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Abstract

Cloud computing provides scalable, flexible, and cost-effective computing re-
sources. Cloud adoption has, however, introduced resource utilisation and service
unavailability issues during the process of designing, deploying, and hosting cloud-
native applications. These challenges can occur due to large, sudden, yet legitimate
influxes of user requests, also known as flash crowds, and resource failures. Interac-
tive web applications that experience sudden surges in user activity are particularly
susceptible to these challenges. In this research, novel cloud algorithms and tech-
niques were developed to address these challenges. An experimental approach was
used to evaluate these novel cloud algorithms and techniques.

The main contribution of this research is the creation of an experimentally char-
acterised novel weight-assignment load balancing algorithm that combines five
carefully selected server metrics to determine the server’s capacity to efficiently
distribute the workload of three-tier web applications among application servers.
A novel decentralised multi-cloud architecture and algorithm were also developed
to distribute the workload of three-tier web applications using geographical and
improved load distribution techniques.

In this research, a private OpenStack cloud was configured followed by a bespoke
cloud experimental testbed, and finally, a heterogeneous multi-cloud experimental
testbed to evaluate the novel algorithms. The experimental evaluation validated the
novel algorithms against the baseline load distribution algorithms and techniques.
The algorithms were implemented as a software service and were tested using the
workload of an open-source cloud-hosted E-Commerce application.

The experiments carefully measured response times, scalability, number of errors,
and throughput during flash crowds and resource failure scenarios. Results showed
that the novel load balancing algorithms and architecture are more resilient to
fluctuating loads and resource failures than baseline algorithms. For example, the
novel single cloud load balancing algorithm improved the average response times
by 12.5% when compared to the baseline algorithm and by 22.3% when compared

xvi



xvii

to the round-robin algorithm in the flash crowds situation.

The main conclusion of this research is that cloud-native application developers can
mitigate the adverse effects of flash crowds and resource failures by using dynamic
load balancing algorithms that carefully combine selected server metrics that affect
a specific class of applications. Furthermore, the success of implementing and
coordinating heterogeneous cloud infrastructure demonstrates the usability of the
experimental testbed to evaluate cloud algorithms.



Chapter 1

Introduction

1.1 Introduction

Cloud computing is the latest answer to scalable and reliable computing. Its
services provide pay-as-you-go access to computing infrastructure and resources
over the Internet thus making utility computing a reality (Armbrust et al., 2010;
Buyya et al., 2018; Rimal & Maier, 2017; Varghese & Buyya, 2018). Cloud
computing offers a flexible and economical way to rent pre-configured computing
resources. This model of outsourcing computing resources offers organisations the
opportunity to own software applications that can serve global users.

Consequently, the use of cloud applications continues to gain rapid adoption in
businesses because of the benefits of using the cloud (Akintoye & Bagula, 2019;
de Paula Junior et al., 2015; Kumar & Kumar, 2019; Odun-Ayo et al., 2017). These
benefits include flexibility, low cost of ownership, the ability to reach users across
the globe, and the availability of configurable options that suit customers’ needs
(Adewojo & Bass, 2022b; Buyya et al., 2018; “Cloud adoption to accelerate IT
modernization — McKinsey”, 2022; Elmroth, 2022). Additionally, scalability,
on-demand access, and elasticity are key features that promote the rapid adoption

1
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of cloud computing and cloud-deployed applications (de Paula Junior et al., 2015;
Grozev & Buyya, 2014b; Qu et al., 2017). The effect of this rapid adoption is that
cloud data centres are fast becoming the preferred deployment environment for
software applications (Buyya et al., 2018; Grozev & Buyya, 2014b).

Cloud-native applications are generally offered as Software-as-a-Service (SaaS) to
end users (Foster et al., 2008; Grozev & Buyya, 2014b). These applications run
on the web and tend to be interactive and serve a general purpose (Fowler, 2002;
Grozev & Buyya, 2014b). The three-tier architecture is a prevalent deployment
architectural model for SaaS business applications (Fowler, 2002; Grozev & Buyya,
2014b). These applications are often deployed to the cloud, but the process of
building, deploying, and hosting these applications contains challenges. The
process requires a reusable, methodical, and efficient deployment approach. Design
patterns ensure that technical risk and software debt are reduced when properly
followed. Design patterns also determine whether or not the required quality
attributes of the application will be exhibited (Bass et al., 2012; Fehling, Leymann,
Retter, Schupeck, et al., 2014). Designing cloud-native applications requires a
mastery of design principles, patterns, and architectural insights. However, there is
still a long way to go before these aspects are fully understood (Vale et al., 2022).
The use of design patterns is one such aspect. Design patterns begin to emerge as
professionals encounter and overcome challenges associated with this architectural
approach and share solutions to specific problems (Vale et al., 2022). Design
patterns give software architects an array of techniques to overcome software
design issues, thereby reducing the technical risk to their projects by not having
to employ new and untested design approaches. Similar to design patterns, cloud
design patterns are applicable to frequently occurring cloud design problems.

A recurring challenge associated with the implementation of the right cloud design
pattern (while building cloud applications), is the difficulty in understanding how
and where the cloud design pattern applies (Ochei et al., 2015). Despite research
that has collated cloud patterns for describing the cloud, its properties, and how to
deploy and use various cloud offerings (Fehling, Leymann, Retter, Schupeck, et al.,
2014; Fowler, 2002; Homer et al., 2014; Wilder, 2012), the structure for describing
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these patterns lacks uniformity and comprehensiveness. Research also indicates
that there is not enough evidence to show that design patterns are inherently valid
(Baltes & Ralph, 2022; Vale et al., 2022). For these reasons, it is not uncommon
to find situations where a good fit design pattern for a cloud-native application is
picked but teams are unable to implement them successfully (Jamshidi et al., 2018).
Patterns should therefore be subjected to further evaluations just as any other type
of theory (Riehle et al., 2021).

Aside from the challenges associated with building cloud applications, there is a
problem with balancing the workload of cloud-native applications after they have
been deployed to the cloud. This load-balancing challenge is commonly the result
of flash crowds and resource failures (Qu et al., 2016; Qu et al., 2017). Flash
crowds is a legitimate, rapid, and fluctuating user request surge that occurs because
of the increase in users trying to access an application. Some adverse effects
of not properly handling flash crowds and resource failures are unavailability of
services and low network latency to end users (Buyya et al., 2018; Grozev & Buyya,
2014b). Cloud providers typically use common load balancing and auto-scaling
strategies to combat flash crowds and resource failure scenarios. However, research
confirms that this approach does not suffice because these applications still suffer
some performance degradation as a result of the inability of the load balancer to
effectively distribute the workload or because the auto-scaling strategy was too
slow to scale out resources or it did not respond at the required time (S.-L. Chen
et al., 2017; de Paula Junior et al., 2015; Grozev & Buyya, 2014b; Tychalas &
Karatza, 2020). Also, research shows that there is a need for deployment strategies
that can overcome service unavailability, vendor lock-in, low latency to end users,
and improved regulatory compliance strategy (Buyya et al., 2018; Grozev & Buyya,
2014b).

This study will investigate design patterns for software applications with a view
to improving the cataloguing of cloud design patterns. This study will also create
an enhanced cloud pattern structure and apply the enhanced pattern structure to
multi-tenancy patterns which is a key cloud architecture pattern for successfully
deploying applications. Most importantly, this study will develop novel load
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distribution techniques and combine these techniques alongside multiple cloud
deployment strategies to mitigate the adverse effect of flash crowds and resource
failures such as service unavailability, vendor lock-in issues, low latency to end
users, regulatory compliance issues and other related issues of cloud-hosted web
applications.

1.2 Problem Context

There are complexities involved in the process of designing and developing soft-
ware applications, which is only further exacerbated in the design process of
cloud-native applications. This is because cloud-native applications are designed
and deployed to be inherently scalable, portable, available, reliable, and predictable.
As a result of this inherent complexity, software architects find it difficult to im-
plement the right design patterns when developing software applications. The
incorrect implementation of design patterns can result in software failure, which
leads to a host of negative cascade effects such as economic loss and a resultant
impact on the quality of life of the software users. The failure of cloud-native
applications is even more far-reaching because these applications usually serve
users globally.

Conversely, research shows that the correct use of design patterns reduces the
chances of software failures (Bass et al., 2012; Fowler, 2002), improves quality
attributes of the application (Bass et al., 2012), increases fault detection rate (Ali
et al., 2020), and improves the response time of web application and micro-services
(Saboor et al., 2021). Therefore, it is expedient that solutions be provided to
improve the chances of correctly using design patterns. This study investigates
cloud design patterns and the difficulty associated with implementing the right
cloud design pattern to cloud-native applications. This scrutiny is critical for
building reliable and robust software applications. In addition, the structure of
cloud design patterns will be improved to ease the process of designing cloud-
native applications with the right cloud design pattern. The improved cloud pattern
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structure will also be applied to a key architectural cloud design pattern to validate
its use against common practices.

So, this study will compare and contrast the structures of cloud design patterns
with widely cited pattern catalogue structures. The knowledge gained from the
comparison will be used to create an improved cloud design pattern structure.
Furthermore, this study will implement the multi-tenancy patterns in case-study
applications to validate the use of multi-tenancy patterns. The implementation will
showcase the use of a general cloud deployment strategy and the use of container
technology to validate the ability to use the patterns in different environments.
The implementation will also be experimentally evaluated, with its performance
characterised through the use of response times and the number of errors.

In addition to these challenges, there is the problem of load-balancing the workload
of cloud-native web applications. This problem arises because of the vulnerability
of these applications to flash crowds, caused by viral interactions and posts (de
Paula Junior et al., 2015; Grozev & Buyya, 2014b; Qu et al., 2017). Challenges
to workload distribution in cloud-native web applications is also exacerbated by
resource failures. These challenges (flash crowds and resource failures) pose
potential economic damage and previous studies concluded that they constitute
critical problems (Qu et al., 2016; Qu et al., 2017). Also, performance degradation
of cloud-hosted web applications is one of the leading causes of economic loss
in businesses (de Paula Junior et al., 2015), and it is a major cause of customer
dissatisfaction when using web applications (Buyya et al., 2018; de Paula Junior
et al., 2015).

This study will investigate and create solutions to combat the negative effects of
flash crowds and resource failures, thereby alleviating performance degradation in
cloud-hosted web applications. Research shows that an approach to address perfor-
mance degradation is to use customised and targeted load-balancing techniques
that take into account the key factors that affect the real-time behaviour of a server
and cloud resource (S.-L. Chen et al., 2017; Z. Chen et al., 2018). The proposed
solutions will include load distribution algorithms and cloud deployment strategies
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for cloud-hosted web applications. The proposed algorithms will combine key
server metrics for distributing three-tier web application workloads. This study will
also create a novel multi-cloud algorithm and deployment strategies to mitigate
flash crowds, resource failure, low network latency, and legislative issues. By
adopting a multi-cloud deployment strategy, the over-provisioning of resources,
vendor lock-ins, service availability, and customisation issues can be avoided. The
proposed algorithms will be experimentally evaluated on real cloud infrastructures,
and their performance will be compared with the performance of benchmarked
algorithms, and performance metrics such as response times, throughput, and
scalability will be used to characterise the performance of the proposed algorithms.

1.3 Research Motivation

Research has identified that faulty cloud-hosted web applications occur partly
because of the lack of the use of right design patterns and principles (Ali et al.,
2020; Fehling, Leymann, Rette, et al., 2014). It is therefore pertinent to investigate
current cloud design patterns and principles with the view of proposing much
better design patterns. Furthermore, studies (S.-L. Chen et al., 2017; Grozev &
Buyya, 2014b; Tychalas & Karatza, 2020) show that the standard load balancing
technique is not sufficient for most cloud-based applications. Hence, the reason for
performance degradation in cloud-hosted applications. These studies corroborate
the fact that there is a need for a dynamic and real-time capacity-focused load
balancing algorithm and deployment strategies for cloud-hosted web applications.

An approach to alleviating issues associated with a standard load balancing algo-
rithm is to incorporate into the algorithm the key factors that affect the real-time
load of a virtual machine (VM). This research identifies the following key server
metrics, namely: CPU utilisation, memory utilisation, network bandwidth, number
of threads running, and network buffers. These server metrics are considered to
be the most relevant determinants of a VM’s real-time capacity and load. Incor-
porating these factors will help a load balancer to make decisions based on the
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current capacity and real-time load of a VM, and, therefore, better utilise available
resources and improve performance.

The use of multiple clouds (multi-clouds) promises an improved quality of service
(QoS), compliance with legislation, resilience, and cost-effectiveness for cloud-
hosted applications. Multiple geographically distributed cloud sites can serve
users worldwide with low network latency, thereby providing improved Quality
of Experience (QoE). As a result, the question arises as to how these objectives
can be achieved in conjunction, without adding significant overhead to the system
(Grozev & Buyya, 2014a, 2014b). This research will improve the previously
created load balancing algorithm to create a multi-cloud load distribution algorithm
and deployment strategy that features a unique communication strategy. The use of
the proposed unique communication strategy will ensure that the added overhead
to the system is reduced while mitigating the challenges of cloud-hosted web
applications.

1.4 Research Aim, Question, and Objectives

The aim of this research is to create novel cloud load distribution management
and deployment techniques, which can alleviate the challenges of hosting web
applications on cloud. More specifically, this research focuses on the following
research question.

How do we ensure efficient deployment and hosting of web applications on cloud?
In this research, the following requirement constraints are imposed on the research
question:

1. stringent reliability of cloud-native web application

2. minimised changes to existing applications that will be migrated to the cloud.

3. maintain quality of service in flash crowds and resource failures.
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4. serve end users near geographical locations to experience better responsive-
ness and to adhere to legislative rules.

To achieve the aim of this research and answer the research question, the specific
objectives of this research are as follows:

1. To critically investigate, analyse, and experiment with different approaches
to application deployment, brokering techniques, resource management, and
load distribution in the cloud.

2. To create a reliable experimental platform that can be used to evaluate the
proposed cloud algorithms and techniques.

3. To develop a flexible and general application brokering architecture that can
facilitate resource management and efficient workload distribution, especially
for existing web applications that will be migrated to the cloud.

4. To develop novel load distribution and resource provisioning algorithms and
workload management approach that can mitigate cloud-hosted application
challenges.

5. To experimentally evaluate the novel cloud algorithms and techniques pro-
posed.

1.5 Research Contribution

Following the previously defined research question and objectives, the contributions
of this research are as follows:

1. A survey of the state-of-the-art cloud application deployment, resource
management, and brokering techniques and architectures.
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2. An enhanced cloud design pattern structure, enhanced multi-tenancy patterns,
and a novel implementation of multi-tenancy on chosen web applications.

3. A bespoke private and multi-cloud experimental environments to evaluate
cloud algorithms and techniques.

4. A novel hybrid-dynamic weight assignment load balancing algorithm to
improve workload distribution of web applications and combat the negative
effect of flash crowds and resource failures.

• The identification and introduction of a key server metric that forms
part of the novel algorithm’s server metrics.

• A design approach for deploying existing web applications to the cloud
with minimal changes to the code base.

• Experimental evaluation through extensive cloud infrastructure and
workload model.

5. A novel decentralised multi-cloud load balancing architecture and algorithm
that alleviates the challenges of vendor lock-in issues, legislative compliance
issues, low network latency issues, and the negative effects of flash crowds
and resource failures.

• An improved architecture to properly distribute the workload of three-
tier web applications across multiple clouds.

• An improved communication protocol of multi-cloud load balancing
system.

The following publications were also contributions of this study.

• Adewojo, A.A., Bass, J.M. A Novel Weight-Assignment Load Balancing Al-
gorithm for Cloud Applications.SN COMPUT. SCI. 4, 270 (2023). https://doi-
org.salford.idm.oclc.org/10.1007/s42979-023-01702-7.
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• Adewojo, A. A., & Bass, J. M., (2022). A novel weight-assignment load bal-
ancing algorithm for cloud applications. CLOSER 2022: 12th International

Conference on Cloud Computing and Services Science, 86-96. 1

• Adewojo, A. A., & Bass, J. M., (2022). Multi-cloud load distribution for
three-tier applications. CLOSER 2022: 12th International Conference on

Cloud Computing and Services Science, 296-304.

• Adewojo, A. A., & Bass, J. M. (2018). Evaluating the effect of multi-
tenancy patterns in containerized cloud-hosted content management system.
2018 26th Euromicro International Conference on Parallel, Distributed and

Network-based Processing (PDP), 278–282.

• Adewojo, A. A., Bass, J. M., & Allison, I. K. (2015). Enhanced cloud pat-
terns: A case study of multi-tenancy patterns. 2015 International Conference

on Information Society (i-Society), 53–58.

• Adewojo, A. A., Bass, J. M., Allison, I. K., & Hui, K. (2015). Cloud
deployment patterns: Migrating a database driven application to the cloud
using design patterns. Proceedings of the World Congress on Engineering

and Computer Science, 1, 198–203

1.6 Thesis Organisation

The structure of the thesis in terms of their logical dependencies is indicated in
Figure 1.1.
The remaining chapters of this thesis are organised as follows:

• Chapter 2 presents the related literature on design patterns, cloud migration
process, methods and cloud deployment tools, strategies, and technologies.

1Awarded Best Student Paper.
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Figure 1.1: Thesis Structure and Logical Dependencies.

Furthermore, this chapter reviews resource management and brokering tech-
nologies for cloud-based applications and experimental cloud environments
that are used to evaluate cloud-based algorithms.

• Chapter 3 presents the research approach and methodologies that were used
to conduct the research in this thesis.
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• Chapter 4 presents enhanced cloud design pattern structure, enhanced multi-
tenancy patterns, and a novel implementation of multi-tenancy patterns
(Adewojo, Bass, & Allison, 2015; Adewojo, Bass, Allison, & Hui, 2015;
Adewojo & Bass, 2018).

• Chapter 5 presents a novel approach to mitigating the challenges of cloud-
deployed applications. It proposes a novel load distribution algorithm for
three-tier web applications deployed on the cloud using a novel weighting
technique and dynamic load balancing strategy. This algorithm improves
resource provisioning and workload management for three-tier applications
deployed on cloud (Adewojo & Bass, 2022b, 2023).

• Chapter 6 presents a novel approach for deploying three-tier web applica-
tions across multiple clouds through a de-centralised deployment architecture.
It further presents a novel multi-cloud load balancing algorithm for distribut-
ing the workload of three-tier web applications deployed across multiple
clouds (Adewojo & Bass, 2022a).

• Chapter 7 discusses the findings of the research, compares them to existing
research work, and positions the contributions of the research.

• Chapter 8 concludes the thesis, revisits and summarises the research contri-
butions, and suggests the scope for future work.



Chapter 2

Literature Review

2.1 Introduction

This chapter presents an overview of existing literature on design patterns, cloud de-
sign patterns, deployment strategies for cloud-hosted applications, and techniques
to mitigate the challenges of cloud-hosted web applications.

This chapter also presents knowledge from articles, reports, conference proceedings,
books, and experimental research conducted during this research. Overall, this
chapter contributes to the thesis by justifying the necessity of cloud patterns and
novel load distribution management and deployment techniques.

2.2 Cloud Computing

Cloud computing provides scalable resource provisioning, IT infrastructure, de-
velopment platforms, data storage and software applications over the Internet on
a pay-as-you-use manner (Armbrust et al., 2010; Rimal & Maier, 2017; Vargh-
ese & Buyya, 2018; Walraven et al., 2012). The National Institute of Standards

13
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and Technology (NIST) defines the cloud as “a model for enabling ubiquitous,
convenient, and on-demand access to a shared pool of configurable computing
resources (e.g. networks, servers, storage, applications, and services) that can
be rapidly provisioned and released with minimal management effort or service
provider interaction” (Mell, Grance, et al., 2011). In addition, Armbrust et al.

(Armbrust et al., 2010) specified that the definition of cloud computing includes
both the applications delivered as a service and the hardware and systems software
in the cloud data centres that provide those services. Although there exist many
definitions of cloud computing, the common agreed concepts and characteristics of
this trending model according to Buyya et al. (Buyya et al., 2010) are on-demand
self-service, pay-per-use, broad network access, elastic capacity, and virtualised
resources (Buyya et al., 2010; Mell, Grance, et al., 2011).

2.2.1 Cloud Service Model

Cloud service models describe the style for which cloud providers offer IT re-
sources. According to the NIST definition of cloud, the cloud is composed of three
service models.

1. Software as a Service (SaaS). SaaS is a cloud service model that offers run-
ning and complete applications to customers as a service (Fehling, Leymann,
Retter, Schupeck, et al., 2014; Mell, Grance, et al., 2011). These applica-
tions are accessible from different client devices such as a web browser, a
thin client, or a program interface. Furthermore, the ability to manage the
underlying infrastructure (network, servers, operating systems, and storage)
or application capabilities is solely the responsibility of the cloud providers
such as Salesforce, and Cloud-based WordPress. SaaS eliminates the need
for personal computing infrastructure for application deployment.

2. Platform as a Service (SaaS). PaaS is a cloud service model that offers the
complete execution environment and deployment platform for a specific
type of applications (Fehling, Leymann, Retter, Schupeck, et al., 2014; J.-F.
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Zhao & Zhou, 2014). Customers are given the ability to deploy on to cloud
infrastructures their bespoke or acquired applications using programming
tools that are provided by the cloud provider. Similar to SaaS, consumers do
not manage or control the underlying cloud infrastructures but have control
over the deployed applications and configuration settings for the application
hosting environment (Mell, Grance, et al., 2011). Google App Engine is an
example of a PaaS.

3. Infrastructure as a Service (IaaS). IaaS is a cloud service model that allows
consumers to provision processing, storage, network, and other fundamental
computing resources. Examples of IaaS providers include Amazon Web
Services (AWS), Windows Azure, and IBM Cloud.

2.2.2 Cloud Deployment Models

Cloud deployment models represent the cloud environments that host the comput-
ing resources and the group of consumers that can access these resources. Accord-
ing to the NIST definition of cloud computing, there are four cloud deployment
models as discussed below.

1. Public: A public cloud offers its cloud services and infrastructure to everyone
(Fehling, Leymann, Retter, Schupeck, et al., 2014; Mell, Grance, et al.,
2011).

2. Private: A private cloud is exclusively created for a specific organisation,
hence it is available only to accredited members of that organisation (Fehling,
Leymann, Retter, Schupeck, et al., 2014; Mell, Grance, et al., 2011).

3. Community: A community cloud offers its services exclusively to a specific
community of consumers from different organisations that have shared con-
cerns and trust each other (Fehling, Leymann, Retter, Schupeck, et al., 2014;
Mell, Grance, et al., 2011).
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4. Hybrid: A hybrid cloud combines two or more discrete cloud infrastructures
(private, public, or community) that remain distinct entities but are linked by
proprietary or standardised technologies for data and application portability.
An example of proprietary technology is cloud bursting which balances the
load between clouds. It is the usage of external cloud resources when local
ones are insufficient (Mell, Grance, et al., 2011).

The multi-cloud is a type of hybrid cloud that combines multiple indepen-
dent cloud infrastructures through a client or service (Buyya et al., 2018;
Grozev & Buyya, 2014b). As discussed previously, multi-clouds facilitate
the development and deployment of responsive cloud-hosted web applica-
tions. A novel implementation of multi-cloud as a deployment strategy for
managing web applications’ workload and combating resource failures and
flash crowds will be discussed in 2.8.3.

2.3 Cloud-Hosted Applications Architectures

There are commonly four architectural styles that cloud-native applications follow
(“Four Architecture Choices for Application Development in the Digital Age:
Which application architecture model is best for you in the cloud era?”, 2020).
They are Monolithic, Microservices, Event-driven serverless, and cloud-based
architecture.

2.3.1 Monolithic

Monolithic architecture encapsulates several tightly coupled functions and function-
ality into a single application (De Lauretis, 2019; Ponce et al., 2019). Monolithic
applications are designed to handle multiple related tasks and so their modules
cannot be executed independently. This architecture favours a quick deployment of
newly developed applications (easier to develop, deploy, and manage). However,
this architecture no longer meets the needs of scalability and elasticity which are



CHAPTER 2. LITERATURE REVIEW 17

key properties of cloud and rapid development cycles and a key property of cloud
deployed applications. Common issues that are associated with this architectural
style are a large code base, the inability to maintain code, and the low productivity
of developers (Ponce et al., 2019).

2.3.2 Microservices

In a microservices architecture, the application is structured as a collection of
services. It is possible to write each service in a different programming language
and test it separately. They can be deployed independently and are organized around
business capabilities (“Four Architecture Choices for Application Development in
the Digital Age: Which application architecture model is best for you in the cloud
era?”, 2020). Microservices promise agility, autonomy, scalability, and reusability
(Vale et al., 2022). They are used primarily for large-scale and cloud-native
commercial applications.

2.3.3 Event-driven serverless

An event-driven architecture (EDA) consists of decoupled systems that respond to
events. Events are used to trigger and communicate between decoupled services in
an event-driven architecture. While EDA has existed for a long time, it now has
more relevance in the cloud because the architecture style provides a significant
increase in agility, cost savings, and operational benefits (“Four Architecture
Choices for Application Development in the Digital Age: Which application
architecture model is best for you in the cloud era?”, 2020).
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2.3.4 Cloud-based architecture

A cloud-based architecture is an abridged architecture that improves a monolithic
architecture to suit the cloud. The cloud-based architecture is best suited for
building and deploying modern web applications in the cloud. This architecture
typically involves load balancers, web servers, application servers, and databases.
It can benefit from cloud features such as resource elasticity, software-defined
networking, auto-provisioning, high availability, and scalability (“Four Architecture
Choices for Application Development in the Digital Age: Which application
architecture model is best for you in the cloud era?”, 2020).

The decision on which architecture model is best for an application depends on
the type of application and non-functional requirements. However, the deployment
of applications that follows any of these architectural styles often follows the
tiered architectural style. The three-tier deployment architecture is a prevalent
deployment architecture for cloud-hosted web applications (Grozev & Buyya,
2014b).

Three-tier architecture is an enterprise software architecture and a common ar-
chitectural pattern for deploying web applications (Fowler, 2002; IBM Cloud
Education, 2020). The three-tier architecture is the most popular implementation
of a multi-tier architecture (Amazon, 2021b). This architecture supports loose
coupling, scalability, reliability, efficient load balancing, and so on (Archiveddocs,
2022b; Fowler, 2002; Grozev & Buyya, 2014b; “Rockford Lhotka - Should all
apps be n-tier?”, 2020). It features three physical deployment tiers of a software
application’s logical layers (code organization). Therefore, a three-tier web ap-
plication is an interactive application that can be accessed over the Internet, with
three or more layers deployed across three physical tiers/machines (Fowler, 2002;
Ramirez, 2000). The tiers are commonly referred to as Client Tier, Business/App
Tier, and Data Tier.

• Client Tier: This tier commonly hosts the presentation layer of the web ap-
plication. The presentation layer is the user interface of the web application.
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• Business/App Tier: The business logic/domain layer, service layer, and some-
times an application facade are deployed on this tier. This tier commonly
has the application server installed on it. The business logic is responsible
for the manipulation of application data, the application of business rules
and policies, and ensuring data consistency and validity.

• Data Tier: The data tier hosts the application that stores and manages the
information processed by the software application.

As a result of the variety of options offered by cloud computing, it is a popular
choice for hosting and deploying software applications(Buyya et al., 2018; Grozev
& Buyya, 2014b). Several studies have shown that businesses are rapidly moving
their applications to the cloud because of its perceived benefits (Buyya et al.,
2018; Fehling, Leymann, Retter, Schupeck, et al., 2014; Grozev & Buyya, 2014b;
Odun-Ayo et al., 2017). There are, however, a number of factors to consider
when migrating or deploying applications to the cloud. These considerations are
particularly critical because they influence the quality and efficiency of cloud-
hosted applications. Some of these factors include software design patterns, cloud
architecture patterns, cloud deployment strategies, and cloud resource management
techniques.

Also, having introduced cloud service models and cloud deployment types, it is im-
perative to describe design patterns that software architects and developers can use
to build cloud-native applications. When developing cloud-native applications, the
use of cloud design patterns is a key step toward ensuring a successful deployment.

2.4 Design Patterns

A design pattern is a general, reusable solution to a commonly occurring problem.
Design patterns solve recurring problems inherent in a particular design (Gamma et
al., 1994). To communicate and express how these design patterns are used, groups
of related patterns are collated to form a pattern language. Patterns are largely
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abstract and independent of the programming language or runtime infrastructure
used (Ali et al., 2020; Fehling, Leymann, Retter, Schupeck, et al., 2014). However,
some design pattern catalogues include code samples or snippets that show how to
implement the pattern on the desired technology (Wilder, 2012).

2.4.1 Background on Design Patterns

Architectural and design patterns have long been used to provide known solutions
to many common problems facing distributed systems (Bass et al., 2012; Gamma
et al., 1994). The concept of cloud pattern, which had its origin from a building’s
architectural pattern, was proposed by Christopher Alexander in the early 1970s
(Alexander, 1977; Alexander et al., 1979). The knowledge of architecture and
its associated best practices which were captured in a pattern format, influenced
several other practices in the early days including tailoring and designing as well
as computing. By the late 1980s, Kent Beck and Ward Cunningham (Gamma et al.,
1994) adopted this concept of pattern, and began experimenting with the idea of
patterns to programming.

Their experimentation culminated in a summarised system of five patterns which
they successfully used to design windows-based user interfaces, and presented
a detailed pattern language for object-oriented programs at the Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA) conference in
1987 (Cunningham & Beck, 1989). Improving on the work done by Kent et al.

(Cunningham & Beck, 1989), Gamma et al. (Gamma et al., 1994) created design
patterns for object-oriented (OOP) software (Gamma et al., 1994) which led to
the modern-day popularity of patterns in computing. Many more studies have
improved patterns in computing (Beck, 1997; Fowler, 2002; Freeman et al., 2008;
Hansen, 1995; Hohpe & Woolf, 2004; Wilder, 2012).

Patterns are not a finished design product, but rather templates or structured tech-
niques to solve a problem and can be transformed into usable products. In cloud
computing, patterns can be transformed into source codes or infrastructure designs.
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They can also be duplicated to produce the expected outcome. Their use ranges
from evaluating cloud offerings, building cloud-ready applications, and building
custom cloud offerings to evaluate application landscapes for cloud-readiness
(Fehling, Leymann, Retter, Schupeck, et al., 2014).

Recently, researchers have focused on distributed models of software application
and development of which the cloud is an example (Adewojo, Bass, Allison,
& Hui, 2015). Cloud computing services centralise deployment, maintenance
and the evolution of software applications while catering for a worldwide user
audience (Adewojo, Bass, & Allison, 2015; Adewojo, Bass, Allison, & Hui, 2015).
These advantages of the cloud have attracted many organisations to adopt cloud
computing and its hosting capabilities.

Many companies have moved or are in the process of migrating their on-premise
applications and IT infrastructure to the cloud as a result of the popularity of cloud
computing (Adewojo & Bass, 2018; Buyya et al., 2018; Odun-Ayo et al., 2017).
However, migrating or developing cloud native applications is potentially complex.
In addition, effective cloud migration, and/or design of a cloud solution, requires
considering issues that may not become visible until later in the implementation.
Cloud design patterns help to prevent such issues by providing general solutions
and directions that are not tied to a specific development language or problem.
Cloud patterns can speed up the development process by providing tested, proven
development paradigms and thereby assist organisations to overcome challenges
associated with hosting a cloud application. In addition, the use of cloud patterns
ensures that reliable, scalable, and secure applications are built or migrated to the
cloud because a cloud pattern describes the problem it addresses as well as offers
considerations for applying the pattern.

2.4.2 Object-Oriented Design Patterns

In a bid to create a structured approach to solving recurring problems in object-
oriented software design, Gamma et al. (Gamma et al., 1994) proposed a pat-



CHAPTER 2. LITERATURE REVIEW 22

tern language for object-oriented systems. Object-oriented design is one of the
most popular application design methodologies (Bernstein & Newcomer, 2009;
Fowler, 2002; Gahlyan & Narayan Singh, 2018; Kurmangali et al., 2022; Lasso &
Kazanzides, 2020). It is a revolutionary way of thinking that focuses on modelling
things as objects rather than functions (Tupper, 2011).

Object-oriented systems are viewed as a collection of objects whose state is dis-
tributed among the objects with each object handling its state data. The design
focus is on identifying problems as a set of objects, so that the development of
a software application can be broken down into as small as possible identifiable
problems. Gamma et al. (Gamma et al., 1994) used a systematic approach to
catalogue twenty-three different object-oriented design patterns that can solve
recurrent problems in object-oriented systems.

The catalogue is divided into creational patterns (patterns for creating objects),
structural patterns (patterns for composing objects into larger structures), and be-
havioural patterns (patterns for interactions between objects). These patterns are as
follows: Strategy, Decorator, Factory Method, Observer, Chain of Responsibility,
Singleton, Flyweight, Adapter, Facade, Template, Builder, Iterator, Composite,
Command, Mediator, State, Proxy, Abstract Factory, Bridge, Interpreter, Memento,
Prototype, and Visitor. Since then, these patterns have been widely and consis-
tently used to design object-oriented systems (Ali et al., 2020; Haq et al., 2017;
Kurmangali et al., 2022; M. Zhang & Wang, 2000). Furthermore, most program-
ming languages used in creating software and web applications are object-oriented
languages, so the principles found in these patterns are still being employed in de-
veloping web applications. While the pattern catalogue is widely accepted, it is old,
and software development, particularly web application development, has evolved.
Although some patterns have become part of the core lexicon of object-oriented
programming and some have formed the bedrock for new patterns in software
development, the original design patterns alone do not suffice for cloud-hosted
applications. They are more subtle compared to current design patterns for web or
cloud hosted applications. However, the rigour of description, comparisons, and
discussion of these patterns is valuable for recent design pattern catalogues.



CHAPTER 2. LITERATURE REVIEW 23

A similar study to that by Gamma et al. catalogued seven different patterns for
object-oriented analysis (OOA) and object-oriented design (OOD) (Coad, 1992).
Patterns were illustrated with examples and guidelines for their use. Martin (Martin,
n.d.) further improved this research by investigating the effect of applying and
not applying the right design patterns to object-oriented design. They discussed
the positive and negative effects of their investigations and created a guideline
on architecting software applications when using design patterns. They also
summarised the major symptoms of rotting designs and how design patterns can
help alleviate these problems. Examples of these symptoms are rigidity, fragility,
immobility, and viscosity.

Although object-oriented design patterns are primarily applicable to object-oriented
systems, this research relates the principles behind object-oriented design patterns
to cloud-native applications. Cloud-hosted applications have key properties such
as scalability, multi-tenancy, flexibility, manageability, and portability (Adewojo,
Bass, & Allison, 2015). Object-oriented design patterns can be used as a tool to
improve these properties, especially when migrating existing software applications
to the cloud.

For instance, the strategy pattern is useful in multi-tenant applications. Using the
strategy pattern, the concept of multi-tenancy can be improved so that the same
functionality can be shared among multiple tenants with different looks and outputs.
For scalability, observer patterns are useful. The reason for this is that agents are
commonly used to monitor cloud applications. As a result of the observer pattern,
I am able to understand how an agent signals to other agents the change of their
state as well as the need to obtain additional resources automatically.

2.5 Cloud Design and Architecture Patterns

The previous section established that design patterns are applicable to distributed
systems, and that the cloud is a distributed system (Adewojo, Bass, Allison, &
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Hui, 2015; Bass et al., 2012; Fehling, Leymann, Retter, Schupeck, et al., 2014).
Therefore, a consistent cloud pattern and pattern language are essential. This
section explores cloud design and architectural patterns as a step in identifying and
solving recurring issues that affect the deployment of cloud-hosted applications.
Cloud patterns offer a verifiable and reusable cloud structuring solution to recurring
cloud problems (Adewojo, Bass, Allison, & Hui, 2015). A cloud pattern is a
well-defined format for describing a suitable solution to a cloud-related problem
(Fehling, Leymann, Rette, et al., 2014; Fehling, Leymann, Retter, Schupeck, et al.,
2014). These patterns are abstract, technology-neutral, and independent of the used
programming language or runtime environment.

Cloud design patterns is a generalised pattern catalogue that focuses on all prop-
erties of cloud computing. They are the best practise for building cloud services
(Fehling, Leymann, Retter, Schupeck, et al., 2014). Cloud architectural patterns
focus on the compositions of architectural elements that can be used to build cloud-
native applications that exhibit essential cloud properties such as rapid elasticity,
resource pooling, on-demand self-service, and so on. These patterns guide archi-
tects, software developers, and others on different types of cloud offerings and how
to build applications on them (Fehling, Leymann, Retter, Schupeck, et al., 2014).
Additionally, software architects place significant weight on cloud patterns because
they dictate whether the system’s quality characteristics will be manifested (Bass
et al., 2012; Fehling, Leymann, Retter, Schupeck, et al., 2014).

2.5.1 Cloud Architecture Patterns

Architectural patterns are compositions of architectural elements that provide
packaged strategies for solving recurring problems in a system (Bass et al., 2012).
In cloud computing, cloud architecture patterns describe how applications should be
designed to benefit from a cloud environment (Fehling, Leymann, Retter, Schupeck,
et al., 2014). Furthermore, they describe how these applications can be offered as
configurable cloud services.
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Homer et al. (Homer et al., 2014) presented (i) twenty-four patterns that are
useful in developing cloud-hosted applications, (ii) two primers and eight guidance
topics that provide basic information and industry-standard practice techniques
for developing cloud-hosted applications, and, (iii) ten sample applications that
illustrate how to implement the design patterns using features of Windows Azure.
The sample code (written in C#) for these sample applications was included in the
pattern. This makes it easy for architects who intend to use similar cloud patterns
to convert the code to other web programming languages (such as Java and Python)
for use on other cloud platforms. Software architects tend to benefit from this
pattern format, which is uncommon and usually comprehensive.

Erl et al. (Erl et al., 2015) present a catalogue of over 100 cloud design patterns
for developing, maintaining, and evolving cloud-deployed applications. The cloud
patterns, which are divided into eight groups, cover several aspects of cloud com-
puting, including scaling and elasticity, reliability and resilience, data management,
and network security and management. For example, patterns such as shared
resources, workload distribution and dynamic scalability (which are listed under
the “sharing, scaling and elasticity” category) are used for workload management
and overall optimisation of the cloud environment. The major strength of Erl et

al.’s catalogue of cloud patterns is its extensive coverage of techniques for handling
the security challenges of cloud-hosted applications. It describes various strategies
covering areas such as hypervisor attack vectors, threat mitigation, and mobile
device management.

Jamshidi et al. (Jamshidi et al., 2014) presented a catalogue of fine-grained service-
based cloud architecture migration patterns that target multi-cloud settings which
are specified with architectural notations. The key patterns reflect the different
construction principles for cloud architecture: re-deployment, cloudification, re-
location, refactoring, rebinding, replacement, and modernisation. These patterns
are described as migration strategies, decision making, and best practices for cloud
migration. Therefore, these patterns are different from cloud patterns such as those
shown in the following studies (Fehling, Leymann, Retter, Schupeck, et al., 2014;
Mendonca, 2014; Wilder, 2012). And, so they may not be applied at runtime during
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the design and deployment of cloud applications. Some other documentation of
cloud deployment patterns can be found in the following studies (Musser, 2012;
Strauch et al., 2012; Varia, 2010, 2011).

A collection of over seventy-five patterns for building and managing cloud-native
applications were provided by Fehling et al. (Fehling, Leymann, Retter, Schupeck,
et al., 2014). The “known uses” of the implementation of each pattern is provided
with examples of cloud providers offering products that exhibit the properties
described in the pattern. This helps us to better understand the core properties of
each pattern.

According to Fehling et al. (Fehling, Leymann, Retter, Schupeck, et al., 2014),
cloud architecture patterns consist of fundamental application architectural patterns,
cloud application component patterns, cloud integration patterns, and multi-tenancy
patterns. Fundamental application architecture patterns cover the architectural
principles found in most cloud-native applications. It is an umbrella for the
remaining three categories of patterns covered within the cloud architecture pattern.
These patterns specify how to design and build individual components of cloud-
native applications so that the overall application can be built on top of an elastic
platform. Multi-tenancy patterns describe how cloud applications and individual
components can be shared by multiple customers called tenants at different levels of
the application stack. Cloud integration patterns describe a process for integrating
multiple cloud environments or cloud components as well as on-premise data
centres and applications both inside and outside the cloud. These patterns can also
be classified as cloud deployment patterns because they embody decisions about
how elements of the cloud application will be assigned.

The above research shows different ways to represent cloud design patterns. A
consistent and elaborate pattern catalogue structure, however, will benefit these
cloud patterns by aiding software architects in developing cloud-native applications
with less development effort. Therefore, this research will address the gaps found
in the description of cloud patterns by Fehling et al. (Fehling, Leymann, Retter,
Schupeck, et al., 2014). In addition, this research will create an enhanced and
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systematically-improved cloud pattern structure. It will contribute to a consistent
and elaborate pattern catalogue structure. This updated structure will include a
formal description and code snippets for cloud patterns. The enhanced pattern
structure will be applied to the multi-tenancy patterns and practical implementation
of this pattern will be created on case study applications.

Multi-tenancy Patterns

One of the essential cloud properties is resource sharing (Fehling, Leymann, Retter,
Schupeck, et al., 2014; Mell, Grance, et al., 2011). Resource sharing at different
levels of the cloud is a common practice, and multi-tenancy is the architectural
framework that enables resource sharing. At the infrastructure layer, multi-tenancy
describes the extent to which cloud resources can be shared while guaranteeing
isolation among components (tenants) using these resources (Adewojo, Bass, &
Allison, 2015).

Multi-tenancy is also a type of software architecture and an architectural pattern
for Software as a Service (SaaS) that enables resource sharing, so that tenants
(customers) can share the same instance of software efficiently (Wilder, 2012).
Multi-tenancy patterns describe how cloud applications and individual components
can be shared by multiple users on different levels of the application stack. Multi-
tenancy pattern allows tenants to share more than just the application, including
capital and operational expenses of using the cloud. Furthermore, multi-tenancy
pattern enables SaaS to become configurable to suit tenants’ needs. These benefits
of multi-tenancy make it one of the essential cloud properties and SaaS’ default
deployment architectural style. Figure 2.1 shows the advantages and disadvantages
of multi-tenancy patterns in a pictorial view.
There are several ways to implement multi-tenancy in a software application (Krebs
et al., 2013; Odun-Ayo et al., 2017; Strauch et al., 2012). This is because multi-
tenancy can be implemented at different layers of the cloud stack: application
layer, middleware layer, and data layer (Fehling, Leymann, Retter, Schupeck,
et al., 2014; Wilder, 2012). Also, cloud providers implement multi-tenancy at
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Figure 2.1: Multi-tenancy Patterns

the PaaS level so that they can provide customised versions of the same service
to multiple customers thereby exploiting economies of scale. This means it is
important to consider the components of the applications that will share resources
when developing a cloud-native application. It is equally important to consider
the cloud infrastructure that can and will be shared with other applications or
other cloud instances. Therefore, during the design of cloud-native applications,
three levels/degrees of multi-tenancy have to be considered for applications to
fully benefit from the cloud’s resource-sharing features (Fehling, Leymann, Retter,
Schupeck, et al., 2014). The three degrees of multi-tenancy patterns are: shared
components, tenant-isolated components, and dedicated components. These pat-
terns apply to different components and application needs. The degree of isolation
between tenants enabled by multi-tenancy is the differentiating factor among the
degrees of multi-tenancy patterns. Isolation is defined in terms of performance,
data volume and security and is one of the essential factors for choosing the correct
multi-tenancy pattern.

• Shared Component Pattern
The first level/degree of the multi-tenancy pattern is the shared component
pattern. It is the basic minimum requirement for resource sharing in a SaaS
application. It minimizes resource usage. However, this is at the risk of
data and processes isolation (Adewojo, Bass, Allison, & Hui, 2015; Ochei
et al., 2015). It is used to provide functionality to different tenants without
maintaining a notion of tenants itself. As a result of this mode of setup,
tenants can influence each other while this functionality is being accessed
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(Adewojo, Bass, & Allison, 2015; Fehling, Leymann, Retter, Schupeck, et
al., 2014). Shared component pattern enables the highest form of sharing. It
results in lower operational costs by reducing the cost per tenant, and simpler
management of resources. In the case of SaaS, tenants of the software
application share the same instance of the application. Examples of SaaS that
use the shared component pattern are Salesforce CRM system, and NOASS
web service (Fehling, Leymann, Rette, et al., 2014; Fehling, Leymann, Retter,
Schupeck, et al., 2014). Although the shared component pattern enables
the highest form of sharing, this model of resource sharing can become
difficult to provide guaranteed performance, privacy, and security. Hence, it
is not usually suitable for organisations or applications with critical needs,
legislative requirements, and those whose computing infrastructure majorly
relies on cloud.

• Tenant-Isolated Pattern
The second level/degree of the multi-tenancy pattern is the Tenant-Isolated
component pattern. This level exemplifies the ability to balance cloud re-
source sharing and privacy with intermediate security level. Tenant-Isolated
component pattern is a compromised implementation between shared and
dedicated component pattern (Adewojo, Bass, & Allison, 2015). Resources
are commonly shared with intermediate level of performance, privacy, se-
curity, and resource overhead. Tenant-isolated pattern provides a middle
ground for resource sharing while performance, privacy, and security can be
guaranteed.

• Dedicated Component Pattern
The dedicated component pattern is the third and highest level/degree of the
multi-tenancy pattern. This pattern provides exclusive access to application
components that provide critical functionality (Adewojo, Bass, & Allison,
2015). Security, privacy, and isolation are maximized when using this pattern.
However, this is at a higher cost in terms of finance, and use of hardware.
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2.5.2 Formal Description of Design Patterns

There are research works that advocate the use of formal language to describe
design patterns. Formal language reduces ambiguity when specifying software
requirements and patterns. It improves accuracy and efficiency in the implemen-
tation of software applications, especially for software architects. The purpose
of formal language theory is to bring order to complex system anarchy (Révész,
1991). Formal languages are characterised by predefined rules, such as formal
notations in mathematics, logic, and computer science (Brookshear, 1989; Révész,
1991).

In this research, the Z language will be used to formally describe the multi-tenancy
pattern. Z language will be used because it is a state-based language. Its domain of
use is not limited, and it is fairly easy to understand. Z is old and stable. According
to Lana et al. (Lana et al., 2019) the use of Z language dominated the space of
formal language between the years 2011 and 2015. This is around the time that
this research began. Furthermore, Saratha et al. (Saratha et al., 2017) considers the
Z language as a domain-neutral and consistent language.

2.6 Cloud Migration Process and Methodology

Apart from the use of design patterns to ensure a successful deployment of cloud-
native applications, researchers have worked on methodologies to migrate existing
applications to the cloud. The sections below review researchers’ efforts in migrat-
ing existing applications to the cloud.

2.6.1 Cloud Migration Process

Researchers have proposed different processes to migrate software systems to
the cloud. These processes aim to migrate either the whole application to the
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cloud at once, or part of the application that is cloud-ready, and then focus on
some transformation process of the remaining part before migration. Gunka et al.

(Gunka et al., 2013) used an evolutionary algorithm to describe and implement this
process based on the on-going work of MODAClouds EU project (Ardagna et al.,
2012). Model-based techniques were used to support the steps of the transitioning
process. They created a baseline for the development of appropriate deployment
architectures and the selection of suitable cloud providers.

Zhao et al. (J.-F. Zhao & Zhou, 2014) analysed the research achievements and
application status of legacy system migration to the cloud; based on this analysis,
they came up with five strategies of migrating legacy system to the cloud based
on the cloud service model. These strategies are Migrate to IaaS, Migrate to PaaS,
Replace by SaaS, Revise based on SaaS, and Re-engineer to SaaS.

Cretella et al.(Cretella & Di Martino, 2014) proposed an overview of migration
approaches based on cloud patterns. These migration approaches are the use
of cloud patterns, the use of a model-driven engineering concept, and semantic
modelling.

Zhang et al. (W. B. Zhang et al., 2009) proposed a generic process to guide software
developers on how to migrate legacy systems to the cloud. The process includes
the following steps: legacy system representation, redesign of the architecture
model with identified services, model-driven architecture transformation, web
service generation, invocation of legacies functionalities, selection of suitable
cloud platform and provision of cloud web service to the end users. This process
will produce a new web service application that can maintain the workflow of the
legacy system but provided as a SaaS on cloud. The process was applied to a case
study application but no concrete result was presented.
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2.6.2 Cloud Migration Methods

There are several proposed cloud migration methods. Some proven methods
are discussed as follows: Venugopal et al. (Venugopal et al., 2011) proposed a
methodology that used a connection-oriented framework that smoothly migrates
and tunes a web service based enterprise application to the cloud. It is a non-
invasive approach that observes the performance of a web service based system and
appropriately reconfigures this system to achieve higher performance. It is aimed at
mass migrations of enterprise applications to the cloud. However, it targets specific
cloud platforms.

To simplify the process of migrating applications to cloud, Ward et al. (Ward
et al., 2010) developed a workload migration framework called Darwin. This
framework is designed to promote migration to virtualised environments in a
simplified method. In addition to the framework concept, Cardoso et al. (Cardoso
et al., 2014) presented six steps for the framework workload definition. Total
Cost of Ownership calculation, definition of criteria and multi-criteria method
application were used to migrate real world applications to the cloud.

Peddigari et al. (Peddigari, 2011) proposed that the framework and factory pat-
terns can be used in a systematic approach to migrate applications to the cloud.
Based on this claim, they proposed a unified cloud migration framework to mi-
grate applications to the cloud. To support this, Cai et al. (Cai et al., 2015)
proposed a pattern-based code transformation approach to migrate applications
to the cloud. This approach is supported by three key elements: namely, patterns,
rules, templates, and a process that systematically applies these elements.

The above studies show that researchers claim that cloud migration methods can
help migrate software applications to the cloud. However, drawing from the
interactions between the literature on cloud migration process and methods, the
conclusion of this research is that the proposed cloud migration methods should be
combined with migration processes amongst others to provide a complete migration
strategy.
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2.6.3 Cloud Migration Tools

Andrikopoulos et al. (Andrikopoulos et al., 2013) developed a migration decision
support system that helps to select an appropriate cloud provider based on cost
minimization. They created a web-based system that combines state-of-the-art
approaches to offer matches and cost calculation of migrating an existing applica-
tion to the cloud. This system uses a set of requirements and a knowledge base of
properties of existing cloud vendors to support migration to the cloud.

Khajeh-Hosseini et al. (Khajeh-Hosseini et al., 2011) proposed two tools to support
decision-making, particularly in terms of the benefits and risks of migrating to
the cloud and to determine resource usage patterns during migration to the cloud.
The tools are modelling tools that estimate the costs of using an IaaS cloud and a
spreadsheet outlining the benefits and risks of using IaaS.

Meng et al. (Meng et al., 2011) proposed a migration tool named Application
Migration Solution (AMS). This tool will be used for converting legacy applications
into web applications that can be migrated to the cloud. To convert a legacy
system into a web application, this tool uses GUI recognition and reconstruction
technology. However, this tool does not focus on the service layer. As a result, I
conclude that a more comprehensive and customised tool is required to transform
the application to suit the cloud.

The previous research work on cloud migration tools, methods, and processes only
claimed successful cases of migration and translation of cloud processes. However,
they have failed to showcase applications that demonstrate cloud properties, which
is a defect of the previous research work. As a result, the benefits of cloud properties
such as multi-tenancy, and flexibility that results in improved resource sharing,
reliability, and improved ability to handle cloud challenges could not be fully
realised in successfully migrated applications. To address this defect, this research
study recommends a focus on ensuring that the applications being studied and
migrated exemplify cloud properties.
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In addition to migration tools, strategies, and processes, researchers proposed some
architectural concepts to aid a successful migration of existing applications to
cloud. Zhang et. al (W. B. Zhang et al., 2009) presents a cloud migration approach
that uses key architectural principles like virtualisation of infrastructure, service
orientation for reusable services, and extensible provisioning and subscription.
Zhang’s approach focuses on developing reusable architectures for cloud platforms
as a framework for migrating existing applications to the cloud.

Johannes et al. (Wettinger et al., 2017) systematically classified and characterised
available deployment approaches independently from the underlying technology
used. They used this process to identify and characterise two different types of
deployment approaches: namely, application and middleware-oriented approaches.
They developed deployment plans based on the two identified approaches for
three applications with significantly different deployment requirements. They
successfully migrated the case study applications using their identified approaches.
Their results show better reusability, portability, and flexibility of middleware-
oriented plans when compared to application-oriented deployment plans.

A cloud-agnostic decision support system was introduced by Ardagna et. al
(Ardagna et al., 2012). Ardagna et al. (Ardagna et al., 2012) used the model-driven
approach to create this decision support system. The system was created to help
solution architects to determine which cloud system to adopt for hosting different
components of a software application. The decision support system is based on
parameters such as costs, risks, and analyses of non-functional characteristics of
each alternative provider.

The use of deployment technologies such as containers has also gained attention in
the research community. Docker containers can be used to migrate applications
without major modifications to the cloud. As cloud architectural platforms evolve
and the need to reduce the amount of modification to existing applications arises,
maximising cost efficiency of application deployments with less performance
trade-offs often emerge. The advent of containers provides the opportunity to
seamlessly deploy applications on cloud while significant software modification
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and development effort is saved (Lahmann et al., 2018). Containerisation is
a DevOps technology that offers containers that constitute the bundling of an
application and its dependencies as a package that can run on many computing
platforms (Muddinagiri et al., 2019). Docker is a widely popular containerisation
platform and technology for creating containers. Kubernetes is the frontrunner
in container orchestration tools. These software often work together seamlessly
to facilitate the successful implementation of containerization both locally and
on the cloud. Containers are popular for running huge volumes of applications,
applications with microservice architectures (Govind & González–Vélez, 2021; Ha
et al., 2017), migrating existing applications to the cloud as it is (Adewojo, Bass,
& Allison, 2015; Hanafy et al., 2017), and for continuous deployment practices
(Muddinagiri et al., 2019; Rajavaram et al., 2019). Additionally, research indicates
that deployment of applications through containers is an efficient and effective way
to improve cloud deployment (Hanafy et al., 2017). However, if the applications
being deployed are not cloud-ready, they will not fully benefit from the features of
cloud deployment (Lahmann et al., 2018).

The aforementioned research studies focus on the process and methods of migrating
applications to the cloud. Research shows some efforts in using tools, processes,
and methodologies for cloud migration. However, there is a gap in addressing
common problems of hosting the software applications that are being migrated.
This research will not only review the migration process and methods but also
provide solutions to recurring problems of cloud-hosted applications through the
use of design patterns and deployment strategies.
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2.7 Common Challenges of Cloud-Hosted Web Ap-
plications

2.7.1 Flash Crowds

An increase in web user requests causes flash crowds, which are characterised by
rapid, fluctuating, exponential, and legitimate increases in web request volume
(Ari et al., 2003; Le et al., 2007; Qu et al., 2017). Managing flash crowds can be
challenging because they arise without warning. Autoscaling services and load
balancers are commonly used to address flash crowds (Amazon, 2021b; Grozev &
Buyya, 2014b). Commercial cloud providers commonly use autoscaling services
to launch new VMs after an application has experienced increased user requests for
a specific period of time: a time usually set by the user. The services will continue
to monitor user requests and will often terminate some VMs and services after a
steady stream of user requests has been established.

2.7.2 Resource Failures

Cloud resource failure occurs when any of the components of a cloud environment
fails to function as it is intended to. According to (Prathiba & Sowvarnica, 2017;
Priyadarsini & Arockiam, 2013), the three most common resource failures in any
cloud environment are hardware, virtual machines and application failures. Also,
authors in (Kumari & Kaur, 2021) argued that faults lead to partial failures in
cloud. These authors classified failures in terms of fault: namely, network faults,
physical faults, process faults, and service expiry faults. Cloud resource failures
can occur suddenly, resulting in degradation of service performance or total loss
of service. The most common method to mitigate the effects of resource failure
is to use a timely intervention of autoscalers and load balancers. Meanwhile, an
auto-scaler requires time to launch new resources. The time between the launch
and full functionality of resources usually results in performance degradation if
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current user requests are not properly managed (Qu et al., 2017).

2.8 Addressing the Challenges of Cloud-Hosted Web
Applications

The following sections will discuss the use of single and multi-cloud deployment
strategies and load balancing techniques as tools to address the challenges of
cloud-hosted web applications.

2.8.1 Workload Distribution and Resource Management in Sin-
gle Cloud

Efficient workload distribution and resource management are essential to address-
ing the challenges of cloud-hosted web applications. The successful deployment
and hosting of cloud applications is also a function of how the resources of the
cloud are managed and how the applications are set up to accommodate the work-
load that are passed to them. Managing workload distribution in cloud applications
generally relies on load distribution techniques. This technique, which is popularly
known as load balancing, has evolved over the years from serving servers farms of
applications to being used in the cloud. Load balancing in the cloud is a method for
optimally distributing workload so that the resources of a VM in a cloud computing
environment are efficiently utilised. Cloud applications that serve global users
usually use one form of a load-balancing tool. Since cloud computing services have
become a vital part of companies, it has become even more essential to improve
existing load-balancing techniques and enhance cloud application performance, for
the number of resources are restricted.

Significant efforts have been made in developing and categorising load distribution
techniques for the cloud. There are two categories of load-balancing techniques:



CHAPTER 2. LITERATURE REVIEW 38

static and dynamic techniques (Beaulah Soundarabai et al., 2012; Kumar & Kumar,
2019; Zomaya & Teh, 2001). Static techniques are typically used to distribute
predictable load requests. The use of static techniques does not require foreknowl-
edge of the current state of the system. Dynamic techniques are used to distribute
unpredictable load requests. This technique considers the current state of the
system before distributing loads.

Based on the two categories of load-balancing techniques, researchers have pro-
posed different load-balancing algorithms that are aimed at improving workload
distribution of cloud-deployed applications. Static load balancing techniques
include random allocation, threshold-based allocation, round-robin, and central
manager allocation (Beaulah Soundarabai et al., 2012). They are well-established
techniques but are used sparingly because of their limited applicability.

Shafiq et al. in (Shafiq et al., 2021) proposed a dynamic load balancing algorithm
for allocating resources on the IaaS cloud model and addresses the VM isolation
issue in the cloud through efficient task scheduling procedures. Their proposed
algorithm focuses on addressing the priority of VMs, Quality of Service (QOS)
task parameters, and resource allocation. The proposed algorithm improves load-
balancing of VMs across IaaS by considering the priority of workload, SLA,
and key metrics which determine performance. Results show that their algorithm
resulted in an average of 78% resource utilisation compared to the existing dynamic
load balancing algorithm with lower resource utilization rate.

Chen et al. in (S.-L. Chen et al., 2017) proposed a load-balancing architecture
and a dynamic load-balancing algorithm for cloud services. The load-balancing
algorithm can be used for both virtual web servers and physical servers. Their
technique used a dynamic annexed balance method to solve the problem of uneven
workload distribution on servers. Their approach considered both server processing
power and compute load to create a load-balancing algorithm that can handle
excessive computational requirements. Their result showed that their approach
improved the mean response time of load-balancing digital applications deployed
on the cloud.
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Wang et al. in (Wang & Casale, 2014) experimentally compared weighted round-
robin and probabilistic routing policies in load balancing multi-class workloads
of applications with SLA differentiated across users. Based on their discovery
of the relationship between the two routing policies, they presented and verified
algorithms that support multi-class workload for applications with SLA across
different users.

In the bid to improve existing work on dynamic load balancing for cloud ap-
plications, authors identified specific server metrics that commonly affect the
performance of both cloud applications and the servers they are running on. These
identified metrics include CPU, RAM, bandwidth, Buffer, and so on. Tychalas et

al. (Tychalas & Karatza, 2020) proposed a dynamic probabilistic load balancing
algorithm that uses the weighted round-robin algorithm. Their research combined
computational power and the current utilisation of key server metrics to assign
probabilities to each available resource. Their simulation result, using Bag-of-
Tasks jobs as workload, showed that their algorithm performed better than the
popular weighted round-robin method in terms of mean response time by 8.5%
and the utilization of remote fast resources by 25%.

Similar to the research by Tychalas et al., authors in (Devi & Uthariaraj, 2016;
Sahu et al., 2013) proposed dynamic load algorithms that combined key server
metrics in determining the weights of servers. They both considered specific
server metrics such as CPU, RAM, and bandwidth in determining the dynamic
weight of a particular physical server or VM. They highlighted that these metrics
play important roles in determining the efficiency of a load balancer. In addition,
because these algorithms are dynamic, a foreknowledge of the current utilisation
of resources and available capacity is a good determiner of how much load a server
can handle.

Besides research that focuses on developing dynamic load balancers, researchers
have also focused on incorporating techniques to improve load balancing imitations
such as single point of failure (Cruz et al., 2019; Grozev & Buyya, 2014b; Kumar
& Kumar, 2019), scalability, limitation in sensing uncertainties (H. Zhang et al.,
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2017), excessive overhead, and re-routing (H. Zhang et al., 2017).

Zhang et al. in (H. Zhang et al., 2017) in a bid to reduce load balancing limitations
introduced Hermes. Hermes is a data center load balancer that is resilient to
uncertainties such as traffic dynamics, topology asymmetry, and failures. Hermes
leverages comprehensive sensing to detect path conditions and reacts using timely
yet cautious re-routing techniques. Hermes is a hardware-based load balancer that
was implemented using switches. Evaluation using real testbed experiments and
simulations show that Hermes can handle uncertainties under asymmetries with
20% improved performance compared to similar implementations.

Cruz et al. in (Cruz et al., 2019) identified a major challenge in determining how
to optimise the mapping of tasks to cluster nodes and cores through increased
locality and load balancing. To solve this problem, they proposed an EagerMap
algorithm to determine task mappings, which is based on greedy heuristics to match
application communication patterns to hardware hierarchies. This technique also
considers task load when mapping tasks. They argue that their solution influences
communication performance and load balancing in parallel architectures because
EagerMap helps to evenly distribute load among clusters and grids. They also
claim that their algorithm design alleviates the single point of failure problem in
load balancing.

Grozev et al. in (Grozev & Buyya, 2014b) introduced an approach for deploy-
ing three-tier applications across multiple clouds so that it can satisfy key non-
functional requirements. Their research proposed a dynamic and adaptive resource
provisioning and load distribution algorithm to improve the load balancing of
workload in a multi-cloud setting using heuristics. Their algorithm uses heuristics
to optimise overall cost and response delays without violating essential legislative
and regulatory requirements. Their simulation results show that their approach
improved popular load-balancing algorithms for multi-cloud in terms of availability,
regulatory compliance, and QoE with acceptable sacrifice in cost and latency.

After analysing the above literature on dynamic load balancing for cloud-hosted
applications, this research study identified a few gaps. One of the gaps is the
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need for load balancing algorithms and architecture that reactively and proactively
handle uncertainties such as traffic dynamics and resource failures. While some
of the literature addressed these issues, more research is needed to develop load
balancing algorithms that can handle these challenges in a scalable and efficient
manner. Also, existing research focuses on popular metrics such as CPU, RAM, and
bandwidth, while ignoring other metrics and important factors such as thread count,
reliability, and fault tolerance. This research will consider these additional factors
to improve the overall performance and efficiency of cloud-hosted applications.

A dynamic load-balancing algorithm based on carefully selected server metrics
specific to the chosen class of application will be developed in this research. The
proposed algorithm and architecture will improve limitations such as single point
of failure, reduction of excessive re-routing by using HAproxy, and quick sensing
of uncertainties using selected key server metrics. It will also mitigate the negative
effect of flash crowds and resource failures. The proposed load-balancing algorithm
will complement and work cooperatively with auto-scaling mechanisms in cloud
data centres to achieve its objectives. While previous work focused on a few server
metrics, this research will focus on server metrics that directly impact the chosen
class of cloud-deployed applications and the algorithm can be extended to function
in a multi-cloud environment.

2.8.2 Test Environments for Load Balancing Algorithms

On one hand, dynamic load-balancing techniques are frequently being used to
create load-balancing algorithms for cloud applications, and the results from
these researches are promising. On the other hand, the use of cloud simulation to
experimentally evaluate these cloud algorithms are increasingly used by researchers
(Bambrik, 2020; Byrne et al., 2017; Fakhfakh et al., 2017; Grozev & Buyya,
2014b; Makaratzis et al., 2018; H. Zhang et al., 2017). Furthermore, evaluation
of the above researches including these (Elgedawy, 2015; Hellemans et al., 2019;
Zomaya & Teh, 2001) were all done using simulation tools and environment. As
well, there is little research (Z. Chen et al., 2018) on evaluating cloud computing
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algorithms by completely using real cloud infrastructures. Commonly, a simplified
real infrastructure experiment is done to complement simulated experiments. This
is recorded in (Grozev & Buyya, 2014b; Wang & Casale, 2014; H. Zhang et al.,
2017). Cloud simulation is a common and suitable alternative to using real cloud
infrastructure. Cloud simulators are software that can reproduce the behaviour of
cloud systems with a high degree of precision. Cloud simulation use models to
represent and experiment with cloud characteristics and behaviours.

On the contrary, cloud simulation might not be cheaper in terms of the realism of
the results that are produced. In addition, the capability of cloud simulator tools is
not exhaustive because each one is usually designed to address a specific process
of the cloud, for the cloud is usually a combination of several complex components
(Bambrik, 2020). To successfully use a cloud simulation tool, comprehensive
documentation of the tool is required. Likewise, users must be conversant with the
programming language required to use the tool. When users are not familiar with
the programming language required, learning a new language requires some effort
which results in a loss of time. The availability of cloud simulation tools is limited.
Not all cloud simulation tools are open source, and this defeats the claim that
using real infrastructure requires financial cost (Bambrik, 2020; Fakhfakh et al.,
2017). Cloud tools require regular updates to include new and emerging features
in the cloud. This becomes a problem if the tool is not regularly updated (Byrne
et al., 2017). In summary, simulation experiments rely heavily on parameters for
accuracy, so the challenge remains of how to choose an accurate parameter. As a
result, if the parameters are not right, an incorrect simulation result is inevitable.

Because of the stated disadvantages of using cloud simulation tools, this research
will use real cloud infrastructure to experiment with the proposed algorithm. This
research has access to a private cloud and the researchers are conversant with using
the cloud infrastructure, so this prevents the challenge of time and cost. Running
experiments on real cloud infrastructure is encouraged because it presents the real
behaviours of resources used and therefore produces realistic results.
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2.8.3 Workload Distribution and Resource Management in Multi-
Cloud Deployment

On one hand, the deployment of cloud applications on single cloud is popular and
cloud data centres are fast becoming the preferred deployment environment. On the
other hand, the use of single cloud poses many challenges such as vendor lock-in,
availability issues, less competitive cloud offerings, legislation compliance issues,
and so on (Grozev & Buyya, 2014b; J. Zhao et al., 2020). Multi-cloud avoids
over-provisioning of resources, vendor lock-in, unavailability, and customisation
issues. Mainly because of these stated advantages, multi-cloud deployment has
become increasingly popular (Grozev & Buyya, 2014b). If properly implemented,
the multi-cloud deployment model makes it a good fit for overcoming performance
degradation because of flash crowds and resource failure. Therefore, the deploy-
ment of web applications across multiple clouds is also one of the ways to mitigate
the challenges of hosting applications on a single cloud.

Multi-cloud open-source libraries for different languages such as JClouds, Apache-
LibCloud, SimpleCloud, and Nuvem (Cloud, 2017; A. S. Foundation, n.d.; T. A. S.
Foundation, 2019, 2021; JClouds, 2017) are some research efforts towards the suc-
cessful deployment of applications across multiple clouds. These libraries provide
unified API for the management of cloud resources so that software developers do
not have to write codes for specific cloud vendor’s APIs. These libraries can be
instrumental in developing new cross-cloud brokering components. However, these
libraries do not provide application brokering and resource management utilities.
Aside from multi-cloud libraries, services are alternative options. Services such
as Scalr and Kaavo (ProgrammableWeb, 2011-2019; Scalr, 2011-2021) provide
unified interfaces, APIs, and tools for managing multiple clouds. However, it is
the user’s responsibility to implement an appropriate resource management and
scheduling approach.

Apart from multi-cloud libraries and services, some research projects such as
MODAClouds (Ardagna et al., 2012), mOSAIC (Petcu et al., 2011) and STRATOS
(Pawluk et al., 2012) also facilitate multi-cloud application deployment. However,
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these projects do not allow for the inclusion of geographical locations of cloud
data centres. Thus, it is often not possible to implement legislation-aware appli-
cation brokering during workload distribution. In addition, multi-cloud libraries,
services, and projects tend to manage resource allocation and software component
deployment. They do not facilitate workload distribution among cloud resources.

Aside from the approaches to deploy applications across multi-cloud, the distri-
bution of workload across multiple cloud is another area of great importance.
Workload distribution across multi-cloud requires the use of proven and reliable
load distribution techniques. There have been various pieces of research aimed at
distributing workloads ranging from popular cloud services to bespoke research
services: cloud services such as Amazon Web Service (AWS) Route 53 (Amazon,
2021a), and AWS Elastic Load Balancer (ELB) (Amazon, 2021c); Azure load
balancer (Azure, 2021b) and Azure autoscale; overload management (Qu et al.,
2017), and geographical load balancing (Grozev & Buyya, 2014b).

The commonly adopted industry-based and quickest approach is to use a load
balancer to manage workload, especially when there is an overload caused by
request spikes (flash crowds) or resource failure. This process is termed auto-
scaling and relies on dynamic provisioning and de-provisioning of resources to
mitigate resource scarcity or complete resource failure, leading to service disruption
or complete resource failure. Cloud services such as ELB load balancer (Amazon,
2021c) can distribute requests to servers in single or multiple data centres using
standard load balancing techniques and to a set threshold. However, this service
can only distribute incoming requests to AWS regions and not to third-party data
centres. Likewise, Azure load balancer (Azure, 2021b) and autoscale (Azure,
2021a) can distribute incoming user requests among servers and data centres
owned by Azure alone. These approaches focus on predicting future workloads and
provisioning enough resources in advance to accommodate increased workload.
The downside of these approaches is that they eventually over-provision resources
in most cases (Qu et al., 2016; Qu et al., 2017).

Research approaches such as those found in (de Paula Junior et al., 2015; Gandhi
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et al., 2014) reactively provision resources after they detect increased incoming
requests or when a set threshold has been met. Furthermore, a similar approach (Qu
et al., 2016) proposed the use of spot instances and over-provision of application
instances to combat terminations of spot instances and improve workload distribu-
tion. However, because resource failures and flash crowds are often unpredictable,
it takes the auto-scaler considerable time to provision new resources. Also, it is
even more difficult to consistently and evenly distribute the load, regardless of
an overload or resource failure. Therefore, I argue that it is beneficial to support
and improve an auto-scaler to be able to handle situations such as overload and
resource failure more effectively. The approach used in this research can bridge
this gap for multi-cloud web-based three-tier applications by enhancing the role of
an auto-scaler.

Researchers (Javadi et al., 2012; Niu et al., 2015) have also used the concept of
cloud burst (Ali-Eldin et al., 2014); “the ability to dynamically provision cloud
resources to accelerate execution or handle flash crowds when a local facility is
saturated,” to combat overload and manage increasing user requests. Unlike these
approaches, this research does not just focus on provisioning and de-provisioning
but rather aims to consistently distribute the workload of cloud deployed web-based
three-tier applications across multi-cloud using a dynamic-hybrid load balancing
technique.

Divisible load theory (DLT) has also been used by researchers for scheduling large
datasets in distributed systems, including cloud computing. DLT is a paradigm for
load scheduling in distributed systems. This theory divides large computational
tasks into manageable and smaller pieces that can be distributed across multiple
processors. Taking into account system dependency constraints like communication
delays and processor characteristics, it exploits data parallelism in computational
loads. This approach improves the utilization of computational resources and
enhances the efficiency of job execution in cloud environments. (Abdullah &
Othman, 2013; Bharadwaj et al., 2003; Kazemi et al., 2023). However, because
DLT is more suited for load that are arbitrarily divisible and contains huge data,
this theory does not fit into E-commerce dataset.
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Grozev et al. (Grozev & Buyya, 2014b) proposed adaptive, geographical, dynamic,
and reactive resource provisioning and load distribution algorithms to improve
response delays without violating legislative and regulatory requirements. This
approach dispatches users to cloud data centres using the concept of an entry
point of an application framework and a centralised solution. The approach of
this research study is different from Grozev’s (Grozev & Buyya, 2014b) research
approach because it uses a decentralised architecture, an improved load distribution
algorithm, and a real multi-cloud test-bed for the experiments. Also, Grozev’s
research approach is reactive, which may not timely intervene when there are
challenges. On the contrary, the approach used in this research is both reactive and
proactive. This novel approach improves the timely intervention of flash crowds
and resource failures in cloud-hosted applications and gives better control of the
experimental environment.

Amazon 53 (Amazon, 2021a) connects user requests to infrastructure running
in AWS—such as Amazon EC2 instances, ELB load balancers, or Amazon S3
buckets—and can also be used to route users to infrastructure outside of AWS.
However, Amazon 53 uses Amazon Route 53 (Amazon, 2021a) a DNS resolution
system to implement geographic load balancing, but this process makes it impos-
sible to react timely to overload situations because of the time taken to populate
DNS settings across layered DNS servers.

Qu and Calherios (Qu et al., 2017) adopts a decentralised architecture composed
of individual load balancing agents to handle overloads that occur within a data
centre by distributing excess incoming requests to cloud data centres with unused
capacities. Their approach is composed of individual load balancing agents that
communicates using the broadcast protocol to balance extra load. They aimed to
complement the role of an auto-scaler, reduce over-provisioning in data centres,
and detect short-term overload situations caused by flash crowds and resource
failure through the use of geographical load balancing and admission control so
that performance degradation is minimized. The approach used in this research to
implement workload distribution, resource management, and deployment issues
using the multi-cloud deployment pattern is different from the approach used by
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Qu et al. (Qu et al., 2017). Although a decentralised architecture will be adopted
as implemented by (Qu et al., 2017), load balancing agents will not be used so that
network broadcast will be limited. This is because a limit to the amount of network
broadcast is a significant improvement to previous research studies.

The proposed novel algorithm and deployment technique will complement and
improve the role of auto-scalers for three-tier web-based applications deployed
across multi-cloud. The monitor-analyse-plan-execute loop architecture often
used by cloud-based systems (Qu et al., 2017) will be used to monitor server
functions and algorithm activation. Furthermore, the solution employs a peer-
to-peer client-server communication protocol to avoid the overhead incurred by
the broadcast protocol used in similar research (Qu et al., 2017). In addition, the
proposed solution’s framework exemplifies a highly available cloud deployment
architecture and will be experimentally evaluated on a test-bed that consists of
three heterogeneous cloud data centres. Response times and throughput will be
used predominantly as metrics to evaluate performance.

The review of relevant cloud application studies identified some gaps, which this
current research seeks to fill. One of such gap is the lack of attention given to the
description of cloud design patterns. As cloud computing becomes increasingly
popular, robust and reliable cloud applications are required to deliver business
solutions. Thus, cloud-native software developers and architects need to be able to
effectively use cloud design patterns in building cloud-native applications. This
will ensure that these applications can withstand the challenges of cloud-hosted
applications. This research will fill this gap by creating an enhanced cloud-design
patterns structure, applying the enhanced pattern structure to multi-tenancy patterns,
and experimentally evaluating a novel implementation of multi-tenancy patterns.

Arguably, the most important gap identified is the lack of focus on comprehensive
server metrics and factors of load balancing the workload of cloud-hosted three-
tier web applications when flash crowds and resource failures occur. In this
research, novel load balancing algorithms and architectures will be created to
mitigate the adverse effects of flash crowds and resource failures amidst common
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challenges of cloud-hosted applications in single- and multi-cloud. Furthermore,
the novel algorithms and architecture that will be created can handle multi-cloud
environments that satisfy key non-functional requirements such as availability, and
regulatory compliance with improved application performance.

Simulations have also been used extensively in the experimental evaluation of
cloud algorithms. However, simulation results can be wrong due to inaccurate pa-
rameterisation. This research fills this gap by evaluating proposed cloud algorithms
and benchmarking them using real cloud infrastructures.

2.9 Summary

This chapter reviewed relevant literature that is related to this research study. As a
result of the reviewed literature, gaps in the process of deploying and hosting web
applications in the cloud were revealed. Research shows that design patterns are the
foundation of a well-developed software application. An application will perform
as it should if it was properly developed. This research posits that a successful
application deployment is hinged on a successfully developed application. Cur-
rently, there are no consistent structures for describing cloud patterns and designing
cloud-native applications. This research will create an enhanced cloud design
pattern by adopting and improving the pattern structure from a widely accepted
pattern catalogue on OOP. This step will improve the clarity of implementing cloud
design patterns when building cloud-native applications and thus form a step in
solving the challenges of deploying and hosting web applications on cloud.

After deploying an application on cloud, research shows that performance degrada-
tion in cloud-hosted web applications is commonly due to flash crowds and resource
failures. A review of the literature revealed several methodologies that researchers
have explored in providing solutions which include migration process, methods,
tools, brokering methods and resource distribution techniques. Despite a number
of researches in this area, there is still a lack of bespoke distribution techniques for
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web applications deployed on cloud. This research will create novel techniques and
approaches that include load balancing algorithms and deployment architecture
and patterns. The novel cloud algorithms and deployment strategies will alleviate
the effects of recurring problems associated with cloud-hosted applications.



Chapter 3

Research Design

3.1 Introduction

This chapter describes the experimental research approach adopted in this research.
This approach addresses the research question in Chapter 1 by applying the quanti-
tative experiments research strategy to all phases of the research. In this chapter,
the research process model, the research strategy, the experimental setup, the data
collection methods, the evaluation measures, and the data analysis methods used to
evaluate the proposed cloud algorithms and techniques are discussed.

The organisation of the chapter is as follows: Section 3.2 describes the research
process that was used to achieve the research goal. Section 3.3 describes the case
study applications that were used to implement the proposed solutions. Section
3.4 describes the experimental setup for evaluating the proposed cloud algorithms
and techniques. Section 3.5 summarises the chapter and discusses the motivation
behind the adoption of the research approach.

50
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3.2 Research Process Model

The research process model combined three stages: an exploratory study, selection
and modification of the case study applications, and experimental evaluations as
depicted in Figure 3.1.

Figure 3.1: Research Process Model.

The first stage of the research process was discussed in Chapter 2. This stage
explored related research materials and outputs that focus on developing and
hosting cloud-native web applications on cloud. It provided insight into the current
state of the research topic. During this stage, the research gap and how the proposed
approach will accomplish the overall aim were identified and discussed. The next
section discusses the case study applications used in this research, the experimental
evaluation method, and the evaluation environment for evaluating the proposed
solutions.

3.3 Selection of Case Study Application

This section discusses the selected applications used in the different phases of the
research.
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3.3.1 Enhanced Cloud Design Pattern

A bespoke desktop business process modelling (BPM) application was evaluated
to discover an effective cloud deployment approach. The BPM tool was later modi-
fied into a prototype using both cloud deployment patterns and SaaS principles to
facilitate successful deployment to the cloud. Appropriate design principles such as
maintainability, scalability, multi-tenancy, and interoperability (Bass et al., 2012)
were utilised in building the prototype to allow for key features of a cloud-native
application. In the prototype application, loose coupling, modularization, abstrac-
tion, and interface segregation were principles that were implemented via these
patterns: Model-View-Controller (MVC), Service-Oriented Architecture (SOA),
Representational State Transfer (REST), and multi-tenancy patterns (Adewojo,
Bass, Allison, & Hui, 2015). MVC was used to decompose this system into three
components: data storage, application server, and user interface component. SOA
was used to present its data logic and application server component as a set of
services. REST was employed to deliver these services to promote interoperability.
The three degrees of multi-tenancy patterns were implemented in the data-tier of
the web BPM prototype. The prototype used Amazon simpleDB NoSQL (Cloud,
2017) storage for its database system, and it was deployed on Amazon cloud.

To empirically evaluate the effect of multi-tenancy patterns, WordPress (WordPress,
2017) was reviewed and its data layer was modified to allow the implementation of
the three degrees of multi-tenancy patterns. WordPress was chosen because it is an
open-source distributed content management system that powers 27% of websites
(WordPress, 2017). Furthermore, it is customisable and can be programmatically
modified. The distributed form of WordPress was used to evaluate multi-tenancy
patterns. Evaluating WordPress business logic revealed that the default data-tier
pattern for a single instance of WordPress is the dedicated component pattern,
while a hybrid of tenant-isolated and dedicated component patterns is the default
data-tier pattern for the multi-site version of WordPress. In addition, to test the
applicability of multi-tenancy patterns in different environments and to assess the
possibility of migrating existing applications without modification to the cloud,
Docker containers were utilised as deployment technologies for migrating to the
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cloud. After WordPress was modified to include multi-tenancy patterns, three
instances of the application, each representing an instance that implemented one of
the multi-tenancy patterns, were bundled into three Docker containers and deployed
on the cloud.

3.3.2 Novel Weight Assignment and Multi-Cloud Load Balanc-
ing Algorithm

An open-source multi-tenant E-Commerce application was used to test the proposed
cloud load balancing algorithms. This application is a stateless E-commerce
application deployed using the three-tier architecture style. The application is a
mini version of EBay. The application was built on Orchard’s core framework
coupled with elastic search for its search functionalities (OrchardCore, 2022).
Orchard’s core framework is built upon the .NET core framework and C# language.

The E-commerce application consists of a data layer that runs a MySQL database
loaded with similar products that can be found on eBay; a domain layer based on
REST services and components that implement the buying and selling of products;
and a web interface where users can search and buy products. The major tables
contained in the database are UserTable, OrderTable, AddressTable, ProductTable,
ProductCategoryTable, ProductOptionsTable, OptionsTable, OrderTable, and so
on.

3.4 Experimental Research Approach

This section discusses the experimental environment preliminaries, environment
setup and evaluations of the proposed solutions in this research.



CHAPTER 3. RESEARCH DESIGN AND METHODOLOGY 54

3.4.1 Preliminaries

This section discusses common tools and evaluation metrics that will be used in
this experiment.

Tools

1. HAProxy - High Availability Proxy is an open-source, reliable, superior
performance, and most widely used software load balancer. It is fully exten-
sible and provides advanced security (HAProxy, 2021). HAProxy was used
in collaboration with the proposed load balancing solution to distribute the
workload of the chosen case study application.

2. Glances - This is a cross-platform monitoring tool written in Python. It
collects and exports system metrics to chosen storage (Hennion, 2021). Real-
time monitoring can also be done via its restful API. Glances was installed
via the Ubuntu command that pulls the installation package from the Linux
distribution. Glances was used to collect statistics of CPU, Memory, Network
Buffer, Network Bandwidth, and thread count from all the application server
VMs.

3. Apache Web Server - This is an open-source and robust HTTP server for
modern operating systems including UNIX and Windows (Wikipedia, 2017).

4. Python - This is a high-level general-purpose programming language that
supports multiple programming paradigms such as structured, object-oriented
and functional programming.

5. MySQL - This is an open-source relational database management system
that is based on SQL (Siteground, 2004-2017).

6. WordPress - This is an open-source content management system that is com-
monly paired with MySQL or MariaDB database. It emphasises accessibility,
performance, security, and ease of use (WordPress, 2017).
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7. Docker - This is a platform-as-a-service product that use OS-level virtual-
ization to deliver to deliver software in packages called containers (Docker,
2017)

8. stress-ng - This is a tool that can stress test a computer system in various
selectable ways.

9. InfluxDB - InfluxDB is a cross-platform, open-source, and scalable time se-
ries database for metrics, events, and real-time analysis (Inc, 2021). InfluxDB
was connected to Glances clients and the server to collect data exported from
Glances clients from all application server VM.

10. Grafana - Grafana is a cross-platform data analysis tool (Labs, 2021). It
uses a dashboard to display time-series analysis data. Grafana was used to
visually examine the data that came from the application server VM during
experiments.

11. Apache Jmeter - This is a cross-platform open-source software that is
designed to load test functional behaviour and measure performance of web
applications and other resources such as a database (A. S. Foundation, 1999-
2017). This tool was used to simulate user requests to the deployed case
study application on the experimental testbeds.

12. PuTTY - This is a software application that enables the connection to Linux
servers. It supports different network connection protocols to enable remote
connection to Linux servers from a windows machine (Techopedia, 2021).
This tool was used to create SSH tunnels to VMs on the cloud.

13. mRemoteNG - This is an open-source multi-protocol remote connection
manager for Windows operating system (mRemoteNG, 2021). It works
in collaboration with PuTTY to enable a successful connection to remote
servers. This tool was used to manage connections to the VM on the cloud
infrastructure.
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Evaluation metrics

1. Response Time - The time elapsed to resolve an HTTP request.

2. Throughput - This is the amount of HHTP requests that can be processed
within a given time frame. This parameter imitates the capacity of a server
(Alankar et al., 2020). It is usually measured per second.

3. Number of Errors - The number of errors encountered during the processing
of HTTP requests.

4. Number of Failed Requests - The number of failed HTTP requests.

5. Round Trip Time (RTT) - This is the time it takes for a network request to
go from a starting point to a destination and back again to the starting point.
Measurements are taken in milliseconds (ms). This is also known as latency.

6. Fault Tolerance - The capability of the load balancing algorithm to continue
to function in the presence of faulty cloud components.

7. Scalability - The capability of the algorithm to adjust its capacity to function
when the situation changes.

3.4.2 Enhanced Cloud Design Pattern

The goal of this experiment was to evaluate the performance of the three multi-
tenancy patterns in a dockerised WordPress application. Three separate docker
images of WordPress, each image representing a WordPress instance with one of
the enhanced multi-tenancy patterns implemented in it, were created. Three VMs
with the configurations of 500GB HDD, 3GB memory, and Ubuntu 16.04 LTS
operating system were created in a private OpenStack cloud. The following tools
were installed on each of the VMs: Apache Jmeter 3.2, docker 1.8.0, Apache web
server, docker image of WordPress 4.8.2, and MySQL 5.7.21.
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Jmeter scripts were used to load test WordPress. These scripts contained Jmeter
samplers and parameters that translate to web pages, actions performed, number of
users performing the actions, and how users perform various actions in WordPress.
Three scripts representing a load test script for each multi-tenancy pattern were
created. The script simulates tenants performing the business process of blog-posts
creation in WordPress. Tenants were grouped into sets of twenty users and the
scripts increased the number of users progressively till it reached 200. Each request
from a user sends data of not less than 5kb at once. This data contained the content
of a blog post such as texts, tables, pictures, and links.

The experimental setup is illustrated in Figure 3.2.

Figure 3.2: Experimental Architecture for Evaluation.
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Evaluation Metrics

The evaluation metrics used in this experiment were average response times and
number of errors.

3.4.3 Novel Weight Assignment Load Balancing Algorithm

In this experiment, the proposed novel weight assignment load balancing algorithm
for three-tier web applications deployed on cloud will be evaluated. The proposed
architectural brokering component will be designed for deploying three-tier web
applications on cloud and benchmark algorithms will be compared to the proposed
algorithm.

An OpenStack private cloud was used to evaluate the proposed novel weight
assignment load balancing algorithm. There were seventeen heterogeneous VMs
running Ubuntu 20.04 LTS in the experimental testbed, and their capacities are
listed in Table 3.1.

Table 3.1: Capacity of VM used in Experiments.

Characteristics m1.medium m1.large
VCPUs 4 8

Memory Size 4GB 8GB
Storage Size 40GB 80GB

Figure 3.3 illustrates the experimental setup on the private OpenStack. As a result
of the OpenStack servers’ network configuration, it is not possible to directly
access the OpenStack dashboard from the Internet outwith the campus. Therefore,
SSH tunnelling through PUTTY and mRemoteng was used for SSH requests. Port
8000 was the dedicated port used on the machine to access OpenStack.
The proposed novel load balancing algorithm was written in C# language. When
deployed, the algorithm runs as a service. HAProxy server v2.4.2-1 and the novel
load balancing algorithm solution were installed on two large-sized VMs after
the algorithm was successfully developed. For the load balancing algorithm, the
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Figure 3.3: Single OpenStack Cloud Experimental Test-Bed.

HAProxy dataplane API v2.3.3 and statistics report for HAProxy provided load
balancing statistics input.

A master application server VM was also configured with a medium size VM
capacity. Apache web server v2.4.29, Glances v3.1.7 with PsUtil v5.8.0, InfluxDB
v1.8.4 client, Python v3.6.9, Microsoft.NET Core 2.0/3.0 modules (runtimes and
SDK), and stress-ng were all installed on the master application server VM.
Apache web server and Glances were configured to start as services. Port 80
was configured as the default virtual host port for Apache web server. After
the successful installation of the previous tools, the case study application was
configured to run as a service on the application server. It can be accessed using
the server’s IP address and port 80. A snapshot instance of the master application
server VM was created and replicated into ten medium-sized VMs. Two of the
application server VMs served as standbys. MySQL v14.14 Distrib 5.7.39 database
was configured on four large VMs. Each database server hosts a database that
supports the deployed case study application. Two servers are a replication of each
other, while the other two database servers were independent database servers for
the purpose of testing for legislative rules and security.

A dedicated VM for collecting and analysing server data was also set up. InfluxDB
v1.8.4 server, Grafana v7.0.4, and Glances v3.1.7 server were installed on the
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statistics collection VM. To improve the performance statistics retrieved from
Glances, a bespoke python script to retrieve network output such as bandwidth (Rx,
and Tx), Network buffer, and thread count using netstat command was created.
The bespoke Python script was configured as an add-in to work with Glances.
Glances server co-ordinates all Glances clients running on each application server
VM. Data retrieved by Glances server is stored in InfluxDB for future retrieval
and manipulation. Grafana is used to monitor, visualize and analyse data retrieved
from both InfluxDB and Glances server. Additionally, Microsoft Excel and Python
scripts were used to analyse and visualise InfluxDB data.

Apache Jmeter v5.4.1 was installed on a standalone machine and configured to
send HTTP requests to the deployed case study application. A backend listener that
implements the InfluxDB datastore was included in the script setup. The backend
listener is used to save throughput, sample size, deviation, and other necessary data
into InfluxDB. This allows for a richer and comprehensive data collection of the
same metrics from different sources. In addition, stress-ng was used to simulate
CPU workload on the application server VM.

Workload

To simulate user requests for the case study application, Apache Jmeter was
used. Apache Jmeter was hosted on a stand-alone machine in order to simulate
realistic requests based on time and location. Apache Jmeter was used to generate
the workload by simulating loads of various scenarios using a predetermined
model by Chelbus et al. (Chlebus & Brazier, 2007) and a process described
below. Specifically, the experiments aim to characterise the prominent performance
metrics for load balancing identified by these researchers (S.-L. Chen et al., 2017;
Z. Chen et al., 2018; Govind & González–Vélez, 2021; Grozev & Buyya, 2014b;
Qu et al., 2017). Also, it compares the performance of the new load-balancing
algorithm proposed with that of Grozev et al. (Grozev & Buyya, 2014b) and the
round-robin algorithm.
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The first step was to profile an application instance to determine how many requests
can be processed in one second. The application server was then profiled again to
determine how many requests can be handled with an SLA constraint that states that
90% of requests must be handled within one second, as recommended by (Qu et al.,
2017). Based on a combination of the two profiles, the application server could
process between 90 and 92 requests per second. Through this profiling, a workload
emulating a nonstationary Poisson distribution was created. Poisson distributions
are chosen because the nature of typical user requests follows a Poisson distribution.
This means that each request is submitted independently and the occurrence of each
request does not affect the probability that a second request will occur. Each of
the experiments was repeated five times and an average of the results was used for
evaluation purposes. The experiments were carried out over a period of 24 hours
with an intensive workload during work hours and a lesser workload at other times.
Therefore, the workload model starts with a minimum thread count of 300 users
and increases to 2000 users with ramp-up times that correspond to the number of
threads and a loop count of ten for each test execution.

Evaluation Metrics

Response time, throughput, scalability, latency, number of sessions, number of
requests, and number of failed requests were the evaluation metrics used in this
research.

3.4.4 Multi-Cloud Load Balancing Algorithm

In this experiment, the multi-cloud load balancing algorithm and decentralised ar-
chitecture will be evaluated using the E-commerce case study application deployed
across a heterogenous cloud data centre.

The experimental environment is composed of three heterogeneous data centres;
a private cloud running OpenStack located in London, an Amazon Web Service
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located in Tokyo: ap-northeast-1a and DigitalOcean cloud located in New York as
depicted in Figure 3.4.

Figure 3.4: Multi-Cloud Experimental Test-bed.

There are nine heterogeneous VMs in each data centre. A VM is referred to as a
droplet in DigitalOcean. The capacities of each VM in each data centre can be
found in Figure 3.2. The Round-trip Time (RTT) latencies between the data centres
were measured and recorded using the ping Linux command and are illustrated in
Table 3.3.

Table 3.2: VM Capacity of Proposed Multi-Cloud Environment

Private Cloud AWS DigitalOcean
m1.medium m1.large t2.medium t2.large Basic

VCPUs 4 8 2 2 2
RAM 4GB 8GB 4GB 8GB 4GB

Disk Size 40GB 80GB 20GB 20GB 80GB

In each data centre, HAProxy server v2.4.2-1 was installed along with the proposed
novel multi-cloud load balancing algorithm on two VMs. One VM acts as a
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standby, depicting a high availability architecture. The second VM is in a standby
state while the second virtual machine is used as the active server, dealing with
all incoming requests in a normal state. On each data centre, a master application
server is configured with the following applications: Apache web server v2.4.29,
Glances v3.1.7 with PsUtil v5.8.0, Python v3.6.9, .NET Core 2.0/3.0 framework
and SDK, stress-ng, and HAProxy Dataplane API v2.3.3 server. The master
application server is replicated to create five application servers deployed in each
data centre. Furthermore, a standard auto-scaler was deployed on a VM in each
data centre. Two database server VMs that run MySQL v14.14 Distrib 5.7.39 were
also configured in each data centre.

Table 3.3: Average Latencies between data centres in milliseconds

Tokyo New York
London 1.68 240.53

To collect and analyse data, the same configurations used in the single-cloud
experiments were replicated for this experiment.

The new multi-cloud load balancing algorithm and architecture were tested by
simulating flash crowds in each of the data centres. First, the novel algorithm was
tested to ascertain that it distributes workload across the participating cloud data
centres. Secondly, tests were carried out to verify that the algorithm respects the
location of users by testing that it sends requests to the nearest data centre. Thirdly,
experiments were carried out to check if the algorithm and HAProxy observe
legislative compliance by testing that blacklists in HAProxy configurations were
adhered to.

To test resource failures, some VMs were removed from the load balancer pool at
300ms time point over ten seconds and added back to the pool after five minutes to
imitate recovery from failure. The length of 300ms over 10s was chosen because
the launch time for an AWS server in an auto-scaling service is 300s (Amazon,
2000-2021; Qu et al., 2017). It allows the simulation of situations during which a
commercial auto-scaler solely manages the application and demonstrates its results
during overloads. The experiment was repeated for each of the data centres to
simulate resource failure for each data centre. Furthermore, more experiments
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were conducted to replicate where resource failures occurred in combinations of
data centres.

Workload

To carry out a profiling test, E-commerce search requests were sent using Apache
Jmeter to the cloud-deployed applications. Firstly, it was stipulated that an SLA
requirement of 90% of requests should be replied to within one second. The
SLA threshold of 90% is an experimentally fitted and approved threshold that
guarantees low latency and consistent performance of E-commerce systems as
shown in (Qu et al., 2017). Second, tests were performed to determine the average
requests that each class of application server can handle without violating the SLA
were performed. Workloads were created using the proposed workload model
by (Bahga, Madisetti, et al., 2011). This workload model includes the following
workload attributes: interval, think time, and session length because it forms a
key part of determining the performance of an application when multiple users
send requests. Research (Chlebus & Brazier, 2007; Qu et al., 2017) also shows
that session arrivals and inter-arrival times constitute a Poisson process in which
arrivals are independent and uniformly distributed.

Based on this workload model, three workloads were created for the three data
centres using the parameters stated in Table 3.4. The experiments were carried out
five times and an average number of requests that were handled by each data centre
was recorded. On average, application servers handled 80 requests per second
(private cloud), 65 requests per second (DigitalOcean), and 45 requests per second
(AWS).

Table 3.4: Workload Parameter

Mean Min Max Deviation
ThinkTime (ms) 4000 100 20000 2

Intersession Interval 3000 100 15000 2
Session Length 10 5 50 2
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Figure 3.5: Workloads with Flash crowds range from 110% to 220%.

Evaluation Metrics

The evaluation metrics used in this experimental evaluation were response time,
throughput, scalability, number of failed requests, and fault tolerance.

3.5 Summary

This chapter described the research approach, research process design, methodol-
ogy, and strategy for collecting and evaluating data for this study. This research
adopts the experimental research approach because the research encompasses dif-
ferent aspects of evaluating cloud deployment strategies. The research process
design enabled the discovery and exploration of the underlying reasons behind
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previous research done on deploying applications to the cloud. It also informed
the use of mathematical techniques to test and evaluate the relationship among
variables and how they affect the overall result of the research. Furthermore, the
research process design informed the collection of data from software applica-
tions and helped to recommend suitable algorithms to improve the performance of
cloud-deployed applications.

Using the research approach and design process, cloud migration methods were
explored, case study applications were observed, and algorithms and models of
cloud deployment were experimentally evaluated. This chapter explained how
the proposed solution was achieved by describing the research activities for each
phase of the research, tools employed, and metrics used for evaluating the proposed
cloud algorithms and techniques. Therefore, the research approach contributed to
achieving the research’s aim and objectives.



Chapter 4

Enhanced Cloud Design Pattern
Structure - Cloud Application
Deployment and Architecture
Pattern

4.1 Introduction

The preliminary stage of this research addressed design patterns in cloud-hosted
applications. In this chapter, the structure of cloud design patterns by Fehling et

al. (Fehling, Leymann, Retter, Schupeck, et al., 2014) was improved by mirroring
a widely cited pattern catalogue by Gamma et al. (Gamma et al., 1994). The
improved pattern structure was applied to multi-tenancy patterns. The enhanced
multi-tenancy patterns showcased a formal description of the pattern, a UML
description, and code snippets of its implementation in case study applications.
A novel implementation of multi-tenancy patterns was done on two case study
applications. These implementations were experimentally evaluated to test the
applicability and performance of multi-tenancy patterns in the selected applications
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and deployment environment.

Section 4.2 describes the enhanced structure of cloud design patterns. Appendix A
contains a detailed description of the enhanced multi-tenancy patterns. Section 4.3
describes the enhancement applied to multi-tenancy patterns. Section 4.4 describes
the implementation of multi-tenancy patterns in case-studied applications. The
results of the experimental evaluation of the novel implementation of multi-tenancy
patterns are discussed in Section 4.5. A chapter summary is done in section 4.6.
The improved cloud design pattern structure, implementation, and the evaluation of
multi-tenancy patterns are published in (Adewojo, Bass, & Allison, 2015; Adewojo,
Bass, Allison, & Hui, 2015; Adewojo & Bass, 2018). This chapter represents the
content of these papers in full.

4.2 Enhanced Cloud Design Pattern Structure

The popular cloud pattern catalogue by Fehling et al. (Fehling, Leymann, Retter,
Schupeck, et al., 2014) forms the foundation of the enhanced cloud patterns in this
chapter. The structure of the cloud pattern catalogue was compared to the structure
of a widely accepted pattern catalogue structure by Gamma et al. (Gamma et al.,
1994). The format, structure, and graphical notation were the main basis for the
comparison. A comparison of the structure of the cloud pattern catalogue and the
structure of the OOP pattern revealed gaps in the structure of the cloud patterns.
These gaps represent vital information that will make the description of cloud
patterns robust, clear, consistent, formalised, and applicable to various users.

To close the gaps in the cloud pattern catalogue structure, this research reviewed
the literature and best practise in computing cataloguing patterns. As a result, an
enhanced cloud pattern structure was created. The new structure now includes
logical headings that clearly explain each pattern. To compare, contrast, and show
the journey from the initial to the enhanced cloud design pattern structure, tables
4.1 - 4.4 which contain the pattern structures were utilised. This enhanced cloud
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OOP Pattern Cloud Design pattern
Pattern Name Pattern Name

Intent Intent
Alias Icon

Applicability Driving Question
Structure Context

Participants Solution
Collaborations Result
Consequences Variations (this does not apply to all patterns)

Implementation Related Patterns
Sample code Known Uses
Known uses

Related patterns

Table 4.1: Initial Structure of OOP and Cloud Design Patterns.

design pattern structure clears the ambiguities in the implementation of cloud
design patterns. Also, it enhances and improves software developers’ and the
architects’ ability to implement these patterns.



CHAPTER 4. CLOUD DEPLOYMENT PATTERNS 70

Cloud Design pattern Enhanced Cloud Design pattern
Pattern Name Pattern Name

Intent Intent
Icon Icon

Driving Question Motivation
Context Applicability
Solution Consequences
Result Participants

Variations Collaborations
Related Patterns Related Patterns

Known uses Known Uses
Sample code

Formal Description

Table 4.2: Initial and Enhanced Cloud Design Pattern Structure

Beginning of Table

OOP Pattern Description
Cloud Design
pattern

Description

Pattern Name
The name used to iden-
tify the pattern

Pattern Name.
The name used to iden-
tify the pattern.

Intent

This section describes
the purpose and con-
tent of the solution rep-
resented in the pattern.

Intent

The purpose and goal
of the pattern, and the
content of solution is
described.

Alias
This is another name
for the pattern.

Icon

A graphical representa-
tion of the pattern to be
used in architectural di-
agrams for modelling
cloud applications.

Applicability
The situations to
which the pattern
applies.

Context

This section describes
the environment and
forces leading to the
problem solved by the
pattern. It also may
describe why naive so-
lutions can be subopti-
mal. It showcases the
context in which other
patterns that form im-
plemented by develop-
ers can be applied to
create custom cloud
applications.

Structure
This is a diagrammatic
illustration of the pat-
tern

Solution

This section briefly de-
scribes how the pat-
tern solves the problem
raised by the driving
question.
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Continuation of Table 4.1

OOP Pattern Description
Cloud Design
pattern

Description

Participants
This comprise of the
classes and objects that
make up the pattern.

Result

This section elaborates
the solution in greater
detail. It discusses new
challenges that may
arise after implemen-
tation, references to
other patterns that may
address the challenge,
and a proposed archi-
tecture.

Collaborations

This describes how
classes and objects in a
pattern, relate to each
other.

Variations

Because patterns can
be applied in slightly
different forms, the
section showcases pat-
terns that are not signif-
icant enough for a sep-
arate pattern descrip-
tion

Consequences

This refers to the cul-
mination of the results,
trade-offs, and side ef-
fects caused by the use
of the pattern.

Related Patterns

The interrelation of
patterns that are of-
ten applied together
or that should be ex-
cluded from each other
are discussed in this
section.

Implementation
This describes the solu-
tion part of the pattern.

Known Uses
Existing applications
that implement the pat-
tern are covered here.
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Continuation of Table 4.1

OOP Pattern Description
Cloud Design
pattern

Description

Sample code

This illustrates how the
pattern can be imple-
mented in a program-
ming language.

Driving Question

A question that cap-
tures the problem that
is answered by the pat-
tern.

Known uses
These are examples of
real usages of the pat-
tern.

-

Related patterns

This refers to the simi-
larities (as well as dif-
ferences) that can ex-
ist between the pattern
of interest and another
pattern.

-

Table 4.3: OOP and Cloud Design Pattern Structure

In Table 4.1 the OOP and cloud design pattern headings are compared and Table 4.2
compares the initial and enhanced cloud design pattern structure. Table 4.3 explains
the meaning of each heading of both OOP and cloud design pattern structure.

Table 4.4 displays just the enhanced cloud design pattern structure and the meaning
of each section. The enhanced cloud design pattern structure now includes new
headings: Motivation, Applicability, Participants, Collaborations, Consequences,
Sample Code, and Formal Description.

Motivation extracts the commonalities between intent, driving questions, and
context in the cloud design pattern structure by Fehling et al. (Fehling, Leymann,
Retter, Schupeck, et al., 2014). This description simplifies the reason for the pattern
being described.

Applicability is an extract from context and driving question by Fehling et al.
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Enhanced Design pattern Description

Pattern Name
This is a unique identifier to aid identification
and reference to a pattern.

Intent
This describes the aim and reason for using the
pattern.

Icon
A graphical representation of the pattern to be
used in architectural diagrams for modelling
cloud applications.

Motivation
An idealised situation where the challenge and
context is suitable for a design pattern.

Applicability
A circumstance in which the pattern is suitable
for use.

Structure
A diagrammatic illustration of how to design the
pattern.

Implementation This describes the solution part of the pattern.

Related Patterns
This refers to the similarities (as well as dif-
ferences) that can exist between the pattern of
interest and another pattern.

Known Uses These are examples of real usages of the pattern.

Consequences
This refers to the culmination of the results,
trade-offs, and side effects caused by the use
of the pattern.

Sample code
This illustrates how the pattern can be imple-
mented in a programming language.

Formal Description
A mathematically based technique to describe a
pattern using chosen formal language.

Table 4.4: Description of Enhanced Cloud Design Pattern Structure

(Fehling, Leymann, Retter, Schupeck, et al., 2014). It clearly defines the suitability
of the pattern for different circumstances that a software architect might encounter.

Structure improves Icon by Fehling et al. (Fehling, Leymann, Retter, Schupeck,
et al., 2014). It diagrammatically represents the pattern and how it can be designed
by using a general purpose modelling language.

Implementation improves and simplifies Solution by Fehling et al. (Fehling,
Leymann, Retter, Schupeck, et al., 2014). It highlights how the pattern can be
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implemented in different scenarios of building a cloud-native web application.

Consequences improve and simplifies Result by Fehling et al. (Fehling, Leymann,
Retter, Schupeck, et al., 2014). Consequences describe the trade-offs and side
effects that can be caused by using the pattern being described.

Sample code improves solution by Fehling et al. (Fehling, Leymann, Retter,
Schupeck, et al., 2014). It illustrates using real programming code to describe how
to implement the solution the pattern offers.

Formal description improves Icon by Fehling et al. (Fehling, Leymann, Retter,
Schupeck, et al., 2014). It describes precisely the pattern through the use of formal
language.

4.3 Enhanced Multi-tenancy Patterns

As discussed in Chapter 2, multi-tenancy patterns are key architectural patterns and
one of the essential patterns for cloud properties. This is because resource sharing
is an essential cloud property and multi-tenancy is one of the architectural patterns
that describe resource sharing.

Multi-tenancy is also classified as a type of cloud deployment pattern (Adewojo
& Bass, 2018; Fehling et al., 2011; Fehling, Leymann, Retter, Schupeck, et al.,
2014). Cloud deployment patterns play a major role in architectural restructuring
and migration of on-premise software applications to the cloud. This is the result
of its ability to describe the methodology needed to provision and manage cloud
resources that will host the application. Also, as stated in Chapter 2, multi-tenancy
occurs at different levels of cloud: infrastructure, application, and database layers.
Therefore, applying it to the development and deployment of cloud-native applica-
tion can be a challenge. But a comprehensive design pattern can help to reduce the
implementation challenge.
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In this section, the enhanced cloud design pattern was applied to multi-tenancy
patterns. This stage of research focuses on implementing multi-tenancy in the
database layer of a cloud-native application. The full description of the enhanced
multi-tenancy patterns can be found in Appendix A.

4.3.1 Formal Description of Shared Component Pattern

This research further enhanced the existing multi-tenancy pattern of Fehling et al.

(Fehling, Leymann, Retter, Schupeck, et al., 2014), by formally describing the
patterns using the Z language. The formal description defines precisely what a
multi-tenancy pattern is and how to implement it because it exposes extra decisions
that will be in the final artifact. This formal description will help solution architects
to better understand how to implement multi-tenancy patterns consequent to leading
to applications with improved resource-sharing ability.

In this research, UML diagrams of the multi-tenancy patterns were first created
and then further specified using the Z language. Z language was used because it
is a state-based language. Its domain of use is not limited, and it is fairly easy to
understand.

Figure 4.1 is the formal definition of the shared component pattern in Z language.
It describes the state space of this pattern and is referred to as a schema. This
schema deals with variables such as database schema, names, and tables. The first
part of the schema declares variables that constitute the pattern, while the part
below the line gives a relationship between the values of the variables.

• known – is the set of database names and their collections

• SharedDBItem - is a function which when applied to the database (SysDB-
Name) will return shared tables associated with the database

• SharedTableItem - is another function that returns tenant IDs and tenants’
data when applied to a shared table item (SharedTableItem)
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The part of the schema below the line says that the set known is the same as the
domain of the function SharedDBItem and SharedTableItem - the set of databases
and tables which it can validly contain. The relationship shows that a shared pattern
contains multiple shared tables with tenants’ details in them.

Figure 4.1: Z Representation of Shared Component Pattern (Adewojo, Bass, &
Allison, 2015).

4.3.2 Formal Description of Tenant-Isolated Component Pat-
tern

Figure 4.3.2 formally describes the tenant-isolated component pattern in Z language.
This description also includes schema, names, and tables.

• known – is the set of database names and their collections

• DBSchemaName - represents a dedicated schema that contains tenant spe-
cific table items that are all contained in the main database (SysDBName)

• TenantIsolatedTableItem - represents a collection of tenant specific tables
within a schema

The lower part of the schema emphasizes the fact that the database validly contains
database schemas with the above variables.
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Figure 4.2: Z Representation of Tenant-Isolated Component Pattern (Adewojo,
Bass, & Allison, 2015).

4.3.3 Dedicated Component Pattern

Figure 4.3.3 is the Z representation of the dedicated component pattern. This
schema deals with variables such as database names and tables. The first part of
the schema declares variables that constitute the pattern.

• known – is the set of dedicated database names and their collections

• DedicatedDBItem - is a function which when applied to the database (Sys-
DBName) will return dedicated tables associated with the database; this
implementation has all database component dedicated to a database instance
and tenant

The lower part of the schema reflects the domain of the function. This means that
each database is dedicated solely to the tenant.

Figure 4.3: Z Representation of Dedicated Component Pattern (Adewojo, Bass, &
Allison, 2015).
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4.4 Implementation of Multi-tenancy Patterns in Case
Study Applications

To evaluate the applicability of the enhanced multi-tenancy patterns, an imple-
mentation of the patterns were carried out on the data and domain layer of two
case-studied application.

4.4.1 Implementation of Shared Component Pattern in Case
Studied BPM

The shared component pattern was used to design the database table that accommo-
dates the user details of tenants that used the BPM software application. It was also
used to improve resource sharing of the underlying infrastructure of the software
application.

4.4.2 Implementation of Tenant Isolated Pattern in Case Stud-
ied BPM

The tenant-isolated component pattern was implemented in the data storage com-
ponent of the case study application. To implement the tenant-isolated component,
the data storage component was designed to allow multiple customers to access
a single instance of SimpleDB with domain-id as the customer’s identity. A do-
main represents a company, and everything in a domain represents details of all
defined process for that particular company. Items in the domain are Task, Role,
RoleType, Department and Process. This means different companies share the
same simpleDB instance but are in different domains. It offers a high degree of
sharing without influencing other tenants. This method of implementation ensures
isolation between companies by controlling their access, processing performance
used, and separation of stored data. Also, each tenant’s user is authenticated before
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gaining access to the stored data, and each domain is uniquely identified. Hence
customers can only access their data. The code fragment in Appendix A–section
sample code–depicts how this is implemented.

4.4.3 Implementation of Dedicated Component Pattern in Case
Studied BPM

Each domain of the WordPress instance represents different parts of the company’s
process. This offers the lowest degree of sharing but the highest degree of privacy.
However, it is costly in terms of finance and technical management. The code
snippet in Appendix A, section sample code shows a fragment of how this was
implemented.

4.4.4 Implementation of Multi-tenancy Patterns in Container-
ized Cloud Hosted WordPress Application

To implement shared component pattern, tenants shared the same database instance,
schema, and tables of WordPress Application. Each tenant is identified using a
variable called the tenant ID. This allows the database to group users with same
tenant ID as belonging to the same tenant. To implement tenant-isolated component
pattern, tenants shared the same database instance, while the database schema and
tables were dedicated to each tenant. To implement dedicated component pattern,
a dedicated database instance, including schema and tables were allocated to each
tenant so that it can support legislative requirements of the application.
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4.5 Results

An average of twenty runs for each group of user requests is used in this setup.
Equation (4.1) depicts how the average response time is calculated for each tenant,
and its input parameters are represented below:

• N—Number of runs;

• Tn—Number of tenants;

• E—Elapsed time;

AvgResponseTime f orNRuns =

1

∑
N
(
∑(E)

Tn
)

N
(4.1)

Figure 4.4 depicts the average response time of creating blog posts in the three
experimental setups of WordPress that implement the multi-tenancy pattern. The
average response time to create a blog-post using the dedicated pattern implemen-
tation varied between 1.64 seconds and 5.43 seconds. The average response time
for the tenant-isolated pattern varied between 2.05 and 8.5 seconds. The average
response time for the shared component pattern ranged between 2.99 and 6.85
seconds.
The result in Figure 4.4 also showed that the average response times of shared and
tenant-isolated pattern reached a peak at 6.85 seconds and 8.5 seconds respectively
before it dropped. The drop in the response was a result of errors in the number of
requests being handled by WordPress at the time. Figure 4.5 shows the number of
failed requests that occurred while evaluating the multi-tenancy patterns in each
of the experimental setups of WordPress. There was an increase in the number of
failed requests when the average response time peaked for both tenant-isolated and
shared patterns.
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Figure 4.4: Average Response Time of the Multi-tenancy Patterns when creating
Blog Posts.

Reflecting on the characteristic performance of multi-tenancy patterns in Word-
Press, it is concluded that dedicated component pattern suits WordPress applica-
tions used within an organisation where users are all grouped as a tenant. However,
from another perspective, tenant-isolated pattern suits WordPress applications in
two different instances: tenants are groups of users within an organisation or ten-
ants are different groups of users that are not part of the same organisation. The
tenant-isolated pattern approach of sharing resources will allow more groups of
tenants to share the same WordPress instance with different customisation and
database schema.

The shared pattern performed well in WordPress when tenants did not exceed
100 users. This number of users is relatively small and not realistic for most
organisations. However, this pattern can be used to handle less critical data such as
setting up user data of a SaaS application.
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Figure 4.5: Number of Request Errors when creating Blog Posts.

4.6 Summary

Multi-tenancy is an important and frequently used architectural pattern in SaaS.
It improves the utilisation of resources and reduces the effort in deploying and
managing applications on the cloud. In addition, it reduces the total cost of
ownership. Three degrees of multi-tenancy exist, and so three different types of its
implementation exist, irrespective of the application or infrastructural layer that
will implement it.

Choosing the right multi-tenancy pattern can be a challenge, so this chapter con-
tributes to alleviating this challenge by enhancing the structure of cloud design
pattern to include headings and descriptions that enhance the meaning of a cloud
pattern. A formal description of the multi-tenancy pattern using the Z language
was created. A novel data layer implementation of multi-tenancy patterns was
developed in two case-studied applications. Furthermore, an empirical evaluation
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of the three types of multi-tenancy patterns was performed. The experiments evalu-
ated the performance of the three multi-tenancy patterns so that their suitability in
a content management system can be recorded.

This chapter has contributed to research by systematically improving cloud design
pattern structure and multi-tenancy patterns. The patterns were improved to include
logical headings and elaborate definitions; a detailed description of how each pat-
tern can be utilized was provided, and underlying theories of the pattern properties
were explained. Furthermore, the enhanced pattern catalogue provides a common
language that can help software developers to communicate using well-understood
terminologies for software interactions. An enhanced pattern catalogue will help
software developers to understand the difference between the cost and benefits of
the different approaches of using multi-tenancy patterns.

The next chapter will focus on creating novel algorithm and techniques for mitigat-
ing the issues that cloud-hosted application encounter.



Chapter 5

A Novel Weight-Assignment Load
Balancing Algorithm for Cloud
Applications

5.1 Introduction

This chapter introduces and describes a novel weight assignment load balancing
algorithm for three-tier web-based cloud applications. The content of this chapter
has been previously published in (Adewojo & Bass, 2022b) and (Adewojo & Bass,
2023). The contributions of this chapter are as follows:

1. a design approach for deploying existing web applications to the cloud with
minimal changes to the code base

2. a novel hybrid-dynamic load balancing algorithm and architecture that miti-
gates limitations of load balancing techniques such as single point of failure,
excessive re-routing, and slow sensing of uncertainties

3. a load balancing algorithm that mitigates the negative effect of flash crowds

84
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and resource failures

4. a redesigned architectural component for brokering activities within three-tier
architecture for distributing workload and

5. an implementation and experimental evaluation of proposed and benchmark
algorithms on a private cloud test-bed.

This chapter starts by describing the requirements and assumptions for the proposed
novel load balancing algorithm. The proposed approach to the novel weight
assignment and load balancing algorithm is discussed in section 5.3. The novel
load balancing service and the weighting technique behind it is described in Section
5.4. An empirical experimental evaluation and results are presented in Section 5.5.
Section 5.6 concludes and summarises the chapter.

5.2 Requirements and Assumptions of Proposed Load
Balancing Algorithm

The proposed novel load balancing algorithm will establish a foundation for multi-
cloud load distribution. Therefore, the solution will require requests that can be
processed by application replicas deployed in more than one data centre. This
involves some important factors, and session continuity is the most important factor
for this research. Session continuity ensures that end-user sessions, established
over any access network, will not lose connection or any internal state even when
different servers process user requests. Stateless applications, such as search
engines, do not save client data generated in one session for use in the next session
with that client. Also, stateless applications can easily scale because they can be
deployed across multiple servers without issues while ensuring session continuity.
All these properties of stateless applications implicitly satisfy the requirement of
session continuity. On the other hand, stateful applications require the persistence
of end-user IP and session to a specific server. Consequently, stateful applications
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and services cannot be managed with this approach. Hence, this study focuses on
stateless applications.

It should be noted that a significant reason for deploying software layers across
multiple tiers is to secure a balance among performance, scalability, fault tolerance,
and security (“Rockford Lhotka - Should all apps be n-tier?”, 2020). The presenta-
tion layer often executes at the users’ end and is thus not the focus of this research
work. The business and data layers of a three-tier web application executes in the
backend server and can be scaled when they are deployed across different tiers.
The data layer usually consists of one or more database servers. However, this
layer typically becomes a performance choke point because of the requirements
for transactional access and atomicity (Brewer, 2012; Grozev & Buyya, 2014b).
Some techniques such as replication, caching, and sharding are recommended to
ease the scaling of the data layer (Fowler, 2002; Grozev & Buyya, 2014b). These
techniques are application specific, so will be impossible to include them in a
generalised framework that targets any three-tier web applications. In sum, the
proper balance of using the above technique is domain-specific. Therefore, this
research does not cover application-specific data deployment. This study assumes
that the data layer has been deployed appropriately and is focused on distributing
workload effectively across the business tier or application server layer.

5.3 The Proposed Approach

The proposed approach to designing a hybrid-dynamic load-balancing algorithm
using a novel weight-assignment policy is discussed in this section. The load
balancer and the novel load balancing service are co-located in the same data centre
to achieve fast detection of flash crowds and perform quick adaptations. The load
balancing service comprises a monitoring module, the load balancer software, and
the control module. To detect application or server overload, the monitoring mod-
ule continuously monitors incoming requests and available resources. The control
module contains the load balancing algorithm and other configuration files, which
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are used to adjust the weight of each VM in response to requests. Furthermore, as
discussed in section 5.2 about the focus of this research on stateless applications, a
key principle behind the proposed approach is session continuity. Session conti-
nuity is an important factor in distributing requests across any application server.
Session continuity is the principle behind the improved performance of stateless
applications.

5.3.1 Load Balancing Architecture

Figure 5.1 is an illustration of the proposed high availability (HA) load balancing
service. The load balancing algorithm (load balancer controller) is part of the
load balancing service, along with a load balancer (HAProxy) and monitoring
functionality. The load balancer controller returns the weight of all participating
servers to the load balancer at a specified time that will be discussed later. The
monitoring module monitors all servers for scaling/de-scaling purposes, the health
of servers, and the frequency of incoming user requests.

The communication strategy used in the design of the load balancing service is
the message-based communication strategy. This strategy improves decoupling,
flexibility, and maintainability (Archiveddocs, 2022a). This included serialisation
of data when required, particularly when transferring data to calculate the weights
of the server.

The load balancer and other components were deployed on the same VM in the
same data centre as the test web application. The co-location of these components
helps to achieve fast detection of flash crowds and perform quick adaptations.

5.3.2 Overall Architecture

The overall architecture of the newly introduced load balancing system is depicted
in Figure 5.2. The conventional three-tier web application was extended to include
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Figure 5.1: Proposed Load Balancing Architecture (Adewojo & Bass, 2022b)

an additional layer of components. This extra layer consists of the newly intro-
duced load balancing service, HAProxy load balancer, and an auto-scaler. This
architectural design approach facilitates a deployment approach for existing web
applications with minimal changes to the code base.
In this architecture, users interact with the presentation layer, and requests are
routed to an entry point consisting of VMs that host the novel load-balancing
service. User requests are sent to the application server by the load-balancing
service. These application servers host the domain layer on separate VMs. After
interacting with the data layer, the domain layer sends back responses to the
user based on the data it has manipulated. The data and domain layers consist of
multiple servers installed across VMs. This process is repeated every time a request
comes in, and the load-balancing service distributes the workload accordingly.

5.3.3 Design and Deployment Architecture

A load balancing algorithm that is efficient and tailored to the application it supports
should incorporate different metrics relevant to the application (Kumar & Kumar,
2019). Therefore, the design of the proposed load balancing algorithm will address
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Figure 5.2: Proposed Overall Layered Architecture in a Single Data Center

issues and limitations of load balancing that were discussed in Chapter 2 by
incorporating techniques and carefully selected metrics that are essential for load
balancing an interactive three-tier web application. A number of these issues
highlight areas where load balancing algorithms and architecture could be improved.
The following sections discuss these issues and ways to mitigate them as reflected
in the proposed design.

• Scalability: Scalability in load balancing is the ability of a load balancer to
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continue to distribute workload across any finite number of servers. The pro-
posed load balancing architecture will scale across any number of servers be-
cause it uses a proven load balancing system – HAProxy 2.4.2-1 (HAProxy,
2021). Furthermore, the use of HAProxy with the proposed novel algo-
rithm mitigates the issues of slow sensing of uncertainties and excessive
re-routing because HAproxy is a fast, proven and reliable load balancer
software. HAproxy is also an open source and reliable reverse-proxy high-
performance TCP/HTTP load balancer software (HAProxy, 2021). It is
recommended for most websites and particularly suited for high-traffic web-
sites. It is commonly used by major websites and powers a significant
portion of the world’s most visited sites (HAProxy, 2021). In addition, this
research’s experiments featured the removal and addition of a varied number
of heterogeneous VMs to test scalability. The results proved the solution’s
ability to distribute load across a finite number of servers.

• Fault Tolerance: Cloud fault tolerance is the capability of the infrastructure to
support uninterrupted functionality of deployed applications despite failures
of components (Bala & Chana, 2012; “What is Fault Tolerance?”, 2022). The
ability of a load balancer to continue to deliver services despite failure (Shah
et al., 2017) of a cloud component is highly desirable in guaranteeing the
availability and reliability of cloud-deployed applications. Consequently, the
cloud uses various fault tolerance approaches, including proactive approaches
such as fault detection systems, reactive approaches such as VM placement
models, and other approaches such as machine learning and meta-heuristics
in algorithms (Kumari & Kaur, 2021). In this research, a proactive approach
to fault tolerance is utilised. To mitigate the issue of single point of failure, the
proposed architecture created multiple load balancing front-ends and standby
application servers as fail-over systems. The proposed architecture also
includes self-healing, job migration, and HAProxy replication policies as an
additional fault tolerance technique. The newly developed approach utilised
HAProxy’s high availability keep alive technology to regularly monitor
servers and services for a fast job migration. In addition, the approach used
floating IP addresses that can be moved between load balancers to ensure
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availability of service at optimum performance.

• Reduced Overhead and Latency: Performance overhead is the extra time
taken in performing an assigned functionality by a cloud component. A
high-performance overhead will lead to an increased communication cost
and noticeable performance degradation (Xu et al., 2013) in running appli-
cations. In a load balancer, performance overhead is influenced by several
factors, including the load balancing algorithm (Shah et al., 2017; Zomaya
& Teh, 2001). The proposed load balancing algorithm runs efficiently with
negligible performance overhead of less than 2% when compared to other
load balancing algorithms. Additionally, the new load balancing architec-
ture exemplifies a decentralised approach to collecting and updating server
metrics. This decentralised approach is a recommendation by authors in
(Zomaya & Teh, 2001) to reduce performance overhead and latency. Also, in
the proposed architecture, each participating VM is preinstalled with glances
agent (Hennion, 2021), a cross-platform monitoring tool for monitoring sys-
tem resources and utilisation. Glances agent uses the RESTful Application
Programming Interface (API) of glances to capture server metrics that are
sent to a time-series database called InfluxDB. The use of the RESTful API
improves performance when data is collated.

• Server Metrics: Server metrics play an instrumental role in determining the
efficiency of a load balancing algorithm. Chen et al. (S.-L. Chen et al.,
2017) encourage the use of varied but application-specific server metrics
in load balancing algorithms. In its formulation, the proposed algorithm
combines carefully selected key server metrics. These server metrics are
specific to three-tier web applications and some have been recommended
by these authors (Grozev & Buyya, 2014b; Sahu et al., 2013; Tychalas &
Karatza, 2020; Wang & Casale, 2014). We argue that besides popular and
common metrics of CPU, Memory, and network bandwidth utilisation, the
thread count of a processor is a vital server metric that is often overlooked.
Thread count determines how efficiently data can be transmitted in and out of
a system and provides a summary of concurrent requests within a server. The
combination of these metrics indicates the true state of the server’s current
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workload; thereby providing adequate information for the load balancer to
perform efficiently.

5.4 Proposed Load Balancing Service

This section describes the novel weight assignment technique and load balancing
algorithm for three-tier web applications deployed on cloud.

5.4.1 Proposed Weighting Technique

The proposed VM weighting technique for the novel load balancing algorithm is an
improvement on the research work by (S.-L. Chen et al., 2017) and (Z. Chen et al.,
2018). The weighting technique combined four server metrics to calculate the
weight of a VM. It also included a new additional server metric as a key determining
factor in the load balancing algorithm. These server metrics are represented as
follows: Mk represents Memory utilisation; Bk represents Bandwidth utilisation;
Ck represents CPU utilisation; Tk represents Thread Count; and NBk represents
Transmission Control Protocol (TCP) network buffers/queues.

The weight of a VM represented as W (Xk) requires first calculating the real-time
load, Lr(Xk), as shown in equation (5.1). The real-time load utilises the following
server metrics: Mk, Bk, Ck, Tk. These metrics are retrieved in percentages from the
monitoring tool and then converted to integer values by dividing each of them by
100.

Lr(Xk) = (e1 ∗ (Ck/100))+(e2 ∗ (Mk/100))+

(e3 ∗ (Bk/100))+(e4 ∗ (Tk/100))
(5.1)
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To compensate for the presence of bias and to reflect the influence each metric has
on a VM, weight factors were introduced to all the metrics, as shown in equation
(5.1). e1,e2,e3,e4 represents the weight of CPU, RAM, bandwidth, and thread
count respectively. The sum of these weights is 1. The weight factor values were
carefully chosen and proven experimental values. The weight factor values were
fitted in experiments, and chosen values were the best fit values representing the
unique influences of each server metric of an application server for a three-tier
web application. The chosen values for each weight factor are 0.5 for CPU, 0.3 for
RAM, 0.15 for bandwidth and 0.05 for thread count. CPU utilisation has the most
significant weight because the selected class of application becomes processor
intensive when a significant amount of data is being passed. Memory utilisation
has the next most significant weight because its influence on a VM can quickly
lead to a nonresponsive server when the utilisation is high.

Network buffer was not included in equation (5.1), so no weight was assigned to it.
The network buffer was omitted because it stores packets temporarily. Network
buffers determine the ratio of network utilisation to network availability. Therefore,
their influence on a server is constant. In this experiment, the network buffer was
used in the load balancing algorithm to regularly monitor network availability,
mostly when the real-time load of a server is being calculated because a larger
buffer size reduces the potential for flow control to occur.

The next step in the weighting technique is the definition of a threshold for load
comparison. The threshold is defined as the average value of all participating
application server VM load as shown in equation (5.2). n represents the number of
all participating application server VMs.

Lrth =
∑Lr(Xk)

n
(5.2)

To further improve and analyse the weight calculator, some modalities are set out as
follows: if Lr(Xk)≤ Lrth, this means that the application server’s load is relatively
small so that the weight assigned to the server can be increased. The assigned
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weight should be decreased if it is the opposite, for the server’s load is high. To
define and quantify these changes, a modification parameter δ is defined as shown
in equation (5.3).

δ =
Lr(Xk)

∑Lr(Xk)
(5.3)

After the real-time load is calculated and a load comparison of servers is done using
the aforementioned equations, the weight of a server is then calculated. The weight
calculator will return the lowest real-time load value for the least utilised VM, but
HAProxy, the chosen load balancer, functions in a reverse manner. This means
that the load balancer expects or appropriates the largest weight value for the least
utilised VM. To make the weight calculator function in line with HAProxy’s weight
policy, the inverse of the real-time load as shown in equation (5.4) is computed.
This makes the lowest real-time load value the largest value.

Lastly, HAProxy’s weight policy is bound to real integer values. This means that
the supplied weight must be a whole number otherwise, it will not be consistent
with the original intention. The proposed novel algorithm rounds up any decimal
value that is greater than eight to make the value a whole number. The weight
calculator is represented in equation (5.4).

W (Xk) =

( 1
Lr(Xk)

+δ ),Lr(Xk)≤ Lrth

( 1
Lr(Xk)

−δ ),Lr(Xk)≥ Lrth

(5.4)

5.4.2 Proposed Load Balancing Algorithm

The proposed novel load balancing algorithm is presented in Algorithm 1. This
algorithm is an abstraction of the overall process flow of the weighting and load
balancing logic. It is a hybrid-dynamic load balancing algorithm that computes
every two seconds the utilisation of all participating servers. After computing
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the utilisation of each server VM, the algorithm assigns a weight to each server
during runtime using the newly introduced weighting technique. This process also
changes the load balancer’s configuration. In other words, the load balancer is
immediately notified of the changes. The load balancer then automatically adjusts
the amount of load distributed to each server, based on the weight of each server.

The input parameters for the algorithm are as follows:

• T hc—CPU threshold

• T hr—RAM threshold

• T hbw—Bandwidth threshold

• T htr—Thread count threshold

• V Mas—list of currently deployed application server VMs

The algorithm first receives and sets the overall threshold for the above input param-
eters. Experimentally and research-approved threshold values of 80%,80%,80%,85%
for CPU, RAM, Bandwidth, and Thread count respectively are set. Again, to cor-
roborate the threshold values, experimental profiling tests were performed on a
medium-sized application server VM using workload generated from real web
application requests. A predefined SLA that states that 90% of requests should
be handled within one second, as recommended by (Qu et al., 2017) was used to
determine the average utilisation percentage.

In line 7 of the algorithm, the function TCPBufferOverloaded() represents an
extracted logic to check the TCP network buffer NBk. This function uses the netstat
command to check for the presence of a TCP socket whose buffer size ratio, Recv-
Q and Send-Q values, is greater than 0.9. The value of 0.9 is a research-verified
value by (Grozev & Buyya, 2014b). A ratio value greater than 0.9 means the
network buffer is overloaded and requests will not arrive promptly at the VM.
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The algorithm automatically retrieves the utilisation values of the chosen VM
metrics. After retrieval in line 2, the algorithm loops through available server VMs
and compares each utilisation metric of the current server with the set threshold.
The algorithm then computes the weight using the novel weighting technique in
equation (5.4), and performs the TCP network buffer check. Then, a weight is
assigned to each server VM whose network buffer is not overloaded, as depicted
on line 9. If the server VM is fully utilised - 100% or has passed the threshold
utilisation value, a weight of 0 is assigned to the VM. This is shown in line 11.
A fully utilised VM with a weight of zero means that the VM will not accept
any more incoming requests until the utilisation rate is lower or equal to the set
threshold.

On line 14, requests will be distributed by the load balancer according to the weight
of each server VM in a round-robin manner. This process distributes server load
proportionally based on a VM’s real-time capacity.

Algorithm 1: Novel Load Balancing Algorithm.
Input: si, T hc, T hr, T hbw, T htr, V Mas

1 RetrieveAllocateToInputThresholdValues ();
2 for each VM, vmi ∈V Mas do
3 Utlcpu← CPU utilisation of vmi;
4 Utlram← RAM utilisation of vmi;
5 Utlbw← Bandwidth utilisation of vmi;
6 UtlT hreadCount← Threadcount of vmi;
7 if (Utlcpu ¡ T hc & Utlram ¡ T hr & Utlbw ¡ T hbw & UtlT hreadCount ¡

T htr & !TCPBufferOverloaded ()) then
8 W (Xk)← CalculateWeightbyutilisation (Utlcpu,

Utlram, Utlbw, UtlT hreadCount, V Mas, vmi);
9 assignweighttoVM (vmi,W (Xk));

10 else
11 assignweighttoVM (vmi,0);
12 end
13 end
14 HAProxyAssignRequest (si,V M)

A visual representation of the novel load balancing algorithm and the weighting
technique is depicted in Figure 5.3.
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Figure 5.3: Visual Representation of Novel Load Balancing Algorithm.

5.5 Results and Performance Analysis

This section discusses the analysis and performance comparison of the novel load
balancing algorithm and the benchmarks.

5.5.1 Performance under Resource Failure

In order to test the novel algorithm’s applicability, a basic workload distribution test
was first done. The novel load balancing algorithm’s ability to distribute workload
across VM was first validated. The baseline algorithm by Grozev et al. (Grozev &
Buyya, 2014b) was also validated to determine whether the bespoke replication
of the baseline algorithm produces similar results recorded by the researchers.
Varying numbers (1 – 5) of over-utilised VM were mimicked as depicted in Figures
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5.5. The aim of this test is to check if the novel load balancing algorithm will
assign the correct weight to the VMs while it redirects workload to other VMs. The
result is that the newly developed load balancing algorithm distributed workload
among available VMs based on their current capacity, such that the stipulated SLA
was not violated.

(a) One Fully Utilised Node.

(b) Two Fully Utilised Nodes.

(c) Three Fully Utilised Nodes.
To test fault tolerance and scalability of the load balancing system, tests in resource
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(a) Four Fully Utilised Nodes.

(b) Five Fully Utilised Nodes.

Figure 5.5: Fully Utilised VM Nodes.

failure situations were performed. To replicate resource failure situations, especially
hardware failure, some VMs were stopped and removed from the available pool of
participating VMs. VMs were removed at 300ms time point in every experiment
for over ten seconds.

VMs were gradually added back to the pool after five seconds to emulate recovery
from failure. In total, five different server failure scenarios were created.

The performance of the three algorithms (novel load balancing algorithm, baseline
algorithm, and round-robin algorithm) were compared in all the experiments. The
round-robin algorithm performed worst, as depicted in Figure 5.7. The number
of requests the round-robin algorithm handled when it encountered between one
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and two server failures was 10% less than the stipulated SLA requirement. The
performance of the round-robin algorithm declined when server failure was more
than four. The round-robin algorithm handled less than 80% of requests within one
second. This indicates that distributing workload randomly, even uniformly, is not
enough for this class of application. This type of load balancing might be sufficient
for applications that are not critical or resource intensive.

The baseline algorithm by (Grozev & Buyya, 2014b) performed better than the
round-robin algorithm, as shown in Figure 5.7 below. When server failures were
not more than three, the baseline algorithm could handle approximately 90% of
requests, albeit at a much higher response time compared to the novel algorithm.
When server failures increased to five, the algorithm suffered performance degra-
dation. The response times were high, with values between 1.2 and 1.6 seconds.
The percentage of requests handled declined to less than 80% of requests. Fur-
thermore, it was observed that at the peak of server failures, the algorithm became
unresponsive, resulting in errors as shown in Figure 5.8 below.

The novel load balancing algorithm distributed requests within the stipulated SLA
as shown in Figure 5.7. It did not violate the SLA at any point of the server failure.
Response times were constant and improved compared to the two other algorithms.
During all server failures, the novel algorithm attended to over 90% of requests
between 0 ms and 998ms. In the study, it was found that response times of the
novel algorithm fell within an acceptable range. In addition, they were less than the
response times of the two benchmarked algorithms. This proves that the proposed
novel algorithm functions best for the chosen class of applications.

To explore boundaries where the new load balancing approach starts to break down,
the ratio of the number of server failures to available servers was experimented with.
The results showed that to achieve the SLA recommendation of 90% of requests
to be handled in one second, using the proposed workload model with number of
requests between 1000 and 50,000 requests, a minimum of three VMs should be
available and running. Figure 5.8 showed that the novel algorithm had less than
1500 failed requests when there were five server failures, unlike round-robin and
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the baseline algorithm that had over 3000 failed requests with response times of
more than one second.
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(a) 1 Server Failure.

(b) 2 Server Failures.

(c) 3 Server Failures.
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(a) 4 Server Failures.

(b) 5 Server Failures.

Figure 5.7: Distribution Values of Server Failures within Private Cloud.
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Figure 5.8: Failed Request Chart — Error Rates
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5.5.2 Performance under Flash crowd

The performance of the novel algorithm was tested under flash crowd scenarios.
Firstly, three VMs out of eight were saturated to 100% utilisation over a period of
five minutes. The novel algorithm consistently distributed the requests, maintained
SLA and the average response time was low and became lower when the auto-scaler
provisioned a new VM. The baseline algorithm by Grozev et al. (Grozev & Buyya,
2014b) continued to distribute requests but had more failed requests within four
seconds of the flash crowds. The round-robin algorithm became unresponsive at
the five-second mark because it had a queue of requests trying to access the VM.

Secondly, the request workload was updated to exponentially increase for a period
of 300ms every five seconds within one minute. The percentage of flash crowds
ranged between 110% and 320% of the normal workload. The three algorithms
consistently distributed workload across available VMs until the peak of the flash
crowd exceeded 150%. The three algorithms handled 90% or more requests within
one second when the peak of flash crowds was not more than 125%, as depicted in
Figure 5.9 below. When the flash crowd reached 150%, the algorithm’s response
times varied. The novel algorithm still maintained the SLA constraint of attending
to 90% of requests within one second, when, however, the benchmarked algorithms
started to violate the SLA.

Figure 5.9: 125% Increased Request Flash Crowds.
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Figure 5.10: 150% Increased Request Flash Crowds.

Figure 5.11 revealed that flash crowds of 188% have begun to deplete the baseline
and round-robin algorithms’ performance. The baseline algorithm by Grozev et al.

(Grozev & Buyya, 2014b) had failed requests of 8% of the overall requests.

Figure 5.11: 188% Increased Request Flash Crowds.

Flash crowds of 240% revealed that the round-robin algorithm could only handle
50% of requests at approximately 300ms when the first flash crowd happened, and
56% of requests when flash crowds occurred a second time. Furthermore, Figure
5.12 revealed that the round-robin algorithm took 1190 ms before it could attend
to 67% of requests. This violates the SLA constraint. The baseline algorithm as
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shown in Figure 5.12 performed better than the round-robin algorithm when it
experienced a flash crowd of 240% above normal workload. The baseline algorithm
handled 70% of requests at around 300ms when the first flash crowds hit, and
then served 81% of requests when the second flash crowd happened. The baseline
algorithm handled a total of 89% of requests at 999.987ms, a response time very
close to the SLA. The baseline algorithm could not complete 90% of requests
within one second.
The novel algorithm as shown in Figure 5.12 handled 77% of requests at 300ms
when the first flash crowd hit and 85% of requests when the second flash crowd
occurred. The novel algorithm still maintained the handling of a minimum of
90% of requests within one second, even though the response time of 999.999ms
was higher than the response times of previous occurrences of flash crowds with
response times between 960.905ms and 992.798ms.

Figure 5.12: 240% Increased Request Flash Crowds.

A flash crowd of 320% above the normal is shown in Figure 5.13. Round-robin
algorithm processed 23% and 21% of requests when flash crowds of 320% occurred.
The overall average response time of the round-robin algorithm was 450ms longer
than the other two algorithms. The baseline algorithm handled 50% and 56% of
requests during flash crowds of 320%. The baseline algorithm could only respond
to 70% of requests within one second before the algorithm started to time out. In
contrast, the novel algorithm handled 70% and 80% of requests when flash crowds
of 320% occurred. The novel algorithm still completed 90% of the workload
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but not within one second. The ability of the algorithm to consistently distribute
workload during varying scenarios confirms and validates our choice of carefully
selected metrics.

Figure 5.13: 320% Increased Request Flash Crowds.

To test the effect of the autoscaler when there are flash crowds and how the
novel load balancing service will work with an autoscaler, the auto scaler was
programmed to start when all the available VMs utilisation exceeded 89% usage.
In addition, two extra VMs were kept as standby VMs. They were used by the
autoscaler to launch extra VMs when required. Figure 5.13 showed the effect of
auto-scaling after experiencing a flash crowd of 320% above normal workload.

Figure 5.14 showed the amount of failed requests at the peak of flash crowds –
320% flash crowds. The graph showed that the novel algorithm recorded less than
2000 failed requests at the peak of the flash crowds compared to round-robin which
had almost 19000 failed requests and the baseline algorithm, which had 14560
failed requests.
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Figure 5.14: Failed Request Chart — Error Rates During Peak Flash Crowds
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5.6 Summary

In this chapter, the research introduced a novel weight assignment load balancing
algorithm and a load balancing service architecture for three-tier web applications
that are deployed on cloud. Previous research confirms that web applications com-
monly suffer from flash crowds and resource failures, which leads to performance
degradation experienced by users of these applications. To combat the challenges
faced by web applications, most especially three-tier web applications deployed
on the cloud, this research proposed a load balancing algorithm, service and ar-
chitecture that utilised five carefully selected server metrics in determining and
assigning weight to application server VMs. These server metrics are as follows:
thread count, CPU, RAM, network buffer, and network bandwidth utilisation.

The proposed approach to load balancing the workload of the chosen class of
application included using server metrics to determine the weight of each VM by
analysing their utilisation values to determine a VM’s real-time load. The overall
load balancing architecture featured the ability to migrate and load balance the
workload of existing web applications to the cloud with less modification to code
base. The approach also included the use of a highly available deployment archi-
tecture and standardised load balancer software. This helped overcome common
challenges of load balancing solutions such as single point of failure, reliability,
and scalability. Furthermore, the architecture featured the deployment of the newly
developed load balancing service in the same data centre. This allowed for quick
adaptation to changes in the environment, reduced communication overhead, and
faster network capabilities.

The load balancing solution and two benchmark algorithms were applied on a
three-tier web application and evaluated in a private cloud data centre running
OpenStack. The novel algorithm was first validated on the testbed by testing
its efficiency. Second, the performance of the novel algorithm was compared
with a baseline load balancing algorithm by Grozev et al. (Grozev & Buyya,
2014b) and round-robin algorithm. The experiments involved sending varied user
request workloads through Apache Jmeter to the deployed application servers.
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The workload was modelled using a Poisson distribution to emulate real user
behaviours. The experiment measured and compared response times of the case
study application during the simulation of the workload.

The proposed novel algorithm improved overall average response times in resource
failure situations by 20.7% and 21.4% when compared to the baseline and round-
robin algorithms, respectively. During flash crowd situations, the novel algorithm
improved the average response time by 12.5% and 22.3% when compared to
the baseline and round-robin algorithms, respectively. The proposed approach
consistently distributed the workload of the chosen class of application without
violating the stipulated SLA constraints of attending to 90% of requests within one
second and within reasonable response times. These results prove that the novel
algorithm can adapt to flash crowds and resource failures without performance
degradation.



Chapter 6

Multi-Cloud Load Distribution
Algorithm and Architecture

6.1 Introduction

This chapter presents a novel decentralised multi-cloud load distribution algorithm
and architecture that can alleviate the challenges of vendor lock-in issues, legislative
compliance issues, low network latency issues, and the negative effects of flash
crowds and resource failures. It also describes the multi-cloud deployment pattern
and how it can be leveraged to support the deployment of three-tier web applications
on the cloud. The content of this chapter has been previously published in (Adewojo
& Bass, 2022a). The contributions of this chapter are as follow:

1. a decentralised multi-cloud load balancing architecture that includes a multi-
cloud load balancing algorithm to distribute the workload of web applications
across multiple clouds

2. an improved communication protocol of multi-cloud load balancing system;

3. a flexible and general application brokering architecture that can facilitate

112
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resource management and efficient workload distribution, especially for
existing web applications that will be migrated to the cloud

4. implementation and an experimental evaluation of the proposed multi-cloud
solution using a heterogeneous experimental environment - a combination of
one private and two public clouds

This chapter starts by describing the requirements for the proposed multi-cloud
algorithm in section 6.2. The deployment and overall architecture of the algorithm
and deployment strategy are discussed in section 6.3. The novel multi-cloud load
distribution service including the proposed weighting technique and algorithm are
discussed in section 6.4. An empirical experimental evaluation and results are
presented in section 6.5. Section 6.6 concludes and summarises the chapter.

6.2 Application Requirements

The target applications for this study are three-tier web-based business applications
deployed across multi-cloud. In addition, to support request forwarding, the
application instance in each data centre should be able to communicate with
instances deployed in other data centres. This approach requires session continuity
and data locality to support the processing of requests by application replicas
deployed across multiple clouds.

Session continuity ensures uninterrupted service experience to the user, regardless
of changes to the server or equipment’s IP address. Stateless applications, such as
search engines and applications that utilise web services to achieve statelessness,
do not save client data generated in one session for use in the next session with that
client. Also, stateless applications can easily scale because they can be deployed
across multiple servers and/or cloud data centres without issue while ensuring
session continuity. These properties of stateless applications implicitly satisfy the
requirement of session continuity.
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Data locality ensures that data resides close to the system it supports. In the
context of this research, data locality means that data should be replicated across
multi-cloud, since requests can only be forwarded to data centres with available
data. To corroborate this concept for the proposed system, Grozev et al. (Grozev
& Buyya, 2014b) supports data replication for multi-cloud applications because it
is a good performance indicator (Henderson et al., 2015; Jacob et al., 2008), and
thus, improves applicability of this approach.

6.2.1 Communication Protocol

A unique communication protocol was employed in this research to support a
streamlined communication approach and to reduce the communication overhead
incurred. The load balancing solution was deployed on each participating data
centre. Each load-balancing solution in a data centre communicates with each
other using a peer-to-peer client-server communication protocol as depicted in
Figures 6.2 and 6.1. Each solution relays its system state to another solution in
a different data centre at a regular predefined time interval of two seconds and
every time the load balancer distributes workload. Each communicated system’s
state always comprises the originated state and the states of the peered system.
This chosen mode of communication protocol helps to reduce network overhead
associated with node communication by only broadcasting to the peered node. It
provides significantly better spatial reuse characteristics, irrespective of the number
of nodes. As the number of nodes increases significantly, there might be a slight
degradation in performance, but the advantages definitely outweigh this drawback.

Figure 6.1: Communication Protocol
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6.3 Deployment and Overall Architecture

The proposed decentralised architectural design is presented in Figure 6.2. This
architectural design features a dynamic load balancing algorithm and technique
proposed by (Adewojo & Bass, 2022b) and forms part of the multi-cloud load
balancing service. The proposed load balancing service (LBS) is deployed as an
extra layer of component that augments the three-tier architecture. This extra layer
of component is an architectural approach to improve the migration of existing web
applications to the cloud with less modification to the code base of the application.
Each LBS is deployed alongside the proposed solution application in the same
data centre; this deployment design helps to reduce latency in detecting workload
requests. The services are connected to each other through a virtual private network
to ensure communication.

Each LBS consist of monitoring, controller, and communication modules. The
monitoring module constantly monitors the incoming requests and the status of
available resources to detect resource failures, increased workload, application,
or server workload. A periodic health check to detect all types of failures is also
carried out by the monitoring module. The load balancing service recalculates
the weights of VM and checks the available capacity of each VM on a regular
basis. If a failure happens before the check, a recalculation is done immediately to
properly distribute requests both within the data centre and across all data centres
to avoid performance degradation. The controller module is used to modify the
weight of each VM to accommodate request workload. The communication module
communicates the capacity and status of each data centre on a regular basis.

In this multi-cloud architecture, users are redirected to the nearest data centre to be
served. This is determined using their IP address location and latency calculation
implemented in the algorithm. The load balancing service’s entry point coordinates
this. User requests are, then, sent to the application server based on the load
balancing algorithm’s weight calculation. After a successful interaction of the
requests, responses are sent back to users and the process is repeated for every user
request sent.
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6.4 Proposed Multi-Cloud Load Distribution Service

This section presents the approach to calculating the weights of each data centre
and the multi-cloud load balancing algorithm.

6.4.1 Proposed Multi-Cloud Weighting Technique

To detect and overcome flash crowds and resource failures, this research used key
server metrics of an application server to determine the state of the application
servers. The original algorithm of Adewojo et al. (Adewojo & Bass, 2022b)
implements a unique weighting technique that combines five carefully selected
server metrics utilisation (CPU, Memory, Bandwidth, Network Buffer, and thread
count) to compute the weight of a VM. This multi-cloud load balancing solution
improves the algorithm by including the calculated weight of each data centre that
will be used in load distribution and the network latencies between data centres.

To calculate the weight of each data centre, the definition of a real-time load Lr(Xk)

as described by (Adewojo & Bass, 2022b) in chapter 5 is used to calculate the
weight of each data centre, as shown in equation (6.1). Therefore, aside from
each application server’s weight, a data centre will also be assigned a weight to
determine its capacity to handle user requests.

W (DCi) =
∑

1
Lr(Xk)

n
(6.1)

6.4.2 Multi-Cloud Load Balancing Algorithm

The novel multi-cloud load balancing algorithm is abstracted in Algorithm 2. The
first step in the algorithm is to receive and set an overall threshold for the input
parameters. The values for these thresholds and how they were calculated can be
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found in (Adewojo & Bass, 2022b). The algorithm loops through a list of VMs and
compares each utilisation values against the set threshold. The weight of each VM
is then computed and assigned to VMs as described in (Adewojo & Bass, 2022b).
The algorithm in line 5 further loops through all remote data centres and calculates
the weight of each data centre using equation (6.1). Line 7 assigns the weight of
each data centre. If a VM or data centre cannot accommodate any more requests, it
sets the weight to zero. The requests are then assigned to servers and data centres
based on the assigned weights, as shown in Line 9.

The network latency between data centres is used to determine the nearest data
centre to route requests, as shown in line 9 in the algorithm. This means that
before sending a request to the data centre, the latency between users and data
centres is checked and data centres are arranged based on capacity and latency.
Then, requests are sent to the applicable data centre based on the calculations that
determine the best-fit data centre.

There are two types of input parameters to the algorithm: application-dependent
and infrastructure-dependent. The input parameters are as follows:

Application Dependant Parameters

• T hc—CPU threshold

• T hr—RAM threshold

• T hbw—Bandwidth threshold

• T htc—Thread count threshold

Infrastructure Dependant Parameters

• V Mas—list of currently deployed application server VMs
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• V Mdc—list of currently deployed application server VMs per remote data
centre

• clouds—list of participating remote data centres

• Li—Latency to the ith data centre from the forwarding data centre

6.4.3 Algorithm Implementation

The proposed algorithm is implemented as a separate software program that con-
nects to a state-of-the-art load balancer (HAProxy 2.4.2-1). The reason for creating
a separate software program is because HAProxy does not support complex config-
urations featured in this algorithm. The load balancing program was colocated with
the HAProxy load balancer to reduce network latency. HAProxy’s health monitor
is configured to monitor the performance indicators and VM’s health every 2s.

The program’s monitoring module periodically fetches required monitored infor-
mation using HAProxy’s stats application programming interface (API). Then,
it extracts and manipulates performance values using the mathematical method
proposed in Chapter 5 and the health statuses of the attached VM and passes them
to the control module. The control module activates the algorithm to determine the
weight of each VM and data centre. The control module passes the weights to the
load balancer and, also, updates the communication module.

Request distribution and admission control were implemented by dynamically
changing HAProxy’s configuration. When required, the control module dynami-
cally creates a new configuration file for HAProxy during runtime. This process
automatically reloads the new configuration to the running HAProxy load balancer
before the load balancer distributes requests among the data centre.

To activate request forwarding, each new configuration file contains the IP addresses
of the load balancers located in other participating data centres and represents them
as normal servers with individual weights. The multi-cloud load balancing service
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assigns weight to each server. The assigned weight will determine the amount of
requests that can be distributed across data centres and VMs in each data centre.
HAProxy then uses the weighted round-robin algorithm to distribute requests
among application server VMs.

Admission control was implemented through use of Access Control List (ACL)
mechanism of HAProxy. It was used to define the black and white lists of IP
locations. HAProxy’s customised default page was used to create a customised
error page that informs users of delay when there is a surge in user requests that
consequently affect response times.

Algorithm 2: Multi-Cloud Request Handling Algorithm
Input: si, T hc, T hr, T hbw, T htr, V Mas, V Mdc, Li

1 RetrieveAllocateToInputAllThresholdValues ();
2 for each VM, vmi ∈V Mas do
3 assignweighttoVM (vmi,W (Xk)) according to (Adewojo & Bass,

2022b);
4 end
5 for each cloud, vm j ∈V Mdc do
6 W (DCk)← CalculateWeightofDataCentre (Lrk ,V Mdc,

vm j);
7 assignweighttoDC (vmdc,W (DCk));
8 end
9 HAProxyAssignRequest (si,V M ∈ clouds,Li)

6.5 Performance Analysis and Results

This section discusses the performance analysis of the novel multi-cloud algorithm
with respect to improving performance of the chosen web application when flash
crowds and resource failure situations occur. As discussed in Chapter 3, the novel
algorithm was evaluated using a hetergenous cloud infrastructure. A combination
of a private cloud and two public clouds were used for the experiments.
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6.5.1 Benchmarks

To validate and compare the performance of the novel multi-cloud load balancing
algorithm, the results were benchmarked with the following:

• Request Queuing: This benchmarking process queues up all requests in the
local servers, imposes no admission control, does no geographical balancing,
and uses just the round-robin algorithm. This imitates the situation that an
auto-scaler is booting a new VM within a data centre.

• Admission control: This benchmarking process directly imposes admission
control when distributing requests. It lets the load balancer redirect requests
at first and if there is no capacity to accept the redirected requests, it sends a
message to users to tell them they are in a queue.

6.5.2 Performance under Flash crowds

The next set of experiments tested the system under flash crowds using the work-
loads described in Chapter 3. Flash crowd was simulated across data centres at
each experiment.

Figure 6.3 shows the performance of the novel algorithm and benchmarks. This
represents a flash crowd of 140% above the normal workload across the data cen-
tres every five minutes for a period of fifteen minutes. The percentage of requests
handled by the novel mutli-cloud algorithm was consistent across the time and it
was able to keep to the SLA of attending to 90% of requests within one second.
The performance of admission control was very similar and kept to the SLA. The
performance of Request queuing was consistent but could not keep to the SLA
because the percentage of requests handled was 12% less than the stipulated SLA.

Using the same approach of testing, Figure 6.4 shows the algorithm’s performance
and benchmarks when experiencing a flash crowd of 190% above the normal work-
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Figure 6.3: Cumulative Distribution Values of Flash Crowds – 140% increased
flash crowd.

load. Request queuing had started to encounter performance degradation because
it was handling an average of 65% of requests. Admission control benchmark still
maintained a consistent performance but could not keep to the SLA requirement.
The Novel approach was able to keep to the SLA. However, the rate at which
it started attending to 80% and above requests was not as fast as the previous
experiment.

Figure 6.4: Cumulative Distribution Values of Flash Crowds – 190% increased
flash crowd.

Again, using the same approach of testing, Figure 6.5 shows the algorithm’s
performance and benchmarks when experiencing a flash crowd of 240% above the
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normal workload. The novel approach was able to keep to the SLA requirement
for request handling. Admission control and Request queuing could not handle up
to 90% of requests within one second.

Figure 6.5: Cumulative Distribution Values of Flash Crowds – 240% increased
flash crowd.

Overall, experimental results showed that the novel multi-cloud load balancing
algorithm and approach outperformed the benchmarks at every instance of flash
crowds. An improvement in the percentage of requests handled was recorded.
The novel approach improved response times by 4.08% and 20.05% relative to
admission control and request queuing benchmarks, respectively. This confirms
that the solution can consistently distribute the request of web-based three-tier
business applications even during flash crowds. It is noted that the size of the
VM also determines the performance, therefore a better-optimised VM for web
applications will offer a lesser response time if it is coupled with this new solution.
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6.5.3 Performance under Resource Failure

Figures 6.6a, 6.6b, 6.6c show the performance of the novel and benchmark algo-
rithms during one server failure in each of the cloud data centres. The performance
of the algorithms were similar during one server failure in the private cloud and
DigitalOcean cloud. However, in AWS, the performance differed. Though the
novel algorithm and Admission control kept to the SLA, request queuing could not
keep to the SLA. This is partly the consequence that the VMs in AWS were smaller.

Figures 6.7a, 6.7b, 6.7c show the performance of the novel and benchmark algo-
rithms when two server failures occurred in each data centre. In all the experiments
across the three data centres, the queuing benchmark performed far below the SLA.
It experienced performance degradation in all the data centre. The novel algorithm
handled up to 90% of requests in all the data centre. Admission control kept to
SLA only in the private cloud. Also, Admission control exhibited higher response
times in all the data centre and this indicates performance degradation.



CHAPTER 6. MULTI-CLOUD LOAD DISTRIBUTION 125

(a) 1 Server Failure in Private Cloud

(b) 1 Server Failure in DigitalOcean

(c) 1 Server Failure in AWS

Figure 6.6: Cumulative Distribution Values of One Server Failure across Cloud
Data Centres.
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(a) 2 Server Failures in Private Cloud

(b) 2 Server Failures in DigitalOcean Data Centre

(c) 2 Server Failures in AWS Data Centre

Figure 6.7: Cumulative Distribution Values of Two Server Failures in One Data
Centre Each.
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Figures 6.8a, 6.8b, 6.8c show the performance of the novel and benchmark algo-
rithms when two server failures occurred in combinations of two data centres. The
novel algorithm outperformed the admission and request queuing benchmarks in
the combination of the private cloud and DigitalOcean cloud. Request queuing
performed worst and could only attend to 38% of requests in one second. Similarly
in the combination of Private cloud and AWS, the novel algorithm outperformed the
two benchmarks. Admission control could not handle up to 90% of requests in this
combination. Request queuing consistently encounters performance degradation
with high response time. The combination of DigitalOcean and AWS showed an
improvement in Request queuing, but this benchmark still performed the worst.
The benchmarks could not all respond to 90% of requests at a lesser response time
compared to the new load balancing approach.



CHAPTER 6. MULTI-CLOUD LOAD DISTRIBUTION 128

(a) 2 Server Failures across OpenStack and DigitalOcean Data
Centres

(b) 2 Server Failures across OpenStack and AWS Cloud Data
Centres

(c) 2 Server Failures across DigitalOcean and AWS Cloud Data
Centres

Figure 6.8: Cumulative Distribution Values of Two Server Failures in Two Data
Centres Each.
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Figure 6.9 shows a cumulative performance of the algorithm and the benchmarks
when there were three VM failures in each of the cloud data centres. This approach
made the data centres become unresponsive. The novel approach also encountered
performance degradation and could not maintain the defined SLA. The response
times were high considering the number of requests handled in all the scenarios.
This showed that there is a minimum requirement for the number of VMs that can
run in the data centre to assure consistent performance of applications deployed on
cloud.

Figure 6.9: Three Server Failures across Cloud Data Centres.

In summation, the performance of the novel approach outperformed the perfor-
mance of both admission control and request queuing benchmarks. The response
time of the novel approach was 6.7% better than the response time of the admission
control benchmark. This means the novel approach can handle more workload
with an acceptable response time during server failure scenarios.
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6.6 Summary

Web-based business applications commonly experience spikes in user requests
called flash crowds. Flash crowds in web applications might result in resource
failure and/or performance degradation. Furthermore, the traditional approach of
hosting web applications using a single cloud leads to challenges such as service
unavailability, vendor lock-in, regulatory compliance, network latency between
end users and cloud sites, exorbitant billing, lack of varied cloud resources, and so
on. This class of application would benefit from using a targeted load balancer and
a multi-cloud deployment architecture to alleviate these challenges.

This chapter presents a decentralised multi-cloud load balancing architecture that
includes a novel multi-cloud load balancing algorithm. The algorithm distributes
web-based business application workloads using geographical dynamic load balanc-
ing to minimise performance degradation resulting from flash crowds and resource
failures while improving response times. By improving the dynamic load distri-
bution algorithm introduced by Adewojo et al. (Adewojo & Bass, 2022b), which
uses five carefully selected server metrics to determine a server’s capacity before
distributing requests, the proposed approach creates a multi-cloud load balancing
algorithm.

In the first experiment, the novel multi-cloud algorithm was compared to load
distribution benchmarks. Additionally, an experimental evaluation of the proposed
solution was conducted on a multi-cloud test bed that consists of one private cloud
and two public clouds. A standard exponential benchmark and workload model
were used to simulate flash crowds. It simulated resource failure by shutting down
virtual machines in some chosen data centres. Next, careful measurements of
response times in these various scenarios were made. The experimental results
showed that the proposed solution improved application performance by 6.7% dur-
ing resource failure periods, 4.08% and 20.05% during flash crowd situations when
compared to Admission Control and Request Queuing benchmarks respectively.
This validates that the proposed approach improves the performance of multi-cloud
deployed web-based three-tier applications and effectively distributes the workload
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of these applications.



Chapter 7

Discussion

7.1 Introduction

This chapter discusses the research contributions and answers the research question
posited in Chapter 1. Specifically, it explains the research contributions in relation
to the research question and objectives. The entire chapter is structured in terms of
the major areas of contribution within the research: patterns, cloud infrastructure,
novel weighting algorithm, and multi-cloud deployment. Also, it explains the
limitations of this research.

The first objective of this research, which is to investigate, analyse and experiment
with different deployment, hosting and brokering approaches has been fulfilled by
conducting a comprehensive literature review in Chapter 2

7.2 Patterns

One of the contributions of this research is the creation of an improved cloud design
pattern structure for cloud properties. In addition, by incorporating the enhanced

132
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cloud design pattern structure, the multi-tenancy patterns catalogue was improved.
Also, this research has resulted in a formal description of the multi-tenancy patterns
and a novel implementation of the multi-tenancy patterns in different software
applications that were deployed on a heterogeneous cloud environment while
using various deployment standards. Multi-tenancy patterns are the subject of this
research contribution because they are an essential cloud property that determines
the success of deploying applications to the cloud (Fehling, Leymann, Retter,
Schupeck, et al., 2014) (Fowler, 2002).

7.2.1 Enhanced Cloud Design Pattern Structure

In this research, an enhanced cloud design pattern structure for cloud properties
was created because of the gap found in the catalogue description. The structure of
the pattern catalogue by Fehling et al. (Fehling, Leymann, Retter, Schupeck, et al.,
2014) did not describe in detail cloud properties and their challenges. The pattern
structure also lacked programming template views, lacked abstraction of patterns,
and could not target a wide range of cloud users. Similarly to the work of Fehling
et al. (Fehling, Leymann, Retter, Schupeck, et al., 2014), Fowler et al.(Fowler,
2002) created a cloud pattern catalogue, but this catalogue was a simplified view
of cloud properties and the structure was not consistent for each cloud properties.
Another similar work to the cloud pattern by Fehling and Fowler, is the research by
Wilder et al. (Wilder, 2012). Wilder et al. (Wilder, 2012) discussed in their book
cloud patterns that are useful for architecting cloud-native applications. However,
these patterns were not catalogued because the authors argued that each pattern
is applicable to multiple architectural concerns, hence these patterns cannot be
catalogued.

In some other research works, such as those found in (Walraven et al., 2012;
Wang & Casale, 2014), cloud properties are briefly discussed as cloud patterns.
However, these works were inadequate in describing cloud properties and their
consistency. This challenge of inconsistency in pattern structure, no full description
and inability to target varied cloud users, led to the creation of an enhanced cloud
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pattern structure in this research. The enhanced cloud pattern structure adopts a
widely accepted and highly cited pattern structure by Gamma et al. (Gamma et al.,
1994). The details of this enhanced cloud pattern structure are fully described in
Chapter 4 and Appendix A and it addresses the challenge of inconsistency found
in previous cloud pattern structures.

The enhanced cloud pattern structure now benefits from a systematic description
of each pattern. Therefore, cloud properties that can be described as patterns can
be described using the improved pattern structure because it offers consistent and
comprehensive headings to describe cloud properties. This improvement benefits
different cloud users so that they can utilise and implement these patterns with
ease. Furthermore, the enhanced cloud pattern structure provides a programming
template in Java, one of the most popular and widely used programming languages
(Ezenwoye, 2018; Gavrilović et al., 2018; Jiang, 2020). It also provides a formal
description section that aims to improve clarity for software engineers.

7.2.2 Formal Description of Multi-tenancy Patterns

This research has resulted in a formal description of the multi-tenancy patterns,
which in consequence improved the accuracy and efficiency of implementing this
pattern in the data layer of data-driven web applications. The data layer is the
area of focus because it is the layer that experiences major bottlenecks among the
various layers of a software application (Brewer, 2012; Grozev & Buyya, 2014b).

Formal language abstracts the general characteristics of programming language
(Linz & Rodger, 2022). Since this research already implemented a programming
template of the multi-tenancy pattern, the next intuitive thing to do was to formally
describe the pattern. This research used the Z language to create a formal model for
multi-tenancy patterns. The choice of language is because at the time the research
was conducted, Z language dominated the space (Lana et al., 2019; Saratha et
al., 2017). In contrast, other pattern catalogues and cloud property descriptions
(Fehling, Leymann, Retter, Schupeck, et al., 2014; Fowler, 2002; Wang & Casale,



CHAPTER 7. DISCUSSION 135

2014; Wilder, 2012) generalised the description of the multi-tenancy patterns.

Furthermore, because multi-tenancy patterns can be implemented in various layers
of a data-driven web application, there is a need to reduce ambiguity in specifying
the use of this pattern. Therefore, this research enhances the capacity of software
engineers and architects in understanding and implementing multi-tenancy patterns
in the data layer of a web application through formal methods. In addition, the
formal description of multi-tenancy patterns enhances the capacity to test software
applications whose components make use of multi-tenancy patterns.

7.2.3 Novel Implementation and Validation of Multi-tenancy
Pattern

A novel implementation of multi-tenancy patterns in the data layer of case-studied
software applications was presented in this study. It further empirically charac-
terised the effect of multi-tenancy patterns in the case-studied applications.

Following the enhancement of the structure of multi-tenancy patterns, the three
degrees of multi-tenancy patterns - shared component, tenant-isolated component,
and dedicated component patterns - were implemented in the data layer of two case-
studied applications. The first case study application is a bespoke BPM system that
was transformed into a web application. The application is supported by SimpleDB,
a NoSQL database, and was deployed to the AWS cloud. The second case study
application is a containerised WordPress application, supported by a MySQL
database and hosted on an OpenStack cloud. The three degrees of multi-tenancy
patterns were successfully implemented in these case study applications.

The results of the implementation revealed that the dedicated component pattern
guaranteed the highest isolation in both case-studied applications and performed
best in terms of response time, throughput, and number of executed workloads.
However, this is at the cost of resources being used. Furthermore, even though the
volume of data and requests had an impact on the degree of isolation required, the



CHAPTER 7. DISCUSSION 136

dedicated component still maintained the highest level of isolation.

The tenant-isolated component pattern optimised available resources with minimal
impact on performance and isolation. Also, the tenant-isolated pattern performed
better than the shared pattern in both case-studied applications. The results recorded
from the use of the tenant-isolated pattern showed that this pattern was able to
handle most request scenarios with much better response time and minimal errors.
The number of error scenarios was minimal and there were no transactional locks at
the database layer. However, for maximum security and privacy, it is recommended
to pair this pattern with the dedicated component pattern in the data layer of systems
that require security.

The shared component pattern maximises resources. However, this is at the cost
of performance. In comparison with dedicated and tenant-isolated component
patterns, this pattern did not perform as well as the other multi-tenancy patterns.
The shared component pattern could not handle as many requests as the other
multi-tenancy patterns. This is because it recorded the highest request and database
errors with very high response times. Though, in the case study applications, the
shared component pattern did better when used in a NoSQL database than when
used in a MySQL database. This is partly the result of the fact that the application
utilising the NoSQL database is a bespoke application that follows design principles
which closely fit the multi-tenancy patterns. Also, the data transfer and storage
mechanism in NoSQL provides for faster implementation. Consequently, it is
recommended to use shared component patterns in the data layers of applications
that does not require high performance but cost-effective in implementation.

In contrast to the existing pattern catalogue (Fehling, Leymann, Retter, Schupeck,
et al., 2014; Fowler, 2002; Wang & Casale, 2014; Wilder, 2012), multi-tenancy
patterns were empirically evaluated and implemented to characterise their effect
on the different components of the web application as described in section 4.5
of Chapter 4. In addition, in contrast to the research work of Wang et al. (Wang
& Casale, 2014) that conducted an evaluation of multi-tenancy patterns, this
research conducted a novel implementation of multi-tenancy patterns in both SQL
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and NoSQL scenarios. Also, in contrast to the research work by Vanhove et al.

(Vanhove et al., 2014), multi-tenancy patterns were compared within the data layer
of software applications in this research.

Analysis of the experimental evaluation revealed that the number of tenants, tenants’
activities, and size of cloud resources affect the performance of the three degrees
of Multi-tenancy patterns. The enhanced pattern structure provides insight into
the successful implementation of the pattern. It also reduces the time required to
implement the pattern.

In summary, this contribution lays the foundation for the third and fourth objectives
of this research. The enhanced cloud design pattern structure and definition of
multi-tenancy patterns guided the process of the successful novel implementation
of the pattern in the two case-studied applications. Also, the clarity in the descrip-
tion of the pattern revealed that a combination of multi-tenancy and cloud patterns
can be used to achieve success in the design and deployment of data-driven web
applications on cloud. The multi-tenancy patterns were successfully combined
with an architectural pattern (the use of docker) to deploy applications on cloud.
Additionally, the dedicated component, shared component, and tenant-isolated
component patterns were combined differently to achieve better resource sharing,
increased performance, and lower cost of resources for running WordPress appli-
cations. This indicates that hybrid patterns can be implemented and contribute to
better performance of cloud-deployed web applications.

7.3 Cloud Infrastructure

This research also contributes to the development of bespoke cloud experimental
testbeds based on real and heterogeneous cloud infrastructures. To test and evaluate
the proposed and existing algorithms, a bespoke private cloud that runs OpenStack
was first created. To demonstrate heterogeneous multi-cloud resources, the private
cloud was combined with two public clouds.
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Located in one data centre, the private cloud consists of six Dell PowerEdge rack
servers; four serve as OS servers and two serve as management servers. There
are 120 virtual CPUs, 755GB RAM, and just under 3TB of storage available. A
node includes one or more Intel Xeon E5-26XX Processor(s) with a speed range
of 2.3GHz to 3GHz and a memory range of 64GB to 256GB. In order to distribute
and connect Dell blades, a Cisco Nexus 9372 switch provides 20GB access links
and 20GB port-channel uplinks to a Nexus 9K switch.

7.3.1 Experimental Environment for Novel Weighting Algo-
rithm

This contribution fulfills the second objective of this research. As explained in
Chapter 3, an OpenStack experimental environment that comprised Nova compute
service, CINDER storage, Neutron networking, Keystone identity service, glance
image service, Senlin clustering service, EC2 API, and Horizon dashboard was
configured in this research. The nova-compute service enables the creation of
virtual machines, and the experimental environment created eighteen virtual ma-
chines. Ten of the virtual machines were configured as application servers which
ran Ubuntu 20.1 operating systems, with Apache installed as the web server. Two
Virtual machines were used to install the load balancer, and four virtual machines
were configured as database servers running MySQL as the database system.

To assess the performance of the novel and benchmark algorithms, the environment
was set up with an open-source web application that was supported by databases.
User requests were modelled and sent through the use of Apache Jmeter. The
proposed algorithm and benchmark algorithm were implemented and run on sepa-
rate machines as part of the load balancing solution. The data collector which is
part of the load balancing solution includes local collector services deployed on
each application server to monitor and collect required utilisation data. The experi-
mental environment successfully validated benchmark algorithms depicting their
relevance. It was also used to assess the performance of the novel and benchmark
algorithms successfully.
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The experimental setup in this research is an advancement in evaluating cloud
models because it used real cloud infrastructure and novel configurations. This
is in contrast to the experimental setup of Sahu et al. (Sahu et al., 2013), Devi
et al. (Devi & Uthariaraj, 2016), and Grozev et al. (Grozev & Buyya, 2014b),
where cloud properties were modelled using CloudSim simulator. The ability to
test cloud algorithms on real infrastructure provides a degree of validity for the
algorithm. Therefore, this research’s experimental testbed is far more proven in
terms of results and real-life expectations.

7.3.2 Experimental Environment for Multi-Cloud Deployment

This research also resulted in the creation of a bespoke multi-cloud experimental
testbed. The multi-cloud consists of three heterogeneous cloud environments. An
AWS cloud located in Tokyo, DigitalOcean located in New York, and a private
OpenStack cloud located in London. The newly engineered multi-cloud experi-
mental testbed was used to evaluate and compare the performance of the novel
multi-cloud load balancing algorithm with benchmark algorithms. Each data centre
consisted of nine heterogeneous VMs. Each data centre had HAProxy server and
the novel load balancing solution deployed in two VMs: one of the VMs acts as
a standby, displaying the failover architecture. Apache Web server, which acts
as an application server, was installed on five VMs. MySQL database server was
deployed on two VMs. In addition, a standard auto-scaler was installed in each
data centre. To mimic real user requests and locations, Apache Jmeter–the work-
load simulator, was set up on an external standalone machine. The standalone
machine’s configuration is as follows: 4-Core, Intel Core i7, 2.8GHz CPU, and
Gigabit Ethernet NIC. An open source stateless web application that was built
using the Orchard core framework was deployed on the application servers. This
case study application was chosen because it is stateless and meets the prerequisites
for three-tier web applications.

The bespoke experimental environment depicts a highly available topology that
ensures high performance, reliability, and fault tolerance. Also, the experimental
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environment depicts a reliable cloud architecture because of the use of a variety of
cloud providers. In this research, a multi-cloud deployment strategy similar to the
multi-cloud testbed by Qu et al. (Qu et al., 2017) was used. However, in contrast
to (Qu et al., 2017), where all data centres were owned by the same cloud provider,
this research’s experimental environment incorporated data centres from different
cloud providers.

Also in contrast to the experimental environment of Grozev et al. (Grozev &
Buyya, 2014b), where the cloud data centres were models of the same cloud
provider created within a simulator, this research’s experimental setup used a
combination of real infrastructures and different cloud providers.

This experimental environment displays an advanced and improved experimen-
tal setup. The results from this testbed and from experiments suggest seamless
scalability. Furthermore, the use of private open source cloud infrastructure al-
lows organisations to meet regulatory and compliance requirements and therefore
enhance security.

7.4 Novel Weighting Algorithm

An important contribution of this research is the creation of a novel weight as-
signment algorithm to improve resource provisioning for three-tier applications
deployed on the cloud. This contribution consolidates and improves earlier work
done on cloud architectural and deployment patterns. To create the algorithm, a
technique to estimate the weight of a VM for better workload distribution was
introduced in this research. The VM’s weight calculation was implemented in
a state-of-the-art load balancer software called HAProxy (HAProxy, 2021). In
addition, a new architectural component to complement the three-tier architec-
ture was introduced to improve limitations commonly found in load balancing
techniques such as single point of failure and quick sensing of uncertainties. The
novel architecture also facilitates the migration of existing web applications with
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less modification in the codebase of the application. This architectural component
ensures that QoS does not diminish when web applications suffer from common
challenges such as flash crowds and resource failures. The novel algorithm was
evaluated using real cloud infrastructure, and the results were compared and vali-
dated with results from standard industry practices and high-cited research outputs.
In part, these contributions fulfills the last four objectives of this study.

7.4.1 Key Server Metrics for Load Balancing Algorithm

In this research, a key server metric, called thread count was identified. This server
metric noticeably impacts the performance of three-tier web applications. As
well as the newly identified server metric, existing key server metrics that directly
impact three-tier cloud-hosted applications were also combined in the novel weight
assignment algorithm. In contrast to similar research found in (S.-L. Chen et al.,
2017; Devi & Uthariaraj, 2016; Grozev & Buyya, 2014b; Sahu et al., 2013) where
fewer and inadequate server metrics were used, the novel load balancing algorithm
benefits from carefully selected and robust server metrics.

Chen et al. (S.-L. Chen et al., 2017) utilised CPU speed, CPU idle rate, and RAM
idle size in their load balancing algorithm. Devi et al. (Devi & Uthariaraj, 2016)
used CPU utilisation and the number of instructions per second to calculate the
capacity of a VM. Sahu et al. (Sahu et al., 2013) considered CPU, RAM, and
Bandwidth utilisation in determining the current load of a host machine. Grozev
et al. (Grozev & Buyya, 2014b) used CPU, RAM, network utilisation and buffer
size to evaluate the capacity of a VM. The novel algorithm shares some similarities
with previous work on utilising server metrics. Nevertheless, in contrast, the
novel algorithm combined CPU utilisation, RAM utilisation, network bandwidth
utilisation, network buffer, and thread count in determining the capacity of a
VM/server.

CPU, RAM, and network bandwidth utilisation are popular metrics that indicate a
server’s efficiency. However, based on experimental monitoring of these metrics,
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these metrics do not suffice in determining the capacity of a server when an
interactive web application is involved. Therefore, Network Buffer was introduced
in this research as recommended by Grozev et al. (Grozev & Buyya, 2014b), I
also identified and included thread count in the list of metrics to calculate the
capacity of a server. By using a network buffer, a load balancing solution can
better determine CPU utilisation since a larger buffer size improves CPU utilisation.
The introduction of thread count is also vital because this indicates the number of
threads and processes running even when utilisation values of CPU, RAM, and
Bandwidth are low. Thread count is a reliable indicator of processes that could
affect overall performance. By combining these metrics, the novel algorithm has
the advantages of being adaptive and reactive at the same time. This enables the
algorithm to improve its responsiveness to the distribution of load of the chosen
class of applications. The benefits of using the proposed weighting technique
to determine the application server that handles user requests include reduced
response times, improved throughput, and improved utilisation of resources as
shown in Chapter 5.

7.4.2 Novel Weighting Algorithm for Load Balancing in Cloud

This research resulted in the development of a dynamic weighting technique and
an adaptive load balancing algorithm that combines carefully selected key server
metrics specific to cloud-hosted three-tier web applications. The novel algorithm
calculates the weight of a server using the selected server metrics in a proposed
mathematical formula described in section 5.4 of Chapter 5. The novel algorithm
incorporates the selected metrics to create an adaptive resource provisioning and
workload distribution approach that overcomes the limitations of load balancing
techniques and the negative effects of flash crowd and resource failures.

On one hand, the newly introduced algorithm combined widely used server metrics
like those found in the research work by Grozev et al. (Grozev & Buyya, 2014b).
On the other hand, contrary to Grozev et al. (Grozev & Buyya, 2014b), this
algorithm combines popular and newly identified key server metrics through the
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use of a novel weighting mathematical method that calculates a server’s real-time
load. The server’s real time load and other threshold parameters are then utilised to
assign weights to servers and also in the overall load distribution algorithm.

In contrast to the research work by Chen et al. (S.-L. Chen et al., 2017) where the
use of priority service value and polling methods determines where requests will
be sent, the novel weighting algorithm used the concept of weighted average and
bounded numerical values to calculate the weight of servers before requests are
sent to servers. However, similar to the research work by Chen et al. (S.-L. Chen
et al., 2017), the novel algorithm uses a standard weighted round-robin mechanism
to distribute requests among servers.

In addition, the novel weighting algorithm considers the real-time capacity of each
server at a regular interval and is specifically for three-tier web applications on
cloud, unlike the algorithm proposed by Devi et al. (Devi & Uthariaraj, 2016)
which targets Non-preemptive dependent tasks.

7.4.3 Overall Design Architecture of Proposed Load Balancing
Solution

This contribution fulfils the third objective of this research. In this research, a
redesigned architecture that addresses the issues and limitations of common load-
balancing techniques, as discussed in the research output (Adewojo & Bass, 2022b)
was created. This adds a layer, an architectural component framework, to the
three-tier architecture.

This approach does not modify the three-tier pattern but introduces additional
components that manage resource provisioning within the cloud environment.
As a result of this new architectural component, existing applications can be
migrated to the cloud with little modification to the codebase, while new three-tier
applications can be developed leveraging existing architectural frameworks and
existing technologies. This architecture also improves
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1. Scalability through the use of a very fast and reliable reverse-proxy load
balancer

2. Fault tolerance through the use of multiple load-balancing front ends and
standby application servers as fail-over systems, this, combined with the use
of keep alive technology of HAProxy

3. Reduced overhead and latency through the use of an efficient algorithm that
runs with negligible performance overhead with measurement parameters as
recommended by (Shah et al., 2017; Zomaya & Teh, 2001) and

4. Performance through the use of carefully selected server metrics that deter-
mines the efficiency of a load balancing algorithm.

7.4.4 Empirical Evaluation of Algorithms

This contribution partly fulfils the fifth objective of this research. An empirical
evaluation of the novel algorithm using the proposed private OpenStack environ-
ment was done. The evaluation compared, validated, and contrasted the novel
algorithm with a standard load balancing algorithm and a baseline algorithm by
Grozev et al. (Grozev & Buyya, 2014b). The experimental results were the average
of five repeated experiments over a 24-hour period. This is in contrast with a lot of
research work on cloud algorithms and models (Bambrik, 2020; Byrne et al., 2017;
Fakhfakh et al., 2017; Grozev & Buyya, 2014b; Makaratzis et al., 2018; Sahu
et al., 2013; H. Zhang et al., 2017) that were evaluated in a simulation environment.
Simulation experiments rely heavily on parameters to be accurate, so there is a
challenge in choosing accurate parameters and parameter values. As a result, if the
parameters are not right an incorrect simulation result is inevitable.

Furthermore, the simulator tools are not exhaustive because each is designed to
address a specific cloud process (Bambrik, 2020). Hence evaluating a complex
cloud algorithm such as the one found in this research in a simulation environment
will either require a modification to the simulator or a combination of different
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cloud simulators. There is also a danger of losing time because the use of any cloud
simulator tool requires an understanding of the programming language employed.
Therefore, time can be lost in the process of getting up to speed in learning a new
programming language, when the researcher could have selected a known and
agnostic language to build their algorithm which will run on most cloud platforms.
Furthermore, not all cloud simulation tools are open source, commonly advanced
simulators are expensive, and this defeats the claim that using simulators are
financially cheaper when compared to real cloud infrastructure (Bambrik, 2020;
Fakhfakh et al., 2017). Therefore, a real cloud infrastructure environment is more
suitable for evaluating cloud algorithms. This is because it provides the flexibility
of using real cloud resources and produces results that can be relied upon.

Benchmark algorithms were first validated to ascertain the efficiency of the environ-
ment and similar parameters and metrics were evaluated for the overall experiments.
In contrast to research work by Qu et al. (Qu et al., 2017) and Sahu et al. (Sahu
et al., 2013), there were no validation of benchmark algorithms. This validation
further proves the results of the newly developed weighting technique and load
balancing algorithm as presented in Chapter 5. In addition, the OpenStack environ-
ment enabled extensive experimental characterisation of the metrics used in the
proposed weighting technique. This was because there was no restriction on the
number of resources that could be used. Furthermore, the behaviour of the metrics
was effectively characterised because the environment is a replica of what will be
found in a public cloud.

7.4.5 Architectural Component Collaboration and Performance

The novel algorithm and redesigned architecture complement and work cooper-
atively with existing and state-of-the-art auto-scaling mechanisms in cloud data
centres so improving the performance of the application that relies on it. This is
in contrast to research work found in (S.-L. Chen et al., 2017; Devi & Uthariaraj,
2016; Grozev & Buyya, 2014b; Sahu et al., 2013; Wang & Casale, 2014) where
autoscaling mechanisms were specifically designed for the research. Addition-
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ally, it works cooperatively with the existing layers of the three-tier infrastructure
with negligible overhead as described in Chapter 5. Moreover, the architecture of
the component influences the load balancing process, ensuring that applications’
performance is optimised and reliable regardless of challenges they may face.

Experimental results show that our approach improves response time, session
delay, and throughput over the baseline. This was achieved because the proposed
novel algorithm computes the weight of an application server based on its current
utilisation and capacity. Using this approach, the architecture can detect changes
quickly and adapt to improve the performance of deployed applications, especially
when they are affected by flash crowds and resource failures. This approach
combines these capabilities to create a multi-faceted defence against performance
problems in cloud-hosted web applications.

7.4.6 Extensible Feature of Weighting Algorithm

The novel load distribution algorithm is easily extensible to work for multi-cloud
configurations. This was achieved because the proposed approach to creating the
novel algorithm incorporated the SOLID principles of programming and various
aspects of load balancing, which is agnostic of the number of clouds it is being
used on. This is an adaptive concept that was built into the algorithm so that it
can evolve and be relevant to a new concept. The algorithm incorporated server
metrics that can be found in all application servers. The mathematics behind the
weight calculation can be implemented, deployed, and run on any web server. This
is because the language used in developing the algorithm is platform-independent.
Furthermore, the ability to include new functionality and extend existing functions
was built into the algorithm design and implementation. These built-in features
are unlike algorithms designed specifically for either simple cloud services such as
found in (Devi & Uthariaraj, 2016; Wang & Casale, 2014) and cloud systems such
as the research work of Chen et al. (S.-L. Chen et al., 2017).

Overall, this research resulted in the creation of a novel weighting and load balanc-
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ing algorithm to improve resource provisioning, workload distribution, and cloud
deployment across a single cloud. Redesigned architectural components were
introduced to distribute workloads of a cloud-deployed three-tier web application.
Additionally, the architecture and algorithm can be extended to accommodate
improved deployment methodologies.

It is pertinent to note that the majority of organisations have legislative require-
ments and also the need to leverage the different services offered by different cloud
providers to achieve economies of scale. As a result, multiple clouds can enhance
the quality of services offered by the organisation. These organisations can over-
come challenges such as vendor lock-in, unavailability, and so on. Therefore, the
last overall contribution of this research proposed a multi-cloud deployment pattern
and a multi-cloud workload distribution algorithm to address resource provisioning
and workload distribution problems, especially when applications encounter flash
crowds and resource failures.

7.5 Multi-Cloud Deployments

Lastly, this research makes a contribution to multiple clouds. A novel approach to
generalising the deployment of three-tier web applications across multiple clouds
is presented in this study. This contribution improves previous work on resource
provisioning within a single cloud. It also improves the work done in combating
flash crowds and resource failures in cloud-based web applications. In this research,
a multi-cloud load distribution algorithm was developed to optimise application
performance across multiple clouds using a dynamic and reactive approach. Using
the proposed approach, features common to IaaS providers are implemented, which
do not rely on interoperability capabilities between participating providers. The
novel multi-cloud algorithm was evaluated on two public clouds and one private
cloud.

The experimental evaluation used realistic workloads to imitate flash crowds and
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resource failures. The results of the experiments show that the proposed approach
improves application performance in both flash crowd and resource failure scenar-
ios. The proposed solution demonstrates that multi-cloud not only addresses flash
crowds and resource failure issues but also lets organisations exploit multiple cloud
resources even at competitive rates. It also improves reliability, helps companies
stay within regulatory rules, and helps them improve their digital footprint in terms
of the number and variety of clients who can access and use the company’s software
applications.

These contributions combined with the novel weighting algorithm’s contributions
completely fulfill the objectives of this research through the contributions below.

7.5.1 Multi-Cloud Load Distribution Algorithm and Deploy-
ment Architecture

In this study, a novel adaptive and reactive algorithm was developed to distribute
workload across multi-clouds, an extension of the novel weighting algorithm
in the previous study of this research. The newly developed multi-cloud load
distribution algorithm includes the calculation of network latency between data
centres, the weight of application servers in each data centre, and the weight of
each participating data centre. First, the algorithm determines which data centre
will serve users and, secondly, which application server will handle their workload.
The algorithm combines the use of carefully selected server metrics (CPU, RAM,
Bandwidth utilisation, Network buffer, and thread count) to determine the weight
of application servers and carefully selected data centre metrics including latency,
geographical location, Round Trip Time, and capacity to determine the weight of a
data centre.

Unlike popular load distribution strategies such as AWS Elastic Load Balancer
(ELB) (Amazon, 2021c) and Azure load balancer (Azure, 2021b) where requests
are distributed within a data centre or multiple data centres of the same provider,
the novel multi-cloud algorithm distributes requests to multiple non-related inde-
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pendent data centres using an adaptive approach.

Also, unlike the research conducted by Gandhi et al. (Gandhi et al., 2014) and Ju-
nior et al. (de Paula Junior et al., 2015) where their algorithm reactively provisions
resources after it detects increased incoming requests, this algorithm proactively
and reactively distributes requests to avoid the challenges of flash crowds and
resource failures.

Further, this algorithm utilises not only common server metrics such as those found
in (Grozev & Buyya, 2014b) and (Qu et al., 2017), but a combination of proven
server and data centre metrics that affect interactive web applications. Moreover,
the algorithm ensures that imperative constraints are met without sacrificing quality
of service.

In addition, this algorithm and deployment architecture ensures that the negative
effects of flash crowd and resource failures are mitigated. The algorithm utilises
the combination of HAProxy’s ability and the novel algorithm to effectively dis-
tribute workload across multiple clouds while ensuring latency requirements, and
legislative requirements are considered. The deployment architecture also displays
a decentralised cloud deployment pattern for hosting web applications such that
vendor lock-in and other single cloud hosting issues are mitigated.

7.5.2 Design Approach for Three-Tier Multi-Cloud Web Appli-
cation

A novel design approach that does not modify the three-tier architectural pattern is
implemented in this research: instead, it augments the existing architectural pattern.
As a result of this approach, existing and new web applications can be deployed on
the cloud, benefiting from the improved design.

In similarity to the work done by Qu et al. (Qu et al., 2016; Qu et al., 2017)
where focus was on mitigating challenges common to web applications, the novel
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design approach addressed challenges common to web applications. However, in
contrast to their research work where they focused on web applications generally,
the focus of this design approach is on distributing the workload of three-tier
web applications such that performance is enhanced irrespective of the common
challenges that may arise. Furthermore, this novel design approach requires session
continuity and data locality in order to provide high availability and reliability
since multiple data centres can handle the same workload request.

In contrast to the research work by Grozev et al. (Grozev & Buyya, 2014b) where
the focus was on load balancing and autoscaling using a similar design approach to
this research’s approach, this research focused primarily on load distribution within
multi-cloud while the autoscaling feature was left to be handled by matured and
widely used technologies; this makes this approach robust and able to complement
state-of-the-art autoscaling tools and techniques.

7.5.3 Enhanced Multi-Cloud Architecture and Communication
Protocol

Another result of this research is a novel decentralised multi-cloud architecture
composed of the proposed enhanced three-tier architectural pattern. Unlike Qu et

al. (Qu et al., 2017) where a decentralised approach with load balancing agents
was used, load balancing agents were not used in this research to communicate
among the decentralised centres. This is because one of the aims of this research’s
contribution was to reduce the number of network broadcasts. Furthermore, this
proposed architecture and load balancing solution do not need to wait for an
overload to occur before reacting, unlike the research work by Qu et al. (Qu et al.,
2017), where the aim is to react when there are flash crowds, overload, or resource
failure.

The novel architecture is a further step toward combating flash crowds. Flash
crowds refer to legitimate, rapid, and increased user requests that can cause perfor-
mance degradation in cloud applications. The multi-cloud deployment pattern and
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a unique adaptive reactive multi-cloud load distribution algorithm were combined
to mitigate this challenge in this research. This solution uses the novel multi-cloud
algorithm to determine the weight of data centres and application servers. The load
balancing algorithm then builds on the weighting system to redirect user requests
to suitable data centres when overload as a result of flash crowds occurs. The
distribution algorithm dynamically changes to reflect the current situation of the
system. The sequence of redistributing requests to other data centres also comple-
ments autoscalers because autoscalers can efficiently provision or decommission
resources without causing performance degradation. This is different from com-
mon and popular methodologies such as those found in (Amazon, 2021c; Azure,
2021a; Qu et al., 2016) where the autoscaler is heavily involved in creating new
resources when issues with the application or underlying resources occur.

Moreover, the enhanced architecture and load balancing solution prevent resource
failures. Resource failures occur without notice, which can cause chaos in applica-
tions dependent on the resource. Furthermore, performance degradation in web
applications using the resource is glaring when the loss of resources is beyond the
capacity of the locally unused resource. In order to address this issue, an enhanced
architecture and multi-cloud deployment pattern to increase the availability and
accessibility of unused resources were used in this research. Also, the solution
implements periodic health checks to detect all types of failures. This contrasts
with the research of Qu et al. (Qu et al., 2017), where hardware failures were the
area of focus. In addition, the load balancing service dynamically recalculates
the weights of VMs and data centres leading to an improved multi-cloud load
distribution strategy.

7.6 Limitations of Research

The scope and limitations of this research are discussed using the model of ex-
perimental research limitations. This approach is characterised by evaluating the
research’s process through the lens of internal and external validity and threats
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to validity. Identifying and defining the variables of interest, including how to
measure them in a reliable and valid manner, is the first step in evaluating the
validity of experimental research’s data (Cash et al., 2016; Yin, 2014).

Firstly, in this research, potential variables and their measures were identified
through the review of similar literature on research work. This was followed
by a careful selection of widely cited variables and their units of measurement
from research work such as (S.-L. Chen et al., 2017; Fehling, Leymann, Retter,
Schupeck, et al., 2014; Grozev & Buyya, 2014b, 2015; Qu et al., 2017). Identified
variables are but not limited to CPU, RAM, Network buffer, bandwidth, response
time, throughput, latency, and so on.

A research design has strong internal validity if the observed relationship is not
related to extraneous variables such as differences in subjects, location, or other
related factors (Bhandari, 2020; Cash et al., 2016; Yin, 2014). To create strong
internal validity for this research study, the appropriateness of the variables were
considered before deciding to use them. Furthermore, following Yin’s (Yin, 2014)
guidelines, convergence among multiple and different sources of information on
variables used were looked for.

As part of this research, design patterns were implemented in the data layer of
software applications. To characterise these patterns, this research study examined
factors that affected the speed at which data was written and read from databases.
It also examined the security of data and the response time for users. Additionally,
the research on resource provisioning and load distribution within single and
multiple clouds utilised and assessed variables that were specific to the number
of requests attended to, time required to respond to requests, load on servers,
and so on. The use of standard tools and data measuring software applications
guarantees a consistent procedure for carrying out experiments. These tools were
also automated to reduce the risk of inconsistency in implementation. Therefore,
the same set of data was used to characterise the effect of the algorithms tested.
Because of this, there is assurance that the effects of tuning the parameters are
not influenced by external factors. The use of standard and widely used software
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applications to collect numerical data also increases confidence in the accuracy of
the measurements.

To minimise the effect of maturation threat (Bhandari, 2020), experiments were
carried out multiple times over a minimum of twenty-four hours in each case. In
this study, the average of each experimental result was primarily used. As a result,
the experimental design used in this study was standardised; a powerful method
for controlling threats to internal validity.

External validity refers to how much the experiment affects the measured variable
(Cash et al., 2016). It is the extent to which the findings of a study can be
generalised to other situations or measures (Baldwin, 2018; Cash et al., 2016). This
research ensured external validity through theoretical and experimental replications
of findings using different deployment platforms.

Furthermore, this study focused on the use of cloud architectural patterns to
alleviate the challenges of brokering, deploying, and hosting data-driven web
applications to single and multiple clouds. Therefore, the situation effect poses a
threat to the external validity of the research’s experimental design, inputs, and
outputs. The situation effect includes factors such as setting, time of day, location,
and so on that limit the generalisability of findings.

Finally, different stages and the results of this research contribute to different
scenarios. The factors and generalisability of the research output are discussed
below.

1. This study restructured the cloud design pattern catalogue by Fehling et al.

(Fehling, Leymann, Retter, Schupeck, et al., 2014) to create a systematic
and improved pattern structure. The enhanced pattern structure is applicable
to any cloud solution that can be described as a pattern. In addition, the
implementation and the associated algorithms presented in this research
primarily apply to multi-tenancy patterns.

2. This study focused on existing bespoke business process modelling software
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applications and web applications that implement the three-tier deployment
architecture. Therefore, other types of business applications and cloud-
hosted services are not within the scope of this study. So, the findings of this
study do not apply to all applications and cloud-hosted services.

3. The resource provisioning and load distribution algorithm apply to three-tier
web applications: therefore, the behaviour of the algorithm is uncertain when
used in other cloud services.

4. The number and size of user requests used in the experimental evaluations
were within the limits of a private cloud, the free tier of a public cloud and
the resources available to use. Therefore, the results of this study should not
be generalised to extremely large public clouds.

5. The use of a real and diverse cloud infrastructure nullifies the effects of
location and setting on experimental scenarios. The reason for this is that
real infrastructure corresponds to a natural context for using the cloud, while
cloud varieties are representative of location neutrality.

7.7 Summary

This chapter discusses the objectives and contributions of this research. There
are four main contributions. Each subsection of the contributions addresses the
research objectives as stated in Chapter 1.

Firstly, an improved cloud pattern structure and catalogue was developed in this
research and applied to multi-tenancy patterns. A formal and UML description of
the multi-tenancy pattern was created. A novel implementation of the multi-tenancy
patterns was created in the data layer of three case study applications. Each of the
multi-tenancy patterns was experimentally characterised to validate their behaviour
in web applications deployed on the cloud.

Secondly, novel experimental testbeds were configured using a private and public
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cloud setup.

Thirdly, a novel weight assignment load-balancing algorithm for three-tier web
applications deployed on the cloud was created. As part of this research, a key
server metric that contributes to the load distribution of three-tier applications on
the cloud was also identified and used. It also introduced a unique architectural
component for brokering activities for the newly developed load-balancing solution.

Finally, a multi-cloud load distribution algorithm to combat flash crowds and
resource failures in three-tier web applications on the cloud was created in this
research. In addition, a novel approach to generalise the deployment of three-tier
web applications across multiple clouds was introduced in this research. This
approach complements previous work on load distribution in a single cloud and
improves the interoperability and reliability of applications using multiple clouds.

The chapter concludes with a discussion of the scope and limitations of the study.
The limitations of the research were discussed in light of internal and external
validity. The research was conducted using an experimental research approach. An
in-depth analysis of literature on similar works, an analysis of case studies and the
creation of a prototype of the same application were all part of the research design.
Experiments were also conducted to characterise and validate cloud patterns and
novel algorithms developed during the research.



Chapter 8

Conclusions and Future Direction

8.1 Thesis Summary

Cloud computing has emerged as a paradigm shift in information technology in-
frastructure. It offers scalable and flexible computing resources to individuals and
organisations on demand through the Internet. Cloud implements the reality of
computing as a utility, and many organisations are taking advantage of it. This
makes the service of renting a dynamic pool of computing resources a better alter-
native to procuring and maintaining in-house infrastructures for many organisations.
Renting IT resources as a service frees organisations from heavy administrative
duties. It allows them to focus on their core businesses, their application deploy-
ment options, to reach more customers, and to respond promptly to dynamic and
unpredictable workloads.

Despite the benefits of using the cloud, deploying existing and newly created web
applications on the cloud is not straightforward. There are several methodologies
that have been proposed to deploy these applications on cloud. There are also
challenges such as the inability to use and share cloud resources effectively, service
unavailability due to flash crowds and resource failures, regulatory compliance is-
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sues, vendor lock-in, network latency between end users and cloud sites, exorbitant
billing, and lack of varied cloud resources.

These challenges are of special importance for business applications, especially
web-based applications serving global users. In order to alleviate the problems
mentioned above, design patterns play a crucial role in directing software architects
on how to create reliable and efficient software applications. It removes ambiguity
and complexity in the interpretation of the solution proposed. Aside from the role
that design patterns play, the three-tier architectural pattern is the predominant
design approach for building most of these business applications. To combat the
aforementioned challenges, the use of appropriate deployment patterns, approaches,
and architecture setups that are tailored to the architecture behind these applica-
tions is of the utmost importance. As a result, the use of single and multi-cloud
deployment patterns in conjunction with dynamic load distribution mechanisms is
deemed a viable approach to solving the aforementioned challenges.

Some gaps in the overall and relevant literature were filled in this research. The de-
sign process of this research combined an exploratory study, case study application
selection, and experimental research approach to solve the challenges associated
with designing, deploying and hosting web applications on cloud. An enhanced
cloud design pattern structure that reduces the ambiguity in the description of
cloud patterns has been created. This cloud design pattern structure was adapted
from a widely accepted design pattern catalogue. The enhanced cloud pattern
structure was applied to multi-tenancy patterns to create an improved description
of multi-tenancy patterns. A key cloud deployment pattern, multi-tenancy pat-
terns, was examined and empirically evaluated in this study. Multi-tenancy pattern
was implemented in a business process modelling application and a WordPress
application.

The main contribution of this research is the creation of a novel weight assignment
load distribution architecture and algorithm that combines five carefully selected
server metrics to efficiently distribute the workload of three-tier web applications
among virtual machines. This newly introduced load distribution approach allevi-
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ates common challenges of cloud-hosted web applications such as flash crowds
and resource failures. To verify the applicability of this novel approach, the load
distribution technique was experimentally evaluated on a real cloud infrastructure,
and the performance was benchmarked with two other load distribution techniques.
A three-tier open-source e-commerce application was used to test the algorithms.
A private cloud that runs OpenStack was used in this research to configure an
experimental platform to facilitate experimental evaluation.

Finally, in this research, a novel decentralised multi-cloud architecture and algo-
rithm to combat flash crowds and resource failures were created. This algorithm
distributes the workload of three-tier web applications using geographical load
distribution techniques and an improved load distribution algorithm. This archi-
tecture alleviates common load balancing and web application challenges such as
compliance issues, vendor lock-in, network latency between end users and cloud
sites, exorbitant billing, and lack of varied cloud resources. This newly introduced
multi-cloud model was evaluated on a multi-cloud infrastructure that comprised
three heterogeneous cloud data centres. The multi-cloud algorithm was applied to
a three-tier open-source e-commerce application.

The performance of the novel cloud algorithms was compared by simulating
resource failures and flash crowds, while carefully measuring response times,
throughput, and number of errors. Experimental evaluation of these cloud algo-
rithms showed a significant improvement in response times, number of errors, and
throughput. These experimental results show that the novel algorithms and archi-
tecture can ensure efficient hosting and deployment of three-tier web applications
on cloud.

8.2 Key Research Contributions

As earlier stated in Chapter 1, the aim of this research is to create novel cloud
load distribution management and deployment techniques, which can alleviate the
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challenges of hosting web applications on cloud.

Chapter 7 described how the objectives of this research were met which has resulted
in the following key contributions.

1. An enhanced cloud pattern structure, enhanced multi-tenancy patterns
structure and a novel implementation of multi-tenancy patterns (Chap-
ter 4). These contributions are linked to these research outputs (Adewojo,
Bass, & Allison, 2015; Adewojo, Bass, Allison, & Hui, 2015; Adewojo &
Bass, 2018). This output contributes to fulfilling the constraint stringent
reliability of cloud-native web applications because design pattern is the
foundation of a stable and robust application. If software architects and de-
velopers utilise design patterns and standard procedures in building software
applications, they can build cloud-native applications to better utilise cloud
properties.

2. A novel weight assignment load balancing algorithm to mitigate the
negative effects of flash crowd and resource failures and limitations
of load balancing techniques (Chapter 5). This also includes a novel
redesigned architectural brokering component for three-tier web applications
on cloud. These contributions are linked to these research outputs (Adewojo
& Bass, 2022b, 2023). This output contributes to minimised changes to
existing applications that will be migrated to the cloud. The redesigned
architecture does not modify the three-tier architecture; rather, it is an ad-
ditional architectural component. This additional architectural component
acts as a broker among existing architectural layers and so existing appli-
cations can be migrated with little to no modification to the codebase. The
novel load-balancing algorithm introduces a new server metric and a unique
method for selecting application servers for load distribution. This novel
approach is a robust approach that takes into consideration the common
symptoms of a challenged cloud-hosted web application. This contribu-
tion fulfils the constraint maintain quality of service in flash crowds and
resource failures.
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3. A novel experimental testbed using real cloud infrastructures. Cloud
experimental test beds were created using both private and public clouds to
characterize and evaluate the proposed and existing algorithms. By using
these experimental testbeds, algorithms could be tested using real-world
settings.

4. Multi-cloud load distribution algorithm for three-tier applications de-
ployed across multiple cloud. This also includes a highly available design
approach for this class of applications and enhanced multi-cloud archi-
tecture that combats flash crowds and resource failures (Chapter 6).
These contributions are linked to this research output (Adewojo & Bass,
2022a). This novel multi-cloud algorithm also fulfils the constraint maintain
quality of service in flash crowds and resource failures. This is achieved
by the ability to reroute workload to another data centre when a data centre is
negatively affected. Also, the algorithm makes the most efficient use of the
available server VM of each data centre, thus ensuring effective distribution
of workload. The novel architecture and algorithm fulfills the constraint end
users are served at the nearest geographical location. This is done by
checking the location of the user’s IP and the latency between cloud data
centre and the user. This further helps to experience quick response time and
to adhere to legislative rules where one exists with respect to how data or
user details are transferred across data centres.

The conclusion of this research is that load balancing algorithms should be designed
dynamically because user requests change dynamically. To improve the perfor-
mance of cloud-native applications, maximise resource utilisation, and address the
negative effects of flash crowds and resource failures on cloud-native applications,
load balancing algorithms should incorporate comprehensive application-specific
server metrics. Additionally, this research reinforces the importance of the use
of design patterns and a clearly structured design pattern catalogue in building a
robust cloud-native application. When developers understand how design patterns
should be used, software applications will be built to standard, and cloud-native
applications will feature cloud properties that can make them stable in light of
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workload and resource changes. The correct use of cloud design patterns will
result in cloud-native applications that are built to standard and that feature cloud
properties that are necessary for a robust cloud-native application.

8.3 Future Work

In this research, deployment and hosting of web applications in the cloud were
examined and novel deployment and load distribution techniques within single and
multiple clouds were proposed. Nevertheless, there is scope for future work, as
detailed below.

8.3.1 Generalisation to Multi-tier Applications and Serverless
Deployments

While the three-tier architecture is a common and well-established architecture
to build and deliver business and interactive systems, technology has improved.
Microservice architecture is now becoming the de-facto standard for large-scale
and cloud-native commercial applications. Therefore, it is highly recommended
that resource management approaches for multi-tier architectures, microservice
architectures, as well as the use of serverless computing for deployment approaches
be investigated.

8.3.2 Creation of Realistic Workload Model or Dataset for Web
Applications

It is difficult to get a ready-made realistic workload model. Furthermore, it is even
more difficult to get a sample web request dataset. The majority of datasets and
their workload models are outdated and not fit for purpose. It is recommended



CHAPTER 8. CONCLUSIONS AND FUTURE DIRECTION 162

that researchers focus on tools that can create realistic datasets and provide varied
workload models that fit typical interactive web applications. Furthermore, it is
recommended to have an open-source project for this idea because the dataset and
workload models need to be regularly updated to reflect changes in technology.

8.3.3 Metrics Measurement

The use of a variety of variables for measuring the performance of cloud algorithms
is recommended. Variables such as those mentioned in (Buyya et al., 2018; Govind
& González–Vélez, 2021) are highly recommended.
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Ali-Eldin, A., Seleznjev, O., Sjöstedt-de Luna, S., Tordsson, J., & Elmroth, E.
(2014). Measuring cloud workload burstiness. 2014 IEEE/ACM 7th Inter-

national Conference on Utility and Cloud Computing, 566–572.
Amazon. (2021a). Amazon route 53. Retrieved December 6, 2021, from https:

//aws.amazon.com/route53/
Amazon. (2021b). Aws serverless multi-tier architectures with amazon api gate-

way and aws lambda aws whitepaper. Retrieved January 1, 2021, from
https://docs.aws.amazon.com/whitepapers/latest/serverless-multi- tier-
architectures-api-gateway-lambda/three-tier-architecture-overview.html

Amazon. (2021c). Elastic load balancing. Retrieved January 1, 2021, from https:
//aws.amazon.com/elasticloadbalancing/

Amazon. (2000-2021). Elastic load balancing documentation. Retrieved January 2,
2021, from https://docs.aws.amazon.com/elasticloadbalancing/index.html

Andrikopoulos, V., Song, Z., & Leymann, F. (2013). Supporting the migration of
applications to the cloud through a decision support system. 2013 IEEE

Sixth International Conference on Cloud Computing, 565–572.
Archiveddocs. (2022a). Chapter 18: Communication and Messaging. Retrieved

August 16, 2022, from https : / / docs . microsoft . com / en - us / previous -
versions/msp-n-p/ee658118(v=pandp.10)

https://aws.amazon.com/route53/
https://aws.amazon.com/route53/
https://docs.aws.amazon.com/whitepapers/latest/serverless-multi-tier-architectures-api-gateway-lambda/three-tier-architecture-overview.html
https://docs.aws.amazon.com/whitepapers/latest/serverless-multi-tier-architectures-api-gateway-lambda/three-tier-architecture-overview.html
https://aws.amazon.com/elasticloadbalancing/
https://aws.amazon.com/elasticloadbalancing/
https://docs.aws.amazon.com/elasticloadbalancing/index.html
https://docs.microsoft.com/en-us/previous-versions/msp-n-p/ee658118(v=pandp.10)
https://docs.microsoft.com/en-us/previous-versions/msp-n-p/ee658118(v=pandp.10)


REFERENCES 165

Archiveddocs. (2022b). Chapter 19: Physical Tiers and Deployment. Retrieved
August 15, 2022, from https : / / docs . microsoft . com / en - us / previous -
versions/msp-n-p/ee658120(v=pandp.10)

Ardagna, D., Di Nitto, E., Casale, G., Petcu, D., Mohagheghi, P., Mosser, S.,
Matthews, P., Gericke, A., Ballagny, C., D’Andria, F., Nechifor, C.-S., &
Sheridan, C. (2012). Modaclouds: A model-driven approach for the design
and execution of applications on multiple clouds. Proceedings of the 4th

International Workshop on Modeling in Software Engineering, 50–56.
Ari, I., Hong, B., Miller, E. L., Brandt, S. A., & Long, D. D. (2003). Managing

flash crowds on the internet. 11th IEEE/ACM International Symposium

on Modeling, Analysis and Simulation of Computer Telecommunications

Systems, 2003. MASCOTS 2003., 246–249.
Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R. H., Konwinski, A.,

Lee, G., Patterson, D. A., Rabkin, A., Stoica, I., & Zaharia, M. (2010).
Above the clouds: A berkeley view of cloud computing (tech. rep.). EECS
Department, University of California, Berkeley.

Azure, M. (2021a). Azure autoscale — microsoft azure. Retrieved January 10, 2021,
from https://azure.microsoft.com/en-us/features/autoscale/

Azure, M. (2021b). Load balancer documentation. Retrieved September 10, 2021,
from https://docs.microsoft.com/en-gb/azure/load-balancer/

Bahga, A., Madisetti, V. K. et al. (2011). Synthetic workload generation for cloud
computing applications. Journal of Software Engineering and Applications,
4(07), 396.

Bala, A., & Chana, I. (2012). Fault tolerance-challenges, techniques and imple-
mentation in cloud computing. International Journal of Computer Science

Issues (IJCSI), 9(1), 288.
Baldwin, L. (2018). Research concepts for the practitioner of educational leader-

ship. Brill.
Baltes, S., & Ralph, P. (2022). Sampling in software engineering research: A critical

review and guidelines. Empirical Software Engineering, 27(4), 1–31.
Bambrik, I. (2020). A survey on cloud computing simulation and modeling. SN

Computer Science, 1(5), 1–34.

https://docs.microsoft.com/en-us/previous-versions/msp-n-p/ee658120(v=pandp.10)
https://docs.microsoft.com/en-us/previous-versions/msp-n-p/ee658120(v=pandp.10)
https://azure.microsoft.com/en-us/features/autoscale/
https://docs.microsoft.com/en-gb/azure/load-balancer/


REFERENCES 166

Bass, L., Clements, P., & Kazman, R. (2012). Software architecture in practice.
Pearson Education.

Beaulah Soundarabai, P., Thriveni, J., Venugopal, K., & Patnaik, L. M. (2012).
Comparative study on load balancing techniques in distributed systems.
nternational Journal of Information Technology and Knowledge Manage-

ment, 6(1), 53–60.
Beck, K. (1997). Smalltalk best practice patterns. volume 1: Coding. Prentice Hall,

Englewood Cliffs, NJ.
Bernstein, P. A., & Newcomer, E. (2009). Chapter 3 - transaction processing appli-

cation architecture. In P. A. Bernstein & E. Newcomer (Eds.), Principles

of transaction processing (second edition) (Second Edition, pp. 73–97).
Morgan Kaufmann.

Bhandari, P. (2020). Internal Validity in Research — Definition, Threats & Ex-

amples. Retrieved October 24, 2022, from https : / /www.scribbr. com/
methodology/internal-validity/

Bharadwaj, V., Ghose, D., & Robertazzi, T. G. (2003). Divisible load theory: A new
paradigm for load scheduling in distributed systems. Cluster Computing, 6,
7–17.

Brewer, E. (2012). Cap twelve years later: How the” rules” have changed. Com-

puter, 45(2), 23–29.
Brookshear, J. G. (1989). Theory of computation: Formal languages, automata,

and complexity. Benjamin-Cummings Publishing Co., Inc.
Buyya, R., Broberg, J., & Goscinski, A. M. (2010). Cloud computing: Principles

and paradigms (Vol. 87). John Wiley & Sons.
Buyya, R., Srirama, S. N., Casale, G., Calheiros, R., Simmhan, Y., Varghese, B.,

Gelenbe, E., Javadi, B., Vaquero, L. M., Netto, M. A., et al. (2018). A
manifesto for future generation cloud computing: Research directions for
the next decade. ACM computing surveys (CSUR), 51(5), 1–38.

Byrne, J., Svorobej, S., Giannoutakis, K. M., Tzovaras, D., Byrne, P. J., Östberg,
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Appendix A

Enhanced Multi-tenancy Patterns

A.1 Shared Component Pattern

This section implements the new cloud pattern catalogue structure to describe the
shared component pattern.

Pattern Name

Shared Component

Icon

179
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Intent

Allow multiple tenants to access a component of an application to leverage
economies of scale (Fehling, Leymann, Retter, Schupeck, et al., 2014).

Motivation

To address a large number of customers and in turn leverage economies of scale.
When tenants are different departments of an organisation using an application,
they commonly share IT resources that power the application. Therefore, the
shared component pattern can be used to share the application component instance
and not just the IT resources that power the application. (Adewojo, Bass, Allison,
& Hui, 2015).

Applicability

Use shared components when: Web services are used for authentication and user
rights management within the scope of one company.

Structure

A database structure is used to exemplify the shared component pattern in this
section. One database is created and the tenant shares the database. Tables in the
database are also shared among tenants, the tenant and row ID identify each row of
a table. The process of combining and identifying tenants’ data does not completely
guarantee the security and privacy of data, but it utilises resources efficiently and
reduces the cost of database connections. The structure is represented in Figure
A.1.
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Figure A.1: UML Diagram for Shared Component Pattern

Consequences

The functionality provided by a shared component is unaware of the actual tenant
for which request is being executed. Hence, the behaviour of one tenant may
affect other tenants. This is commonly seen as a negative consequence. A positive
consequence is an ability to uniformly scale instances of a shared component
depending on the overall workload and the set limit. This process reduces the
commissioning and decommissioning effort of administrating tenants’ applications.
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Implementation

The shared component pattern can be implemented in various forms. These forms
include implementing a shared database table that contains the user details data of
different departments in an organisation; implementing a web service that will be
used by different organisations; and implementing a customised but shared user
interface of a system. This pattern allows components to be shared by multiple
tenants without much restriction on identifying the tenant (Adewojo, Bass, Allison,
& Hui, 2015). To successfully implement this pattern, the following conditions
should be considered before implementing it.

1. Tenant’s Influence: Influences among tenants that may occur when sharing
components should be avoided.

2. Tenant’s Requirements: Other requirements of tenants that disallow sharing
of resources.

Sample Code

//creates database (DB) for all tenants

CREATE DATABASE [SysDBName];

// creates table for all tenants

CREATE TABLE [SysDBName].[SysTableName] (

TenantID datatype,

TenantColData1 datatype,

TenantColData2 datatype,

......);

// Add data based on tenant Id

INSERT INTO [SysDBName].[SysTableName]
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(TenantID, TenantColData1, TenantColData2, ...)

VALUES (TenantID1, Tenant1Data1, Tenant1Data2,.),

(TenantID1, Tenant1Data3, Tenant1Data4, ...), ...

WHERE TenantID = tenantId;

Known Uses

The shared component pattern is widely used in situations where sharing of com-
ponent resources will less likely affect the performance, security, and privacy of
an organisation’s data or workload. Examples of usage are: National Weather Ser-
vice, provided by the National Oceanic and Atmospheric Administration (Fehling,
Leymann, Retter, Schupeck, et al., 2014), and Salesforce SaaS.

Related Patterns

Tenant-Isolated and dedicated patterns are suitable patterns that can replace the
shared component pattern. These patterns are useful if sharing of application com-
ponents is unsuitable for tenants. Management configuration, periodic workload
patterns (Fehling, Leymann, Retter, Schupeck, et al., 2014), private clouds and
hypervisors are combinations of alternative patterns and cloud deployment models
that can be used to complement the shared component pattern; especially when
different parts of the same organisation will share application components.

A.2 Tenant Isolated Component Pattern

This section implements the new cloud pattern catalogue structure to describe the
tenant isolated component pattern.
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Pattern Name

Tenant Isolated Component

Icon

Intent

Components will be shared by tenants and influences of tenants that affect assured
performance, security, available storage capacity, and accessibility are avoided
(Fehling, Leymann, Retter, Schupeck, et al., 2014) (Adewojo, Bass, & Allison,
2015).

Motivation

To maximise the use of available resources without jeopardising assured per-
formance, available storage, security, privacy, and accessibility. This will ad-
dress many customers, reduce tenants’ management efforts, and in turn leverage
economies of scale (Fehling, Leymann, Retter, Schupeck, et al., 2014). Applica-
tions can be configured to suit the tenant’s requirement, and the workload of the
tenant will not affect other tenants (Adewojo, Bass, Allison, & Hui, 2015).

Applicability

Use tenant-isolated component pattern for:
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• Authentication Isolation: this aids the customer in incorporating the pattern
with an on-premise application to verify users and isolate user activities
(Adewojo, Bass, & Allison, 2015)

• Access Control Isolation: this enforces access right within tenant isolated
component.

• Information Protection Isolation: this handles access control to tenant data
handled by tenant isolated component.

• Performance Isolation: this ensures that the workload of a tenant does not
affect another tenant.

• Fault Isolation: this ensures that failures in a tenant-isolated component do
not affect all tenants, but are contained within the affected component

• Administration Isolation: this ensures that only a tenant’s administrator can
make access rights and administrative changes to its tenant’s application.

Structure

This section uses a database structure to describe the tenant-isolated component
pattern. A database is created, and a tenant with a unique tenant name owns each
table. Database tables contain many rows with unique row IDs. This structure
allows for the privacy and security of data because tenants will not have their data
mixed with other tenants’ data. This will however increase the cost of database
connections and minimise resource utilisation. The structure is represented in
Figure A.2.

Consequences

Tenant isolated component pattern ensures that a tenant is authenticated before
the tenant gains access to its application. This pattern provides the highest degree
of resource sharing without adversely affecting other tenants. The tenant isolated
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Figure A.2: UML Diagram for Tenant Isolated Component Pattern

pattern’s sharing model still reduces the runtime cost per tenant because resources
are still being shared, albeit not at a great level as compared to the shared component
pattern. This affords a cloud application provider to target a larger market with
little to no compromise of delivered services (Adewojo, Bass, & Allison, 2015).

Implementation

The tenant-isolated component pattern allows components to be shared by multiple
tenants based on their identifier. This pattern is instrumental in the development and
sharing of application stacks that will be used by different tenants. Tenant isolated
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pattern ensures isolation between tenants by controlling tenant’s access, processing
performance usage, and separation of stored data. A sample implementation of
tenant isolated patterns is by creating a database that will be used by multiple
tenants to store various details of their organisations.

Tenant’s configuration requirements, especially those that disallow sharing of re-
sources, should be considered when using tenant isolated pattern. The requirements
can still be honoured by implementing some other cloud patterns in collaboration
with tenant-isolated pattern (Adewojo, Bass, Allison, & Hui, 2015).

Sample Code

//creates database (DB) for all tenants

CREATE DATABASE [SysDBName];

// create table for tenant A

CREATE TABLE [SysDBName].[TenantA.TenantTableName] (

TenantId datatype,

TenantColData1 datatype,

TenantColData2 datatype,

......);

// create table for tenant B

CREATE TABLE [SysDBName].[TenantB.TenantTableName] (

TenantId datatype,

TenantColData1 datatype,

TenantColData2 datatype,

......);

// Add data based on tenant table name

INSERT INTO [SysDBName].[TenantB.TenantTableName]

(TenantId, TenantColData1, TenantColData2, ...)
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VALUES (TenantID1, Tenant1Data1, Tenant1Data2, ...),

(TenantID1, Tenant1Data3, Tenant1Data4, ...), ...

WHERE TenantName = tenantName or schemaName;

Known Uses

Tenant isolated pattern is commonly used in applications that are shared by di-
visions of a large organisation. Examples are a single payroll application that is
used by multiple divisions of a company. Each division’s data source can be imple-
mented as a tenant isolated component using Oracles Toplink middleware with a
feature called table-per-tenant multi-tenancy (“Tenant Isolation Using TopLink”,
2022).

Related Patterns

The shared component pattern is an alternative pattern that can be used when
tenants do not require assured tenant isolation. This pattern can be configured with
other patterns such as management configuration and periodic workload pattern
(Fehling, Leymann, Retter, Schupeck, et al., 2014) to improve its applicability.

The dedicated component pattern is the second alternative pattern to the tenant
isolated pattern. This is a great option for tenants who desire the highest degree of
isolation. It guarantees tenant isolation in regard to performance, security, and data
privacy (Adewojo, Bass, & Allison, 2015).
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A.3 Dedicated Component Pattern

This section implements the new cloud pattern catalogue structure to describe the
dedicated component pattern.

Pattern Name

Dedicated Component

Icon

Intent

To provide exclusive access to components that provides critical functionality,
while other components can still be shared among tenants.

Motivation

Requirements to offer dedicated access to components that offer critical functional-
ity, component functionality that have security and privacy rules and regulations
they must abide by, and components that require specific configurations that cannot
be shared by tenants.
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Applicability

This pattern is applicable to applications with component parts that cannot be
shared because of rules and regulations, legacy applications whose components
are not designed to be shared by tenants but need to integrate into distributed
environments, and applications that offer functionality that is too critical or that
must be configured specifically for individual tenants.

Structure

In the context of a database application, the database is created as many times as
there is a need to support a critical component of an application. Each database
is dedicated to a tenant, therefore it has dedicated tables and rows. This structure
affords the highest form of privacy and security of data, albeit the storage space
used is increased. The structure is represented in Figure A.3.

Consequences

Components are exclusive to tenants using the application, so components cannot
be shared with tenants. Furthermore, component resource usage will not be
maximised.

Implementation

Dedicated components allow tenants to adjust components easily to suit their
requirements. A dedicated user interface component, processing component, and
data access component are available to each tenant. However, this implementation
reduces the degree of sharing and the ability to benefit from economies of scale.
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Figure A.3: UML Diagram for Dedicated Component Pattern

Sample Code

//creates database (DB) for one tenant

CREATE DATABASE [ApplDBName];

// create tables for one tenant

CREATE TABLE [ApplDBName].[ApplTableName] (

RowId datatype,

TableColData1 datatype,

TableColData2 datatype,

......);
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CREATE TABLE [ApplDBName].[ApplTableName] (

RowId datatype,

TableColData1 datatype,

TableColData2 datatype,

......);

// Add data based on table name

INSERT INTO [ApplDBName].[ApplTableName]

(RowId, TableColData1, TableColData2, ...)

VALUES (RowId, TableData1, TableData2, ...),

(RowId, TableData3, TableData4, ...), ...;

Known Uses

Salesforce CRM system offered as a PaaS (Adewojo, Bass, & Allison, 2015)

Related Patterns

The shared component pattern is an alternative pattern that can be used when
tenants do not require assured tenant isolation. This pattern can be configured with
other patterns such as management configuration and periodic workload pattern
(Fehling, Leymann, Retter, Schupeck, et al., 2014) to improve its applicability.

Tenant Isolated component pattern is another alternative pattern that can be used
when there is a need to maximise resource usage while guaranteeing some degree
of tenant isolation.
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