issue. 

Following the applica=on of biochar in paddy soil, many crucial processes lead to the 

mechanisms of As immobilisa=on. The type of biochar used, and the modifica=ons made 
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determine the mechanisms of As immobilisa=on/mobilisa=on. The presence of numerous 

func=onal groups like alcoholic, phenolic, and carboxylic groups associated with the biochar 

can play the role of electron donors regula=ng the reduc=on of As(V) to As(III) as has been 

seen in soils treated with biochar (Choppala et al., 2016). Anionic forms of As predominate. 

Therefore, the func=onal groups that are carboxylic and phenolic on the surface of biochar 

par=cles might not have a strong aorac=on for As (Irshad et al., 2020). Modifica=on of biochar 

may be a solu=on to this problem. Rice straw biochar modified with hydroxyapa=te and zeolite 

increased the amount of Ca in soil which sequesters As from the exchangeable frac=on into 

insoluble Ca-bound As (Gu et al., 2018). Modifica=on of wheat straw biochar with goethite 

resulted in the restricted mobility of As in paddy soil due to the presence of Fe func=onal 

groups. Applica=ons of Fe and Mn oxide residues have been shown in numerous prior studies 

to minimise As uptake in rice by controlling the mobility and bioavailability of As in the soil 

through dissolu=on and mineralisa=on (Jindo et al., 2016). The applica=on of maize straw 

biochar modified with manganese oxide decreased As(III) and As(V) mobility and availability 

in rice both moderately and heavily polluted rice soils (Yu et al., 2017). Thus, the applica=on 

of biochar enhanced Mn content in soils as compared to the control. Fe/Mn plaque is reported 

to have a greater affinity for arsenate than arsenite. Reduced mobility and bioavailability are 

the result of As(III) and As(V) in soil due to the forma=on of complexes with a variety of oxides, 

including Fe, Mn, and Al oxides. The combina=on of zero-valent iron (ZVI) with oil palm fibre 

biochar resulted in a significant decrease in As bioavailability in rice soils (Qiao et al., 2018). 

At present, most biochar research publica=ons have focused on its use from a technical 

or economic perspec=ve in rela=on to soil quality and the remedia=on of surface-, ground-, 

and waste-waters (Conte et al., 2021 and Yu et al., 2022). There has been liole systema=c, 

integrated research undertaken on the main proper=es/mechanisms of biochars that can be 

u=lised to effec=vely prevent the availability and bioaccumula=on of As from contaminated 

soils for the protec=on of human and animal health. The use of biochar for As remedia=on in 

India is s=ll in its early stages, but the results of the studies that have been conducted so far 

are promising. Biochar has the poten=al to be a cost-effec=ve and sustainable way to 

remediate As-contaminated soils in India.  

In a real-world scenario, the selec=on of feedstock and charring processes for biochar 

produc=on depends on several factors, including availability, cost, and local agricultural 

prac=ces. The choice of feedstock may be influenced by the agricultural residues or biomass 
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abundant in the region. According to the Indian Ministry of New and Renewable Energy 

(MNRE), India produces an average of 500 million tons (Mt) of crop residue per year among 

which 34% comes from rice (Bhuvaneshwari et al., 2019). The specific proper=es of the 

biochar, such as surface area, pore structure, and presence of func=onal groups, can vary 

based on the charring process and feedstock used. It is challenging to determine the most 

effec=ve feedstock or charring process for As immobiliza=on in a par=cular loca=on without 

considering site-specific factors and conduc=ng thorough research and experimenta=on. 

U=lizing crop residues for biochar produc=on holds great promise in managing crop residues 

in India and promo=ng agricultural sustainability. Furthermore, biochar also has the poten=al 

to address the management of As-contaminated soils when used as an amendment. Exploring 

this applica=on of biochar in As-contaminated soils is necessary and can contribute to finding 

effec=ve solu=ons. 
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Chapter 3-Materials and Methods 
 

3.1. Meta analysis 

The concept of meta-analysis can be traced back to the work of genealogist Karl Pearson in 

the early 1900s (Pearson, 1904). Pearson was interested in combining the results of mul=ple 

studies to see if there was a common underlying effect. However, it was not un=l the 1970s 

that the term "meta-analysis" was coined by sta=s=cian Gene V. Glass. Glass, along with Mary 

Lee Smith, popularized the use of meta-analysis in educa=on research. They published a 

seminal ar=cle in 1978 that discussed the benefits of meta-analysis for summarizing the 

results of mul=ple studies and iden=fying paoerns in the data (Glass, 1976). Their work helped 

establish meta-analysis as a valuable tool in social science research. Since then, the use of 

meta-analysis has expanded to other fields, including medicine, psychology, and 

environmental science. Today, meta-analysis is widely used in research to synthesize data from 

mul=ple studies and draw conclusions about the overall effect of an interven=on or treatment. 

Meta-analysis is a sta=s=cal technique used in research to combine the results of mul=ple 

independent studies on a par=cular research ques=on or topic. By combining the results of 

several studies, researchers can obtain a more precise es=mate of the true effect size and 

iden=fy paoerns or inconsistencies in the results across studies. In a meta-analysis, 

researchers iden=fy and collect data from mul=ple relevant studies, and then use sta=s=cal 

methods to synthesize the results from these studies into a single summary es=mate. Meta-

analysis typically involves a systema=c review of the literature, in which researchers iden=fy 

all relevant studies, assess the quality of each study, and extract data on the relevant variables. 

 

3.1.1. Systema4c Review and Data Extrac4on 

The first step is to iden=fy the research ques=on or ques=ons that the review will aim to 

answer. Then a set of criteria that ar=cles must meet to be included in the review was 

developed. These criteria typically include factors such as study design, popula=on, and 

outcomes (Higgins and Green 2011). Then a comprehensive search of mul=ple databases to 

iden=fy all poten=ally relevant studies was undertaken from ISI Web of Science 

(hops://clarivate.com/webofsciencegroup/solu=ons/web-of-science/) and Pub Med 

(hops://pubmed.ncbi.nlm.nih.gov). The iden=fied studies were screened based on the 

inclusion and exclusion criteria to determine which studies meet the criteria for inclusion. The 
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relevant data from the included studies was extracted, such as study design, popula=on, 

interven=ons, and outcomes. The quality of each included study was assessed to determine 

the risk of bias and the overall strength of evidence. Finally, the data was analysed to draw 

conclusions about the research ques=on(s) and determine the overall strength of evidence. 

Throughout the process, the established guidelines for systema=c reviews that is Preferred 

Repor=ng Items for Systema=c Reviews and Meta-Analysis (PRISMA) guidelines was followed 

(Moher et al., 2009). The process is designed to minimize bias and ensure that the review is 

comprehensive and transparent. The inclusion criteria for the research ar=cles that were 

considered for meta-analysis have been outlined in chapter 4 (sec=on 4.2.1) and chapters 8 

(sec=on 8.2). Further, the details of systema=c review and the PRISMA diagrams are depicted 

in chapters 4 and 8. 

 

3.2. Collec4on of soil and rice grain samples 

Paired soil and rice grain samples (n=101) were collected from the rice growing As 

contaminated districts (Murshidabad, Nadia and North-24 Parganas) of West Bengal India 

(Figure 3.1) under rainfed system of rice cul=va=on (Plate 3.1). The soil samples were air-dried, 

thoroughly mixed and ground to pass through a 2-mm sieve and stored in zip-lock bags at 25°C 

for further analysis. Rice grain samples collected from the field were washed ini=ally by tap 

water followed by dilute hydrochloric acid and finally with double dis=lled water. The samples 

were appropriately labelled, dried in a hot air-oven at 65°C for 48 hours. The dried rice grain 

samples were ground and stored in zip lock bags at 25°C for analysis. 
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Figure 3.1 Soil and rice grain sample collec=on districts of West Bengal, India (Source of 

maps: DIVA-GIS). 

Plate 3.1 Collec=on of soil and rice grain samples from As contaminated sites 

 

3.3. Collec4on of soil columns 

Monolithic soil columns were collected from Gotera, Dakshin Panchpota , Ghetugachi, Kalyani 

of Nadia; Jhumka, Sujapur, Beldanga, Radhavallabhpur of Murshidabad; and  Baruipur, 

Sonarpur of South 24-Parganas comprising the As contaminated districts of West Bengal India 

(Figure 3.2) and Plate 3.2.  
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Figure 3.2 Soil columns collec=on sites across the As- contaminated districts of West Bengal, 

India (Source of maps: DIVA-GIS). 

Plate 3.2 Collec=on soil columns from As contaminated fields 
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3.4. Incuba4on study with soil columns 

As contaminated water (0, 100, 200, 300, 400, 500, 600 μ L-1) was applied to the set of 210 

columns as per the irriga=on prac=ces followed for cul=va=on of rice under rainfed condi=ons 

and remaining set of 210 columns as per the irrigated condi=on. A�er comple=on of 12 weeks 

of incuba=on the soil from each column was extracted, homogenised, grounded with a mortar 

and pestle, and sieved with 2 mm sieve. The soil samples were stored in zip-locked bags for 

further analysis. 

Plate 3.3 Incuba=on study with soil columns 

3.5 Analysis of soil and rice grain samples 
3.5.1. Soil pH 

pH of the soil sample was determined in soil suspension (soil: water :: 1:2.5) as determined 

by Jackson (1967) through an Eutech microprocessor based pH- EC-Ion meter. 

 

3.5.2. Soil texture and clay content 

Par=cle-size distribu=on of the soil was obtained by following the Hydrometer method 

(Bouyoucos, 1962), and soil textural class was determined from the percent contents of sand, 

silt, and clay with the help of the triangular textural diagram (Brady, 1990). 

 

3.5.3. Oxidizable Organic Carbon 

Organic carbon was determined by oxidizing the soil with 1 (N) K2Cr2O7 in presence of 

concentrated H2SO4 and =tra=ng back the remaining K2Cr2O7 with ferrous ammonium 

sulphate (FAS) solu=on using diphenylamine indicator (DPA), following the wet diges=on 

method of Walkley and Black (1934). 
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3.5.4. Available phosphorus (P) 

The soil available phosphorus was extracted with 0.5 M NaHCO3 as suggested by Olsen and 

Sommers (1982) and es=mated through UV-VIS spectrophotometer (VARIAN CARY-50). 

 

3.5.5. Available Iron (Fe) 

Soil was analysed for available Fe by extrac=ng with 0.005 M DTPA extrac=ng solu=on (pH 7.3) 

following the method of Lindsay and Norvell (1978) through an Atomic Absorp=on 

Spectrophotometer (Model- Perkin Elmer AAnalyst 200).  

 

3.5.6 Amorphous iron (AmFe) and aluminium oxides (AmAl) 

Amorphous Fe and Al oxide of the soil sample was determined by extrac=ng with 0.02 M 

ammonium oxalate, pH 3.0 following the method of Mckeague and Day (1966). Amorphous 

Fe oxide was determined using air-acetylene flame while amorphous Al using nitrous oxide-

acetylene flame, using Atomic Absorp=on Spectrophotometer (Model- Perkin Elmer AAnalyst 

200).  

 

3.5.7. Bioavailable As 

For bioavailable As the method outlined by ISO 2016 was followed (Groenberg et al., 2017). 

Five g of sieved air-dried soil sample was weighed into a polypropylene screw closure boole 

and 50.0 ml of a 0.43 M HNO3 solu=on were added. The booles were mechanically shaken 

(end-over-end rota=on) for 2 hours at room temperature and the extracts were filtered 

through vacuum driven filtra=on using a Millipore® filter unit and a Millipore® filter paper 

(0.45 μm pore size). All filtrates were kept at 4°C un=l further analysis. Each soil sample was 

extracted in triplicate. Two extrac=on blanks were included in each batch of 20 booles. The 

samples were analysed in ICP-MS (Agilent 7850). 

 

3.5.8. Diges4on of soil samples 

The EPA 3051 method was followed for sample digestion (method 3051A; USEPA 2007). The 

dried, finely powdered soil sample (0.2 g) was weighed into a dry, clean Teflon digestion vessel 

and 5 ml of aqua regia was added. The vessel was closed, placed into the rotor, and tightened. 

The loaded rotor was then placed into the microwave oven. A microwave digestion system 

(MARS 5; CEM Corp, Matthews, N C) with a rotor for 14 Teflon digestion vessels (HP 500) was 
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used for sample digestion and extraction. The microwave conditions for digestion were: stage 

1: microwave power 1200 W, 300 PSI, and ramp for 2 min; stage 2: microwave power 1200 

W, 300 PSI, and ramp for 3 min followed by a 5-min hold. After cooling for 30 min, the vessels 

were opened carefully. Each digestion solution was transferred to a 50-ml volumetric flask, 

diluted to the mark with MilliQ water, filtered through a Millipore membrane (0.45 μm), and 

kept in a plastic container for analysis.  

 

3.5.9. Diges4on of rice grain samples 

0.5 g ground rice sample were weighed directly into a 75 mL diges=on tube and 5 mL 

concentrated HNO3 (trace analy=cal grade, 70%), obtained from Fisher Chemicals was added 

to it. The mixture was then allowed to stand overnight under fume hood. The following day, 

the diges=on tubes were heated using temperature-controlled diges=on block (A.I. Scien=fic 

Block Diges=on System AIM 500), programmed to slowly ramp up to 140°C over 8 h and then 

to maintain temperature for the diges=on of rice samples. Sample diges=on was con=nued 

un=l only a small residual liquid remained in each tube. The tubes were removed from the di- 

ges=on block and allowed to cool to room temperature in the fume cupboard prior to dilu=on 

(10 mL). The samples were mixed thoroughly by vertexing and filtered by a 0.45 μm syringe 

filter directly into plas=c containers for storage prior to analysis.  

 

3.5.10. Analysis of As in soil and rice grain samples 

Rice and soil samples were analysed following the established protocols from Rahman et al. 

(2009a), Rahman et al. (2009b) and Alloway (2013). 7500ce series induc=vely coupled plasma 

mass spectrometer (ICP- MS) (Agilent Technologies, Tokyo, Japan), coupled with an auto- 

sampler (ASX-520, CETAC Technologies) and integrated samples introduc=on system (ISIS) was 

used to determine the amount of total As in soil and rice grain samples.  

 

3.5.11. Quality Assurance and Quality Control 

For quality control, Standard reference materials (SRM) from the Na=onal Ins=tute of 

Standards and Technology (NIST), USA (Rice flour (SRM 1568b) and Montana soil (SRM 2711a)) 

were used. The CRM, blanks, duplicates, and con=nuing calibra=on verifica=on (CCV) were 

included in each batch throughout the elemental analysis. Mean total recoveries from rice 

SRM was 268 ± 14.98 (n=5) μg kg-1 which indicates 94.09% recovery of the cer=fied value of 
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285 ± 14 μg kg-1. The mean total recovery from soil SRM was 104.27±3.13 (n=5) mg kg-1 which 

indicates 97.45% recovery of the cer=fied value of 107 ± 5 mg kg-1. Both the recovery from 

rice and soil SRMs confirmed accuracy of rice and soil diges=on and analysis.  

 

3.6. Other Data Sources 

For predic=on model training and valida=on, data from research collaborators in India from 

Bidhan Chandra Krishi Viswavidyalaya, West Bengal, and Indian Agricultural Research Ins=tute, 

New Delhi was used. 

 

3.7. Sta4s4cal Analysis 

The sta=s=cal analysis of the data and predic=on modelling was performed with R-Studio 

(version 1.3.1093 2.3.1). The R packages used for the purpose has been men=oned in each 

subsequent chapter. 

 

3.7.1. Normality test of the data 

The Shapiro-Wilks method was used for normality test of the data. The null hypothesis of 

these tests is that “sample distribu=on is normal”. If the test is significant, the distribu=on is 

non-normal. A p-value > 0.05 implies that the distribu=on of the data is not significantly 

different from normal distribu=on. In other words, we can assume the normality. The details 

of the normality test of the data are depicted in Table 3.1. The sta=s=cal tests were undertaken 

based on the normality of the data. As the data were not normally distributed the non-

parametric tests like Kruskal-Wallis and Wilcox were performed.  
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Table 3.1 Shapiro-Wilk normality test of the data across different chapters 

Chapter Number Variable name p-Value Data distribution 

4 Irrigation water As 8.261e-08 Non-normal 

Soil As 2.2e-16 Non-normal 

Grain As 2.126e-10 Non-normal 

6 pH 9.837e-10 Non-normal 

Organic carbon 2.217e-15 Non-normal 

Available P 2.202e-05 Non-normal 

Available Fe 1.358e-06 Non-normal 

Bioavailable As 0.004169 Non-normal 

Total As 1.454e-10 Non-normal 

Grain As 0.0002851 Non-normal 

7 Total As 2.2e-16 Non-normal 

Bioavailable As 2.2e-16 Non-normal 

Available Fe 5.446e-09 Non-normal 

Available P 2.331e-12 Non-normal 

pH 0.0002379 Non-normal 

Organic carbon 1.914e-07 Non-normal 

Clay 2.762e-15 Non-normal 

Amorphous Fe 2.2e-16 Non-normal 

Amorphous Al 8.479e-16 Non-normal 

 

3.7.2. Spearman Correla4on 

To examine the associa=on between two variables and assess their monotonic rela=onship, 

Spearman's correla=on coefficient was employed. This non-parametric method is par=cularly 

suitable when dealing with ordinal or ranked data, allowing for the evalua=on of both linear 

and non-linear associa=ons (Daniel 1990). Spearman's correla=on coefficient is denoted by 

the symbol ρ (rho), ranges from -1 to 1. A value of -1 indicates a perfect nega=ve monotonic 

rela=onship, where an increase in one variable corresponds to a decrease in the other. A value 

of 1 indicates a perfect posi=ve monotonic rela=onship, where an increase in one variable 

corresponds to an increase in the other. A value of 0 suggests no monotonic rela=onship 
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between the variables. To calculate Spearman's correla=on coefficient, the ranks of the values 

for each variable are used instead of the actual values. The correla=on coefficient is then 

computed based on these ranks. If the variables have =ed ranks (i.e., mul=ple values with the 

same rank), a correc=on factor is applied to adjust the correla=on coefficient. To determine 

the sta=s=cal significance of the correla=on coefficient, a two-tailed hypothesis test was 

conducted at the α = 0.01, and α = 0.05 significance level. The null hypothesis of no correla=on 

was rejected if the p-value was less than 0.01 or 0.05. The details of the variables for the 

correla=on studies are men=oned in chapter 4, 5 and 7. 

 

3.7.3. Generalised Linear Model 

A generalized linear model (GLM) is a sta=s=cal framework that extends the linear regression 

model to handle a broader range of response variables and error distribu=ons. While linear 

regression assumes a normally distributed response variable with constant variance, GLM 

allows for more flexibility by accommoda=ng different types of response variables, such as 

binary, count, or categorical data, as well as non-constant variance (James et al., 2013).  GLM 

with a con=nuous dependent variable and con=nuous independent variables is a sta=s=cal 

modelling framework that extends linear regression to accommodate non-normal 

distribu=ons and rela=onships between variables. GLMs are useful when the assump=ons of 

tradi=onal linear regression, such as normality of residuals, are violated or when the response 

variable is not normally distributed. The probability distribu=on of the response variable was 

chosen based on the nature of the data. For con=nuous data the Gaussian distribu=on was 

used. The details of the dependent and the independent variables used is men=oned in 

chapter 7. 

 

3.7.4. Wilcox Test 

The Wilcoxon test, also known as the Wilcoxon signed-rank test, is a non-parametric sta=s=cal 

test used to compare paired samples or repeated measures from the same popula=on when 

the data do not meet the assump=ons required for parametric tests, such as the paired t-test. 

The Wilcoxon test is par=cularly useful when the data are ordinal, skewed, or have outliers. It 

does not assume a specific distribu=on for the data, making it robust against viola=ons of 

normality assump=ons. The test evaluates whether the median difference between paired 

observa=ons is significantly different from zero. It does this by comparing the ranks of the 
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absolute differences between the pairs, rather than the actual values themselves (Siegel 

1956). The details of the null and alterna=ve hypothesis have been men=oned in chapter 7. 

 

3.7.5. Kruskal-Wallis Test 

The Kruskal-Wallis test is a non-parametric sta=s=cal test used to compare the medians of 

three or more independent groups or samples. It is an extension of the Mann-Whitney U test 

(Wilcoxon rank-sum test) for two groups and allows for the comparison of more than two 

groups. The Kruskal-Wallis test is suitable when the assump=ons of parametric tests, such as 

the analysis of variance (ANOVA), are violated. It does not assume a specific distribu=on for 

the data and is robust against non-normality, making it applicable to a wide range of data 

types. The test evaluates whether the distribu=ons of the groups differ significantly in terms 

of their loca=on (median). It does this by comparing the ranks of the observa=ons across the 

different groups. The details of the null and alterna=ve hypothesis have been men=oned in 

chapter 7. 

 

3.8. Machine Learning Algorithms 

3.8.1. Logis4c Regression (LR) 

A logistic regression model or logit model as mentioned by James et al. (2013) was used to 

model the binary dependent variables. A probability value between 0 and 1 was allocated to 

each class. To identify the best fitting model both accuracy and kappa values were considered. 

The residuals of the LR model were checked for normality and the distribution was further 

confirmed from the plot. To estimate the coefficients from the data, the model could have 

two (X1 and X2) or more predictors. A linear relationship can be written in the mathematical 

form shown by equation 1, where p is the probability of the event that Y=1 and Y is the binary 

response variable. The quantity p (X) /(1−p(X)) is called the odds, which can take any value 

between 0 and ∞ and is calculated by maximum likelihood method. β0, β1and β2 are the 

coefficients. 

𝑙𝑜𝑔 $
𝑝(𝑋)

1 − 𝑝(𝑋)+ = 	𝛽0 + 𝛽1𝑋1 + 	𝛽2𝑋2…………(1) 
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In terms of model complexity, it is low in logis=c regression, par=cularly when no or 

few interac=on terms and variable transforma=ons are used. The dependent and independent 

variables used in LR is men=oned in details chapter 4, 6 and 7.  

 

3.8.2. Linear discriminant analysis (LDA) 

Linear discriminant analysis (LDA) is a supervised learning model that is like logis=c regression 

in that the outcome variable is categorical and can therefore be used for classifica=on. It aims 

to project the feature space onto a lower-dimensional space while maximizing the class 

separability, so that the classes are linearly separable in the new feature space. LDA finds the 

linear combina=ons of features that best dis=nguish the classes, and the resul=ng 

transformed features can be used as inputs for a classifier to make predic=ons. The goal of 

LDA is to find the maximum ra=o of between-class variance to within-class variance, which 

results in the best separa=on of classes in the transformed feature space (Fisher, 1936). The 

simplest form of LDA uses a linear discriminant func=on (LDF) as shown in equa=on 2 that 

runs through the centre points of the two groups to dis=nguish between them. 

 

LDF = a +b1x1 + b2x2 +···+bpxp……………(2) 

 

where a is a constant, and b1 to bp are the regression coefficients for p variables. The simplest 

form, two-group LDA, uses a LDF that separates the two groups by passing through their 

centroids, or geometric centres. The boundary between the two groups can be represented 

as a func=on that is perpendicular to the LDF. There are infinite possibili=es for this boundary, 

but the most common choice is one that is equidistant from both centroids, known as LDA 

with equal prior probabili=es. However, if it is known beforehand that there are unequal 

propor=ons of objects in each group, the boundary can be shi�ed along the direc=on of the 

LDF towards one of the centroids to increase the likelihood of assigning objects to that group. 

The dependent and independent variables used in LDA is men=oned in detail in chapter 7. 

 

3.8.3. Decision Tree (DT) 

Classifica=on and Regression Tree (CART) which is a non-parametric supervised learning 

method was proposed by Breiman (1984) and Ripley (1996). Decision trees are not black-box 

models, their outputs are easy to interpret, and the DT maps the behaviour or rela=onship 
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between the predictor and target variable (Dreiseitl and Ohno-Machado, 2002). The DT 

method has been used widely, for example, to iden=fy heavy metals in environment by 

Jouanneau et al. (2011) and to streamline the mapping of soil pollu=on, for example in a study 

on rice cadmium concentra=on (Wang et al., 2020).  

The algorithm divides the data set several =mes according to a criterion that maximizes 

data separa=on, resul=ng in a tree-like structure (Breiman, 1984). The used criterion is 

knowledge gain, which implies that the decrease in entropy, due to each split, is maximized. 

The ra=o of y class elements over all elements of the leaf node that contains data item x is the 

es=mate of P(y|x) (Dreiseitl and Ohno-Machado, 2002). The best DT model is selected based 

on Complexity Parameter (cp) and accuracy. The cp is used to control the size of the DT and to 

select the op=mal tree size. If the cost of adding another variable to the DT from the current 

node is above the value of cp, then tree building is discon=nued. The dependent and 

independent variables used in DT is men=oned in chapter 4. 

 

3.8.4. Random Forest (RF) 

Random Forest is a supervised machine learning algorithm for classifica=on and regression 

based on the principle of recursive par==oning (Breiman, 2001), and independent of the 

assump=on of func=onal rela=onships between the response and predictor variables. Briefly, 

Random Forest analysis ensembles numerous regression trees following a process called 

“bootstrap aggrega=on” or “bagging.” First, a random subset of the data space is drawn (with 

replacement) to grow a tree to its full length, and each node of the tree group’s observa=ons 

are characterised by certain condi=ons on the predictor variables to produce an average 

predic=on for the response variable. Each tree growing process uses only two-thirds of the 

bootstrapped data and one-third of the observa=ons (out-of-bag data, OOB) are used for 

es=ma=ng the predic=on errors. Second, each node split in a tree considers a random subset 

of predictor variables, usually a square root of the total number of predictor variables. The 

predic=ons from all the trees are averaged to make final predic=ons. The variable importance 

func=on within the Random Forest algorithm ranks predictor variables based on the increase 

in model error by randomly permu=ng the values of the predictor variables.  The dependent 

and independent variables used in RF is men=oned in chapter 6. 
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3.8.5. Gradient Boost Machine (GBM) 

Gradient Boost Machine (GBM) is a popular machine learning algorithm that is used for both 

regression and classifica=on problems. It belongs to the ensemble learning family of 

algorithms and combines mul=ple decision trees to create a strong predic=ve model. Gradient 

Boost Machine integrates the predic=ons from various decision trees to generate the final 

es=mate (Friedman, 2001). The algorithm works by sequen=ally adding decision trees to the 

model, with each new tree aoemp=ng to correct the errors of the previous trees. In other 

words, each tree is trained on the residuals (i.e., the difference between the predicted values 

and the actual values) of the previous trees. This process con=nues un=l the algorithm reaches 

a predetermined number of trees or un=l the error rate has been reduced to an acceptable 

level. The "gradient" in the name "Gradient Boos=ng" refers to the use of gradient descent 

op=miza=on method to minimize the loss func=on of the model. The loss func=on is a 

measure of how well the model is performing, and the goal of gradient boos=ng is to minimize 

this func=on by itera=vely adding new trees. However, it can be computa=onally intensive and 

requires careful tuning of its hyperparameters to avoid overfi�ng. The dependent and 

independent variables used in GBM is men=oned in chapter 6. 

 

3.9. Model performance parameters 

3.9.1. Confusion Matrix 

A confusion matrix is a table that is o�en used to evaluate the performance of a classifica=on 

model (James et al., 2013). It is a matrix of actual vs predicted values, where the predicted 

values are the model's predic=ons for each class, and the actual values are the ground truth 

labels for each class. The confusion matrix shows the number of true posi=ves (TP), true 

nega=ves (TN), false posi=ves (FP), and false nega=ves (FN). 

 The confusion matrix can be used to calculate various performance metrics for the 

classifica=on model, such as accuracy, precision, recall, F1-score, and others. These metrics 

provide insight into how well the model is performing and can help in op=mizing the model's 

performance. This parameter has been used in chapter 4, 5, 6 and 7. 

 

3.9.2. Accuracy 

Model accuracy is a performance metric that is used to evaluate how well a classifica=on 

model can predict the correct class labels for the input data. It measures the percentage of 
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correctly predicted instances out of all the instances in the test dataset. This parameter has 

been used in chapter 4, 5, 6 and 7. 

 

Accuracy= (TP+TN)/(TP+TN+FP+FN) ………………………………. (3) 

 

3.9.3. Recall 

Recall, also known as sensi=vity or true posi=ve rate (TPR), is a performance metric that 

measures the propor=on of actual posi=ve cases that are correctly iden=fied by a classifica=on 

model. In other words, recall measures the ability of a model to iden=fy all posi=ve instances 

in a dataset.  

 

Recall = TP/ (TP+FN) ………………………... (4) 

Recall is a useful metric to evaluate the performance of a classifica=on model when 

the goal is to iden=fy all posi=ve instances in the dataset, even if it means accep=ng a higher 

number of false posi=ves. However, a high recall value may come at the cost of lower precision 

(i.e., the propor=on of predicted posi=ve cases that are actually posi=ve), which is a trade-off 

that needs to be considered based on the specific applica=on of the model. This parameter 

has been used in chapter  5, 6 and 7. 

 

3.9.4. True nega4ve rate (TNR) 

True nega=ve rate, also known as specificity, is a performance metric that measures the 

propor=on of actual nega=ve cases that are correctly iden=fied by a classifica=on model. In 

other words, true nega=ve rate measures the ability of a model to correctly iden=fy all 

nega=ve instances in a dataset.  

 

True nega=ve rate (TNR) = TN/ (TN+FP) ………………. (5) 

 

True nega=ve rate is a useful metric to evaluate the performance of a classifica=on 

model when the goal is to correctly iden=fy all nega=ve instances in the dataset, even if it 

means accep=ng a higher number of false nega=ves. However, a high true nega=ve rate may 

come at the cost of lower recall or sensi=vity (i.e., the propor=on of posi=ve cases that are 
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correctly iden=fied), which is a trade-off that needs to be considered based on the specific 

applica=on of the model. This parameter has been used in chapter 5, 6 and 7. 

 

3.9.5. Precision 

Precision is a performance metric that measures the propor=on of predicted posi=ve cases 

that are actually posi=ve. In other words, precision measures the accuracy of posi=ve 

predic=ons made by a classifica=on model.  

 

Precision = TP/(TP+FP) ……………… (6) 

 

Precision is a useful metric to evaluate the performance of a classifica=on model when 

the goal is to minimize the number of false posi=ves. However, a high precision value may 

come at the cost of lower recall or sensi=vity (i.e., the propor=on of actual posi=ve cases that 

are correctly iden=fied), which is a trade-off that needs to be considered based on the specific 

applica=on of the model. This parameter has been used in chapter 5, 6 and 7. 

 

3.9.6. F1 Score 

F1 score is a performance metric that combines precision and recall into a single value that 

balances both metrics. It is the harmonic mean of precision and recall. 

 

F1 score = (2 x Precision x Recall)/ (Precision + Recall) ………………. (7) 

 

F1 score is a useful metric to evaluate the overall performance of a classifica=on 

model, especially when there is an uneven distribu=on of posi=ve and nega=ve cases in the 

dataset. It provides a single score that balances both precision and recall and can be used to 

compare the performance of different models. In general, a high F1 score indicates that the 

model is performing well in terms of both precision and recall. However, in some cases, a 

higher priority may be given to either precision or recall, depending on the specific applica=on 

of the model. This parameter has been used in chapter 4, 5, 6 and 7. 
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3.9.7. MaXhews Correla4on Coefficient (MCC) 

Maohews Correla=on Coefficient (MCC) is a performance metric used to evaluate the quality 

of binary classifica=on models. It considers true posi=ves (TP), true nega=ves (TN), false 

posi=ves (FP), and false nega=ves (FN) to produce a score between -1 and +1, where +1 

indicates perfect predic=on, 0 indicates random predic=on, and -1 indicates total 

disagreement between the predic=on and actual values. 

 

MCC = (TP * TN - FP * FN) / sqrt((TP + FP) * (TP + FN) * (TN + FP) * (TN + FN))…………….(8) 

 

MCC values range from -1 to +1, with 0 indica=ng no correla=on and values closer to +1 

indica=ng a strong posi=ve correla=on between the predic=ons and actual values. MCC is a 

useful metric in cases where the classes are imbalanced, as it considers the propor=on of true 

and false posi=ves and nega=ves. It is also useful when the cost of false posi=ves and false 

nega=ves is different, as it provides a single value that balances both types of errors. In 

general, a higher MCC value indicates beoer performance of the model, and a value of zero 

indicates random predic=on. This parameter has been used in chapter 5, 6 and 7. 

 

3.9.8. Receiver Opera4ng Characteris4c (ROC)   

ROC (Receiver Opera=ng Characteris=c) is an evalua=on metric used to assess the 

performance of binary classifica=on models. ROC is a graphical representa=on of the 

performance of a classifica=on model that shows the trade-off between sensi=vity (true 

posi=ve rate) and specificity (true nega=ve rate) for different classifica=on thresholds. A ROC 

curve plots the true posi=ve rate (TPR) on the y-axis against the false posi=ve rate (FPR) on 

the x-axis for various classifica=on thresholds. The curve is generated by moving the 

classifica=on threshold from 0 to 1 and calcula=ng the TPR and FPR at each threshold. This 

parameter has been used in chapter 4, 5, 6 and 7. 

 

3.9.9. Area Under Curve (AUC) 

AUC, on the other hand, is a metric that represents the overall performance of the model by 

calcula=ng the area under the ROC curve. AUC ranges from 0 to 1, with 1 indica=ng perfect 

classifica=on and 0.5 indica=ng random classifica=on. A high AUC value indicates that the 

model can correctly classify a large propor=on of posi=ve and nega=ve instances, while 
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minimizing the number of false posi=ves and false nega=ves. AUC is a useful metric when the 

classes are imbalanced, and it provides a single value that summarizes the performance of the 

model. In general, a higher AUC value indicates beoer performance of the model, and a value 

of 0.5 indicates random classifica=on. This parameter has been used in chapter 4, 5, 6 and 7. 
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Chapter 4 
Building predictability models for maximum permissible soil total 
As and irriga/on water As through meta-analysis 
 

The contents of this chapter have been published as: Mandal, J., Sengupta, S., Sarkar, S., 

Mukherjee, A., Wood, M.D., Hutchinson, S.M. and Mondal, D. (2021). Meta-Analysis Enables 

Predic=on of the Maximum Permissible Arsenic Concentra=on in Asian Paddy Soil. Fron4ers 

in Environmental Science, 9:760125. hops://doi.org/10.3389/fenvs.2021.760125  

4.1. Introduc4on 

Arsenic exposure, mainly through contaminated groundwater used for drinking, has widely 

been associated with detrimental health effects (Rahman et al., 2009). Though As exposure 

affects more than 200 million people worldwide (Shakoor et al., 2017), it has emerged as a 

major public health concern in Bangladesh and India, over the last few decades (Chakrabor= 

et al., 2015). The World Health Organiza=on (WHO) has established a guideline value of 10 μg 

L−1 for As in drinking water. Although contaminated irriga=on water also contributes to As 

exposure by enhancing As concentra=ons in food crops (Mandal et al., 2019; Bhaoacharyya 

et al., 2021), no WHO or interna=onal guideline value for irriga=on water has been established 

to date. 

Rice is a staple food for more than half of the global popula=on, especially in Asian, 

African and La=n American countries (Majumder and Banik, 2019). In India and Bangladesh, 

daily consump=on of milled rice is high (approximately 103 and 268 kg per capita year−1 

respec=vely; FAO, 2017). In Bangladesh, approximately 73% of calorific intake comes from rice 

(Mwale et al., 2018) and in India it comprises 30% (IRRI, Knowledge Bank). Rice is a rich source 

of dietary fiber and nutrients, including carbohydrates, proteins, vitamins, and minerals (Dip= 

et al., 2012; Mwale et al., 2018). However, rice consump=on may also be a major route of As 

exposure (Mondal and Polya, 2008; Mondal et al., 2010; Mondal et al., 2020). Soil serves as a 

significant sink for As, which is highly bioavailable to rice roots under the condi=ons in which 

rice is cul=vated (Kumarathilaka et al., 2018). Rice plants are major accumulators of As 

compared to other cereal crops (Williams et al., 2007) and irriga=on of a paddy field with As 

contaminated water elevates As concentra=ons in paddy soil (Meharg and Rahman, 2003), 

rice straw, and grain (Panaullah et al., 2008). In Asia, rice is the basic staple food for the 

majority of the popula=on, including the region’s 560 million poor (GRiSP Global Rice Science 
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Partnership, 2013). During 2018–19, rice consump=on in China was to the extent of 146.7 

million tons, followed by India at 102 million tons (ICAR-NRRI Annual Report 2020). Apart from 

China and India, the other major rice producing countries are Bangladesh, Indonesia, Vietnam, 

Thailand, and Philippines. The produc=on together accounts for more than 80% of global rice 

produc=on (ICAR-NRRI Annual Report 2020) but unfortunately some of these regions are As 

contaminated. For example, in Bangladesh, 2.4 million out of 4 million hectares of paddy field 

have been found to be As contaminated (Akinbile and Haque, 2012). 

The Joint FAO-WHO Codex Alimentarius Commission has recommended a maximum 

concentra=on of 0.2mg kg−1 for inorganic As in polished rice and 0.35mg kg−1 in husked rice 

(Codex Alimentarius Commission, 2017). However there have been limited aoempts to 

establish paddy soil and irriga=on water As concentra=ons above which the maximum 

recommended concentra=ons in rice may be exceeded. The usual range of total As in 

uncontaminated soil is 0.1–10 mg kg−1 (Zhao et al., 2010). The European Union (EU) 

recommended that As in agricultural soil should not exceed 20 mg kg−1 (Rahman et al., 2007; 

Rahaman et al., 2013; Hussain et al., 2021). Lower and upper guideline values of 10 and 50 

mg kg−1 respec=vely have been prescribed by Finnish regulators (Ministry of the Environment, 

2007; Toth et al., 2016). However, the values recommended by the EU and the Ministry of 

Environment in Finland were for generic agricultural soils rather than for paddy soils. These 

generic agricultural values may not be appropriate for applica=on to paddy soil condi=ons, 

which are known to enhance As bioavailability to rice roots (Meharg and Rahman, 2003). For 

irriga=on water, a regulatory limit of 100 μg L−1 for As has been adopted (Food and Agriculture 

Organiza=on FAO, 1992; Pescod, 1992). This is in line with the 100 μg L−1 maximum 

concentra=on recommended by Ayers and Westcot (1985) for trace elements in irriga=on 

waters but is again focused on generic agricultural produc=on rather than rice specifically. 

To our knowledge, no previous studies have derived maximum tolerable 

concentra=ons of paddy soil and irriga=on water As above which rice grain As may exceed the 

maximum allowable concentra=ons set by the Joint FAO-WHO Codex Alimentarius 

Commission (JECFA, 2017). Using a meta- analysis approach, we aoempt to determine soil and 

irriga=on water As concentra=ons above which rice grains cul=vated in Asian paddy fields may 

exceed the maximum tolerable concentra=ons of 200 µg kg-1 for inorganic As in polished rice 

and 350 µg kg-1  in husked rice. 
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4.2. Materials and Methods 

4.2.1. Data Sources 

We systema=cally reviewed published ar=cles repor=ng As concentra=ons in paddy soil, 

irriga=on water, and rice grains cul=vated in Asian countries. We used Boolean operators (e.g., 

“OR” and “AND”) to develop search terms from keywords (“arsenic,” “contamina=on,” “soil,” 

“water,” “rice,” “risk”). Searching ISI Web of Science and PubMed with these terms, we 

iden=fied relevant research papers published between 1980 and 2021, since 1980 onward the 

severity of As contamina=on was recognized in Asia. Studies were only included in subsequent 

meta-analysis if (1) the research was carried out in the field and not as pot experiments in the 

laboratory; (2) it was undertaken in Asian countries; (3) the As concentra=on data presented 

included total As of soil, rice grain, and irriga=on water from the same study loca=on; (4) the 

analysis of As was carried out using appropriate laboratory instruments rather than Field 

Tes=ng Kits; and (5) details of the analy=cal method(s) and quality assurance procedures used 

for the study were provided. The PRISMA (Preferred Repor=ng Items for Systema=c Reviews 

and Meta-Analysis) flowchart can be seen in Figure 4.1. The details of the 26 selected research 

papers can be observed in  Table 4.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. PRISMA (Preferred Repor=ng Items for Systema=c Reviews and Meta-Analyses) 

flowchart showing the selec=on of studies eligible for a meta-analysis. 
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Table 4.1. Characteris=cs of the studies included the meta-analysis 

Sl. 
No 

Author and year of 
publication 

Location No. 
of 
sites 

Parameters Analysed (Range or mean) Correlation 
(grain As vs 

soil As) 
t-As in grain 

(mg kg-1) 
(dry mass) 

SE(m) As in 
Irrigation 

water  
(µg L-1) 

(filtered) 

As in soil 
(mg kg-1) 

(dry mass) 

pH OC (%) Texture Redox 
(mv) 

Fe 
(mg kg-1) 

P 
(mg kg-1) 

S 
(mg kg-1) 

1 Roychowdhury, 
2008a 

India 23 0.043-0.662 --- 18-200 3.34-31.6 --- --- --- --- --- --- --- --- 
India 18 0.045-0.386 --- 4-82 5-95.3 --- --- --- --- --- --- --- --- 

2 Chowdhury et al., 
2018 

India 10 0.036-1.56 --- 74-301 12.75-37.23 --- --- --- --- --- --- --- --- 

3 Roychowdhury et 
al., 2008b 

India 8 0.045-0.386 --- 2-82 5-95.3 --- --- --- --- --- --- --- --- 

4 Chowdhury et al., 
2020 

India 3 0.224-0.389 --- 10-493 1.53-30.17 7.39
-

7.74 

1.86
-

2.14 

--- 153-
163 

--- --- --- --- 

5 *Biswas et al., 
2018 

India 24 0.550 --- 410 7.06 8.1 3.97 Silty Clay --- 14.99 6.24 --- --- 

6 *Bhattacharya et 
al., 2010a 

India 18 0.160-0.230 --- 530 3.34-4.6  
 

7.66 

 
 

0.72 

 
 

Clay Loam 

--- --- --- --- --- 
India 12 0.160-0.300 --- 400 5.26-7.10 --- --- --- --- --- 
India 12 0.230-0.400 --- 420 7.03-9.72 --- --- --- --- --- 
India 12 0.240-0.580 --- 400 5.31-5.82 --- --- --- --- --- 
India 9 0.290-0.540 --- 440 4.01-5.52 --- --- --- --- --- 

7 *Bhattacharya et 
al., 2010b 

India  0.140-0.310 --- 360-470 4.26-5.85 --- --- --- --- --- --- --- --- 

8 
 

*Biswas et al., 
2014 

India 94 0.330 --- 420 8.35 --- --- --- --- --- --- --- --- 
India 78 0.230 --- 350 6.17 --- --- --- --- --- --- --- --- 

9 Golui et al., 2017 India 13 0.002-1.26 --- 180-570 0.196-2.33 8.06
-

8.12 

0.45
-

0.61 

--- --- --- --- --- 0.76 

10 Mukherjee et al., 
2017 

India 22 0.210-0.720 --- 56-585 9.05-25.80 --- --- --- --- --- --- --- 0.85 

11 *Rahaman and 
Sinha, 2013 

India 2 0.390-0.670 --- 430-540 9.8-10.7 7.91
-

8.30 

--- Silty Clay-Silty 
Loam 

--- 2.79-3.11 13-19 --- 0.673 

12 Sarkar et al., 2012 India 1 0.420-0.560 --- 106-573 16.22-18.74 7.22 0.99 Silty Clay --- --- 32.85 --- --- 
13 Sinha and 

Bhattacharyya, 
2014 

India 1 0.103-0.141 --- 320 2.38-3.03 --- --- --- --- --- 25.23-
37.04 

--- --- 
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14 Srivastava et al., 
2015 

India 58 0.179-0.932 --- 0-312 3-35 --- 2.52 Clay Loam-
Clay 

--- --- 25.6 6.84 --- 

15 Talukder et al., 
2011 

Bangladesh 1 0.470 --- 100 8.12 6.1 0.95 Sandy Clay 
Loam 

--- 68.36 5.47 2.36 --- 

16 *Dahal et al., 2008 Nepal 10 0.60-0.330 0.01 5-1014 6.1-16.7 8.0 --- --- --- --- --- --- 0.68 
17 *Hsu et al., 2012 Taiwan 1 0.290-0.660 --- 26-67 11.8-112 5.6-

6.5 
--- Silty Clay 

Loam 
--- 5.85-13.1 --- --- --- 

18 Rahman et al., 
2014 

Bangladesh 2 0.290-0.650 --- 25-419 9.12-11.23 6.8  --- --- --- --- --- --- 

19 Rahman et al., 
2007 

Bangladesh 6 0.600-0.700 --- 70 14.5 7.1  Clay loam --- --- 6.8 --- --- 

20 Rahman et al., 
2010 

Bangladesh 44 0.230 --- 87.30 13.0 --- --- --- --- --- --- --- --- 

21 *van Geen et al., 
2006 

Bangladesh 6 0.280-0.440 --- 0-185 2.9-29 --- --- --- --- --- --- --- --- 

22 *Islam et al., 2017 Bangladesh 3 0.288-0.320 --- 2.4-255.4 2.7-15.7 6.1-
7.6 

2.0-
2.4 

Clay-Silty Clay 
Loam 

--- --- --- --- --- 

23 *Ahmed et al., 
2011 

Bangladesh 10 0.101-0.338 0.012-
0.024 

0-234 0.9-8.7 
5.0-
7.5 

0.74
-

1.62 

--- --- 9.1-17.5 --- ---  
 

24 Sharma et al.,2017 India 12 0.03-0.33 --- 2.31-
15.91 

0.06-0.11 --- --- --- --- --- --- --- --- 

25 Reid et al., 2021 Vietnam 16 0.063-0.528 --- 0-751 6-20 --- --- --- --- --- --- --- --- 
26 *Wang et al., 2019 China 5 0.039–0.084  5.5–9.1 --- --- --- --- --- --- --- --- --- 

* Reported As concentra/on for polished rice 
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4.2.2. Classifica4on of data 

The amount of inorganic As (i-As) in rice grain was computed using published data (18 

research) from Asian countries, yielding a weighted mean of 80 percent for polished rice and 

75 percent for husked rice, respec=vely (Table 4.2). In our meta-data, the total As (t-As) 

concentra=ons in rice grain were transformed to i-As. The rice grain concentra=ons were 

categorized into two groups: (i) “within the maximum tolerable concentra=on (≤ MTC)”: As ≤ 

350 µg kg-1 (husked rice) and ≤ 200 µg kg-1 (polished rice); (ii) “above the maximum tolerable 

concentra=on (>MTC)”: > 350 µg kg-1 (husked rice) and > 200 µg kg-1 (polished rice) (based on 

the recommenda=on of JECFA, 2017). The whole data set was randomly split into two, 80% of 

the data were used as the training set and the remaining 20% formed the tes=ng set 

(Mukherjee et al., 2021). 
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Table 4.2. Calcula=on of inorganic Arsenic (i-As) from total As in polished and husked rice 

Sl.No. Author and year of 
publication 

Location Sample 
Size 

i-As (%) 

Polished Rice 
1.  Mondal et al., 2021 India 29 98.4 
2.  Williams et al., 2006 Bangladesh (different 

varities) 
3 71 
3 66 
3 60 
3 83 
3 82 
3 81 
3 72 

3. Williams et al., 2005 India 15 81 
Thailand 12 74 
Taiwan 3 67 

4. 
 

Rahman et al., 2014 India 1 98 
Pakistan 1 96 

5. Torres-Escribano et al., 2008 Thailand 3 68 
6. Nookabkaew et al., 2013 Thailand (different 

locations) 
29 61.45 
18 60 
22 63.25 
8 60.48 

7. Pal et al., 2009 India 1 95 
8. Islam et al., 2017 Bangladesh 10 92 
9. Roychowdhury, 2008a India (different 

locations) 
34 88.1 
38 90.4 

10. Roychowdhury et al., 2008b India 18 90.3 
11. Chen et al., 2016 Taiwan (different 

locations) 
15 87.8 
12 88.2 
4 82.8 
7 76.9 

12. Schoof et al., 1998 India 2 58 
13. Meharg et al., 2009 Bangladesh 15 61.53 

                                                                                    Weighted Average ± SD 80.0 ± 13.13 
Husked Rice 
1. Schoof et al., 1998 Taiwan 1 67 
2. Nookabkaew et al., 2013 Thailand (different 

locations) 
19 57.54 
5 58 
9 52.8 
3 63.93 

3. Reid et al., 2021 Vietnam 45 84 
4. Sinha and Bhattachryya, 2014 India 4 85 
5. Chen et al., 2016 India (different 

locations) 
2 96.5 
4 93 
7 81 

                                                                                   Weighted Average ± SD 75±13.71 
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4.2.3. Data Analysis 

The logis=c regression (LR) and decision tree (DT) algorithms were used to predict the binary 

variables: ≤ MTC and >MTC . The data analysis was performed using R-Studio (version 1.3.1093 

2.3.1). Spli�ng the data into training and test data was performed using the stats (version 

4.0.3) package. The Caret package (version 6.0-86) was used to conduct logis=c regression and 

DT analysis (Kuhn, 2008). The probability graph from the logis=c regression was prepared 

using ggplot2 (version 3.3.3) and 4dyr (version 1.1.3), and for ROC and AUC pROC (version 

1.17.0.1) was used. The LR method uses only the sta=s=cally significant predicator variables 

in the model whereas DT uses the predictor variables in a hierarchical and recursive manner. 

DT have the flexibility of assigning the classes in one or more steps. One advantage of the LR 

is that it can be used to generate probabili=es of class membership for each object whereas 

DT only generates average probabili=es applicable to all the objects assigned to a par=cular 

group (Worth and Cronin, 2003).    

 

4.2.4. Model limita4ons and assump4ons 

The two criteria used to assess the quality of a classifica=on model are discrimina=on and 

calibra=on. Discrimina=on is a measure of how well the two classes in the data set are 

separated; calibra=on determines how accurate the model probability es=mate is to predict 

the true probability (Dreiseitl and Ohno-Machado, 2002). To provide an unbiased es=mate of 

a model’s discrimina=on and calibra=on, these values should be calculated from a data set not 

used in the model building process. Usually, a por=on of the original data set, called the test 

or valida=on set, is put aside for this purpose, since tes=ng on a separate data set would, in 

an Ideal case, provide an unbiased es=ma=on of generalisa=on error. In small data sets as in 

this study, there may not be enough data for both training and tes=ng. For this reason, the 

total data set was split into training set and tes=ng set and the training data set was used as 

the source of informa=on. In this case, the whole data set was divided into k pieces, k-1 pieces 

are used for training, and the last piece was the test set. This process of k-fold cross-valida=on 

builds k models; the numbers reported are the averages over all k test sets (Stone, 1974; Allen, 

1977). The problem of over fi�ng both in the logis=c regression and the DT analysis was 

controlled by k-fold cross valida=on (k=10) of the training data (James et al., 2013). On the 

observa=ons in the remaining fold, the number of misclassified observa=ons was calculated. 
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This procedure was repeated, with each valida=on set consis=ng of a different set of 

observa=ons (James et al., 2013). To quan=fy the extent to which the predicted response value 

for a given observa=on was close to the true response value for that observa=on, the receiver 

opera=ng characteris=c (ROC) curve was used. The overall performance of a classifier, 

summarized over all possible thresholds, was given by the area under the curve (AUC) (James 

et al., 2013). 

 

4.3. Results 

4.3.1. Rela4onship between rice grain As with soil and irriga4on water As 

Arsenic concentra=ons in rice grain, soil and irriga=on water based on the meta data (n=134) 

are summarized in Table 4.3. The rice grain t-As concentra=on ranged from 18 to 1560 µg kg-

1 with a mean value of 420 µg kg-1. The As concentra=on in soil ranged from 0.06 to 112 mg 

kg-1 with a mean value of 11.74 mg kg-1 and the irriga=on water As content ranged from 0 to 

1014 µg L-1 with a mean value of 235.49 µg L-1. 

Table 4.3. Total As concentra=ons in rice grain, soil, and irriga=on water (n=134) 
Parameters Mean±SD Median Range (min- max) IQR (Q3-Q1) 
Grain As (µg kg-1) 420±30 350 18-1560 540-210 
Soil As (mg kg-1) 11.73±12.06 8.40 0.06-112 16.22-5.20 
Irrigation water As  
(µg L-1) 

235.49±215.48 192.00 0.0-1014 410.0-25.5 

 

The rice grain As content was found to be posi=vely and significantly correlated with the  

irriga=on water As (spearman’s rho= 0.46, p<0.01) and the soil As (spearman’s rho= 0.65, 

p<0.01). The irriga=on water As and soil As was also observed to have a significant posi=ve 

correla=on. between themselves (spearman’s rho=0.32, p<0.05) as can be visualized from 

Figure 4.2. From the collated meta data, 12.68% had soil As concentra=ons above 20 mg kg-1 

and 63.43 % of the data had irriga=on water As above 100 μg L−1; 54% of the polished rice 

grain i-As meta-data exceeded the concentra=on of 200 µg kg-1 and 74% of the husked rice 

grain i-As meta-data exceeded 350 µg kg-1.  
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Figure 4.2. Spearman’s correla=on between (A) rice grain t-As and soil As, (B) rice grain t-As 
and irriga=on water As and (C) irriga=on water As and soil As (n=129).  
 

4.3.2. Determina4on of the limit of As in soil and irriga4on water 

The predic=on by the LR model was Probability (≤ MTC |> MTC) = -1.6822 + 0.1429 SoilAs 

(AIC=123.68). The soil As coefficient significantly (p<0.01) explained the grain i-As content. 

When irriga=on water As was added to the model, the coefficient was sta=s=cally non-

significant (p>0.05) and AIC increased to 128.17. Soil As content was 11.75 mg kg-1 when 

probability (≤ MTC |> MTC) reached 50% as can be observed from Figure 4.3. Hence, 11.75 

mg kg-1 may be considered as the limit of As in soil beyond which grain i-As content may 

exceed 200 µg kg-1 for polished rice and 350 µg kg-1 for husked rice. From DT it was observed 

that the soil As appeared as the primary spli�ng variable at 14 mg kg-1 as can be observed 

from Figure 4.4. When soil As was greater than 14 mg kg-1, the probability of grain As being 

classed > MTC was 0.85 and 32% of the data was in this node. No further spli�ng of the tree 

and inclusion of irriga=on water as a successful variable was observed. An aoempt was made 

to predict the maximum concentra=on in irriga=on water above which the soil As exceeded 

11.75 mg kg-1 and 14 mg kg-1 using the LR and DT models respec=vely. With LR model the 

irriga=on water As was observed to be non-significant and in case of DT the irra=onal spli�ng 

was observed which was also not suitable for pruning based on the complexity parameter. 
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Figure 4.3. Limit of As in soil based on the probability plot of logis=c regression with respect 
to soil As (A) and the cut-off point magnified (B). 
 
 

 
Figure 4.4.  Decision Tree explaining the probability of the category (≤MTC or >MTC) of rice 
grain based on the As content in soil. Percentage of observa=ons in the node and probability 
of class observa=ons in the node are displayed. 
 
4.3.3. Comparison between the two models 

A comparison between the predictability models developed by Decision Tree (DT) and Logis=c 

Regression (LR) over the training phase and the tes=ng phase can be visualized from Table 4.4. 

The results revealed that the in terms of model accuracy and misclassifica=on percentage DT 

have an edge over LR both over the training and the tes=ng phase.  

≤ MTC
0.50

100 %
Soil As ≤ 14

≤ MTC
0.76
68 %

> MTC
0.85
32 %
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Table 4.4. Model performance over the training phase (n=108) and tes=ng phase (n=26) 

Model Accuracy (%) Misclassification (%) 

Training Phase 

Decision Tree 73.15 26.85 

Logistic Regression 65.74 34.26 

Testing Phase 

Decision Tree 73.08 26.92 

Logistic Regression 65.38 34.62 

 

To evaluate the performance of a sta=s=cal learning method on a given data set, we need 

some way to measure how well its predic=ons match the observed class. That is, we need to 

quan=fy the extent to which the predicted response value for a given observa=on is close to 

the true response value for that observa=on/class. The ROC curve represents the overall 

performance of a classifier, summarized over all possible thresholds, is given by the AUC 

(James et al., 2013). An ideal ROC curve will hug the top le� corner, so the larger the AUC the 

beoer the classifier. We expect a classifier that performs no beoer than chance to have an 

AUC of 0.5. The ROC plots confirmed that DT performed beoer than LR. During the training 

phase, DT achieved an AUC of 72.5% and LR 65.5% (Figure 4.5, A and B) and in the tes=ng 

phase (Figure 4.5, C and D), the AUC for DT was 70.6% and for LR 65.5%.  
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Figure 4.5. Sensi=vity vs Specificity plot for Decision Tree and Logis=c Regression over the 
training phase (A, B) and the tes=ng phase (C, D). 
 

4.5. Discussion 

To our knowledge this is the first meta-analysis u=lizing published data from Asian paddy fields 

on As in rice grain, soil and irriga=on water to determine the rela=onship between them and 

to develop a model to es=mate the maximum concentra=on in paddy soil and irriga=on water 

above which Codex standards for the maximum allowable i-As in rice would be exceeded 

(JECFA, 2017). From the 156 papers reviewed, only 26 studies (15 from India, one from Taiwan, 

one from Nepal, one from Vietnam, one from China and 7 from Bangladesh) met the inclusion 

criteria for the meta-analysis; these studies all reported t-As concentra=ons in rice grain, soil, 

and irriga=on water. There was near equal split between studies which reported t-As 
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concentra=ons in husked rice (15 studies) and those in polished rice (11 studies). A�er 

conver=ng t-As to i-As, 43% for husked and 60% for polished rice concentra=ons exceeded the 

Codex standard. 

 In this meta-analysis, soil As was the main determining factor and this was confirmed 

by a) the stronger posi=ve correla=on between paddy soil and rice As concentra=ons 

compared to irriga=on water and rice grain concentra=ons (Figure 4.2); b) the LR model having 

non-significant contribu=on of irriga=on water As; and c) the DT model predic=ons taking only 

into account the soil As classified data. This aligns with previous studies where authors 

reported most significant impact of soil As (Sengupta et al., 2021) and ‘modest if any’ impact 

of irriga=on water on t-As content of rice (van Geen et al., 2006).  On the contrary, in a recent 

study, mean As concentra=ons in groundwater used for irriga=on were strongly correlated 

with grain t-As (Reid et al., 2021). Regardless, many studies have suggested that soil As 

concentra=ons increase with contaminated groundwater irriga=on of paddy fields (Huq et al., 

2006; Panaullah et al., 2008; Diomar et al., 2010), eventually resul=ng in increase of grain As 

(Rahman et al., 2007; Lu et al., 2009; Rahman et al., 2010). The non-significant influence of 

irriga=on water on the grain As concentra=ons in this study was perhaps unsurprising given 

the complexity in the transfer of irriga=on water As to rice grain via the soil. For example, the 

accumula=on of As in soil from the irriga=on water is dependent on several factors like the 

temporal varia=on in As concentra=on throughout the crop-growth period, the volume of 

irriga=on water used, and the area of the field being irrigated (Chowdhury et al., 2018; 

Chowdhury et al., 2020).  The complexity in the rela=onship between irriga=on water As and 

grain As could be further enhanced due to irriga=on prac=ces which o�en include the use of 

both groundwater and rainwater. For example, the phase wise soil As movement and its 

enrichment paoern in rice due to the use of As contaminated irriga=on water showed a 

moderate accumula=on of soil As in the vegeta=ve phase followed by a severe drop in the 

reproduc=ve phase and con=nued buildup of As in the ripening phase (Chowdhury et al., 

2018). Whereas, in rainfed rice cul=va=on, a moderate accumula=on of As in soil in the 

vegeta=ve phase followed by a rise in the reproduc=ve phase and a decrease at the ripening 

stage mainly due to the dilu=on of the As accumula=on in soil due to rainwater was noted 

(Chowdhury et al., 2020).     

 The maximum concentra=on of As in soil from LR model was found to be 11.75 mg kg-

1 whereas, based on the beoer performing DT model the maximum concentra=on was 14 mg 
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kg-1 above which the As concentra=on in rice grain would exceed the Codex recommenda=on. 

This is in agreement with a) the study from Bangladesh, inves=ga=ng the accumula=on and 

distribu=on of As in rice grain, and repor=ng that the rice grown in soils contaminated with As 

of 14.5 ± 0.1 mg kg-1 was not safe for human consump=on (Rahman et al., 2007); b) the 

recommenda=on of the maximum acceptable limit of As in soil of 20 mg kg-1 by the European 

Union (Rahman et al., 2007) and c)  the limit of 15 mg kg-1 of As in paddy soils by Ministry of 

Environment, Government of Japan (Punshon et al., 2017). These findings suggest that, based 

on the scien=fic data currently available for rice cul=va=on in Asia, an As guideline value of 14 

mg kg-1 in paddy soil may be appropriate. 

 

4.6. Conclusion 

This meta-analysis determined that the concentra=ons of 14 mg kg-1 in paddy soil may be an 

appropriate guideline value above which rice grains cul=vated in Asian paddy fields will exceed 

the Codex recommended maximum allowable concentra=ons of 200 µg kg-1 for i-As in 

polished rice and 350 µg kg-1 in husked rice. Both LR and DT models predicted that soil As was 

the main determining factor. A guideline value for the irriga=on water could not be derived 

using either the LR or DT models and warrants further inves=ga=on.  The non-significant 

contribu=on of irriga=on water was unsurprising, given that the As accumula=on in soil due 

to contaminated irriga=on water depends on several factors and the rela=onships governing 

transfer to rice grains are complex. Considering uncertain=es and limita=ons of the available 

meta data and models, experimental studies collec=ng more appropriate soil and rice grain 

samples, and analysis of soil bio-accessible/available As, along with soil parameters (pH, 

organic carbon, available iron, available phosphorus) rather than only total As in paddy soil, is 

warranted to validate these findings. 
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Chapter 5 
Assessing the predictability of the logis/c regression and decision 
tree models over field data  
 
The contents of this chapter have been published as: Mandal, J., Jain, V., Sengupta, S., 

Rahman, M.A., Bhaoacharyya, K., Rahman, M.M., Golui, D., Wood, M.D. and Mondal, D. 

(2023). Determina=on of bioavailable arsenic threshold and valida=on of modelled 

permissible total arsenic in paddy soil using machine learning. Journal of Environmental 

Quality. hops://doi.org/10.1002/jeq2.20452 

 
5.1. Introduc4on 

Using a meta-analysis approach Mandal et al. (2021) predicted the soil As concentra=ons 

above which rice grains cul=vated in Asian paddy fields may exceed the Codex maximum 

tolerable concentra=ons (MTC) of 200 µg kg−1 for inorganic As in polished rice and 350 µg kg−1 

in husked rice. The maximum concentra=on of As in soil from the logis=c regression (LR) model 

was found to be 11.75 mg kg−1 whereas, based on the beoer performing decision tree (DT) 

model the maximum concentra=on was 14 mg kg−1 above which the As concentra=on in rice 

grain would exceed the MTC. A machine learning model's evalua=on is just as crucial as its 

construc=on (James et al., 2013). So, tes=ng the LR and DT models on these new and 

unexplored data sets will lead towards a complete and comprehensive review for both the 

models published previously (Mandal et al., 2021). Hence, in this study we aimed to validate 

both the LR and DT models and test the efficacy of our model predictability using three 

different datasets: purposely collected field-data from different rice cul=va=on prac=ces, 

rainfed and groundwater-irriga=on from As-contaminated sites of West Bengal, India.  

 

5.2. Materials and Methods 

Tes=ng machine learning models with different datasets is crucial for assessing their 

generaliza=on, performance, detec=ng issues like overfi�ng or underfi�ng, comparing 

models, and monitoring their long-term performance. It helps ensure that the models are 

reliable, accurate, and capable of making accurate predic=ons on new, unseen data (James et 

al.,2013). Three individual test data sets comprised of paired rice grain and soils total As 

concentra=ons were used for the purpose. The test sets were selected in a way that there is a 

difference in terms of site (agro-clima=c zones) and system of rice cul=va=on (rainfed and 
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irrigated). The test set 1 (n=101) was collected from three As-contaminated districts (Nadia, 

Murshidabad and N-24 Parganas) of West Bengal, India under rainfed rice system. The test set 

2 (n=28) and test set 3 (n=132) were collected from Maldah and Nadia districts of West Bengal, 

India respec=vely from irrigated rice system. All these sites from where the samples for test 

sets were collected are predominantly considered as the severely As contaminated belt of 

West Bengal, India. The Maldah district falls under the Vindhyan alluvial (old alluvial zone) 

agro-clima=c zone. Nadia and Murshidabad distract falls under the Gange=c alluvial (new 

alluvial zone) of West Bengal (Mandal et al., 2022). By tes=ng the model with different 

datasets, it can be iden=fied whether the model suffers from overfi�ng or underfi�ng issues. 

This will help to determine if the model needs adjustments such as regulariza=on techniques, 

architectural changes, or more data for training. Tes=ng different machine learning models 

with diverse datasets allows to compare their performance and choose the most suitable one 

for the task. By evalua=ng mul=ple models on the same test datasets, one can objec=vely 

assess their predic=ve abili=es, accuracy, robustness, and other relevant metrics. This 

facilitates informed decision-making and model selec=on (James et al., 2013). The total As 

analysis of the soil and rice grain samples were analysed following the protocols as outlined 

by Rahman et al. (2009 a, b) using ICP-MS (PerkinElmer NexION 350, USA). 

 The grain As content was converted to categorical variables (<MTC and >MTC) as per 

the methods outlined (75% of the total As in husked rice) in Mandal et al., (2021). The model 

tes=ng was performed using R-Studio (version 1.3.1093 2.3.1). The “caret” package (version 

6.0–86) was used to conduct predic=on with logis=c regression and decision tree models. 

 

5.2.1. Model performance parameters 

The evalua=on of a model’s performance involves the analysis of a single confusion matrix, 

which consists of four categories: true posi=ve (TP), true nega=ve (TN), false posi=ve (FP), and 

false nega=ve (FN). It is important to assess the rela=onships between these categories, rather 

than evalua=ng them individually, to accurately evaluate the model’s performance. The model 

performance parameters include accuracy, sensi=vity or recall, specificity or true nega=ve 

rate, and precision or posi=ve predic=ve value. The F1 score and the Mathews correla=on 

coefficient (MCC) were also calculated. 

The Area Under the Curve (AUC) is calculated by plo�ng the receiver opera=ng 

characteris=c (ROC) curve, which plots sensi=vity against specificity at different classifica=on 
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thresholds. The “ROCR” (version 1.0-11) and the “pROC” (version 1.17.0.1) were used to plot 

the ROC curves over the training and tes=ng phase. 

 

5.3. Results 

5.3.1. Test Data Sets 

Table 5.1 displays the total concentra=ons of As in rice grain and soil samples across the three 

tes=ng sets. Posi=ve correla=ons were observed between soil As and grain As in all three 

tes=ng sets (test set 1: r=0.34, p<0.01; test set 2: r=0.60, p<0.01; test set 3: r=0.46, p<0.01), 

as depicted in Figure 5.1. A�er conver=ng grain As concentra=ons into categorical variables 

(<MTC and >MTC), the sample counts were as follows: test set 1 - <MTC: 86, >MTC: 15; test 

set 2 - <MTC: 25, >MTC: 3; test set 3 - <MTC: 112, >MTC: 20. 

 

Table 5.1. Total As concentra=ons in rice grain and soil in the tes=ng sets 
Parameters Mean±SD Median Range (min- max) IQR (Q3-Q1) 
Test Set 1 (n=101) 
Grain As (μg kg-1) 294.54±162.41 255.40 84.38-870.85 360.01-175.35 
Soil As (mg kg-1) 13.08±7.40 10.85 2.01-36.13 15.77-8.19 
Test Set 2 (n= 28) 
Grain As (μg kg-1) 257.49±262.02 222.0 10.75-1260 343.25-102.00 
Soil As (mg kg-1) 7.43±4.02 8.02 0.55-15.00 10.38-4.79 
Test Set 3 (n=132) 
Grain As (μg kg-1) 327.70±139.25 330.0 10-650.21 412.50-255.00 
Soil As (mg kg-1) 11.65±3.63 13.15 3.98-17.92 14.24-9.24 
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Figure 5.1. Spearman’s correla=on between grain As and soil total As for all the test sets 
((Test Set 1, n=101), (Test Set 2, n=28) and (Test Set 3, n=132)).   
 
5.3.2. Confusion matrix and model parameters from tes4ng of LR and DT 

The TP, FP, TN, and FN values for the three sets using LR and DT can be observed in Table 5.2. 

Model performance metrics for LR and DT are presented in Table 5.3. The accuracy of the LR 

model was 69.13%, 85.71%, and 46.21% for test sets 1, 2, and 3, respec=vely. For DT, the 

accuracy was 78.22%, 92.86%, and 80.30% for the corresponding test sets. DT demonstrated 

lower misclassifica=on compared to LR. The F1 scores for the LR model were 78.01%, 91.66%, 

and 49.15% for test sets 1, 2, and 3, respec=vely. For DT, the F1 score was 96.15% for test set 

2, followed by 87.96% and 85.89% for test sets 3 and 1, respec=vely. The MCC values for LR 

were 0.43, 0.40, and 0.18, and for DT, they were 0.45, 0.54, and 0.41 for test sets 1, 2, and 3, 

respec=vely. 

Figure 5.2 presents a boxplot comparing the three test data sets in terms of grain 

category (As < MTC and As > MTC) with respect to soil As, along with the limits predicted by 

the LR and DT models. Figure 5.3 depicts a comparison of the receiver opera=ng characteris=c 

(ROC) curves for the two models across the three test sets.  
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Table 5.2. Confusion matrix of the tes=ng data sets 
Model: LR Model: DT 

Test Set 1 Actual Actual 
Predicted <MTC >MTC <MTC >MTC 

<MTC 55 (TP) 1 (FP) 67 (TP) 3 (FP) 
>MTC 31(FN) 14 (TN) 19 (FN) 12 (TN) 

Test Set 2 
<MTC 22 (TP) 1 (FP) 25 (TP) 2 (FP) 
>MTC 3 (FN) 2 (TN) 0 (FN) 1 (TN) 

Test Set 3 
<MTC 44 (TP) 3 (FP) 95 (TP) 9 (FP) 
>MTC 68 (FN) 17 (TN) 17 (FN) 11 (TN) 
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Table 5.3. Model parameters over the tes=ng phase 
Test Set Parameters Model 

Logis6c Regression (LR) Decision Tree (DT) 
 
 
 
Test Set 1 
(n=101) 

Accuracy (%) 69.13 78.22 
Misclassifica=on (%) 30.69 21.78 
Sensi=vity (%) 63.95 100 
Specificity (%) 93.33 80.00 
Kappa 0.345 0.402 
AUC 78.6 79.0 
Precision  100 95.71 
Recall 63.95 77.90 
F1 Score 78.01 85.89 
MCC 0.43 0.45 

 
 
 
 
Test Set 2 
(n=28) 

Accuracy (%) 85.71 92.86 
Misclassifica=on (%) 14.29 7.14 
Sensi=vity (%) 88.00 100 
Specificity (%) 66.67 33.33 
Kappa 0.422 0.471 
AUC 77.30 66.70 
Precision  95.65 92.59 
Recall 88.00 100 
F1 Score 91.66 96.15 
MCC 0.40 0.54 

 
 
 
 
Test Set 3 
(n=132) 

Accuracy (%) 46.21 80.30 
Misclassifica=on (%) 53.79 19.70 
Sensi=vity (%) 39.29 84.82 
Specificity (%) 85.00 55.00 
Kappa 0.104 0.342 
AUC 62.10 69.90 
Precision 93.62 91.35 
Recall 33.33 84.82 
F1 Score 49.15 87.96 
MCC 0.18 0.41 
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Figure 5.2. Boxplots of total As in soil (mg kg-1) with respect to category of grain As 
concentra=on (<MTC and >MTC) of three tes=ng data sets. (A: Test Set 1 (n=101), B: Test Set 
2 (n= 28), C: Test Set 3 (n=132)). The horizontal red line indicates the limit of soil As (14 mg kg-

1) predicted by Decision Tree and the green line indicates the limit of soil As (11.75 mg kg-1) 
predicted by Logis=c Regression. 
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Figure 5.3. Sensi=vity vs. specificity plot for logis=c regression and decision tree over Test set 
1 (A), 2 (B) and 3 (C). 
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5.4. Discussion 

From the performance metrics of the LR and DT models, it was observed that DT 

outperformed LR in terms of accuracy for all three test sets, while LR performed beoer in 

terms of misclassifica=on. The ra=o between the number of correctly classified samples and 

the total number of samples, as suggested by Wang et al. (2007), is considered the most 

appropriate performance metric. However, when the dataset is unbalanced, as in our case 

where the number of samples in one class is significantly greater than the others, accuracy 

alone becomes unreliable. It provides an overly op=mis=c es=mate of the classifier's skill on 

the majority class, as pointed out by Sokolova et al. (2006) and Akosa (2017). In our case, for 

test set 1 (<MTC = 86, >MTC = 15), test set 2 (<MTC = 25, >MTC = 3), and test set 3 (<MTC = 

112, >MTC = 20). 

Logis=c regression showed higher specificity compared to DT for all test sets, while DT 

exhibited higher sensi=vity compared to LR. Taking advantage of class-wise rates such as true 

posi=ve rate (sensi=vity/recall) and true nega=ve rate (specificity), alterna=ve measures like 

ROC and AUC can be derived. In our case, DT had a higher AUC than LR in two cases (test set 

1 and 3) and lower AUC than LR in test set 2. However, it is worth no=ng that ROC and AUC 

have some flaws, as highlighted by Lobo et al. (2008), and are sensi=ve to class imbalance, as 

noted by Hanczar et al. (2010). 

Therefore, considering F1 score and MCC as important model metrics to determine 

efficacy, the DT model outperformed LR. The F1 measure is widely used across various 

machine learning applica=ons, not only in binary scenarios but also in mul=class cases (Pillai 

et al., 2017). MCC generates a high score only if the classifier correctly predicts most posi=ve 

and nega=ve instances, considering the overall dataset. Dubey and Tarar (2018) also support 

the use of MCC and F1 as these measures provide more realis=c es=mates of real-world model 

performance. 

In binary classifica=on tasks, accuracy and F1 score derived from confusion matrices 

have been widely used. However, for unbalanced datasets, these sta=s=cal techniques can 

produce dangerously overop=mis=c outcomes since they fail to consider the ra=o between 

posi=ve and nega=ve elements (Chicco et al., 2021). The MCC criterion is intui=ve and 

straigh�orward: a high-quality score is achieved when the classifier makes correct predic=ons 

for both nega=ve and posi=ve cases, regardless of their ra=os in the overall dataset. Therefore, 



 61 

considering MCC, the DT model outperformed the LR model and can be considered a beoer 

classifier.  

The boxplot in Figure 5.2 shows a comparison between the three test data sets in 

terms of category of grain As (< MTC and >MTC) with respect to soil As and the limits predicted 

by the LR and DT model. The blue points below the red line (represen=ng 14 mg kg-1 of total 

soil As from DT) represents the instances at which the rice grain As was > MTC. These 

par=cular instances are due to the fact that in addi=on to total As in soil the bioavailable or 

bioavailable frac=ons may be playing a significant role, leading to a high uptake of As in rice 

grain. This warrants further inves=ga=on considering the other soil parameters like pH, OC, 

available Fe and P which leads to the next part of the thesis.  

The redox poten=al pH of the soil influences the bioavailability of As to the crops. The 

pH of the soil plays a major role in determining As specia=on and solubility and the level of As 

in soil rises significantly with declining Eh and rising pH (Majumdar & Sanyal, 2003). Both the 

release of As into accessible forms and reten=on of As depend heavily on the oxidizable 

organic carbon. Humic acid (HA) and fulvic acid (FA) are two examples of soil organic 

components that func=on as efficient As-humate complexes (chelates) with varying degrees 

of stability (Mandal et al., 2019; Kumar et al., 2021 and Sengupta et al., 2022). Arsenic 

mobilisa=on is greatly influenced by P (both being Group Vb elements in the Periodic table) 

and how they interact in the soil-plant system. In fact, both As and P would compete for the 

same kind of adsorp=on sites rather than being adsorbed separately in mixtures (Raj et al., 

2021). Arsenic is adsorbed in soils and sediments by oxides (such as iron (Fe), and manganese 

(Mn)) with the crea=on of inner-sphere complexes via the ligand exchange process, (Kumari 

et al., 2021) and hence affec=ng the bioavailability of As. 

 
5.5 Conclusion 

Based on the model metrics the DT model has an edge over the LR model and hence 14 mg 

kg−1 of total As in paddy soil may be an appropriate guideline value above which rice grains 

cul=vated in paddy fields will exceed the Codex recommended maximum allowable 

concentra=ons of 200 μg kg−1 for i-As in polished rice and 350 μg kg−1 in husked rice. However, 

it would be naive to believe that our models could be applicable to all contaminated rice 

growing sites worldwide, as the models have been trained with a par=cular set of data from a 

specific geographical region. A procedure for crea=ng predictability models for other 
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contaminated loca=ons throughout the world can be developed using this technique of 

es=ma=ng the limit for soil total As. 

 Developing a procedure for crea=ng predictability models for other contaminated 

loca=ons worldwide based on the research findings can have both =me and resource 

implica=ons. The feasibility of this endeavour depends on several factors: data collec=on, 

model training and valida=on, model refinement and itera=on followed by implementa=on 

and deployment of the models. Considering these factors, developing predictability models 

for other contaminated loca=ons worldwide based on the men=oned research findings can 

be a resource-intensive and =me-consuming process but it is not an impossible task. It 

requires a collabora=ve effort involving domain experts, data scien=sts, and adequate funding 

for data collec=on, model development, and valida=on. Addi=onally, the availability of 

comprehensive and diverse datasets from different contaminated loca=ons plays a crucial role 

in determining the feasibility and accuracy of the models. While the procedure described in 

the research offers a promising approach, it is important to acknowledge the prac=cal 

challenges and resource implica=ons associated with its implementa=on. Flexibility, 

adaptability, and con=nuous refinement of the models are key considera=ons to ensure their 

effec=veness across different geographical regions with varying soil and environmental 

characteris=cs. 
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Chapter 6 
Determination of bioavailable arsenic threshold by random forest, 
gradient boosting machine and logistic regression 
 
The contents of this chapter have been published as: Mandal, J., Jain, V., Sengupta, S., 

Rahman, M.A., Bhaoacharyya, K., Rahman, M.M., Golui, D., Wood, M.D. and Mondal, D. 

(2023). Determina=on of bioavailable arsenic threshold and valida=on of modelled 

permissible total arsenic in paddy soil using machine learning. Journal of Environmental 

Quality. hops://doi.org/10.1002/jeq2.20452 

 

6.1. Introduction 

Heavy metals, such as As in soil is present in both the solu=on and solid phases. Arsenic can 

be present as free ions and organic and inorganic complexes (present in soil solu=on) or 

adsorbed ions and compounds (clay and organic colloids) or as bound to secondary minerals 

and precipitated oxides of Fe and Mn, carbonates, and phosphates or complexed with organic 

maoer (Raj et al., 2021). Total elemental concentra=ons within the soil offer liole insight into 

the poten=al bioavailability of the elements (such as As), which may cause metal(loid) 

sequestra=on and recycling within the soil environment under the influence of various soil 

parameters (Kumari et al., 2021). The frac=on of the total concentra=on of an element being 

reac=ve or labile is not only related to their source but also with the soil proper=es. The mostly 

inert phase, which is contained in the crystal la�ces of minerals or occluded by par=cles (total 

elemental concentra=on), is not poten=ally available for the biota; instead, only the reac=ve 

concentra=on is (Groenenberg et al., 2017). The poten=al bioavailable or bioaccessible 

metal(loid) frac=on in soils may be a strong indicator of recent metal(loid) deposi=ons, as in 

the case of As when the field is irrigated with contaminated irriga=on water (Sengupta et al.,  

2021). The bioavailable As is o�en used as key indicators to es=mate the dissolu=on behaviour 

of As derived from the geochemical frac=ons in soils (Bari et al., 2021). 

The bioavailability of As in soil is governed primarily by pH, organic carbon (OC), 

available phosphorus (P), and available iron (Fe) in rice ecosystem (Hussain et al., 2021; Kumari 

et al., 2021). In another study Yao et al., (2021) developed a predic=ve model for rice grain As 

in rela=on to bioavailable As along with soil characteris=cs (pH, EC, organic maoer, total P, N 

and As) with mul=ple linear regression.  Iron is usually high in Bengal delta in the groundwater 
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as well as soil and phosphate-based fer=lizers are vastly used in rice plan=ng which may 

impact As bioavailability and hence these two parameters may provide an useful insight within 

the modelling framework. Previously as reported by Tan et al. (2020) Fe and P proved to be 

the most important parameter in governing the groundwater (drinking purpose) As content 

in Bangladesh.  

In this study, we modelled the maximum tolerable available As concentra=ons of 

paddy soil above which rice grain As may exceed maximum tolerable concentra=on (MTC) as 

per the Codex recommenda=on using the collected field data. We predicted the threshold for 

bioavailable As and also inves=gated the behaviour of these soil parameters (pH, OC, available 

P and Fe) both on the bioavailability of As and also the grain As content with the help of 

individual condi=onal expecta=on (ICE) and par=al dependence plots (PDP) using the random 

forest (RF), gradient boos=ng machine (GBM) and LR models. 

  

6.2. Materials and Methods 

6.2.1. Collec4on and analysis of soil and rice grain samples 

Paired soil and rice grain samples collected from both the irrigated and rainfed rice system 

(n=233) of Nadia, Murshidabad and N-24 Parganas district of West Bengal, India. The total As 

(TAs) analysis of the soil and rice grain samples were done following the protocols as outlined 

by Rahman et al. (2009 a,b) using ICP-MS (PerkinElmer NexION 350, USA). For bioaccessible 

As (AvAs), 0.43 M HNO3 was used as an extrac=ng agent followed by analysis in ICP-OES 

(Agilent 720) (Bari et al., 2021). Other soil parameters were done as per the following 

methods: pH (soil:water 1:2.5, Jackson 1973), organic carbon (OC) (oxida=on with potassium 

dichromate (K2Cr2O7), Walkley and Black 1934), available P (AvP) (extrac=on with sodium bi-

carbonate (NaHCO3), Olsen et al. 1954), and available Fe (AvFe) (extrac=on with diethylene 

tri-amine penta-ace=c acid (DTPA), Lindsay and Norvel, 1978). 

 

6.2.2. Predic4ng grain As with RF, GBM and LR 

For predic=ng rice grain As alongside impact of other soil parameters with the RF, GBM and 

LR models, a compiled data set (n=233) of both irrigated and rainfed rice was used. The whole 

data set was randomly split into two, 80% of the data were used as the training set and the 

remaining 20% formed the tes=ng set. A�er this the test set was kept aside and the train set 

was subjected to repeated cross- valida=on. Each model was trained through the procedure 
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of k-fold repeated cross-valida=on (k=10 and repeats =5). The remaining 20% of the test data 

was used for mode tes=ng. The category of grain As (<MTC and >MTC) was considered as the 

dependent variable whereas, bioavailable As (BAs), total As (TAs), pH, organic carbon (OC), 

available phosphorus (AvP) and available iron (AvFe) as the predictor variables. Basically, the 

training set was used to generate mul=ple splits of the training and valida=on sets to reduce 

over fi�ng of the model. The “caret” package (version 6.0–86) was used to train the model 

with 10-fold cross-valida=on repeated 5 =mes. For RF model accuracy of 0.89 and kappa of 

0.345 was used to select the final model using the value at mtry=4 a�er repeated cross-

valida=on (Figure 6.1). Similarly, a�er repeated cross-valida=on the final GBM model was 

selected at an accuracy of 0.86 with n.tree= 450, interac4on.depth=8, shrinkage=0.1, 

n.minobsinnode =10 and kappa = 0.32.  For LR model the accuracy of 0.89 at kappa = 0.424 

was considered as the final model a�er repeated cross-valida=on.  

The PDP shows the marginal effect that one or two features have on the predicted 

outcome of a machine learning algorithm (in this case it is RF model) (Friedman, 2001). The 

equivalent to a PDP for individual data instances is ICE plot (Goldstein et al., 2017). An ICE plot 

visualizes the dependence of the predic=on on a variable for each instance separately, 

resul=ng in one line per instance, compared to one line overall in par=al dependence plots. 

The PDP and ICE plots from the RF, GBM and RF models were prepared using the ‘pdp’ (version 

0.7.0) package. One of the assump=ons for PDPs is that a variable for which the par=al 

dependence is computed is not correlated with other variables. The RF model is highly robust 

against problems like mul=collinearity among the variables (Sarkar et al., 2022). For LR model 

presence of mul=collinearity may undermine the assump=ons for PDPs and hence the severity 

of mul=collinearity for each variable was tested with variance infla=on factor (VIF). The 

presence of collinearity rises the variances of parameter es=mates and thus leads to 

inaccurate conclusions about the rela=onship between dependent and independent variables 

(Midi et al., 2010). Variance Infla=on Factor measures the severity of mul=collinearity of 

predictor variables in a regression analysis (Franke, 2010). As per Franke (2010): if VIF >10 

then mul=collinearity is high. In our study the VIF were 1.15 for pH, 1.45 for OC, 1.32 for BAs, 

1.31 for AvFe, 1.34 for AvP and 1.15 for TAs. 

6.2.3. Model performance parameters 

The evalua=on of a mode’'s performance involves the analysis of a single confusion matrix, 

which consists of four categories: true posi=ve (TP), true nega=ve (TN), false posi=ve (FP), and 
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false nega=ve (FN). It is important to assess the rela=onships between these categories, rather 

than evalua=ng them individually, to accurately evaluate the mode’'s performance. The model 

performance parameters include accuracy, sensi=vity or recall, specificity or true nega=ve 

rate, and precision or posi=ve predic=ve value. The F1 score and the Mathews correla=on 

coefficient (MCC) were also calculated. 

The Area Under the Curve (AUC) is calculated by plo�ng the receiver opera=ng characteris=c 

(ROC) curve, which plots sensi=vity against specificity at different classifica=on thresholds. 

The “ROCR” (version 1.0-11) and the “pROC” (version 1.17.0.1) were used to plot the ROC 

curves over the training and tes=ng phase. 

 

6.3. Results 

6.3.1. Confusion matrix and performance of RF, GBM and LR models 

The performance of the RF and LR models over the tes=ng and training phase can be observed 

in Table 6.1. Over the training set both the RF and GBM model performed beoer compared to 

the LR model. The accuracy was 100 for both RF and GBM model and 91.15 for LR model for 

training phase. The sensi=vity, specificity, precision, F1 score was 100 and Kappa, MCC was 

1.0 for RF and GBM model over the training set. The sensi=vity, specificity, precision, F1 score 

were 98.19, 46.15, 92.09 and Kappa, MCC were 0.54 and 0.56 for LR model over the training 

set. For the tes=ng set the sensi=vity, specificity, precision, F1 score were 94.29, 50, 91.67, 

92.95 respec=vely for both the RF and GBM. The Kappa and MCC were 0.48 and 0.47 

respec=vely for both RF and GBM over tes=ng phase. For LR model the sensi=vity, specificity, 

precision, F1 score were 97.14, 50, 91.89, 94.34 respec=vely over the tes=ng phase.  Over the 

tes=ng set the Kappa and MCC were 0.54 and 0.56 respec=vely for LR model. From the ROC 

at Figure 6.2 for RF the AUC was 100% for training set and 89.0% for tes=ng set. In case of LR 

the AUC for training set was 89.60% and for tes=ng set it was 85.2%. Although the AUC of 

RF>LR >GBM but the accuracy and MCC of LR> RF @ GBM. Besides the log loss for GBM was 

minimum over the training set followed by RF and LR however over the test set it followed the 

order GBM > LR  @ RF. In terms of model performance metrics over the tes=ng phase LR was 

beoer than RF and GBM in terms of accuracy, sensi=vity, specificity, kappa, precision, log loss, 

F1score and MCC.  
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Table 6.1. Confusion matrix of RF, GBM and LR model and model parameters over training and 
tes=ng phase 

Training set (n=192) Testing set (n=41) 
Random Forest (RF) 
 Actual Actual 
Predicted <MTC >MTC <MTC >MTC 
<MTC 166 (TP) 0 (FP) 33 (TP) 3(FP) 
>MTC 0 (FN) 26 (TN) 2(FN) 3(TN) 
Accuracy (%) 100 87.80 
95% CI (0.981, 1) (0.738, 0.9592) 
Kappa 1 0.48 
Sensitivity/Recall 100 94.29 
Specificity 100 50.00 
Precision 100 91.67 
Log Loss 0.074 0.29 
F1 Score 100 92.95 
MCC 1.0 0.47 
Gradient Boost Machine (GBM) 
 Actual Actual 
Predicted <MTC >MTC <MTC >MTC 
<MTC 166 (TP) 0 (FP) 33 (TP) 3(FP) 
>MTC 0 (FN) 26 (TN) 2(FN) 3(TN) 
Accuracy (%) 100 87.80 
95% CI (0.981, 1) (0.738, 0.9592) 
Kappa 1 0.48 
Sensitivity/Recall 100 94.29 
Specificity 100 50.00 
Precision 100 91.67 
Log Loss 0.0009 1.28 
F1 Score 100 92.95 
MCC 1.0 0.47 
Logistic Regression (LR) 
 Actual Actual 
Predicted <MTC >MTC <MTC >MTC 
<MTC 163 (TP) 14 (FP) 34 (TP) 3 (FP) 
>MTC 3 (FN) 12 (TN) 1 (FN) 3 (TN) 
Accuracy (%) 91.15 90.24 
95% CI (0.862, 0.9476 (0.7687, 0.9728) 
Kappa 0.54 0.54 
Sensitivity/Recall 98.19 97.14 
Specificity 46.15 50.00 
Precision 92.09 91.89 
Log Loss 0.25 0.31 
F1 Score 95.04 94.34 
MCC 0.56 0.56 
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Figure 6.1. Accuracy from repeated cross-valida=on with randomly selected parameters plot 
of RF model 
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Figure 6.2. Sensi=vity vs. specificity plot for random forest (A) and logis=c regression model 
(B) and gradient boost machine (C) over the training and tes=ng phase.
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Figure 6.3. Cut-Off or threshold probability for RF at 0.62 (A) and for LR at 0.51(B) with 
respect to maximum accuracy. 
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6.3.2. Variable importance and par4al dependence of the variables from beXer performing 

RF and LR model 

The LR model predicted Probability (≤MTC |> MTC) = -16.82 + 4.79OC + 0.48AvFe + 1.22BAs + 

0.15TAs (AIC=106.92). The OC, AvFe, BAs and TAs coefficient significantly (p < 0.05) explained 

the grain content. When AvP and pH were considered for the model, the coefficient was 

sta=s=cally non-significant (p > 0.05), and AIC increased to 110.25. Hence from the LR model 

the BAs, TAs, OC and AvFe were the most important predictor variables of grain As content. 

From the variable importance plot of RF model of Figure 6.4 it can be observed that for 

predic=ng the category of grain As (<MTC and >MTC) the predictor variables followed the 

order BAs, TAs, AvFe, OC and AvP. The pH did not come up as an important predictor variable. 

The importance of the BAs was 100 followed by TAs (41.75), AvFe (25.77), OC (2.52) and AvP 

(0.84). From the ICE (A) and the PDP (B and C) plots of the RF model at Figure 6.5 to AvAs it 

can be observed that the probability of class <MTC decreases when the soil bioavailable As 

increases. At the cut off probability of 0.62 at the highest accuracy from the RF model (Figure 

6.3) it was observed that the limit of soil As to classify grain As (<MTC) was 5.72 mg kg-1 (Figure 

5.5) above which the probability of <MTC decreases. Similarly, from the ICE (A) and the PDP 

(B and C) of the LR model at Figure 6.6 it can be observed that at cut-off probability of 0.51 

(Figure 6.3) the limit of soil As to classify grain As (<MTC) was 5.70 mg kg-1. The PDP at Figure 

6.7 and 6.8 from RF and LR model shows the probability of grain As category (<MTC) with 

respect to BAs (most important variable) with other important variables (TAs, AvFe, OC and 

AvP) for RF and significant variable for LR (TAs, AvFe, OC). It can be observed that at BAs less 

than 5.70 mg kg-1 from LR and 5.72 mg kg-1 from RF and TAs less than 14 mg kg-1 (predicted 

from the DT model) the probability of <MTC was maximum (1.0-0.8). At BAs of 5.72 mg kg-1 

from RF and 5.70 mg kg-1 from LR the AvFe between 12-14 mg kg-1 was observed to be 

effec=ve in keeping the probability of <MTC higher. The OC content between 0.6-0.8% was 

effec=ve in keeping higher probability of grain As <MTC at BAs of 5.72 mg kg-1 from RF and 

5.70 mg kg-1 from LR. For available P it was observed that at BAs above 5.72 mg kg-1 from RF 

the AvP was not effec=ve in increasing the probability of grain As <MTC. However, at lower 

levels of As, AvP was effec=ve for formula=ng high probability of <MTC. 
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Figure 6.4. Variable importance plot from random forest model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Importance

pH

AvP

OC

AvFe

TAs

BAs

0 20 40 60 80 100



 73 

 
Figure 6.5. ICE and PDP of bioavailable As (mg kg-1) from random forest model with respect 
to probability of grain As <MTC. 
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Figure 6.6. ICE and PDPs of available As (mg kg-1) from logis=c regression model with respect 
to probability of grain As <MTC. 
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Figure 6.7. PDPs of two variables, BAs (mg kg-1) with other important variables TAs AvFe, AvP 
(mg kg-1) and OC (%) from RF model. Probability of <MTC is depicted in terms of colour 
intensi=es. 
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Figure 6.8. PDPs of two variables, AvAs (mg kg-1) with other significant variables TAs, AvFe, (mg 
kg-1) and OC (%) from LR model. Probability of <MTC is depicted in terms of colour intensi=es. 
 
6.4 Discussion 

From the accuracy, recall, precision, F1 score and MCC of the test set it can be concluded that 

the performance of the LR model was beoer as compared to both the RF and GBM model. As 

the test data set was imbalanced (<MTC = 33 and >MTC= 3) from the MCC it can be concluded 

that the LR model have an edge over the RF model in terms of correctly predic=ng both the 

classes as previously recommended (Chicco et al., 2020). Although the log loss for GBM was 

minimum over the training set however over the test set it was highest. The log loss shows 

how closely the predic=on probability resembles the relevant true or real value (0 or 1 in case 

of binary classifica=on). The higher the log-loss number, the more the predicted probability 

deviates from the actual value (Vovk 2015). Hence a lower log loss value means beoer 

predictability of the model as like the RF and LR. In general, the performance of LR is beoer 
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when their noise variables are less than or equal to the number of explanatory variables and 

random forest has a higher true and false posi=ve rate as the number of explanatory variables 

surges in a dataset (Kirasich et al., 2018). LR having higher classifica=on accuracy than RF has 

also been reported by Geng et al. (2006) in predic=ng colon cancer. Similarly in a financial 

study by Hao et al., (2016) in predic=ng “past-due amount”, it was reported that LR was 

effec=ve in terms of predic=ve accuracy compared to the RF in case of big and noisy data. 

Although GBM and RF are excellent, they are not flawless; for instance, in comparison to 

logis=c regression models, gradient boos=ng techniques typically have poor probability 

calibra=on (Niculescu-Mizi & Caruana, 2005). Addi=onally, certain models are intrinsically 

more data-demanding, so perhaps the dataset is simply insufficiently expressive (van der 

Ploeg et al., 2014) and hence a beoer performance of the LR model compared to RF and GBM. 

To our knowledge this is the very first aoempt of predic=ng the limit of soil available 

As using the PDP with respect to the cut-off probability from the models. The threshold or cut-

off in a binary classifica=on represents the probability at which the predic=on is true. It 

represents the trade-off between the false posi=ves and false nega=ves (Sarkar et al., 2022). 

Although from both the models the predicted limit for available As is very close to each other 

but considering the beoer performing LR model 5.70 mg kg-1 should be considered as the 

limit of soil available As. Neither a very rigorous nor a very slack threshold limit should be 

used. As because neither India nor South and South-East Asia as a whole has the luxury of 

cul=vable land sufficient enough to feed the popula=on, nor would a free acceptable limit 

help to adequately protect human health from As hazards. So, model accuracy was considered 

as the parameter for determining the cut-off probability rather than maximum sensi=vity-

specificity on AUC. Previously PDP from boosted regression trees and RF were used to predict 

the probability of As exceedance in groundwater on the important variables (Fe and P) by Tan 

et al. (2020). The visualiza=on of two variables at once with BAs through PDP gives us an 

insight of the effect of changes of the variables on the probability of grain As. The PDP of BAs 

and TAs on grain As reveals that below the predicted limit of available As (5.70 mg kg-1 from 

this study) and total As (14 mg kg-1 from Mandal et al., 2021 and tested with field data in this 

study) the probability of grain As <MTC was maximum. The rela=onship between BAs and 

AvFe revealed that Fe aids in the reduc=on of As absorp=on in rice. Previously it has been 

reported the use of Fe causes the forma=on of oxides of Fe in form of Fe plaques surrounding 

rice plant roots, which reduces As uptake, and increases co-precipita=on of Fe and As (Lee et 
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al., 2013). Metallic Fe and Fe-oxide have been observed to decrease As accumula=on in rice 

by 51 and 47% (Matsumoto et al.,2015). BAs and OC rela=onship revealed the fact that 

presence of organic maoer within the soil can restrict the availability of As and its uptake by 

rice. Soil organic frac=ons that comprise humic acid (HA) and fulvic acid (FA) behave as an 

ac=ve accumulator of As through forma=ons of metal-humate complexes of varying stability 

(Sengupta et al., 2022; Kumar et al., 2021). The applica=on of organic amendments reducing 

the As uptake in rice has been reported from the field experiments conducted by Sengupta et 

al. (2021). Phosphorous competes with arsenate (AsV) for the same adsorp=on sites in the 

soil as well as on the Fe plaques mainly by ligand exchange which is a key characteris=c in the 

rice field for bioavailability of As and uptake by plants (Peryea et al., 1995). This explains the 

rela=onship of BAs with AvP. Lee et al. (2016) proposed three key factors influencing As 

mobility in soil and uptake in rice: (1) enmity between As and P for adsorp=on sites, (2) 

antagonism between of inorganic P and As during transport in rice roots, and (3) role of P in 

As transfer from root to shoot. Thus, levels of AvFe, OC, and AvP (as shown in PDPs) in soil at 

which the BAs will be below the projected limit would aid in the development of acceptable 

management techniques in order to mi=gate As build-up in rice. Both the LR and RF model 

did not iden=fy pH as important predictor variable.  This might be since water logging drives 

the pH of the paddy soils towards neutrality. The produc=on of Carbon mono-oxide (CO) due 

to bacterial respira=on along with its accumula=on is the main reason for decrease in pH in 

alkaline soils. On the other hand, the reduc=on of Fe2+ in acidic soils are mainly responsible 

for the increase in soil pH (Kumari et al., 2021). 

One of the limita=ons of predictability models is generalisability. Models trained on 

data from a specific loca=on may not generalize well to other loca=ons or contexts. The 

characteris=cs and paoerns observed in one loca=on may not be representa=ve of other 

areas, leading to limited applicability of the model outside the training data's specific context. 

Field data collected at a specific =me may not capture the temporal dynamics and changes 

that occur over =me. If the models do not account for temporal varia=ons, their predic=ve 

ability may be limited, especially if the rela=onships between variables change over =me. 

Machine learning models are not perfect, and they are subject to uncertainty and error. The 

predic=ons made by these models should be interpreted with cau=on, and the associated 

uncertainty and error es=mates should be considered. Field condi=ons and dynamics may 
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change over =me, and the models may become less accurate or outdated if they are not 

regularly updated or recalibrated with new data. 

 

6.5 Conclusion 

From the beoer-performing LR model, it was observed that BAs, TAs, AvFe and OC were the 

most important variables for grain As. The PDPs of the LR model predicted the limit for 

bioavailable As to be 5.70 mg kg-1. It is well known that Fe, P and organic maoer are used as 

amendments for reducing the As accumula=on in crops. Thus, levels of AvFe, OC, and AvP (as 

shown in PDPs) in the soil at which the BAs will be below the limit would aid in the 

development of acceptable management techniques to mi=gate As buildup in rice. In future 

studies, manganese can also be considered as a covariate of the bioavailability of As. In spite 

of the uncertain=es and inherent limita=ons of the models brought on by the lack of 

appropriate field data, this is a novel way of predic=ng the grain As content. Despite collec=ng 

paired soil and rice grain samples during different seasons and from different sites, data 

imbalance was observed. The efficacy of a model depends on its predictability of different 

types of data (balanced or imbalanced). So, from the MCC, it was observed that the LR model 

(predic=ng BAs) has an edge over the RF. Hence, the model can predict both balanced and 

imbalanced data sets. As the models have been developed using a specific set of data from a 

specific geographical region, it would be naïve to think that they could be applied to all 

contaminated rice growing sites globally. However, tes=ng and fine-tuning the models with 

more field data will enhance their applicability and will serve as a protocol to derive site-

specific regulatory limits. 
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Chapter 7 
Predic/ng the limit of arsenic concerta/on in irriga/on water for 
cul/va/on of rice 
 
7.1. Introduc4on 

In addi=on to the human health impacts, contamina=on of irriga=on water in South Asia also 

affects crop produc=on. High levels of As in irriga=on water accumulate in the grain of food 

crops such as rice. Rice is one of the most important crops in the region, and As contamina=on 

of irriga=on water can lead to the build-up of As in grain surpassing the Codex 

recommenda=on (350 µg g-1 for husked rice and 200 µg g-1 for polished rice). Studies have 

shown that rice grown in fields with high levels of As in the water can have As levels in the 

grain that exceed safe limits for human consump=on, which poses a risk to human health 

(Mandal et al., 2021; Mondal and Polya, 2008; Mondal et al., 2010). However, there has been 

liole research on the soil and irriga=on water concentra=ons that would cause these levels to 

be exceeded. Recently Mandal et al., (2023) reported total and bioavailable As of 14 mg kg-1 

and 5.70 mg kg-1 as a guideline value for safe cul=va=on of rice in the As endemic regions of 

India considering the samples being collected from both the irrigated and rainfed system of 

rice cul=va=on. While it is known that the bioavailability of As from soil to rice is affected by 

a variety of factors (Kumari et al., 2021), As concentra=ons in soil and irriga=on water are 

regarded as the most important factors influencing rice grain t-As concentra=ons (Mukherjee 

et al., 2017; Kumari et al., 2021). From a meta-analysis (Mandal et al., 2021) for the Asian 

paddy soils it was evidenced a stronger posi=ve correla=on between paddy soil and rice As 

concentra=ons compared to irriga=on water and rice grain concentra=ons, the logis=c 

regression (LR) model depic=ng a non-significant contribu=on of irriga=on water As and the 

decision tree model predic=ons taking only the soil As as important predictor variable. In 

recent studies, authors iden=fied the most substan=al impact of soil As (Sengupta et al., 2021) 

and the "minimal if any” impact of irriga=on water on rice As content (Van Geen et al., 2006). 

Regardless, several research have demonstrated that contaminated groundwater irriga=on of 

paddy fields increases soil As concentra=ons (Huq et al., 2006; Panaullah et al., 2009; Diomar 

et al., 2010), eventually leading to a rise in grain As (Rahman et al., 2007; Rahman et al., 2010). 

Given the complexity of the transmission of irriga=on water As to rice grain via the soil, the 

non-significant influence of irriga=on water on grain As concentra=ons were likely 
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unsurprising. For example, the build-up of As in soil from irriga=on water is affected by a 

variety of parameters, including the temporal varia=on in As concentra=on during the crop-

growth phase, the volume of irriga=on water used, and the area of the field being watered 

(Chowdhury et al., 2018; Chowdhury et al., 2020). The link between irriga=on water As and 

grain As may become more complex as a result of irriga=on strategies that frequently include 

the use of both groundwater and precipita=on. Although the FAO has set a limit of 100 μg L-1 

for As in irriga=on water, but this is for general agriculture rather than rice specifically (Food 

and Agriculture Organiza=on FAO, 1992; Pescod, 1992).  

 As of now, no previous studies have predicted the threshold concentra=ons of As in 

irriga=on water for rice soils. These thresholds would indicate the point at which the levels of 

As in rice grains would exceed the limits recommended by Codex. (JECFA, 2017). The threshold 

for irriga=on water As was predicted considering the soil parameters (pH, organic carbon (OC), 

clay, available phosphorus (P), available (Fe), amorphous Fe and aluminium (Al) oxides) on the 

bioavailable As under different irriga=on condi=ons for rice (rainfed and irrigated). Monolithic 

soil columns, allowing tes=ng of soil which are close to actual field condi=ons (Lewis and 

Sjostrom, 2010) were used for this purpose.  Further with the help of individual condi=onal 

expecta=on (ICE) and par=al dependence plots (PDP) using the logis=c regression (LR) and 

linear discriminant analysis (LDA), the limit for irriga=on water has been predicted. 

 

7.2. Materials and Methods 

7.2.1 Incuba4on experiment with soil columns 

Monolithic soil columns were collected from Gotera (S1), Dakshin Panchpota (S2), Ghetugachi 

(S3), Kalyani (S4), Jhumka (S5), Sujapur (S6), Beldanga (S7), Radhavallabhpur (S8), Baruipur 

(S9), Sonarpur (S10) comprising the As contaminated districts of Nadia (S1, S2, S3 and S4), 

Murshidabad (S6, S7, S8) and South-24 Parganas (S9, S10) of West Bengal India. Polyvinyl 

chloride (PVC) pipes of 4.75 cm diameter and 20 cm in height were used for collec=ng (0-15) 

cm of soil columns from the field. Each column was plugged at the booom with a perforated 

PVC cap and Whatman 42 filter paper to ensure regular drainage of only water throughout 

the experiment dura=on. The dose of As in irriga=on water has 7 levels (0, 100, 200, 300, 400, 

500, 600 μ L-1), with 2 types of irriga=on condi=ons (rainfed and irrigated) and each replicated 

thrice resul=ng in 42 soil columns from each field.  Forty-two soil columns were collected from 

a specific crop field, altogether resul=ng in 420 soil columns. The characteris=cs of the soils of 
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the sites are depicted in Table 7.1.  As contaminated water (0, 100, 200, 300, 400, 500, 600 μ 

L-1) was applied (IrriAs) to the set of 210 columns as per the irriga=on prac=ces followed for 

cul=va=on of rice under rainfed condi=ons and remaining set of 210 columns as per the 

irrigated condi=on (Table 7.2. The levels of As dose in irriga=on water were decided based on 

the mean value of 235.49 ± 215.48 (mean ± SD) As concentra=on in irriga=on water in the 

Asian countries as reported by Mandal et al., (2021). The soil columns were kept at laboratory 

temperature (25-30°C) for 12 weeks. Rice grain and irriga=on water samples were also 

collected from As contaminated sites of Maldah (n=29) and Nadia (n=44) districts of West 

Bengal, India. The soil parameters (pH, OC, available P (AvP), available Fe (AvFe), amorphous 

Fe-oxide (AmFe), amorphous Al-oxide (AmAl), bioavailable As (BAs) and total As (TAs)), rice 

grain and irriga=on water samples has been men=oned in Chapter 3.  The grain As content 

was converted to categorical variables (<MTC and >MTC) as per the methods outlined in 

Mandal et al. (2021, 2023). 
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Table 7.1. Characteris=cs of the soil used in the column study (Mean±SE, n=4) 

Site Name pH OC (%) Clay (%) Available P 

(mg kg-1) 

Available  

Fe 

(mg kg-1) 

Amorphous 

Fe-Oxide 

(g kg-1) 

Amorphous 

Al-Oxide 

(g kg-1) 

Total As 

(mg kg-1) 

Bioavailable 

As 

(mg kg-1) 

Gotera (S1) 7.48±0.07 0.39±0.08 16.60±0.08 12.76±0.06 7.12±0.13 9.34±0.05 4.70±0.04 8.87±0.10 4.98±0.03 

Dakshin Panchpota (S2) 7.91±0.11 0.81±0.05 48.40±0.09 18.21±0.05 6.81±0.10 7.11±0.04 3.85±0.06 24.77±0.12 6.06±0.06 

Ghetugachi (S3) 7.45±0.07 0.54±0.08 28.61±0.10 20.34±0.07 5.22±0.08 5.05±0.05 3.35±0.06 21.56±0.11 5.21±0.08 

Kalyani (S4) 7.41±0.06 0.52±0.07 18.70±0.10 10.37±0.09 3.62±0.07 4.12±0.09 2.87±0.05 7.69±0.13 1.78±0.09 

Jhumka (S5) 6.74±0.08 0.38±0.05 39.60±0.09 9.49±0.05 4.48±0.06 5.72±0.04 4.12±0.06 7.93±0.07 5.26±0.02 

Sujapur (S6) 6.76±0.13 0.56±0.06 57.30±0.07 13.58±0.07 7.39±0.09 7.72±0.07 4.57±0.03 24.8±0.09 5.68±0.03 

Beldanga (S7) 7.17±0.08 0.47±0.06 34.40±0.10 18.48±0.05 6.47±0.05 5.35±0.06 2.64±0.07 6.60±0.08 3.88±0.07 

Radhavallabhpur (S8) 7.07±0.06 0.61±0.08 42.10±0.07 12.19±0.07 2.64±0.02 3.82±0.04 2.67±0.06 7.95±0.10 4.83±0.09 

Baruipur (S9) 6.43±0.07 0.64±0.09 14.10±0.10 10.46±0.08 9.60±0.02 10.35±0.04 5.84±0.05 7.57±0.09 1.46±0.03 

Sonarpur (S10) 7.20±0.04 0.39±0.05 11.70±0.05 18.58±0.09 9.02±0.06 10.31±0.08 6.07±0.06 5.57±0.07 2.35±0.04 
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Table 7.2. Schedule of applica=on of As contaminated water being applied to the soil columns 
under rainfed and irrigated condi=on over 12 weeks at laboratory temperature (25-30°C). 

Type of Rice  
 

Stages (week) *Volume of 
water used in 
farmer’s 
field (L) 

Volume 
water/ sq cm. 
of soil (L) 

Volume of 
water for each 
column 
(mL) 

Rainfed  
rice  

Field Preparation (1-2) 60,000 0.0045 80 

Transplanting (2) 1,00,000 0.0075 140 
Vegetative phase (3-4) 1,00,000 0.0075 140 
Reproductive phase (5-8) 1,00,000 0.0075 140 
Ripening & Harvesting (9-12) 1,20,000 0.0089 165 

Irrigated 
rice 

Field Preparation (1-2) 1,40,000 0.0104 196 
Transplanting (2) 40,000 0.0029 54 
Vegetative phase (2-4) 1,00,000 0.0075 140 

1,00,000 0.0075 140 
Reproductive phase (5-8) 80,000 0.0060 112 

80,000 0.0060 112 
80,000 0.0060 112 
80,000 0.0060 112 

Ripening & Harvesting (9-12) 1,00,000 0.0075 140 
1,00,000 0.0075 140 
1,40,000 0.0104 196 

*Roy Chowdhury et al., 2020 (rainfed rice) and Roy Chowdhury et al., 2018 (irrigated rice) 
 

7.3. Sta4s4cal Analysis 

The boxplots and the violin plots along with the non-parametric Wilcox test were performed 

using the packages “ggplot2” (version 3.3.5) and “ggpubr” (version 0.4.0). The null hypothesis 

was (H0): The median differences (bioavailable As) between the paired observa=ons (rainfed 

and irrigated) was zero. The alterna=ve hypothesis is (H1): The median difference is not zero. 

The Kruskal-Wallis test was done to compare the effect of As doses of irriga=on water on the 

soil bioavailable As under irrigated and rainfed condi=on. The null hypothesis was (H0): The 

median value of bioavailable As across different doses of As is equal and the alterna=ve 

hypothesis was (H1):  at least one median value of bioavailable As for a dose of As is different 

from others. The pairwise comparison between the doses of As was done by Wilcox test. 

Further Kruskal-Wallis test was done to compare the difference in bioavailable As across the 

10 soil types. The null hypothesis was (H0): The median value of bioavailable As across 

different soil types is equal and the alterna=ve hypothesis was (H1): at least one median value 

of bioavailable As for a soil type is different from others. The pairwise comparison between 

the soil types was done by Wilcox test. The regression with GLM was performed using the 
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“stats” (4.0.3) package with BAs as the dependent variable and all other soil parameters 

(IrriAs, Tas, pH, OC, clay, AvP, AvFe, AmFe and AmAl) as independent variables.  

 

7.3.1. Training of the models 

 For predic=ng irriga=on water As concentra=on alongside the impact of other soil parameters 

with the LR and LDA the whole data set (n=420) was used. The BAs content was converted to 

categorical variables as class “A” represen=ng above 5.70 mg kg-1 and class “B” represen=ng 

below 5.70 mg kg-1 as per the limit of soil bioavailable As predicted by Mandal et al. (2023) for 

rice. The category of BAs (A and B) were considered as the dependent variable whereas, dose 

of As-contaminated water IrriAs, Tas, pH, OC, clay, AvP, AvFe, AmFe and AmAl as the predictor 

variables. Mul=collinearity can affect logis=c regression models. Mul=collinearity occurs when 

predictor variables are highly correlated, which raises the variance of parameter es=ma=ons 

and can lead to incorrect inferences about the rela=onship between the dependent and 

independent variables. The presence of mul=collinearity in the models can also affect the 

assump=ons for PDP. To assess this, the variance infla=on factor (VIF) was used to test the 

severity of mul=collinearity for each variable. The VIF measures the extent of mul=collinearity 

among the predictor variables in a regression analysis. According to Franke (2010), a VIF 

greater than 10 indicates high levels of mul=collinearity. In this study, the VIF values were 

found to be 1.01 for IrriAs, 3.98 for pH, 3.40 for OC, 3.66 for clay, 6.01 for AvFe, 2.84 for AvP, 

4.05 for Tas, 12.53 for AmFe and 12.77 for AmAl. The AmFe and AmAl was having a VIF >10 

and hence were removed as the predictor variables for training the models. The data was 

transformed to ensure normality before the LDA model was trained. The whole data set was 

randomized and split into two, 80% of the data were used as the training set and the remaining 

20% formed the tes=ng set. A�er this the tes=ng set was kept aside and the training set was 

subjected to repeated cross-valida=on.  Basically, the training set was used to generate 

mul=ple splits of the training and valida=on sets to reduce over fi�ng of the model. The 

“caret” (version 6.0–91) and “caretEnsemble” (version 2.0.1) package were used to train the 

models with 10-fold cross-valida=on repeated 5 =mes using R-Studio (version 1.4.1103).  

 

7.3.2. Model performance parameters 

The evalua=on of a model’s performance involves the analysis of a single confusion matrix, 

which consists of four categories: true posi=ve (TP), true nega=ve (TN), false posi=ve (FP), and 
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false nega=ve (FN). It is important to assess the rela=onships between these categories, rather 

than evalua=ng them individually, to accurately evaluate the model’s performance. The model 

performance parameters include accuracy, sensi=vity or recall, specificity or true nega=ve 

rate, and precision or posi=ve predic=ve value. The F1 score and the Mathews correla=on 

coefficient (MCC) were also calculated. 

The Area Under the Curve (AUC) is calculated by plo�ng the receiver opera=ng 

characteris=c (ROC) curve, which plots sensi=vity against specificity at different classifica=on 

thresholds. The “ROCR” (version 1.0-11) and the “pROC” (version 1.17.0.1) were used to plot 

the ROC curves over the training and tes=ng phase. 

 

7.3.3. ICE and PDP 

The PDP shows the marginal effect that one or two features have on the predicted outcome 

of a machine-learning algorithm (Friedman 2001). The correspondent to a PDP for specific 

data occasions is ICE plot (Goldstein et al. 2017). An ICE plot envisions the dependency of the 

predic=on on a variable for each occurrence separately, resul=ng in one line per case, 

compared to one line in general in PDPs. The PDP and ICE plots from the LR was prepared 

using the “pdp” (version 0.7.0) package.  

 

7.4. Results  

7.4.1 Effect of As dose on Bioavailable As and its rela4onship with the soil parameters 

The Figure 7.1 represents the effect of As dose on the different soil columns over the rainfed 

and irrigated system of irriga=on. From the non-parametric Kruskal-Wallis test it was observed 

that the overall effect was sta=s=cally non-significant (p > 0.05) rainfed and significant (p < 

0.05) for irrigated type of irriga=on. However, paired-wise comparison (Wilcox test) of dose of 

As it was observed that there was a significant difference between the As0 and As600 over 

the irrigated condi=on of irriga=on. The boxplot in Figure 7.2 represents the comparison 

between the soil types in terms of BAs in the post incubated soil samples under two different 

irriga=on systems. It was observed that in both the irriga=on types an overall sta=s=cally 

significant (p < = 0.01) varia=on of BAs with respect to the soil types was observed. The paired-

wise comparison between the soil types revealed that except S1 and S8 in both irriga=on types 

all the soil types were sta=s=cally significant with each other (p <= 0.05, p <= 0.01, p <= 0.001, 

p <= 0.0001). From the violin plots in Figure 7.3 it was observed that the effect on BAs from 



 87 

type of irriga=on was sta=s=cally non-significant (p > 0.05) irrespec=ve of soil type and dose 

of irriga=on. The violin plots provide a comprehensive visualiza=on of the distribu=onal 

characteris=cs of data (non-normal distribu=on in this case), including central tendency, 

spread, shape, and the presence of outliers. It was observed that the soil proper=es played a 

significant role on the bioavailability of As in soil. From the regression analysis BAs = -2.77 + 

0.001IrriAs + 0.03Tas – 0.33AvFe + 0.05AvP + 0.60pH -2.46OC + 0.06Clay + 0.35AmFe + 

0.11AmAl (R2 = 0.82, Adj-R2 = 0.81, AIC = 890.74) it was observed that all the soil parameters 

significantly (p < 0.001) affected the BAs except AmAl. From the spearman’s correla=on studies 

in Figure 7.4 it was observed that there was a significant posi=ve correla=on (p <= 0.001) of 

BAs was with IrriAs (0.22), Tas (0.55), AvP (0.27), pH (0.20) and clay (0.76) and a significant 

nega=ve correla=on with AvFe (-0.18). Apart from correla=on data the Figure 7.4 also provides 

the informa=on about the distribu=on of data through histograms for each variable along with 

the shape of the distribu=on. As the data was not normally distributed spearman’s correla=on 

was undertaken in this case.  
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Figure 7.1. Boxplots represen=ng the varia=on of bioavailable As in post-incubated soil 
samples with respect to dose of As irrespec=ve of soil types under rainfed (a) and irrigated (b) 
condi=ons. (ns: p > 0.05 *: p <= 0.05). 
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Figure 7.2. Boxplots represen=ng the varia=on of bioavailable As in post-incubated soil 
samples with respect to different soil types irrespec=ve of dose of As over rainfed (a) and 
irrigated (b) condi=ons. (ns: p > 0.05, *: p <= 0.05, **: p <= 0.01, ***: p <= 0.001, ****: p <= 
0.0001) 
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Figure 7.3. Violin plots represen=ng the comparison between irriga=on condi=on 
irrespec=ve of soil types and As dose. 
 

Figure 7.4. Spearman’s correla=on matrix between the soil proper=es and doses of irriga=on 
water (n=420). (*: p <= 0.05, **: p <= 0.01, ***: p <= 0.001) 
 

7.4.2. Training and selec4on of models 

The final LR model a�er repeated cross-valida=on was selected at AUC of 0.9579 of ROC curve 

having a sensi=vity of 0.735 and specificity of 0.9330 at the accuracy (average) of 0.8886. The 

LR model equa=on predicted Probability (A | B) = 69.61 – 0.009IrriAs – 0.21Tas + 0.20AvP – 

9.25pH + 19.79OC + 0.42AvFe – 0.30Clay (AIC=141.61). The intercept, IrriAs, Tas, AvP, pH, OC, 
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and clay coefficients were sta=s=cally significant at (p < 0.01) and AvFe coefficient was 

significant at (p < 0.05). The log odds ra=o is a measure that represents the change in the log 

odds of the outcome (A or B) for a unit change in the value of a predictor variable. The log 

odds ra=o provides informa=on about the strength and direc=on of the rela=onship between 

the predictor variable and the outcome. For example, in our case, the coefficient of IrriAs = – 

0.009, can be exponen=ated (as per the Eq.2)  e-0.009 = 0.99, which suggests that the odds of 

class A changes by a factor of 0.99 for an increase of concentra=on of As in irriga=on water. 

Equivalently it can also be interpreted as a decrease by a factor of 0.01 in odds of class A with 

the increase of concentra=on of As in irriga=on water. So, with the decrease in concentra=on 

of As in irriga=on water, the log odds for class B will increase accordingly.  

The LDA model was selected at AUC of 0.9663 having a sensi=vity and specificity of 

0.9410 and 0.8586 respec=vely. The prior probabili=es for class A and B as per the LDA model 

were 0.225 and 0.774 respec=vely. A prior probability is a probability that an observa=on will 

fall into a group before someone collects the data. The group means for class A were 0.92 , 

0.08, 0.02, 0.06, 0.02, 0.002 and 0.17 for IrriAs, Tas, AvFe, AvP, pH, OC and clay respec=vely. 

For class B 0.82, 0.07, 0.05, 0.11, 0.06, 0.004, and 0.21 were group means for the IrriAs, Tas, 

AvFe, AvP, pH, OC, and clay respec=vely. The coefficients of linear discriminants were 0.61 for 

IrriAs, -13.78 for Tas, 1.15 for AvFe, -2.85 for AvP, 37.68 for pH, -141.78 for OC and 0.37 for 

clay. Figure 7.5 represents the comparison between the LR and LDA models over the training 

phase in terms of ROC, sensi=vity, and specificity. 
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Figure 7.5. Comparison between the logis=c regression (LR) and linear discriminant analysis 
(LDA) in terms of area under the receiver opera=ng characteris=c (ROC) curve, sensi=vity 
(Sens) and specificity (Spec) during the training phase. 
 

7.4.3. Confusion matrix and performance of the LR and LDA model 

The performance of the LR and LDA models over the training and tes=ng phase can be 

observed in Table 7.3. From the confusion matrix it was observed that over the training set 

the model predic=on accuracy was similar for both LR and LDA (0.8946). However, the LR 

model has higher kappa, sensi=vity, F1 Score and MCC compared to the LDA over the training 

set. The AUC of LR (0.968) > LDA(0.954) over the training phase (Figure 4). Although the LDA 

have an edge over LR in terms of specificity and precision, the log loss was more in LDA 

(0.1891) compared to LR (0.2907). During the tes=ng phase of the models LR > LDA in terms 

of all model matrices like accuracy, kappa, specificity, precision, F1 score and MCC except 

sensi=vity the LR have an edge over LDA. Besides the AUC was higher in LR (0.950) compared 

to LDA (0.940) during the tes=ng phase (Figure 4). Addi=onally, the log loss for LR was lower 

than LDA both during the training and tes=ng phase, indica=ng beoer predictability. 

 
 
 
 
 
 



 93 

Table 7.3. Confusion matrix of LR and LDA and model parameters over training and tes=ng 
phase. 

Training set (n=332) Tes6ng set (n=88) 
Logis6c Regression (LR) 
 Actual Class Actual Class 
Predicted Class A B A B 
A 57 (TP) 17 (FP) 14 (TP) 2 (FP) 
B 18 (FN) 240 (TN) 7 (FN) 65 (TN) 
Accuracy (%) 0.8946 0.8977 
95% CI (0.8564, 0.9255)  (0.8147, 0.9522) 
Kappa 0.6971 0.6935 
Sensi=vity/Recall 0.7600 0.6667 
Specificity 0.9339 0.9701 
Precision 0.7702 0.8750 
Log Loss 0.1891 0.2348 
F1 Score 0.7651 0.7567 
MCC 0.7017 0.7037 
Linear Discriminant Analysis (LDA) 
 Actual Class Actual Class 
Predicted Class A B A B 
A 52 (TP) 12 (FP) 15 (TP) 5 (FP) 
B 23 (FN) 245 (TN) 6 (FN) 62 (TN) 
Accuracy (%) 0.8946 0.875 
95% CI (0.8564, 0.9255) (0.7873, 0.9359) 
Kappa 0.6821 0.6503 
Sensi=vity/Recall 0.6933 0.7143 
Specificity 0.9533 0.9254 
Precision 0.8125 0.7500 
Log Loss 0.2907 0.3594 
F1 Score 0.7482 0.7317 
MCC 0.6854 0.6506 

 
7.4.4. Predic4ng the limit of irriga4on water As from LR model and comparison with field data 

The final class probability from the beoer-performing LR model was calculated considering 

the log odds of all the coefficients of the significant variables as per the LR model and the final 

class was assigned based on the cut-off probability. A cut-off probability refers to a threshold 

value in a logis=c regression model that determines the boundary between two classifica=ons 

(class A and B in our case). If the predicted probability of an event is above the cut-off, the 

observa=on is classified A; if it is below the cut-off, it is classified as B. From beoer performing 

LR model the cut-off probability was at 0.836 over the tes=ng phase at highest sensi=vity 

(0.952) and specificity (0.851) (Figure 7.6). From the ICE (a) and the PDP (b) of the LR model 

at Figure 7.7 it can be observed that at cut-off probability of 0.836 the limit of irriga=on water 
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As to classify soil As as class B (BAs < 5.70 mg kg-1) was 190 µ L-1. The boxplot in Figure 7.8 

shows the comparison between category of grain As (< MTC and >MTC) with respect to As 

concentra=on in irriga=on water from two As-contaminated sites (Nadia and Maldah) and the 

limit predicted by the LR model. The black points below the red line (represen=ng 190 µ L-1) 

represent the instances at which the rice grain As was > MTC. 

 
Figure 7.6. Sensi=vity vs. specificity plot and cut-off probability (at maximum sensi=vity and 
specificity) for LR (a) and (b) and LDA (c) and (d) models over training phase and tes=ng phase. 
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Figure 7.7. ICE (a) and PDP (b) of irriga=on water As (µg L-1) from logis=c regression with 
respect to probability of B (bioavailable As < 5.70 mg kg-1) represen=ng the threshold limit of 
irriga=on water As at cut-off probability. 
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Figure 7.8. Boxplots of irriga=on water As concentra=on (µg L-1) with respect to the category 
of grain As concentra=on (<MTC and >MTC) of a) Nadia (and b) Maldah district, West Bengal, 
India. The horizontal red line indicates the limit of irriga=on water As (190 µg L-1) predicted by 
the predicted by logis=c regression. 
 

7.4.5. Bioavailable As and its rela4onship with the soil parameters from PDP of LR model 

The PDP in Figure 7.9 from LR model shows the probability of soil As category (B) with respect 

to IrriAs along with other variables for LR (pH, OC, clay, AvFe, AvP and Tas). It can be observed 

that at lower pH (6-6.5) values the probability of class B was maximum (1.0-0.9). However, at 

higher pH and also at higher concentra=ons of As in irriga=on water the probability of class B 

decreases. The probability of class B was maximum at a higher OC (0.6) at lower concentra=on 

of As in irriga=on water. The probability decreased at lower levels of OC and higher levels of 

As in irriga=on water. The effect of clay on BAs considering the IrriAs followed the same trend 

of pH as with high clay (more than 30%) content the bioavailability of As increased even at 

lower concentra=ons of As in irriga=on water. At the higher level of AvFe the probability of 

class B was stable (0.90-0.85) even at higher concentra=ons of As in irriga=on water signifying 

the adsorp=ve capacity of Fe. The same trend was followed by AvP as it competes with As for 

the adsorp=ve sites of the soil. At lower levels of TAs the probability of class B was high (1.0-

0.8) up to 300 µ L-1 of As in irriga=on water.  
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Figure 7.9. PDPs of two variables, IrriAs (µg L-1) with other variables pH, OC (%), Clay (%) Tas, 
AvFe, AvP (mg kg-1) and AmFe, AmAl (g kg-1) from logis=c regression. Probability of class B is 
depicted in terms of colour intensi=es.   
 

7.5. Discussion 

7.5.1. As dose, Bioavailable As and soil proper4es 

The regression equa=on, correla=on studies and more specifically the PDP from the LR model 

gives us an insight regarding the behaviour of BAs in rela=on to As from irriga=on water (IrriAs) 

along with the significant soil parameters. The significant posi=ve rela=onship of BAs from 

regression study with IrriAs aligns with the previous findings as reported by (Kumari et al., 

2021; Mandal et al., 2021). However, from PDP it was observed that this rela=onship is more 

complex rather than linear due to effects of different soil parameters. The transfer of As in its 
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natural environment is governed by several factors, especially by pH, soil organic maoer, clays, 

Fe (available as well as its oxides) and P (available) content (Kumari et al., 2021 and Raj et al., 

2021). The availability of As in soil is dependent on soil pH, and generally, an increase in soil 

pH leads to an increase in the availability of As par=cularly above pH 7.5 (Sanyal et al., 2015 

and Raj et al., 2021). At high pH levels, the soil becomes more alkaline, which can lead to the 

solubiliza=on and release of As from mineral phases and make it more available for uptake by 

plants and other organisms. On the other hand, at low pH levels, the soil is more acidic, and 

As may be less available due to its binding to Fe and Al compounds in the soil (Kumari et al., 

2021). Organic maoer can bind to As, mainly by humic and fulvic acids as reported by 

(Sengupta et al., 2022). Addi=onally, dissolved organic maoer can reduce the sorp=on of As 

to soil par=cles through redox reac=ons and by forming soluble complexes with As (Mandal 

et al., 2019a, 2019b). This has resulted in decrease in probability of class B at lower OC content 

irrespec=ve of concentra=on of IrriAs and nega=ve rela=onship of (regression) with BAs. The 

amount of As that can be absorbed by soil par=cles depends on the presence of clay. Clay can 

contribute to the sorp=on of As, increasing the amount of As that is retained in the soil and 

reducing its availability (Raj et al., 2021). However, under certain condi=ons, such as high 

levels of soil organic maoer, clay can also increase the bioavailability of As by releasing it into 

the soil solu=on. The rela=onship between clay and As in soil is complex and depends on 

several factors, including the type and amount of clay present, the soil pH, and the presence 

of other minerals and organic maoer (Raj et al., 2021). A significant nega=ve rela=onship of 

As with Fe signifies that it can act as a barrier to the bioavailability of As, as iron oxides and 

hydroxides can adsorb As, making it less available for plant uptake (Chowdhury et al., 2018 

and Sengupta et al., 2021). Fe can also form complex compounds with As, which can enhance 

or reduce As bioavailability, depending on the specia=on of the compounds (Kumari et al., 

2021). Addi=onally, iron when present in excess amount can also mobilize As in soil, making it 

more available for uptake by plants (Mandal et al., 2023). Although a posi=ve significant 

rela=onship between BAs and AvP has been observed however, between phosphorus (P) and 

As in soil is complex and can vary depending on soil type, pH, redox condi=ons, and presence 

of other minerals (Sanyal et al., 2015). An antagonis=c rela=onship between P and As has been 

previously reported by Raj et al., (2021). On the other hand, a posi=ve rela=onship between 

AvP and AvAs has also been reported in paddy soils by Sengupta et al. (2021) and Jiang et al. 

(2014). Similarly, the posi=ve significant rela=onship of soil Tas with BAs have been previously 
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reported by Mandal et al. (2023) from As contaminated paddy fields. The rela=onship 

between Tas and BAs in soil is also influenced soil pH, organic maoer content, and the 

presence of other minerals that may bind or stabilize Tas in the soil (Kumari et al., 2021 and 

Raj et al., 2021). The Am-Fe oxides act as sorbent for both the arsenite and arsenate ions. The 

Am-Fe oxides involve As to form inner sphere surface complex with the displacement of OH− 

and H2O as a ligand subs=tu=on transfer of electron from As (Aide et al., 2016).  

 

7.5.2. Model performance and predic4on of irriga4on water limit 

From the accuracy, kappa, recall, precision, F1 score and MCC of the models over the test set, 

it can be concluded that the performance of the LR model was beoer as compared LDA. The 

accuracy and F1 score have long been popular measures for binary classifica=on tasks, but 

they can be misleading in unbalanced datasets. The MCC provides a more comprehensive 

evalua=on of binary classifica=ons than accuracy and F1 score (Chicco et al. 2021 and 2020). 

In this study, the LR model outperformed the LDA model in terms of accurately predic=ng both 

classes according to the MCC results. The MCC score is based on the idea that the classifier 

must make accurate predic=ons for both posi=ve and nega=ve cases, regardless of their ra=o 

in the dataset as previously reported by Mandal et al., (2023). A higher AUC value in a ROC 

curve indicates that the model is more effec=ve at dis=nguishing between the posi=ve (A) and 

nega=ve (B) classes. The ROC curve plots the true posi=ve rate (TPR) against the false posi=ve 

rate (FPR) for different threshold values and the AUC measures the overall performance of the 

model by compu=ng the area under the curve (Mandal et al.,2021). A higher AUC means the 

model has a higher TPR for a given FPR or that it has a lower FPR for a given TPR. Hence the 

LR model performed beoer compared to LDA. The log loss measures how closely the predicted 

probabili=es align with the actual values that is higher the log-loss number, the more the 

predicted probability deviates from the actual value (Vovk, 2015). In conclusion, a�er 

considering all model parameters, the LR model performed beoer than the LDA model. 

From the LR model the predicted limit for irriga=on water was 190 µ L-1 Previously an 

aoempt to derive the limit of irriga=on water was undertaken by Kumari et al., (2021) 

considering only soil As in two soil types but no par=cular limit was prescribed. To our 

knowledge, this is the first aoempt at predic=ng the limit of irriga=on water As using the PDP 

with respect to the cut-off probability from the model. The ICE plot shows the individual 

condi=onal rela=onship between a specific predictor variable and the predicted response, 
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while holding all other predictors constant at their median values. It helps to understand how 

the response changes with the changes in a single predictor (Goldstein et al. 2017). The PDP 

plot is an aggregate representa=on of the rela=onship between all the predictor variables and 

the predicted response. It shows the average predic=on over all observa=ons for each possible 

value of a single predictor variable, while holding all other predictors constant at their median 

value. It provides informa=on about the global rela=onship between the predictor variable 

and the response. In summary, ICE plot shows the rela=onship between a single predictor and 

the response at the individual level, while PDP plot shows the rela=onship at the aggregate 

level (Mandal et al., 2023). It is not advisable to use either an overly strict or an overly lenient 

threshold limit. This is because India and Southeast Asia do not have enough fer=le land to 

meet the needs of their popula=ons and using a permissive limit would not adequately protect 

human health from the risks of As. 

The comparison of the predicted limit with the field data revealed that at certain 

instances the grain As concentra=on was > MTC. This is due to the fact as the models were 

trained on the data from an incuba=on study although monolithic soil columns were used for 

the purpose, s=ll the extraneous variables (temperature, rela=ve humidity, rainfall, surface 

run-off, cropping sequence, cropping system) that persist in real field condi=ons were not 

considered. The challenge in modelling was to enhance its generalizability so that it could be 

applied more broadly and not just limited to a specific set of data from a certain geographic 

region. This warrants further inves=ga=on collec=ng irriga=on water, soil, rice grain across 

different cul=va=on systems (irrigated and rainfed), cropping systems, and also considering 

the soil parameters like pH, OC, available Fe, P, clay and total As to predict the limit of irriga=on 

water. This will increase the model’s generalizability so that its applicability is not limited. 

 

7.6. Conclusion 

The study inves=gated the effect of As dose on monolithic soil columns in two different 

irriga=on systems (rainfed and irrigated). Results from the non-parametric test showed that 

the overall effect of As on the soil was sta=s=cally non-significant in both irriga=on systems. 

However, a significant difference was observed between the As0 and As600 doses in the 

irrigated condi=on. The comparison of soil types in terms of BAs in post-incubated soil samples 

showed a sta=s=cally significant varia=on with respect to the soil types in both irriga=on 

systems. Regression analysis showed that all soil parameters significantly affected BAs except 
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for AmAl. The spearman’s correla=on studies revealed a significant posi=ve correla=on 

between BAs and IrriAs, Tas, AvP, pH and clay, and a significant nega=ve correla=on with AvFe. 

The LR and LDA models were developed to predict the probability of BAs on the soil 

parameters and irriga=on water As concentra=on. The LR performed beoer in terms of model 

matrices like accuracy, kappa, recall, precision, F1 score and MCC over the LDA. The limit of 

irriga=on water As to classify soil As was found to be 190 µ L-1using the PDP and ICE plots at a 

cut-off probability of 0.836 at the highest sensi=vity and specificity. Further the LR model 

developed in this study provides a comprehensive understanding of the rela=onship between 

soil As levels and the predictor variables. The study highlights the importance of considering 

mul=ple soil parameters such as pH, OC, AvFe, AvP, Tas and clay in determining safe levels of 

As in irriga=on water, and the need for further research to validate the findings in real-world 

condi=ons. 
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Chapter 8 
Evalua/on of biochar as an amendment for mi/ga/on of arsenic 
contamina/on in rice through meta-analysis 
 
8.1. Introduc4on 

Management solu=ons that are both efficient and feasible (under local condi=ons) for the 

remedia=on of As-contaminated soil is of importance to reduce human health risks from soil-

crop-food transfer. Both phytoremedia=on and bioremedia=on of the As contaminated sites 

have been undertaken (Laha et al., 2021 & 2022; Upadhyaya et al., 2018 and Mondal et al., 

2021). Solu=ons include amendments used for the remedia=on of As-contaminated soil such 

as the use of inorganic elements like phosphorus (Hossain et al, 2009), silicon (Ma et al., 2008), 

iron (Ultra et al., 2009) and selenium (Wan et al., 2018); and complexa=on of As by the 

applica=on of organic amendments such as sugarcane bagasse (Mandal et al., 2019a and 

2019b) and vermicompost (Sengupta et al., 2021; 2022). One of the limita=ons of organic 

amendments, however, is that they need to be applied in large quan==es.  

Biochar is an effec=ve amendment in reducing the ecotoxicity of soils that are 

contaminated with heavy metals because it can effec=vely bind metal(loid)s in water and 

immobilise them in soil (Guo et al., 2020; Ahmad et al., 2014; Tan et al., 2015; O'Connor et al., 

2018). Biochar is prepared by carbonising organic materials through pyrolysis at high 

temperatures (between 300 and 1000 °C) with liole or no oxygen (Lehman and Joseph, 2015). 

The surface func=onal groups on biochar, such as hydroxyls, carbonyls and carboxyls, serve as 

binding sites for metal(loid)s (Tan et al., 2015). Due to the presence of nega=vely charged 

surface func=onal groups, biochar can electrosta=cally bind heavy metal ca=ons and adsorb 

them. Addi=onally, the electron-rich aroma=c biochar surface may electrosta=cally draw 

electron-deficient metal ca=ons to itself through donor-acceptor interac=ons (Vithanage et 

al., 2017). The encouraging results of many studies regarding the efficacy of biochar in binding 

contaminants have s=mulated much interest in using it as a soil amendment for environmental 

rehabilita=on (Guo et al., 2020).  At present, most biochar research publica=ons looked at its 

use from a technical or economic perspec=ve in rela=on to soil quality and the remedia=on 

of surface-, ground-, and waste-water. An integrated understanding of the mechanisms of 

remedia=on of As-contaminated soils (specifically in the rice rhizosphere) through pris=ne and 
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modified biochar to improve the func=onal proper=es of biochar could result in future larger-

scale applica=ons. 

In fact, crop residues are one of the most common feedstocks for biochar produc=on. 

The main crops that generate crop residues in India are rice, wheat, sugarcane, maize, and 

millets. Rice crop alone contributes 34% to the crop residues. According to the Indian Ministry 

of New and Renewable Energy (MNRE), India generates on an average 500 Million tons (Mt) 

of crop residue per year. The same report shows that a majority of this crop residue is in fact 

used as fodder, fuel for other domes=c and industrial purposes (Bhuvaneshwari et al.,2019). 

However, there is s=ll a surplus of 140 Mt out of which 92 Mt is burned each year. The burning 

of crop residues is a major environmental problem in India. It contributes to air pollu=on, 

including the forma=on of smog and PM2.5, which can have serious health consequences. It 

also releases greenhouse gases into the atmosphere, contribu=ng to climate change 

(Bhuvaneshwari et al., 2019). The management of crop residues in India is a complex issue. 

There is no single solu=on that will work for all areas. However, by using a combina=on of the 

methods (compos=ng, biogas produc=on, biochar produc=on), it is possible to reduce the 

environmental impacts of crop residue burning and improve the sustainability of agriculture 

in India. Overall, the use of crop residues for biochar produc=on is a promising op=on for 

managing crop residues in India and improving the sustainability of agriculture (Yrjälä et al., 

2022). Biochar has the poten=al to solve the problem of crop residue management as well as 

the management of As-contaminated soils when used as an amendment which is required to 

be explored. 

The aim of this systema=c review is to examine recent research on the use of biochar 

for the removal and/or immobilisa=on of As in paddy soils. A meta-analysis using random 

effect model (REM) and forest plots have been undertaken to evaluate the prospect of using 

biochar as an amendment for As-contaminated paddy soils. The efficacy of different biochars 

(pris=ne and modified) in reducing As content in rice and soil is compared and some insight 

into the mechanisms involved in As immobilisa=on in the rice rhizosphere is provided. Finally, 

the future scope and direc=on of biochar research specifically for As-contaminated paddy soils 

is underlined. 
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8.2. Materials and Methods 

We systema=cally reviewed published ar=cles repor=ng the use of biochar to remediate As in 

rice. We used Boolean operators (e.g., “OR” and “AND”) to develop search terms from the 

keywords (“arsenic,” “soil,” “biochar,” “rice”; “arsenic,” “soil,” “biochar,” “paddy”). Searching 

ISI Web of Science and PubMed with these terms, we iden=fied relevant research papers 

published from 2006, since the term "biochar" was first formally used in 2006 (Lehman et al., 

2006). The PRISMA (Preferred Repor=ng Items for Systema=c Reviews and Meta-Analysis) 

flowchart is presented in Figure 8.1. Studies were only included in the meta-analysis if (1) the 

research was carried out using rice as the test crop; (2) informa=on regarding the 

characteris=cs of the biochar has been reported; (3) As concentra=on in the soil, rice grain has 

been reported; (4) details of the analy=cal method(s) and quality assurance procedures used 

for the study was provided. Based on the inclusion criteria 23 studies that were selected from 

the published literature. Selected studies were used to gather data on the sample size and 

mean values of As concentra=ons in rice and soil, =ller number, plant height, leaf, grain, shoot 

and root biomass. We quan=ta=vely combined the data from the individual research papers 

to assess the rela=ve influence of pris=ne and modified biochar on As immobilisa=on. The 

data were converted to the same units for comparisons. The final finding was expressed as a 

weighted mean difference between each group of individual studies and the marginal level of 

each parameter under study at a confidence level of 95%. As a result, the sample size 

determined how much weight was to be given to each study. The REM was used for this 

purpose. A REM model is a sta=s=cal method used in meta-analysis to combine data from 

mul=ple studies that have a common research ques=on. It is a type of meta-analysis model 

that accounts for both within-study varia=on and between-study varia=on in es=ma=ng the 

overall effect size. In a REM model, it is assumed that the true effect size varies across studies, 

and the observed effect sizes are drawn from a normal distribu=on with a mean equal to the 

true effect size and a variance that includes both within-study and between-study varia=on 

(Romano et al., 2006). This means that each study has its own true effect size, but these true 

effect sizes are not iden=cal across studies, and the varia=on in true effect sizes is assumed to 

follow a normal distribu=on (Jeffery et al., 2016). Observed study es=mates vary not only due 

to random sampling error but also due to inherent differences in the way studies have been 

designed and conducted (Langan, 2022).  To summarise, the data from individual studies in 

the meta-analysis, and to give a visual indica=on of the degree of heterogenei=es, a forest 



 105 

plot was developed. The absence of difference between the study group and the marginal 

level, also known as the no effect or zero effect line (mean difference was zero at this point), 

was shown by a ver=cal line in the plot's centre.  The subsequent squares represent the mean 

difference values for each study and the size of the squares indicates the effect of the es=mate 

and the weight of the studies. Each horizontal segment's succeeding endpoints showed 95% 

confidence intervals (CI) that were symmetrical about the mean. When all the diverse studies 

were combined and averaged, the diamond represents the point es=mate and confidence 

intervals (Langan 2022). The data analysis was performed in R-Studio (version 1.3.1093 2.3.1) 

using the ‘metafor’ package (version 3.8-1) (Viechtbauer et al., 2010). 

 
Figure 8.1. PRISMA (Preferred Repor=ng Items for Systema=c Reviews and Meta-Analyses) 
flowchart showing the selec=on of studies eligible for a meta-analysis. 
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8.3. Results  

8.3.1 Details of the studies and proper4es of the biochar  

The details of the biochars (pris=ne and modified) used for the remedia=on of the As-

contaminated paddy soil are summarised in Table 8.1. Of the 23 studies selected, 20 studies 

were undertaken in China, two in Australia and one in Thailand. All the studies were pot 

experiments except for two (Pan et al., 2019 and Zheng et al. 2015) which were field-based 

experiments.  The raw materials used for the prepara=on of biochar mostly included rice plant 

parts (straw, husk and hull) (nine studies) followed by maize/corn plant parts (straw and cobs) 

(seven studies). Other feedstocks for biochar included palm plant parts (shell and fibres) 

(three studies), wheat straw (two studies), eggshells (two studies), sewage sludge (two 

studies), bamboo (one study), oriental pane (one study), bean stalks (one study) and cordgrass 

(one study). The materials used for biochar modifica=on included iron (Fe) (six studies); 

goethite (two studies); zerovalent Fe (one study); nano zerovalent Fe (one study); 

hydroxyapa=te and zeolite (one study); silicon (Si) with nano-montmorillonite (one study); a 

combina=on of Fe, manganese (Mn) and cerium (Ce) (one study); a combina=on of Fe and Mn 

(one study); a combina=on of Fe, Mn and lanthanum (La) (one study); a combina=on of Fe, 

Mn and lanthanum (La) and manganese oxide (one study); and mixing of two pris=ne biochars 

(one study). The minimum temperature used for the prepara=on of biochar across all the 

studies was 450 °C while the maximum temperature was 800 °C with a mean of 591.30 ± 

91.26 °C. The pH of the biochars used ranged from 3.17 to 11.30 with a mean of 8.20 ± 2.09. 

The carbon (C) content of the biochars ranged from 7.8 to 296.0 g kg-1 with mean value of 

56.50 ± 43.0 g kg-1. The ca=on exchange capacity (CEC) ranged from 11.5 to 73.0 cmol kg-1 and 

mean value was 31.04 ± 15.97 cmol kg-1. The mean specific surface area (SSA) was 97.41 ± 

87.64 m2 g-1 and ranged from 2.76 to 276.24 m2 g-1. The mean pore volume was 0.1506 ± 

0.00784 mL g-1 and ranged from 0.0144 to 0.2026 mL g-1. The mean pore diameter was and 

5.68 ± 2.76 mm and ranged from 4.02 - 10.6 mm respec=vely. 
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Table 8.1. Details of the biochar used for remedia=on of arsenic contaminated paddy soil. 
Sl.No Reference Country Raw 

material 
Temperature 
(°C) 

Biochar 
modification 
 

**Biochar 
name 

pH C 
(g kg-1) 

CEC 
(cmol kg−1) 

***SSA 
(m2 g−1) 

Pore volume 
(mL g-1) 

Pore diameter 
(nm) 

1 Gu et al.  
(2018) 

China rice 
straw 

500 Hydroxyapetite, 
Zeolite 

Biochar 6.13 57.63 28.93 49.57 --- --- 
HZB 7.27 21.24 73.0 --- --- --- 

2 Herath et al. 
(2020) 

China rice husk 700 Silicon, Nano-
montmorillonite 

RHBC 9.98 55.03 --- 187.7 0.1968 4.317 
Si-RHBC 10.41 53.65 --- 182.3 0.1968 4.317 
NM-RHBC 9.94 39.86 --- 189.6 0.1972 4.159 

3 Irshad et 
al.(2020) 

China wheat 
straw 

600 Goethite Biochar 7.45 --- --- 44.97 --- --- 
GB 7.99 --- --- 276.24 --- --- 

4 Irshad et 
al.(2022) 

China wheat 
straw 

600 Goethite Biochar 7.45 --- --- 44.97 --- --- 
GB 7.99 --- --- 276.24 --- --- 

5 Islam et al. 
(2021a) 

China egg 
shell, 
corn 
cobs 

450 Mixing (1:1) EB 9.58 13.1 --- 6.5 --- --- 
CB 9.83 81.6 --- 75.2 --- --- 
ECB 9.66 49.35 --- 40.9 --- --- 

6 Islam et al. 
(2021b) 

China egg 
shell, 
corn 
cobs 

450 Iron FCB 8.71 62.6 --- 205.8 --- --- 
FEB 8.65 7.8 --- 25.3 --- --- 
FCEB 8.67 35.3 --- 115.5 --- --- 

7 Jin et al.  
(2020) 

China rice 
husk, 
codgrass 

600 --- RBC 11.3 --- --- --- --- --- 
SBC 10.5 --- --- --- --- --- 

8 Khan et al. 
(2013) 

China sewage 
sludge 

550 --- SSBC 7.22 28.0  5.50 0.0144 10.5 
SSBC5% 4.86 14.40 --- --- --- --- 
SSBC10% 5.39 20.20 --- --- --- --- 

9 Khan et al. 
(2014) 

China sewage 
sludge 

600 --- SSBC 7.18 27.8  5.57 0.015 10.6 
SSBC5% 5.66 30.5 --- --- --- --- 
SSBC10% 5.83 51.5 --- --- --- --- 

10 Kumarathilaka 
et al.(2021a) 

Australia rice hulls 600 Iron RBC 9.81 --- --- 201.39 0.2026 4.024 
Fe-RBC 5.33 --- --- 142.6 0.1650 4.6285 

11 Kumarathilaka 
et al.(2021b) 

Australia rice hulls 600 Iron RBC 9.81 --- --- 201.39 0.2026 4.024 
Fe-RBC 5.33 --- --- 142.6 0.1650 4.6285 

12 Leksungnoen 
et al. (2019) 

Thailand rice husk 750 ash, 
acid wash 

RHB 7.3 37.92 26 --- --- --- 
RHA 9.3 31.03 29 --- --- --- 
AWB 3.2 31.03 --- --- --- --- 

13 Lian et 
al.(2020) 

China corn 
straw 

600 Iron, 
Manganese, 

BC 8.91 84.92 38.4 60.16 --- --- 
FMCBC1 9.41 63.25 43.28 27.16 --- --- 
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Cerium FMCBC2 9.64 56.27 43.86 36.21 --- --- 
FMCBC3 9.72 43.48 44.52 46.87 --- --- 

14 Lin et al.  
(2019) 

China corn 
straw 

600 Iron, 
Manganese 

BC 8.93 75.5 --- 61 --- --- 
FMBC1 9.60 67.3 --- 208 --- --- 
FMBC2 3.17 53.8 --- 7.53 --- --- 

15 Lin et al.  
(2020) 

China corn 
stem 

600 Iron, 
Manganese, 
Lanthanum 

BC 8.93 75.5 --- 61 --- --- 
FMLBC1 6.96 62.3 --- 2.76 --- --- 
FMLBC2 6.83 54.8 --- 12.2 --- --- 
FMLBC3 6.9 47.1 --- 30.6 --- --- 

16 Liu et al.  
(2017) 

China palm 
shell 

500 Nano zerovalent 
Iron  

--- --- 296 --- 244 --- --- 

17 Lv et al.  
(2021) 

China rice 
straw, 
corn 
straw, 
bamboo 

600 --- RSBC 11 47.1 --- 175.5 --- --- 
CSBC 10.5 60.3 --- 3.6 --- --- 
BABC 9.6 87.3 --- 9.2 --- --- 

18 Pan et al. 
(2019)* 

China palm 
fibres 

800 Iron Fe-BC 6.0 60 --- --- --- --- 

19 Qiao et al. 
(2018) 

China palm 
fibres 

700 Zerovalent Iron 
different levels 

Biochar 9.3 86.7 11.5 241.6 --- --- 

20 Wen et al. 
(2021) 

China Oriental 
plane 

650 Iron RawBC 9.25 69.34 21.59 110.7 --- --- 
FeBC 4.41 59.91 16.70 74.5 --- --- 

21 Yin et al.  
(2017) 

China rice 
straw 

450 Iron Biochar 10.7 --- 15.1 --- --- --- 
Fe-
Biochar 

4.87 --- 14.2 --- --- --- 

22 Yu et al.  
(2017) 

China corn 
straw 

600 Manganese 
Oxide 

BC 10.4 85.3 --- 60.9 --- --- 
MBC 10.8 73 --- 3.18 --- --- 

23 Zheng et al. 
(2015)* 

China bean 
stalk, 
rice 
straw 

500 --- BBC 9.2 44.5 27.5 --- --- --- 
RBC 10.5 27.4 32.1 --- --- --- 

Mean±SD 591.30±91.26 -------- -------- 8.20±2.09 56.50±43.0 31.04±15.97 97.41±87.64 0.1506±0.0784 5.68±2.76 
Range (Minimum-Maximum) 450-800 -------- -------- 3.17-11.3 7.8-296.0 11.5-73.0 2.76-276.24 0.0144-0.2026 4.02-10.6 

*Indicates field experiment 
**Biochar name: HZB: hydroxiapa/te zeolite biochar, RHBC: rice husk biochar, Si-RHBC: silicon-RHBC, NM-RHBC: nano-montmorillonite-RHBC, GB: goethite biochar, EB: egg 
shell biochar, CB: corn cob biochar, FCB: iron-CB, ECB: iron-CB,  SSBC: sewage sludge biochar,  RHA: rice husk  acid wash,  FMBC: iron-manganese-cerium biochar,  FMLBC: iron-
manganese-lanthanum biochar, BBC: bean stalk biochar, RBC: rice straw biochar 
***SSA: Specific Surface Area
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8.3.2 Effect of biochar on As content in rice grain 

The con=nuous REM revealed a significant (p < 0.001) weighted mean value of −539.21 (95% 

CI: -663.15 to -415.27) (Figure 8.2). The impact of the nega=ve value signified that the 

es=mated reduc=on of As concentra=on in rice grain was sta=s=cally significant with respect 

to the control. From the mean different effect sizes of the different studies, it can be observed 

that the biochars prepared from sewage sludge (pris=ne and modified) and maize straw, 

irrespec=ve of the dose, significantly (p < 0.001) reduced the grain As content as the 

subsequent confidence intervals did not overlap the zero-effect line. Pris=ne biochar prepared 

from bean stalks and rice straw (Zheng et al., 2015) was not effec=ve in reducing the grain As 

content as observed in field experiments. Pris=ne biochar refers to the original or untreated 

form of biochar, which is a carbon-rich material derived from biomass such as wood, crop 

residues, or organic waste through a process called pyrolysis. Modified biochar refers to 

biochar that has undergone specific treatments or modifica=ons to enhance its proper=es or 

tailor it for specific applica=ons. These modifica=ons can involve physical, chemical, or 

biological processes that alter the structure, surface chemistry, or proper=es of the biochar 

(Vithanage et al., 2017). The sewage sludge and maize straw feedstock were more effec=ve in 

reducing the grain As content. The inconsistency index of 99.98% indicated substan=al and 

significant heterogeneity (p <0.001). 
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Figure 8.2. Forest plot showing the effect of biochar on the weighted mean difference of 
arsenic concentra=on in rice grain (µg kg-1) between the different studies with their respec=ve 
confidence intervals and weight in the meta-analysis together with the heterogeneity 
sta=s=cs. (BC: biochar; MBC: manganese oxide biochar composites; BC:Fe:Mn:La at different 
weight ra=os: (FMLBC1) 25:4:1:1, (FMLBC2) 25:4:1:3, and (FMLBC3) 25:4:1:5) 
 
 
8.3.3 Effect of biochar on plant parameters 

From Figure 8.3a it can be observed that overall applica=on of biochar resulted in a significant 

(p < 0.001) increase in plant height with a weighted mean value was 7.51 cm (95% CI 3.39 to 

11.63), though having 98.91% heterogeneity (p < 0.001). The sewage sludge, wheat straw 

(pris=ne and modified) and rice hull (modified) biochar significantly increased plant height. 

The overall effect of biochar on =ller number had a weighted mean value of -1.91 (95% CI -

7.14 to 3.31) and was not sta=s=cally significant (p > 0.001) but indicated having heterogeneity 
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of 98.96% (p <0.001) (Figure 8.3b). Only the sewage sludge biochar significantly increased the 

=ller number irrespec=ve of the doses.  

 
Figure 8.3. Forest plot showing the effect of biochar on the weighted mean difference of (a) 
plant height (cm) and (b) =ller number of rice between the different studies with their 
respec=ve confidence intervals and weight in the meta-analysis together with the 
heterogeneity sta=s=cs. 
 
Figure 8.4 (a and b) revealed that biochar significantly (p < 0.001) increased the root (weighted 

mean value: 0.78, 95% CI: 0.59 to 0.98) and shoot (weighted mean value: 2.15, 95% CI: 1.30 

to 2.99) biomass. Similar to previous meta-analysis, significant heterogeneity (p < 0.001) was 

observed at 94.69% and 97.56% respec=vely. The wheat straw (pris=ne and modified), maize 

straw (modified), and oil palm fibre (modified) biochars significantly increased both the root 

and shoot biomass of rice plants. 

The effect of biochar on the leaf and grain biomass is presented in Figure 8.5 (a and b). 

Biochar applica=on significantly (p < 0.001) increased the leaf biomass (weighted mean value: 

1.54, 95% CI: 0.95 to 2.12) and grain biomass (weighted mean value: 3.59, 95% CI: 2.48 to 
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4.71). Again, significant heterogeneity of 97.04% and 99.31% (p <0.001) respec=vely, were 

noted. The maize straw (pris=ne and modified) was effec=ve in increasing the leaf biomass 

whereas the sewage sludge (pris=ne), maize straw (pris=ne and modified), and oil palm fibre 

(modified) biochar increased the grain biomass significantly. 
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Figure 8.4. Forest plot showing the effect of biochar on the weighted mean difference of rice 
(a) root biomass (g) and (b) shoot biomass (g) between the different studies with their 
respec=ve confidence intervals and weight in the meta-analysis together with the 
heterogeneity sta=s=cs. 
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Figure 8.5. Forest plot showing the effect of biochar on the weighted mean difference of rice 
(a) leaf biomass (g) and (b) grain biomass (g) between the different studies with their 
respec=ve confidence intervals and weight in the meta-analysis together with the 
heterogeneity sta=s=cs. 
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8.3.4 Effect of biochar on frac4ons of soil As 

Figure 8.6 (a and b) represents the effect of biochar on the exchangeable and Al-bound As 

frac=ons in the rice rhizosphere. The applica=on of biochar significantly (p < 0.001) reduced 

exchangeable As (weighted mean value: -0.04, 95% CI: -0.06 to -0.02) and Al-bound As 

(weighted mean value: -3.17, 95% CI: -4.15 to -2.18). Both analysis had significant 

heterogeneity of 99.96% and 99.73% respec=vely. Maize straw (pris=ne and modified), and 

rice straw (pris=ne and modified) significantly reduced the exchangeable As and the same 

trend was observed for Al-bound As frac=on. 

The effect of biochar on the Fe and Ca bound As frac=ons in the rice rhizosphere is 

presented in Figure 8.7 (a and b). Both Fe-bound (weighted mean value: 1.40, 95% CI: 0.74 to 

2.05) and Ca-bound (weighted mean value: 1.69, 95% CI: 1.13 to 2.26) As increased 

significantly (p < 0.001).  Significant heterogeneity of 95.24% and 99.21% respec=vely was 

observed. The rice straw (pris=ne and modified) and maize straw (pris=ne and modified) 

biochar increased the Ca-bound frac=on of As and only maize straw (pris=ne and modified) 

biochar increased the Fe-bound As frac=on resul=ng in reducing the exchangeable or available 

frac=on of As in soil. 

 Only two of the studies (Pan et al., 2019 and Zheng et al., 2015) under considera=on 

in the meta-analysis were undertaken in field condi=ons. Pan et al., (2019) reported that Fe-

modified palm fibre biochar was effec=ve in reducing the availability of As in soil. A conflic=ng 

report of As mobilisa=on in rice soils due to the applica=on of pris=ne rice straw and bean 

stalk biochar was reported by Zheng et al. (2015). 
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Figure 8.6. Forest plot showing the effect of biochar on the weighted mean difference of soil 
(a) exchangeable As (mg kg-1) and (b) Al-bound As (mg kg-1) in rice rhizosphere between the 
different studies with their respec=ve confidence intervals and weight in the meta-analysis 
together with the heterogeneity sta=s=cs. 
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Figure 8.7. Forest plot showing the effect of biochar on the weighted mean difference of soil 
(a) Fe-bound As (mg kg-1) and (b) Ca-bound As (mg kg-1) in rice rhizosphere between the 
different studies with their respec=ve confidence intervals and weight in the meta-analysis 
together with the heterogeneity sta=s=cs. 
 

8.4. Discussion 

8.4.1 Effect of biochar proper4es 

A high pyrolysis temperature has been used in all the studies considered in this review. The 

yield and characteris=cs of biochar were determined based on thermochemical methods, 

opera=ng condi=ons, and feedstock. It is widely known that low-temperature-generated 

biochars from slow pyrolysis have low hydrophobicity and aroma=city but significant surface 

acidity and polarity. Major biomass decomposi=on occurs between 200 °C and 500 °C through 

a series of phases that include par=al hemicellulose decomposi=on, complete hemicellulose 
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decomposi=on, full cellulose, and par=al lignin decomposi=on (Rutherford et al., 2012). The 

elemental composi=on of biochar varies with pyroly=c temperature and is dependent on 

feedstock type. Carbon concentra=on increases as produc=on temperature rises, but the 

concentra=ons of nitrogen (N), sulphur (S), hydrogen (H), and oxygen (O), which are 

components of the gaseous products during pyrolysis, fall. Biochars made from biosolids, and 

animal manures are o�en high in N, phosphorus (P), potassium (K), and S (Ahmad et al., 2014; 

Jin et al., 2014). The pyroly=c temperature and feedstock content influence physical quali=es 

such as pore structure, surface area, and adsorp=on proper=es (Vithanage et al., 2017). 

Vola=le chemicals in the biomass tend to be eliminated from the medium as the pyroly=c 

temperature rises. This increases surface area and ash content while reducing surface 

func=onal groups and exchange sites. As the pyroly=c temperature rises, alipha=c C species 

are transformed into aroma=c rings, genera=ng a graphene-like arrangement that enhances 

the pore volume, pore distribu=on and surface area of the biochar (Ahmad et al., 2014). 

Biochars with a high concentra=on of C in condensed aroma=c rings have few func=onal 

groups. Surface func=onal groups are important in biochar adsorp=on capacity, and the 

amount and type of func=onal groups vary depending on the feedstock and pyroly=c 

temperature (Kim et al., 2013). High-temperature pyrolysis carbonisa=on is appropriate for 

forestry and agricultural wastes with higher levels of lignin, cellulose, and hemicellulose 

(Labanya et al., 2022). Use of a high pyroly=c temperature (>450 °C) for prepara=on of biochar 

has been observed in all the studies considered in this review. In a meta-analysis, Arabi et al. 

(2021) reported that low pyrolysis temperature biochars (≤ 450 °C) did not affect As mobility 

in the soil, but high pyrolysis temperature biochars (> 450 °C) considerably mobilised the soil 

As. Biochars pyrolysed at high temperatures are more successful than those generated at low 

temperatures for As immobilisa=on, which could be aoributed to the high aroma=city and 

porous structure, as well as the presence of mineral-phases (e.g., CaPO4, CaCO3) (Amen et al., 

2020). Hea=ng the biomass to temperatures ranging from 350 °C to 650 °C breaks down and 

reorganises the chemical links, resul=ng in the forma=on of new func=onal groups (e.g., 

carboxyl, lactone, lactol, quinine, chromene, anhydride, phenol, ether, pyrone, pyridine, 

pyridone, and pyrrole) (Mia et al. 2017). High-temperature biochar (600-700 °C) has a very 

hydrophobic character with well-organised C layers (Uchimiya et al. 2011). However, due to 

dehydra=on and deoxygena=on of the biomass, it has lower amounts of H- and O-containing 

func=onal groups (Ahmad et al. 2014; Uchimiya et al. 2011). The surface groups can func=on 
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both as electron acceptors or donors. This results in the forma=on of simultaneous zones with 

features varying from acidic to basic and hydrophilic to hydrophobic (Amoneoe and Joseph 

2009). Biochar produced at lower temperatures (300-400 °C) has a more diverse organic 

character due to the presence of alipha=c and cellulose type arrangements (Novak et al. 

2009). As the pyrolysis temperature rises, the structure of biochar appears to have more 

orderly C layers (e.g., graphene-like structure) and less content of surface func=onal groups 

(Ahmad et al. 2014). 

The presence of acidic groups such as carboxylic, phenolic, and ca=onic groups on the 

surface of biochar produced at a shorter pyrolysis dura=on result in biochar with a rela=vely 

low pH (Shaaban et al., 2014). According to Beiyuan et al. (2017), biochar generated at low 

temperature has a greater O/C ra=o than biochar produced at high temperature. These 

findings suggested that As stabilisa=on may be significantly aided by O-containing func=onal 

groups, such as carboxyl and hydroxyl groups (Shaaban et al., 2014). In contrast, a liole higher 

pH in the higher temperature pyrolysis likely led to increase As mobilisa=on (Beiyuan et al., 

2017; Zhao et al., 2018). However, in all the studies considered in this review, the biochars 

used were prepared at high temperature resul=ng in high pH of the biochar in most of the 

cases.  The pH of the medium (i.e., soil solu=on) can affect the charge characteris=cs of the 

biochar surface as well as As specia=on, but not the pH of biochar. For example, depending 

on the solu=on pH, various func=onal groups such as amine, alcohols, carboxylic, on the 

surface of biochar tend to be protonated, hence altering the surface charge of biochar 

(Vithanage et al., 2017). Contrarily, the pH of the solu=on affects the specia=on of As into its 

many neutral and anionic forms such as H3AsO4, H2AsO4, HAsO4
2-, and AsO4

3-. At pH 3-6, the 

H2AsO-
4 species can dominate; however, at pH 8 and above, HAsO4

2- and AsO4
3- species 

become dominant (Kumari et al., 2021; Raj et. al., 2020). Consequently, mul=ple species of As 

can be adsorbed on the surface of biochar at different pH values, making it difficult to 

determine the predominant species of As. The dominant As species on the surface, as well as 

how the As-surface complexa=on takes place, varies with changing solu=on pH. 

Owing to the existence of many exchange sites on biochar surfaces, the applica=on of 

biochar o�en increases soil CEC (Mohamed et al., 2015; Moreno-Jim enez et al., 2016; Zhang 

et al., 2017), which promotes heavy metal immobilisa=on in soil. CEC has no influence on As 

mobilisa=on as it is a metalloid and can easily generate anions, and its non-metal 

characteris=cs predominate. Furthermore, as per the meta-analysis by Arabi et al., (2021) 
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demonstrated that biochar immobilises Cr and Ni in soil but was not effec=ve in immobilising 

As in soil. 

Numerous inves=ga=ons have revealed that the surface area of biochars rises with 

pyrolysis temperature. Increased pyrolysis temperature was thought to improve lignin and 

cellulose degrada=on in feedstocks and remove H- and O-containing func=onal groups, 

resul=ng in an increase in biochar surface area (Phuong et al., 2016). In the studies considered 

in this review, biochars made from rice biomass (Herath et al.,2020; Kumarathilaka et al., 

2021a and 2021b; Lv et al., 2021) at high temperature had a higher surface area. As per the 

findings of Jeong et al. (2012), so�wood biochar had a lesser surface area compared to 

hardwood biochar with 159 m2 g-1 for so�wood biochar as against 242 m2 g-1 for hardwood 

biochar. 

According to Steiner et al. (2016), the porous features and surface area are responsible 

not only for nutrients, organic compounds, and water reten=on, but also offer a favoured 

refuge for bacteria and other microorganisms. The surface proper=es of biochars can vary 

greatly depending on the biomass used and methods of produc=on, such as pyrolysis 

temperature or dura=on, according to Verheijen et al. (2010). Large macropores (> 10nm 

diameter) are observed in biochars derived from wood due to the presence of large cells 

whereas cellulosic straw biochars have a pore size range of 1-10 nm due to the presence of 

thinner walls and channels. The biochars prepared from rice husk (Herath et al., 2021), and 

rice hulls (Kumarathilaka et. al., 2021a and 2021b) feedstock had a pore diameter of the range 

1-10 nm. The As molecules are aoracted to the surface of the biochar by the electrosta=c 

forces between the nega=vely charged As ions and the posi=vely charged func=onal groups 

on the biochar surface. The higher the surface area, the greater the capacity of the biochar to 

adsorb As. The pore size distribu=on of biochar refers to the size and distribu=on of the pores 

on the biochar surface. The pores provide a place for the As molecules to be held, and the size 

of the pores determines how well the As molecules can be held (Kumarathilaka et. al., 2021a 

and 2021b). 

 

8.4.2. Effect of biochar on plant parameters 

The surge in readily accessible nutrients and the enhancement of the rhizosphere 

environment are both responsible for the effect on plant parameters resul=ng in the increase 

of plant height, root, shoot, leaf and grain biomass of rice. The applica=on of biochar improved 
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the soil's characteris=cs over =me (such as pH, C content, available P, and available K), 

however, these improvements are somewhat dependent on the materials used to make the 

biochar. Increased soil carbon stocks, nutrient reten=on, soil fer=lity, and crop output can all 

be achieved with biochar (Chan et al., 2007; Lehmann et al., 2003; Novak et al., 2009; Steiner 

et al., 2007). The pyrolysis process and kind of feedstock have a significant impact on the 

proper=es of biochar. Numerous biomass sources, including crop by-products, shrubs, green 

trash, and even animal manures, can be used to make biochar. Biochar applica=on alters soil 

pH (Kimetu et al., 2008; Novak et al., 2009; Rondon et al., 2007), and it may also have an 

indirect impact on how plants receive nutrients (Atkinson et al., 2010). Therefore, it seemed 

unlikely that pH varia=ons would have significantly impacted nutri=onal availability. Different 

soil and biochar mixtures may have various pH buffering capabili=es (Mukherjee et al., 2011). 

Numerous studies have demonstrated that adding biochar to soil can greatly increase its 

nutri=onal content (Liang et al., 2014 and Luo et al., 2014). This is due in part to the direct 

supply of nutrients, like P and K as well as a decrease in runoff and leaching (Enders et al., 

2012). Previous findings demonstrated that nutrient concentra=ons in brown rice were raised 

by u=lising soil amendments and improved the soil CEC and organic maoer content due to 

retained and reduced leaching of nutrients (Ippolito et al. 2016).  Improvements in soil 

physical proper=es brought about by adding pris=ne or modified biochar can mostly be 

aoributed to the rise in root weight, grain weight, and biomass. This is because adding biochar 

to the soil reduces the bulk density of the topsoil, which also lowers the endurance to root 

growth into the soil profile. As a result, the growth of roots would undoubtedly boost the 

bioavailability of nutrients for rice in soils, further resul=ng in an increase in grain weight and 

biomass. On the other hand, when nutrients were not the main limi=ng factor, enhanced soil 

chemical characteris=cs, such as pH and ca=on exchange capacity (CEC), might also lessen the 

toxicity of As present in rice helping in the growth of the rice plants. However, the growth of 

roots, rice grains, and biomass did not increase along with the increase in biochar doses, 

indica=ng that adding too much biochar might not increase biomass and that the biochar level 

should be kept at op=mum (Yu et al., 2017). 

 

8.4.3. Mechanism of As immobilisa4on/mobilisa4on in biochar amended soil 

Following the applica=on of biochar in paddy soil, many crucial processes lead to the 

mechanisms of As immobilisa=on. The type of biochar used and the modifica=ons made 
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determine the mechanisms of As immobilisa=on/mobilisa=on. The presence of numerous 

func=onal groups like alcoholic, phenolic, and carboxylic groups associated with the biochar 

can play the role of electron donors regula=ng the reduc=on of As(V) to As(III) as has been 

seen in soils treated with biochar (Choppala et al., 2016). Anionic forms of As predominate. 

Therefore, the func=onal groups that are carboxylic and phenolic on the surface of biochar 

par=cles might not have a strong aorac=on for As (Irshad et al., 2020). Modifica=on of biochar 

may be a solu=on to this problem. Rice straw biochar modified with hydroxyapa=te and zeolite 

increased the amount of Ca in soil which sequesters As from the exchangeable frac=on into 

insoluble Ca-bound As (Gu et al., 2018). The presence of a large surface area and the number 

of pores in biochars modified with zeolite further fixed more As from the exchangeable phase. 

Addi=onally, modified biochar having more oxygen-containing func=onal groups (Chen et al. 

2015) may covalently link to As (Hu et al. 2015) and fix the ac=ve As rendering it unavailable 

for crop uptake.  

Modifica=on of wheat straw biochar with goethite resulted in the restricted mobility 

of As in paddy soil due to the presence of Fe func=onal groups. Applica=ons of Fe and Mn 

oxide residues have been shown in numerous prior studies to minimise As uptake in rice by 

controlling the mobility and bioavailability of As in the soil through dissolu=on and 

mineralisa=on (Jindo et al., 2016). The applica=on of goethite-modified biochar may enhance 

the amount of iron oxide in paddy soil, which is essen=al for controlling the uptake of As by 

rice plants (Yu et al., 2017). Another poten=al explana=on for the enhanced produc=on of Fe-

plaques is the raised pH of the soil following the applica=on of goethite-modified biochar. 

A�er adding modified biochar to the soil, there was an increase in the rhizospheric Fe2+ 

concentra=on, which is thought to be the cause of the increased Fe-plaque forma=on. The 

findings demonstrated that amendment improved As sequestra=on by increasing Fe plaque 

forma=on. According to previous findings, adding Fe compounds to contaminated paddy soil 

raised the Fe content of the Fe-plaque on the surface of rice roots, which in turn played a 

significant effect in regula=ng the bioavailability and uptake of As (Yu et al., 2017). Similarly, 

the modifica=on of rice straw biochar with Fe resulted in reducing the As bioavailability by the 

forma=on of Fe-plaque at the rice rhizosphere (Wen et al., 2021). 

To control As movement in rice soils as well as the accre=on of As in rice grains, the 

supplement of Si-rich amendments, such as chemical Si-minerals, Si-fer=lizers, straw 

biomasses, rice husk and related chars has been reported previously (Bogdan and Schenk, 



 123 

2008; Seyfferth and Fendorf, 2012). As(III) and Fe(II) are mostly released from hema=te (-

Fe2O3) and goethite (-FeOOH) in paddy soil, resul=ng in dissolved As(III) and Fe(II) being the 

domina=ng species in soil-porewater in anoxic situa=ons. This implies that using these Si-

impregnated biochar composites by Herath et al., (2020) can reduce the release of high As 

levels in the rice rhizosphere by limi=ng the dissolu=on of Fe minerals in the soil. In order to 

interact electrosta=cally with the posi=vely charged Fe(II) ions in the rice rhizosphere, the O-

SiO- groups linked to the surface of biochar are able to produce a high nega=ve charge on the 

surface of the material. The dissolved O in soil-porewater and silicate groups present in 

biochar both quickly oxidise Fe(II) ions bonded on the biochar surface to Fe(III) at near-neutral 

pH levels. Fe(III) rapidly forms a Si-based ferrihydrite complex on the surface of the biochar by 

complexing with hydroxyl ions found in the soil-porewater. Eventually, As(III) and As(V) form a 

complex a�er being adsorbed on this ferrihydrite layer. Depending on the pH of the medium, 

As(III) can bind to ferrihydrite through inner- or outer-sphere complexa=on. Nearly neutral pH 

allows for the thermodynamically stable development of inner-sphere complexa=on, and 

As(III) inner-sphere complexes formed on ferrihydrite through bidentate interac=ons (Zhao et 

al., 2011). 

The applica=on of maize straw biochar modified with manganese oxide decreased 

As(III) and As(V) mobility and availability in rice both moderately and heavily polluted rice soils 

(Yu et al., 2017). Thus, the applica=on of biochar enhanced Mn content in soils as compared 

to the control. Fe/Mn plaque is reported to have a greater affinity for arsenate than arsenite. 

Reduced mobility and bioavailability are the result of As(III) and As(V) in soil due to the 

forma=on of complexes with a variety of oxides, including Fe, Mn, and Al oxides.  

 The combina=on of zero-valent iron (ZVI) with oil palm fibre biochar resulted in a 

significant decrease in As bioavailability in rice soils (Qiao et al., 2018). The O2 in the paddy 

soils can quickly oxidise the highly reac=ve reducing agent ZVI, conver=ng it into amorphous 

iron oxyhydroxides. Fe2+ is produced through the reac=ons of ZVI and H2O, which can then be 

further oxidised by bio=c (iron oxidising bacteria, FeOBs) or abio=c processes. Amorphous iron 

oxyhydroxides, such as ferrihydrite, are then formed (am-FeOOH). In addi=on to offering a 

large number of new As surface adsorp=on sites, the newly produced iron minerals from the 

aforemen=oned ZVI retain As, increasing As immobilisa=on and decreasing its bioavailability. 

 Several earlier inves=ga=ons employing pot experiments showed that adding biochar 

to the soil throughout rice cul=va=on increased the amount of dissolved As in soil pore water 



 124 

and accelerated the conversion of As frac=ons, such as As combined into Fe oxides 

(amorphous and crystalline) reducing the bioavailability. Lv et al., (2021) reported that rice 

straw, corn stalks and bamboo-derived biochars exhibited a par=al reduc=on (12-16%) in As 

accumula=on in rice grains. The authors by microcosm-based anaerobic incuba=on studies, 

revealed that As levels in soil solu=on treated with biochar significantly rose, by 2.8–6.6 =mes, 

with the increase in biochar doses (0.5–5%, w/w), especially at higher concentra=ons (3–5%, 

w/w). Fe and As were shown to be significantly posi=vely correlated during rice culture (r2 = 

0.73, p < 0.001), sugges=ng that the microbially mediated reduc=ve breakdown of Fe 

(oxyhydr-) oxides may be the primary cause of the release of As during rice cul=va=on 

(Somenahally et al., 2011; Wu et al., 2020). Arsenic concentra=ons in pore water were higher 

in the biochar-treated pots compared to the control during the growth period (Wu et al., 

2020). The increased ac=vity of Geobacter and Desulfosporosinus (As(V)-/Fe(III)-reducing 

bacteria) triggered by an excessive biochar dose was predominantly responsible for the 

discharge of As under anaerobic se�ngs (Chen et al., 2016 and Wang et al., 2017). This 

suggests that an elevated biochar applica=on rate could boost the As availability in polluted 

paddy soils resul=ng in As build-up in rice plants (Wu et al. 2020; Yu et al. 2017). Biochar dose 

could be a major element in regula=ng As kinesis, and biochar at high-dose could increase As 

toxicity in contaminated loca=ons by increasing bioavailability in paddy soil.  

Due to the rela=vely permanent and insoluble nature of the soil carbon pool, the use 

of biochar as a soil amendment lowers the dissolved organic C in pore water obtained from 

field and pot experiments (Jones et al., 2012; Karami et al., 2011; Beesely et al., 2014). 

Whereas Bessely et al., (2014) showed that the applica=on of biochar prepared from orchard 

prune residue increased the organic C content in soil by 50% and resulted in the mobilisa=on 

of As. Because phosphate ions are connected to the mobility and bioavailability of As species, 

interac=ons between As and phosphate ions associated with biochar, are also of concern 

which resulted in the increased dissolu=on of As and hence its bioavailability (Bolan et al., 

2013). With increasing applica=on rates of biochar, soil CEC and pH show a significant rise, 

which may lead to conflic=ng conclusions. High electrical conduc=vity (EC) may cause more 

ca=ons to be present, which may cause As sorp=on or precipita=on, whereas high pH may 

lessen the posi=ve charge on the soil-biochar system and reduce anionic As sorp=on (Liang et 

al., 2006). However, none of the research has specifically examined how the addi=on of 

biochar affects As sorp=on by raising pH and CEC. 
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8.5. Conclusion  

All the experiments were conducted in pots except two which took place under field 

condi=ons. The soils used for the pot experiments were mine-impacted soils rather than the 

soils that were geogenically contaminated with As, like the soils of south and southeast Asia 

(contamina=on due to the use of contaminated irriga=on water). Our meta-analysis showed 

that the applica=on of biochar (pris=ne and modified) in As-contaminated rice soil not only 

effec=vely reduced the As accumula=on in rice grain, but also resulted in the increase of grain 

shoots and grain biomass (yield). The surface area, pore volume, func=onal groups, and 

organic/inorganic makeup of biochar surfaces, as well as their adsorp=on capacity, differed 

substan=ally (e.g., contents of C, O, inorganic elements, ash, mobile maoer, etc.). These crucial 

characteris=cs are influenced by several factors, including the type of biochar used as the 

feedstock, the machinery used in its produc=on, the pyrolysis temperature and dura=on, 

hea=ng rate and post- and pre-treatments. The maize straw and sewage sludge pris=ne 

biochars were most effec=ve in reducing the As content in rice grain in terms of the type of 

feedstock used to produce biochar. The modified biochars were most effec=ve in the 

immobilisa=on of As in soil and hence reducing As bioavailability. The rice straw biochar 

modified with hydroxyapa=te, zeolite and Fe, and maize straw biochar modified with Fe and 

Mn effec=vely increased the Fe- and Ca-bound As frac=ons in the soil which resulted in the 

reduced bioavailability of As. Following the addi=on of modified biochars to paddy soils, As 

may accumulate less in rice =ssues due to a variety of processes and mechanisms, such as the 

chemi- and physi-sorp=on of As species onto biochars, sequestra=on of As on Fe plaque, and 

decreased As uptake by rice roots due to the compe==ve uptake with silicate ions. Further, 

the addi=on of biochar leads to a decrease in the number of Fe(III)-reducing bacteria, which, 

in turn, reduces the mobility and bioavailability of inorganic As species in the rice rhizosphere. 

A low dose of biochar 0.5-2 % (w/w) was effec=ve in reducing the As content in rice grain even 

in highly polluted soils. However, reports of As mobilisa=on due to the applica=on of biochar 

at higher doses (5 % w/w) was also observed. One of the benefits of using biochar as an 

amendment is that it is required in much smaller quan==es compared to organic amendments 

such as vermicompost, farmyard manure, which need to be applied in large quan==es. 

There are several research areas, which should be considered in future studies using biochar-

based sorbents for the remedia=on of As in rice soils: 
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• Compe==on is an=cipated for As sorp=on on the surface of biochar since different 

anions and ca=ons may be present concurrently with As in real systems. Hence 

conduc=ng experiments (pot or incuba=on) should be undertaken in the presence of 

compe=ng ions such as phosphates, sulphates, silicates, and environmental 

contaminants, such as, metals, pes=cides, and per- and poly-fluoro alkyl substances.  

• In rice fields, the pH and Eh of the rhizospheric soil fluctuate dras=cally during the crop 

cul=va=on period due to flood irriga=on a�er a dry spell. Further research is required 

to assess the efficacy of biochars at varying pH and redox (Eh) condi=ons.  

• Typically, mostly pot experiments employing As-contaminated soils (mine-impacted) 

have been carried out. Instead, soils that are naturally/geogenically contaminated with 

As, mirroring the soils of south and southeast Asia, must be u=lised for pot studies. 

• Further inves=ga=on is required to assess the efficacy of biochars in reducing As in rice 

grain in field condi=ons (where water sources for irriga=on are contaminated with As) 

as, in the real systems, various factors will come into play. The amount of irriga=on 

water used the level of contamina=on, the use of fer=lizers, and the cropping 

sequence are likely to affect the efficacy of biochar in As immobilisa=on/mobilisa=on 

which needs to be studied. 

• Research on novel thiol func=onalised biochars, biochar/nano-zero-valent Fe 

composites, and nano-par=cle-impregnated (e.g., mackinawite) biochars is necessary. 

Although liole research has concentrated on these features, modifica=on with amide 

func=onal groups on biochar's surface may significantly aid in sequestering As. 

• Cost benefit analysis of the modified biochar produc=on and its applica=on in field 

condi=ons is required to evaluate the viability of its use in prac=cal terms, as pris=ne 

biochars are rela=vely easier to manufacture and are also effec=ve in the 

immobilisa=on of As in soil. 

• From a pragma=c standpoint, methods for low-tech produc=on of biochar at the 

farmer level are required to ensure the adop=on of pris=ne and modified biochar for 

the remedia=on of As-contaminated paddy soil.   
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Chapter 9 – Summary and Conclusion 

Arsenic is a naturally occurring toxic trace element that is of environmental and public health 

concern. Irriga=on water contaminated with As acts as a potent source of contamina=on to 

humans through water-soil-crop transfer, especially in areas of India, Bangladesh, Nepal, 

Taiwan, Vietnam and Thailand. Rice accumulates a higher concentra=on of As in grains than 

other cereals, such as wheat and barley. However, whilst drinking water has a permissible/safe 

guideline value that has been defined interna=onally, appropriate guideline values for 

irriga=on water and soil are lacking.  

Ini=ally through meta-analysis, decision tree (DT) and logis=c regression (LR) based 

machine learning modelling, the rela=onship between As concentra=ons in rice grain, soil and 

irriga=on water was evaluated. Soil total As (rather than irriga=on water As) was a stronger 

predictor of As in rice grain. Both the decision tree and, to a lesser extent, the logis=c 

regression models successfully predicted the concentra=ons of soil above which As in grain 

would exceed the Codex recommenda=on of 350 µg kg-1 for husked rice and 200 µg kg-1 for 

polished rice. From the logis=c regression the limit for soil total As was 11.75 mg kg-1 and from 

the beoer performing decision tree model, the proposed guideline value for soil total As was 

14 mg kg-1. The predic=on efficacy of both the DT and LR models was validated using purposely 

collected field data. On the basis of the model performance metrics, it was observed that the 

decision tree has an edge over the logis=c regression and hence soil total As of 14 mg kg-1 will 

be an appropriate guideline value. Further the concentra=on of bioavailable As was predicted 

in the paddy soil with the help of random forest (RF), gradient boos=ng machine (GBM) and 

LR models using the collected field samples (n=233) considering other soil parameters: total 

As, pH, organic carbon, available iron and phosphorus. From the beoer performing LR model, 

bioavailable As (BAs), total As (TAs), available iron (AvFe) and organic carbon (OC) were 

significant variables for grain As. From the par=al dependence plots (PDP) and individual 

condi=onal expecta=on (ICE) plots of the LR model 5.70 mg kg−1 was found to be the limit for 

BAs in soil. As the models have been developed using a specific set of data from a specific 

geographical region, it would be naïve to think that they could be applied to all contaminated 

rice growing sites globally. However, tes=ng and fine-tuning the models with more field data 

will enhance their applicability and will serve as a protocol to derive site-specific regulatory 

limits. 
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An aoempt was undertaken to predict the limit for irriga=on water by an incuba=on 

study with (n=420) monolithic soil columns collected from 10 As-contaminated sites. Six levels 

of As contaminated water was applied to the soil columns considering two types of irriga=on 

(rainfed and irrigated) and incubated for 4 months. The LR and linear discriminant analysis 

(LDA) was used to predict the limit of irriga=on water considering the dose of As, soil pH, 

organic carbon, clay, available iron and phosphorus and total As. The LR model performed 

beoer compared to LDA in terms of model performance matrices and predicted 190 µ L-1 as 

the guideline value for irriga=on water. The predicted value sa=sfactorily classified the rice 

grain As when compared with the field samples. Further the LR model developed in this study 

provides a comprehensive understanding of the rela=onship between soil As levels and the 

predictor variables. The study highlights the importance of considering mul=ple soil 

parameters such as pH, OC, AvFe, AvP, TAs and clay in determining safe levels of As in irriga=on 

water, and the need for further research to validate the findings in real-world condi=ons. 

Lastly due to high toxicity and widespread pollu=on by As, developing an appropriate 

and effec=ve method for remedia=on of As-contaminated soil, specifically for rice cul=va=on, 

is crucial. Among the various amendments that have been inves=gated, biochar is a promising 

immobilising agent for metals and metalloids in water and soil. A meta-analysis was conducted 

to assess the efficacy of biochar in the mi=ga=on of As-contaminated rice soils. Both the rice 

crop and the soil were included in this study as it is now well known that soil-crop-food 

transfer is a potent source of As pollu=on par=cularly in south and southeast Asian countries. 

Altogether 23 studies met the selec=on criteria and were considered for meta-analysis. Most 

of the studies were conducted in pots with only two undertaken in field condi=ons. It was 

observed that rice (straw, husk, hulls) and maize (straw, cobs, stems) were predominantly used 

as the feedstock for biochar prepara=on, apart from eggshells, oil palm fibre and bean stalks. 

In all the studies the pyrolysis temperature was high (> 450 °C). From our meta-analysis, it was 

observed that both maize-based biochar (pris=ne and modified) and sewage sludge (pris=ne) 

were effec=ve in reducing rice grain As content. Further applica=on of biochar resulted in an 

increase in the root, shoot, leaf, and grain biomass (yield) over controls. Modified biochar was 

most effec=ve in immobilizing As to the Fe and Ca-bound frac=ons in soil, compared to pris=ne 

biochar, and thus reduced the bioavailability of As. However, at higher doses of biochar 

applica=on, As mobiliza=on was observed in some instances. Biochar can be an effec=ve tool 
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in the sequestra=on of As in soil, but further research is required under realis=c field 

condi=ons. 

The findings from this research are cri=cal for the public health response in As-

contaminated regions. By minimizing As intake from food consump=on, we can reduce the 

risk of serious health problems and improve the quality of life for millions of people. The 

guideline values will also help to ensure the safety of rice cul=va=on and reduce exposure to 

harmful levels of As. By se�ng regulatory limits for contamina=on, government agencies can 

help prevent the occurrence of health problems and reduce the risk of exposure to As. 

Furthermore, regulatory limits provide a framework for monitoring and enforcing compliance 

with these limits, which will help ensure that the public is protected from exposure to unsafe 

levels of As contamina=on. 

In conclusion, As contamina=on is a significant public health issue that requires 

aoen=on. My research has provided essen=al data to establish guideline values for As in soil 

and irriga=on water, which will help policymakers and farmers to implement strategies to 

reduce As exposure. It is my hope that these findings will be widely disseminated and acted 

upon to protect the health and well-being of people living in As contaminated regions. 
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Mondal, D. (2021). Meta-Analysis Enables Prediction of the Maximum Permissible 

Arsenic Concentration in Asian Paddy Soil. Frontiers in Environmental Science, 

9:760125. 

2. Mandal J., Bakare, W.A., Rahman, M.M., Rahman, M.A., Siddique, A.B., Oku, E., Wood, 

M.D., Hutchinson, S.M. and Mondal, D. (2022). Varietal differences influence arsenic 

and lead contamination of rice grown in mining impacted agricultural fields of Zamfara 

State, Nigeria, Chemosphere, 135339. 

3. Mandal, J., Jain, V., Sengupta, S., Rahman, M.A., Bhattacharyya, K., Rahman, M.M., 

Golui, D., Wood, M.D. and Mondal, D. (2023). Determination of bioavailable arsenic 

threshold and validation of modelled permissible total arsenic in paddy soil using 

machine learning. Journal of Environmental Quality. 
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4. Moulick, D., Ghosh, D., Mandal, J., Bhowmick, S., Mondal, D., Choudhury, S., Santra, 

S.C., Vithanage, M. and Biswas, J.K. (2023). A cumulative assessment of plant growth 

stages and selenium supplementation on arsenic and micronutrients accumulation in 

rice grains. Journal of Cleaner Production, p.135764. 

https://doi.org/10.1016/j.jclepro.2022.135764  

5. Sengupta, S., Bhattacharyya, K., Mandal, J. and Chattopadhyay, A.P. (2022). 

Complexation, retention and release pattern of arsenic from humic/fulvic acid 

extracted from zinc and iron enriched vermicompost. Journal of Environmental 

Management, 318, p.115531. https://doi.org/10.1016/j.jenvman.2022.115531  

 

A.2. Book Chapters 

1. Mandal, J., Golui, D., Ray, P. and Bhaoacharyya, P., 2022. Heavy Metal Pollu=on in Soil 

and Remedia=on Strategies. In Soil Management For Sustainable Agriculture (pp. 505-

529). Apple Academic Press. hops://doi.org/10.1201/9781003184881   

2. Sengupta, S., Roychowdhury, T., Phonglosa, A. and Mandal, J., 2022. Arsenic 

Contamina=on in Rice and the Possible Mi=ga=on Op=ons. In Global Arsenic Hazard: 
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Ecotoxicology and Remedia4on (pp. 35-48). Cham: Springer Interna=onal Publishing. 

hops://doi.org/10.1007/978-3-031-16360-9_3 

3. Chowdhury, N.R., Das, A., Joardar, M., Mridha, D., De, A., Majumder, S., Mandal, J., 

Majumdar, A. and Roychowdhury, T., 2022. Distribu=on of Arsenic in Rice Grain from 

West Bengal, India: Its Relevance to Geographical Origin, Variety, Cul=vars and 

Cul=va=on Season. In Global Arsenic Hazard: Ecotoxicology and Remedia4on (pp. 509-

531). Cham: Springer Interna=onal Publishing. hops://doi.org/10.1007/978-3-031-

16360-9_23 

A.3. Others 

• Participated and presented a research paper (online) at 9th Annual Convention and 

National Webinar on “Managing Agro-Chemicals for Crop and Environmental Health” 

organised by Society of Fertilizers and Environment and received the Best Paper 

Presentation Award. 

• Successfully chaired virtual conference session on 'Managing environmental pollution 

for sustainable development' with my supervisor Prof. Mike Wood at International 

Postgraduate Research Conference (IPGRC) from 4th -6th April 2022. 

• Delivered an invited talk on “Prospects of using Machine Learning Algorithms in 

Natural Resource Management” at the National Webinar on Sustainable Intervention 

towards Resource Conservation and Natural Farming organised by Assam Agricultural 

University, Jorhat, Assam.  

• Media coverage of our research work by India Water Portal and Aaj Tak and 

Bartaman newspaper (Bengali language). The Links are as follows: 

https://bangla.aajtak.in/specials/story/arsenic-concentration-asian-paddy-soil-irrigation-

water-contaminated-too-abk-336076-2022-01-22  

https://www.indiawaterportal.org/articles/soil-arsenic-above-14-mgkg-can-cause-rice-be-

unsafe-consumption   

hops://bartamanpatrika.com/home?cid=13&id=459796  
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 Appendix B – Training, Conference/Seminars a>ended and Supervision Records 
B.1. Training/Courses/Workshop Undertaken  

Date  Training Undertaken Aim of the training  
03/10/2020 PGR Welcome and Induction Designed to navigate research project 

and provides essential information to 
programme of study. 

03/10/2020 Researcher Integrity and 
Research Ethics 

Ensure compliance with university and 
legal requirements for research ethics. 
Guide and support researchers 
through the research ethics application 
submission process 

04/10/2020 Introductory Research Skills Statistical Software 
16/10/2020 PGR Return to Campus and 

Remote Working Safety Induction 
Safety measures to be undertaken 

16/03/2021 Statistical Learning (STATSX0001) 
Stanford Online, Stanford 
University.  
Course Duration: 3months 

An Introduction to Statistical Learning, 
with Applications in R 

12/04/2021  Peer Reviewer Course 
Researcher Academy, Elsevier 

Techniques for peer reviewing a 
scientific article 

07/03/2022 Research Impact Workshop To embed real-world impact from the 
outset of research projects to ensure 
maximum benefit to public and 
stakeholders 

 
B.2. Conferences/Seminars 

Date  Conference  Presentation  
15th December 2020 Workshop on Nature and 

nurture in Arsenic induced 
toxicity in Bihar 

Oral presentation – 10 minutes  

10th June 2021 8th UK & Ireland 
Occupational and 
Environmental Exposure 
Science Meeting 2021 

Oral presentation – 5 minutes  

29th June 2021 Salford Postgraduate 
Annual Research 
Conference (SPARC), 2021 

Oral Presentation-7 minutes 

17th November 2021 85th Annual Convention 
of the Indian Society of 
Soil Science 

Oral Presentation-15 minutes 

25th February 2022 9th Annual Convention and 
National Webinar on 
“Managing Agro-Chemicals 
for Crop and Environmental 
Health” organised by Society 
of Fertilizers and 
Environment 

Oral Presentation-10 minutes 
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5th April 2022 International Postgraduate 
Research Conference 
(IPGRC), University of Salford 

Oral Presentation-15 minutes 

30th July 2022 Salford Postgraduate 
Annual Research 
Conference (SPARC), 2022 

Oral Presentation-7 minutes 

 
B.3. Supervision Mee4ng Records 1st, 2nd and 3rd year 

Meeting No. Date Medium 

1 13/10/2020 MS-Teams 

2 16/11/2020 

3 17/12/2020 

4 28/01/2021 

5 11/02/2021 

6 24/03/2021 

7 29/04/2021 

8 21/05/2021 

9 14/06/2021 

10 12/07/2021 

11 12/08/2021 

12 07/08/2021 

13 07/09/2021 

14 25/10/2021 

15 24/11/2021 

16 17/12/2021 

17 19/01/2022 

18 15/02/2022 In-person 

19 23/03/2022 MS-Teams 

20 25/04/2022 In-person 

21 23/05/2022 MS-Teams 

22 13/06/2022 MS-Teams 

23 08/07/2022 MS-Teams 

24 15/08/2022 MS-Teams 
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25 16/09/2022 MS-Teams 

26 03/10/2022 MS-Teams 

27 07/11/2022 MS-Teams 

28 06/12/2022 MS-Teams 

29 25/01/2023 MS-Teams 

30 08/02/2023 MS-Teams 

31 06/03/2023 MS-Teams 
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Appendix C: Ethical Clearance  
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 Appendix D- R-Codes 
D.1.R-Codes for training of the models (Logis4c Regression and Decision tree) with meta data 
and tes4ng with field data 
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D.2. R-Codes for training and tes4ng of the models (Logis4c Regression, Gradient Boost 
Machine and Random Forest) 
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D.3. R-Codes for training and tes4ng of the models (Logis4c Regression and Linear 
Discriminant Analysis) for predic4on of irriga4on water As 
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