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Abstract 

The increasing frequency and cost of zoonotic disease emergence due to global change has 

led to calls for the primary surveillance of wildlife. This should be facilitated by the ready 

availability of remotely-sensed environmental data, given the importance of the environment 

in determining infectious disease dynamics. However, there has been little evaluation of the 

temporal predictiveness of remotely-sensed environmental data for infection reservoirs in 

vertebrate hosts due to a deficit of corresponding high-quality long-term infection datasets. 

Here we employ two unique decade-spanning datasets for assemblages of infectious 

agents, including zoonotic agents, in rodents in stable habitats. Such stable habitats are 

important, as they provide the baseline sets of pathogens for the interactions within 

degrading habitats that have been identified as hotspots for zoonotic emergence. We focus 

on the Enhanced Vegetation Index (EVI), a measure of vegetation greening that equates to 

primary productivity, reasoning that this would modulate infectious agent populations via 

trophic cascades determining host population density or immunocompetence. We found that 

EVI, in analyses with data standardised by site, inversely predicted more than one third of 

the variation in an index of infectious agent total abundance. Moreover, in bipartite host 

occupancy networks, weighted network statistics (connectance and modularity) were linked 

to total abundance and were also predicted by EVI. Infectious agent abundance and, 

perhaps, community structure are likely to influence infection risk and, in turn, the probability 

of transboundary emergence. Thus, the present results, which were consistent in disparate 

forest and desert systems, provide proof-of-principle that within-site fluctuations in satellite-

derived greenness indices can furnish useful forecasting that could focus primary 

surveillance.  In relation to the well documented global greening trend of recent decades, the 

present results predict declining infection burden in wild vertebrates in stable habitats; but if 

greening trends were to be reversed, this might magnify the already upwards trend in 

zoonotic emergence.    
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1 | INTRODUCTION 

Given the human and economic cost of infectious disease emergences from wildlife 

reservoirs (Häsler et al., 2013; Dobson et al., 2020; Bernstein et al., 2022), the primary 

surveillance of infection risks from wildlife seems increasingly warranted. For this purpose, 

environmental variation should be a particularly valuable source of predictive information. 

This is due to the importance of the environment in driving infection dynamics and to the 

ready availability of fine-grained, near-real-time, satellite-derived environmental 

measurements on a global scale. Despite this potential, our ability to use satellite (remotely-

sensed) data to forecast temporal fluctuations in the pattern of infection in wild vertebrates is 

currently limited. In particular, the evaluation of candidate predictors is restricted by a lack of 

corresponding high-quality infection data time series (Wille et al., 2021; Becker at al., 2023). 

Here we employ two decade-spanning rodent infection datasets whose regular multiannual 

sampling regimens make them uniquely suitable to assess whether remotely-sensed 

environmental measurements have forecasting power for the abundance and structure of 

natural infectious agent communities. Crucially, such variation in the burden of infection 

(Plowright et al., 2017), and in infectious agent community structure (Bordes & Morand, 

2009), might be expected to relate to infectious disease risk in wildlife, and thence to the risk 

of zoonotic or transboundary emergence from wildlife reservoirs. The infection data time 

series we employ (described further below) are for broad multispecies infectious agent 

assemblages in two different hosts occupying different biomes and have previously been 

extensively documented (Behnke et al., 2000, 2001, 2004, 2008a, b, 2019; Grzybek et al., 

2015; Alsarraf et al., 2016). For prediction, we specifically focus on the remotely-sensed 

Enhanced Vegetation Index (EVI) (Huete et al., 2002), a measure of “greenness” reflecting 

primary production in plants (Sims et al., 2006). EVI is related to the widely used Normalized 

Difference Vegetation Index (NDVI) but corrects for atmospheric conditions and canopy 

background variations (Huete et al., 2002).  Importantly, we expected primary production to 

be especially informative as it is likely to have an ultimate local causal influence upon key 

proximal drivers of infection (Parmenter et al., 1999; Glass et al., 2002; Xu et al., 2015; 

King'ori, 2020; Eby et al., 2023). These proximal drivers could include host density (Santini 

et al., 2018) and host immunocompetence (Jackson et al., 2020), which are likely to be 

influenced by bottom-up trophic cascades (Parmenter et al., 1999) dependent on primary 

production. The causal influence of primary production might manifest itself, for example 

(and non-exhaustively), through the augmentation of food availability, increasing host 

abundance and altering infection dynamics as a result. A similar process has been 

suggested to explain links between the El Niño Southern Oscillation and hantavirus 

outbreaks in the southwestern United States (Glass et al., 2002). Alternatively, diminished 



primary production might result in food shortage, interference with host immune function and 

promotion of infectious disease transmission (Jackson et al., 2020).       

Due to a deficit of high-quality long-term time series with regular sampling design, most 

efforts at predicting the burden of infection in natural systems through the remote-sensing of 

vegetation state (or through otherwise measured correlates of vegetation state), are 

focussed on spatial variation (between sites) or within-year data. This has limitations for 

forecasting (i.e., predicting into the future) locally, which may be an important goal for 

surveillance. For example, in the case of spatial studies, the determinants of spatial 

variation, although they might be extrapolated to predict longer term temporal scenarios 

under land usage or climate change, may not be the same as the determinants of temporal 

variation on other scales. In particular, spatial designs may be uninformative for local 

temporal forecasting because drivers of temporal variation (perhaps including primary 

productivity) may be unrelated to important site-specific determinants of infectious 

assemblages. The latter could, for instance, include the nature of the substrate, or the 

animal species present (Carlson et al., 2022; Stenseth et al., 2022). Moreover, in the case of 

within-year data, autocorrelation is problematical, as any regular seasonal variables will 

correlate at certain times of the year, given a certain time lag.  In contrast, in the present 

study, we focus particularly on long-term within-site between-year temporal variation, with 

sampling points at the same time of year. For this, we reasoned that if primary production 

(represented by remotely-sensed vegetation measures) is a driver of temporal infection 

dynamics, then this will have a more detectable signal on a level playing field within sites 

and at the same phase point in the circannual cycle.  

Previous studies on the environmental drivers of infection burden in nature have also often 

only considered individual or limited groups of pathogen species, but a focus on wider 

species communities, as we adopt here, may provide more information. Thus, for analyses 

of abundance, an overall measure of abundance, grouped across the infectious agent 

community (e.g., via latent variables from multivariate analyses, or overall means of 

standardised abundance, as we use here) has advantages. Such a measure would tend to 

reflect overarching drivers (and not species-specific drivers) and also tends, in practice, to 

produce a well-conditioned variable for statistical analysis (with a less skewed distribution), 

increasing sensitivity. Moreover, enumerating established individuals across complex 

communities, as we have carried out here, allows the analysis of the structure of those 

communities. This is relevant to our current focus on forecasting infection risk, because host 

permissiveness to transmission may be determined by the manner of infectious agent 

community assembly due to the regulatory properties of interspecific interactions (Gotelli et 

al., 2017; de Vos et al., 2017). Below we calculated structural metrics for bipartite networks 



(Dormann et al., 2008; Poulin, 2010) of host occupancy as these may affect the stability and 

regulation of communities (May, 1972; Grilli et al., 2016; Delmas et al., 2019). 

Rodents, alongside bats, are the greatest reservoir for zoonotic infectious agents (Luis et al., 

2013; Han et al., 2016). In the present study, the rodent infection time series data that we 

employ include zoonotic agents such as Babesia (see Young et al., 2019) and Bartonella 

(see Krügel et al., 2022), although we would expect any community-wide responses 

observed to be the most interesting from a general point of view. The present time series 

span the 2001-2010 decade with multiple time points. This decade was claimed to be the 

warmest and fastest-warming decade in historical records until 2010, and to encompass 

major climate perturbation (WMO, 2013).  The time series also represent very divergent 

rodent host-infectious agent systems in disparate biomes and so consistent trends in both 

would point towards the existence of general, widely relevant, processes. Thus, one of the 

time series is for bank voles (Myodes glareolus) in the temperate zone, forested ecosystems 

of the Mazury Lake District in North-Eastern Poland. The other is for spiny mice (Acomys 

dimidiatus) in the subtropical desert, wadi ecosystems of the St Katherine Protectorate, 

South Sinai, Egypt. In both cases, the infection data consist of direct visual counts of 

infectious agents based on invasive sampling at autopsy and are likely to be more precise 

than indirect measurements featuring in many studies, such as serology, PCR diagnostics or 

propagule counts in faeces. Uniquely, each of these contrasting time series has a regular, 

standardised sampling design that includes quantification of metazoan parasites, 

haemoparasites and haemopathogens and host biometric data. Each also has site 

replication of distinctive localities, sampled consistently through time points. Thus in practice, 

when data grouping is taken into account, this has allowed sufficient degrees of freedom to 

detect overall association between site-level time-point observations for infectious agent 

community metrics and vegetation indices derived from remote sensing measurements.  

In summary, in this study, using the datasets described above, we calculate an index of 

overall infectious agent abundance, as this would be expected to be linked to infection risk. 

(Here and below, we take infection risk to mean risk within the studied populations but also, 

ultimately, transboundary risk.) We additionally derive network statistics for bipartite 

networks of host occupancy as these might contribute to infection risk through effects on 

community regulation and stability. Accounting for confounding variation, and standardising 

data within sites prior to analysis (i.e., converting the data to within-site anomalies), we ask 

whether any of these quantities are predicted by inter-annual EVI fluctuations within sites.  

Our findings suggest that site-standardised EVI is indeed substantially predictive of 

infectious agent abundance and network structure. We argue that this highlights the need for 

future work to understand the causal mechanisms involved and to further establish the 



practical potential for forecasting infection risk using EVI. We also point out that the 

associations we observed would predict a suppression of infection risk in stable habitats in 

recent decades, given worldwide greening trends (Zhu et al., 2016), but we note that this 

could be reversed in the case that greening trends are not maintained (Winkler et al., 2021).  

 

2 | MATERIALS AND METHODS 

2.1 | Overview 

In this study we set out to assess the degree to which infectious agent abundance and 

community structure can be predicted by remotely-sensed vegetation greenness. We 

employed long-term datasets for two contrasting rodent - infectious agent systems with 

regular, site-replicated sampling designs and individual count data for a wide range of 

infectious agents. For these datasets, we calculated overall indices of infectious agent 

abundance and network statistics for host occupancy networks. To represent greenness, we 

used the publicly-available Enhanced Vegetation Index (EVI) data product. Importantly, we 

reasoned that, within each host-infectious agent system, individual sites would be subject to 

many idiosyncratic site-specific constraints on infectious agent abundance and community 

structure, on the one hand, and on EVI, on the other, that might lead these to vary 

independently (obscuring any functional link). Such constraints might include, for example, 

faunal composition, habitat connectivity or substrate characteristics, in the case of infectious 

agents, or floral composition, soil composition or canopy structure in the case of EVI. On the 

other hand, within-site changes in vegetation greenness and infectious agents over time, 

upon a relatively level playing field for site-specific constraints, would be more likely to reveal 

a functional relationship between the two. Thus, crucially, in the analyses below, we 

standardised (zero mean, unit standard deviation) the infection variables and EVI within sites 

prior to linear statistical modelling.  

2.2 | The study systems    

Infection data for this study are based on multi-year, late summer, sampling of bank voles 

(Myodes glareolus; Cricetidae) at 3 defined sites in the Mazury Lake District in North-Eastern 

Poland and of spiny mice (Acomys dimidiatus; Muridae) at 4 defined sites in St. Katherine’s 

Protectorate, Sinai, Egypt. The Polish sites, Urwitałt (53.80255, 21.663067), Talłty 

(53.894067, 21.550817) and Pilchy (53.7038, 21.808317) (Behnke et al., 2001; Grzybek et 

al., 2015), in the Central European mixed forest ecoregion (Olson et al., 2001), were situated 

along an approximately northeast to southeast 27 km transect and were separated by 

physical barriers and habitat unsuitable for bank voles. The sites were mainly forested 



(Behnke et al., 2001), featuring a mature canopy dominated by Pinus sylvestris and Betula 

verucosa, but also containing Picea abies, Quercus robur and Alnus glutinosa; shrub layers 

consisted mainly of Corylus avellana and ground cover was primarily by Oxalis acetulosa, 

Convalaria mayalis, Stelaria holostea or moss.  Small gladed areas occurred within the 

forests, dominated by grasses. The Egyptian sites, in the Arabian desert ecoregion (Olson et 

al., 2001), were discrete montane wadi habitats at El Arbein (28.553440, 33.94796), Gebal 

(28.53342, 33.908398), Gharaba (28.64672, 33.88991) and Tlah (28.56452, 33.93682) 

situated within 12 km of St Katherine, South Sinai. The wadis are hyper-arid environments 

with sparse rainfall in December-February only. Natural vegetation cover is <10%, but the 

wadi floors are partly covered by oasis-like walled orchard gardens that employ rainwater 

harvesting to maintain a year-round presence of crop plants amongst which wild desert 

annual and perennial vegetation also grows (Norfolk et al., 2012, 2013, 2015).           

2.3 | Sampling  

The three Polish sites were sampled in 1999, 2002, 2006 and 2010 and the four Egyptian 

sites were sampled in 2000, 2004, 2008 and 2012. The 1999 data fell before the availability 

of the remotely-sensed data product used here (see below) and were thus not included 

directly in the main analyses of data aggregated by site, although they were included in 

supporting analyses of unaggregated individual host data. Sampling methods, and the 

respective compositions of the infectious agent communities, have been previously 

described for both the Polish bank vole and Egyptian spiny mice systems.  In brief, for both 

systems, hosts were captured by humane live-trapping in a 3-4 week trapping campaign 

starting in mid-August and killed and autopsied shortly after capture. For the Egyptian sites, 

sampling was based on a total of 52076 trap hours (1838-5244 per site × year combination) 

and for the Polish sites (for 2002-2010) 172271 trap hours (9356-34363 per site × year 

combination). For the Egyptian spiny mice, the traps were placed along wadi floors, primarily 

in and around walled gardens (Behnke et al., 2000). Biometric data (sex and weight) were 

recorded for hosts and, in the case of M. glareolus samples, order-level counts were made 

of ectoparasitic fleas (Siphonaptera) and ticks (Ixodida).  For all samples, metazoan 

endoparasites occurring in the gastrointestinal tract or the body cavity were identified to 

species level and enumerated. In a very small minority of cases unidentified endoparasite 

specimens were placed in phylum-level categories. Haemoparasites (Babesia, Hepatozoon 

and Trypanosoma) and haemopathogens (Bartonella and Mycoplasma), identified to genus 

level, were quantified by microscopic counts of stages on peripheral blood smears.  The 

Polish data set contained 21 taxon groupings (2 arthropod, 3 protozoan, 2 bacterial, 8 

nematode and 6 cestode) and the Egyptian dataset 26 taxon groupings (3 protozoan, 2 

bacterial, 13 nematode, 7 cestode and 1 acanthocephalan).  



For analysis of the Polish dataset, hosts with any missing infection or biometric data were 

excluded.  Final sample size was 812 voles for the full Polish dataset (35-97 per year × site 

combination, mean = 68) and 689 voles (56-97 per year × site combination, mean = 77) 

when 1999 data were excluded. For analysis of abundance in the Egyptian dataset, hosts 

with any missing data were excluded, giving a final sample size of 419 (6-42 per year × site 

combination, mean = 26). For network analysis of the Egyptian dataset, only hosts with 

missing infectious agent data were excluded (as there were proportionately more missing 

biometric data in this dataset and these data were not used in the networks); sample size 

was 427 (11-42 per year × site combination, mean = 27).   

2.4 | Enhanced vegetation index (EVI) data 

Enhanced Vegetation Index (EVI) (Huete et al., 2002) data (MOD13Q1 data product (Didan 

& Huete, 2015)) corresponding to spatial polygons for the study sites (see Supplementary 

Table 1) were downloaded via the National Aeronautics and Space Administration (NASA) 

AppEEARS application (AppEEARS Team, 2023). MOD13Q1 data is derived from the Terra 

Moderate Resolution Imaging Spectroradiometer instrument for 16-day intervals at 250m 

resolution and is based on atmospherically-corrected reflectance in the red, near-infrared 

and blue wavebands.  EVI differs from the older, related NDVI (Normalized Difference 

Vegetation Index) metric by attempting to correct for atmospheric and background effects 

and may be superior in discriminating areas of high-density vegetation where NDVI 

saturates (Didan et al., 2015). The average EVI for 3 months of data prior to the month of 

sampling was employed for all analyses (see Supplementary Table 2), as similar timeframes 

have been used in studies relating NDVI, or its correlates, to infectious agent populations 

(King'ori et al., 2020; Shearer & Ezenwa, 2020; Rubenina et al., 2021). EVI is widely 

accepted to capture vegetation phenology and primary productivity variation in forest and 

grassland biotypes (Huete et al., 2002; Sims et al., 2006; Huete, 2012; Zhou et al., 2014; 

Fernández et al., 2016; Shi et al., 2017), such as the Polish sites here, which were mainly 

gladed forests. EVI or NDVI have also been employed to monitor vegetation in hyper-arid 

environments (Saltz et al., 1999; Wallace & Thomas, 2008; Wang et al., 2014; Chávez et al., 

2019; Moat et al., 2021), such as the Egyptian sites here, and also at other desert localities 

in the Sinai peninsula (Dall'Olmo & Karnieli, 2002). EVI variables for the present Egyptian 

sites had a clear seasonal fluctuation with, as might be expected if vegetation is 

represented, a nadir at the start of the rainy season.      

2.5 | An overall measure of infectious agent abundance 

To calculate an overall index of infection abundance (Total abundance Index, TAI) for hosts 

within each of the two sample sets (Egypt and Poland) we first standardised the counts for 



each infectious agent taxon for all hosts in the sample set (zero mean, unit standard 

deviation) and then summed the standardised counts for each host:  

 𝑇𝐴𝐼′ = ∑  ∑
𝑋−𝜇

𝛿
𝑛
𝑖=1

𝑝
𝑗=1  , 

where n = the number of hosts in the sample set, p = the number of infectious agent species 

in the sample set, X = abundance of the jth infectious agent species in the ith host, μ = mean 

abundance for the jth infectious agent species in the host population and δ = the standard 

deviation for abundance of the jth infectious agent species in the host population.  

Within each sample set the distribution of the resulting index was less skewed than the 

individual infectious agent variables but still non-normal, so the index variable was rescaled 

1-101 and a log transformation was applied (where max is the maximum value for TAI’, and 

min is the minimum value): 

𝑇𝐴𝐼 = 𝑙𝑜𝑔10 (((
𝑇𝐴𝐼′−𝑚𝑖𝑛

𝑚𝑎𝑥−𝑚𝑖𝑛
 ) 100) + 1). 

2.6 | Network statistics  

Network analyses were carried out in R version 4.2.1 (R Core Team, 2022). The bipartite 

package (Dormann et al., 2008) was employed to construct a separate weighted bipartite 

network for each site × year dataset, joining individual hosts and infectious agent taxa, 

where edge weights corresponded to the log2 (x + 1) transformed raw infectious agent 

counts.  Weighted network statistics (modularity, connectance and nestedness) were 

calculated for each network (Dormann et al., 2009). Modularity, connectance and 

nestedness were selected as they have been linked with community stability or regulation in 

the literature (Delmas et al., 2019; Poulin & McDougall, 2022). Weighted modularity (Q) 

reflects the weight of edges inside modules compared to outside modules, where a module 

is defined as an edge rich cluster within a community (Dormann & Strauss, 2014). Weighted 

connectance reflects the weights of realised relative to possible edges in a network (Bersier 

et al., 2002). Weighted nestedness is the tendency for edges of a given node to form a 

subset of the edges of nodes of higher degree (i.e., nodes with more edges), taking the 

weight of edges into account. The weighted nestedness measure used here increases with 

nestedness and was calculated following the WNODF (Weighted Nestedness metric based 

on Overlap and Decreasing Fill) method (Almeida-Neto & Ulrich, 2011).  

2.7 | Statistical modelling of abundance and network metrics in relation to EVI 

Linear model analyses were carried out in R version 4.2.1. TAI (unadjusted for host intrinsic 

variables) and EVI means were calculated for each site x year sampling point and were 



standardised within sites for both sample sets, using the scale_by function in the standardise 

library (Eager, 2017).  This effectively converted the TAI and EVI data into anomalies or 

deviates from the within-site mean. The Egyptian and Polish sampling point anomalies were 

then concatenated (stacked) into a single dataset and the TAI anomalies were analysed as 

the response in a linear mixed model with Gaussian errors (LMM) (lmer function in the lme4 

package (Bates et al., 2015)), using all of the data, with the EVI anomaly included as a fixed 

explanatory variable and year (factor) included as a random intercept effect to account for 

year grouping. A site random term was not included as the variance for this would be zero 

due to the within-site standardization of the TAI data, which allowed interpretation of model 

coefficients in terms of standard deviation units for the response and fixed predictors (and 

reanalysis with unstandardised EVI data and random intercepts for site provided similar 

interpretations). We repeated the above analysis, in turn replacing TAI with each of the 

network statistics described above, Weighted modularity Q, Weighted connectance and 

Weighted nestedness, and additionally including site-standardised sample size as a fixed 

explanatory variable. We then further considered the addition of (site-standardised) TAI, as 

an explanatory variable, to the models for the network statistics.  

Secondary analyses of abundance, based on mean raw counts, were also carried for 

phylum-level functional groups, where these were common to both host assemblages and 

occurred at all sites. These analyses were conducted in LMMs of the form described above 

that had TAI as the response, using site-standardised data.  

Infection abundance in individual taxa has been extensively analysed previously in the 

present study systems (Behnke et al., 2000, 2001, 2004, 2008a,b, 2019; Bajer at al., 2001, 

2005; Siński et al., 2006a,b; Grzybek et al., 2015; Alsarraf et al., 2016) and may be 

influenced by intrinsic host variables, which is not taken into account in the analysis of TAI 

above. Using standard linear models (see Supplementary Tables 3-4; lm base function), 

applied to each dataset separately, we confirmed that individual TAI was (positively) 

influenced by body weight in both datasets (host body weight was the strongest intrinsic 

predictor of TAI in both datasets, compared to host sex) and that sex was important in the 

Egyptian dataset. To take the effect of these intrinsic variables into account, we generated 

random intercepts for site x year sampling points in an LMM (Gaussian errors) (lmer function 

in the lme4 package) with individual TAI as the response and with fixed terms for body 

weight (continuous), sex (factor) and site (factor) and random intercepts for site × time point 

(Supplementary Tables 5-6). Random intercepts were extracted from this model (ranef 

function in lme4) and effectively represent TAI site anomalies around the fixed site term, 

adjusted for host weight and sex by the fixed terms for these. We then re-standardised the 

random effects to convert the TAI anomalies to standard deviation units and analysed them 



as for unadjusted TAI above, with this analysis effectively negating any variation due to 

weight and sex.  

Variation due to different model terms in LMMs was quantified using the calcVarPart function 

in the variancePartition library (Hoffman & Schadt, 2016). 

2.8 | Trap rate 

Trap rates (captures per trap hour), such as those available in this study (Supplementary 

Table 7) can be used as a relative abundance index (Skalski et al., 2005) for the host, 

although this is complicated by the possibility of systematic variation in the capture 

probability for individuals, which cannot be estimated from the available data. Although 

estimating host abundances was not a primary focus here, we have employed trap rate as a 

crude proxy for host abundance in some secondary, indicative, analyses. These analyses, 

relating trap rate to TAI and EVI, were conducted in LMMs of the form described above, 

using site-standardised data.   

 

3 | RESULTS 

3.1 | Site-standardised Enhanced Vegetation Index (EVI) substantially inversely 

predicted an index of overall infection burden (Total Abundance Index, TAI)  

The structure of our dataset is described in detail in the Materials and methods. Briefly, 

analyses below were based on at least 1108 hosts (depending on missing data values) from 

two sample sets (Egypt and Poland) comprising 7 sites and a total of 25 site × time point 

replicates spanning 2000-2012. For hosts within each sample set (A. dimidiatus in Egypt and 

M. glareolus in Poland) we constructed a total abundance index (TAI) by summing 

standardised counts for all infectious agents (see Materials and methods for details). In a 

combined analysis of the sample sets, where variables were standardised within sites, EVI 

significantly inversely predicted TAI when analysed in a Linear Mixed Model (LMM) (slope = 

-0.65±0.16, P = 5.1 × 10-4). This relationship explained more than one third of the variation in 

TAI (Fig. 1) (44% partitioned variance in the LMM). This was approximately maintained when 

TAI was adjusted for host sex and weight (slope = -0.54±0.13, P = 4.1 × 10-4; 36% 

partitioned variance) (see Materials and methods for details). The crude trend was also 

consistent in the two sample sets (Poland, Pearson r = -0. 70; Egypt, r =-0.73; for site 

standardised data) (see Fig. 1). A crude proxy for host abundance (trap rate) only weakly 

predicted TAI (LMM, slope = -0.27±0.13, P = 0.051; 6% partitioned variance) (Fig. 2) and 

was unrelated to EVI.  



To decompose the effect of EVI on overall infection burden, we carried out post hoc 

analyses of mean total counts at site × time sampling points, broken down by phylum-level 

functional groups, where these were common to both host assemblages and occurred at all 

sites. This included gastrointestinal nematodes, Hepatozoon parasitaemia, Bartonella 

bacteraemia and Mycoplasma bacteraemia. There were strong inverse associations with EVI 

for gastrointestinal nematodes (LMM, slope = -0.56±0.17, P = 0.0037) and Mycoplasma 

(slope = -0.77±0.14, P = 9.4 × 10-6) the only two groups present in all time × sites sampling 

points, and there were non-significant but negative trending associations for Bartonella and 

Hepatozoon (see Fig. 2)    

3.2 | EVI predicted connectance and modularity in host occupancy networks 

We calculated weighted network metrics (connectance, modularity and nestedness) to 

describe variation in structure in bipartite host occupancy networks for the infectious agent 

community at each site × year sampling point. Adjusting for host sample size, we found that 

weighted modularity increased with EVI (LMM, 0.58±0.18, P = 0.006; 30% of partitioned 

variance) and decreased with TAI (-0.78±0.14, P = 8.4 × 10-6; 57% of partitioned variance), 

with EVI explaining no further variation when added to a model already containing TAI.  

Weighted connectance, in contrast, decreased with EVI (-0.54±0.18, P = 0.005; 25% of 

partitioned variance) and increased with TAI (0.66±0.16, P = 0.001; 45% of partitioned 

variance), with EVI again explaining no additional variation when added to a model already 

containing TAI. Thus, weighted connectivity and modularity, which were strongly inversely 

associated (Pearson r = -0.87 for unstandardised data and -0.78 for site-standardised data), 

varied as effective proxies of TAI. Weighted nestedness (adjusted for sample size) was 

unrelated to EVI or the other network statistics, although it decreased with TAI (-0.57±0.21, 

P = 0.014). None of the network statistics were related to trap rate.  

4 | DISCUSSION 

We have found that site-standardised remote-sensed vegetation indices are able to inversely 

predict a substantial amount (more than one third) of the within-habitat variation in an index 

of overall infection burden over time in two geographically distinct natural rodent host-

infectious agent systems. The vegetation indices employed were based on the Enhanced 

Vegetational Index (EVI) that was standardised (i.e., centred and expressed in standard 

deviation units) for individual sites. The trend was consistent across the two disparate study 

areas (Egypt and Poland) and was maintained in the phylum-level pathogen groups 

universally occurring in all spatiotemporal sampling points. Moreover, we found that site-

standardised EVI additionally predicted variation in infectious agent community structure, 

although only where this was a direct surrogate of overall abundance.     



Many previous studies have found that environmental variables, including those measured 

through remote sensing, may predict infectious agent populations or communities 

(Froeschke et al., 2010; Krasnov et al., 2010, 2021; Clark et al., 2020; Fecchio et al., 2020; 

King'ori  et al., 2020; Shearer & Ezenwa, 2020; Blersch et al., 2021; Pauling et al., 2021; 

Carlson et al., 2022; Kosoy & Biggins, 2022; Vinagre-Izquierdo et al., 2022) or zoonotic 

infection risk (Parmenter et al., 1999; Glass et al., 2000, 2002; Pauling et al., 2021; Redding 

et al., 2021; Carlson et al., 2022). However, where these have focussed on vegetation 

predictors, or their correlates, in most cases between-locality variation or within-year 

variation has been studied, which may have limitations. Thus, between-locality studies may 

be affected by spatial autocorrelation and confounding due to site-specific variation. 

Moreover, within-year studies may be affected by temporal autocorrelation, as any 

circannual (seasonal) variables will be autocorrelated at some time lag.  In contrast, long 

term within-site between-year time series, such as we employ here, allow temporal 

variations in variables-of-interest to be considered on a relatively level playing field (i.e., on 

the same background of site characteristics and phase point in the seasonal cycle), 

increasing the signal to noise ratio and avoiding autocorrelative effects. The present study is 

thus uniquely powerful in considering two multiannual, decade-spanning time series with 

regular site replication, allowing a within-site (“site-standardised”) approach to be employed.  

From a practical point of view, the current study has, using a site-standardised approach, 

strengthened the proof-of-principle that remotely-sensed vegetation spectra could provide 

substantial partial forecasting of infection levels, infectious agent community structure and 

infectious disease risks in natural vertebrate systems. Moreover, the temporally lagged 

nature of the effects we saw mean that useful forecasts could be made in real-time with 

lead-in time scales (weeks or months) that allow intervention. Such information could be 

generated with relatively little difficulty and cost given the high availability of many remote 

sensing data. It could then, for example, be combined with other sources of information on 

land use, human populations or animal and pathogen distributions and employed to prioritize 

local surveillance activity or preparedness according to available resources.  Whilst our 

study focussed on a wide range of haemoparasites (Protozoa) and haemopathogens 

(Bacteria) and metazoan parasites, we expect that other infectious agents, including viruses, 

would respond to similar environmental pressures, as they are subject to similar constraints 

of transmission and host resistance. 

Recording many different infections allowed a detailed analysis of community structure. We 

considered weighted infectious agent community network structure metrics, in addition to 

abundance, as these might reflect regulatory properties of a community relating to its 

stability and hence to change in infection risk. We found that some community network 



properties were strongly predicted by EVI, but in all cases, in practice, these were also 

surrogates for total abundance.  Thus, in bipartite host co-occupancy networks, network 

modularity increased and connectance decreased as EVI increased (and as abundance 

decreased). Although modularity and connectance might be expected to scale passively with 

network size (Dormann et al., 2009; Dormann & Strauss, 2014), the associations with EVI 

were maintained when host sample size was adjusted for. Nestedness, which was unrelated 

to abundance, was also unrelated to EVI. To our knowledge, these are amongst the first 

observations to relate remotely-sensed primary production to temporal variations in 

infectious agent community structure.   

The direction of the trend in total abundance in relation to EVI that we observed raises 

important questions. In particular, infectious agent abundance might be predicted to increase 

with bottom-up productivity and its drivers, such as precipitation and temperature (Felton et 

al., 2021), due to the facilitated development of larval stages or the amplification of host or 

vector populations (Arneberg et al., 1998; Mouritsen & Poulin, 2002). A positive influence of 

primary productivity on infectious agent abundance would also be in line with universal 

scaling rules based on metabolic theory (Hechinger et al., 2011). In contrast to this 

expectation we, in fact, observed infectious agent abundance to decrease as EVI increased; 

and this trend was, in turn, accompanied by changes in network modularity and connectivity. 

Whilst the present study is focussed on prediction and is not configured to reveal any causal 

chain between productivity, abundance and community structure, nonetheless, it is useful, 

from the point of view of circumscribing future hypotheses, to briefly speculate on what the 

biological drivers for these observed trends might be. One possibility is that the negative 

association we saw between primary production and overall infection burden is due to a 

dilution effect, either acting at a community level, through increased biodiversity (Schmidt &  

Ostfeld, 2001), or at the host population level, through rapid demographic increase in the 

specific host (Abu-Madi et al., 2003). In the former case, bottom-up trophic cascades might, 

for example, increase the diversity of organisms similar to the specific hosts of infectious 

agents, diluting their frequency and reducing successful transmission (Khalil et al., 2016; 

Loxton et al., 2017; Huang et al., 2017; Stuart et al., 2020; Stewart Merrill & Johnson, 2020; 

Min et al., 2021; McManus et al., 2021). In the case of a population-level dilution effect, 

demographic expansion of the specific host populations, again driven by bottom-up trophic 

cascades, might outstrip the transmission ability of infectious agents. Patterns attributable to 

the latter process can often be observed in seasonally recruiting rodent populations (Abu-

Madi et al., 2003). In either of these scenarios, in addition to dilution effects on abundance, 

increases in unsuitable or yet-to-be-infected hosts might also increase modularity and 

decrease connectance. A further possibility is that high primary production might result in 



better host nutritional state, elevating immunocompetence (Jackson et al., 2020; Shearer & 

Ezenwa, 2020). This might limit abundance via host resistance effects and increase 

modularity, or reduce connectance, through amplified individual immunoheterogeneity 

(Tinsley et al., 2020). These dilution or immunocompetence scenarios are not mutually 

exclusive, and other possibilities could also be envisaged, but there is some reason to think 

that population-level dilution is less likely. As this scenario depends on demographic 

expansion of the host, it is not supported by our host abundance data, which were not 

predicted by EVI and only weakly predicted infectious agent abundance. However, we note 

that the simple trapping rates we recorded do not account for variation in detectability 

(individual capture probability), which could, putatively, vary systematically with EVI.  Thus, 

more research is required to distinguish between the possibilities set out above, or other 

possibilities, and to understand the processes determining the links between EVI and 

infectious agent abundance and community structure observed here. 

Our results have important implications for the effect of global environmental change on 

infectious disease risk in natural vertebrate wildlife reservoirs, given the recent broad 

worldwide greening trend (Nemani et al., 2003; Mao et al., 2016; Zhu et al., 2016; Buitenwerf 

et al., 2018; Winkler et al., 2019). As disease transmission risk would be expected to 

increase with pathogen abundance, all other things being equal, and as we observed 

abundance to decrease with EVI (greening) here, it seems likely that otherwise stable 

habitats with increasing productivity would be subject to decreasing infectious disease risk. 

More tentatively, the changes that we observed in community structure as EVI increased 

might also affect disease risk through altering community stability. Notably, this possibility 

depends on the existence of interspecific interactions that might act as stabilising or 

destabilising feedbacks, and for which there is some evidence in wild vertebrate systems 

(Lello et al., 2004; Behnke et al., 2005, 2009; Jackson et al., 2006; Behnke, 2008, 2009; 

Ferrari et al., 2009; Telfer et al., 2010; Knowles et al., 2013; Pedersen & Antonovics, 2013; 

Lewis et al., 2023).  In the present dataset we observed modularity to increase and 

connectance to decrease with increasing EVI, with both connectance and modularity 

effectively being proxies of abundance. Increasing modularity and decreasing connectance 

would be linked to increasing stability in classical theoretical studies of random networks 

(May, 1972). On the other hand, this may not apply in the non-random set of network 

structures that occur in real ecological situations (Pimm, 1979; Solow et al., 1999; Teng & 

McCann, 2004; Stouffer & Bascompte, 2011), which may be subject to effects in the 

opposite direction, i.e., destabilizing effects in respect of the trends that we observed here. 

Thus, whilst we are currently unable predict the nature of effects on stability resulting from 

the EVI-linked changes in modularity and connectance seen here, there is evidence from the 



wider literature on ecological networks that these community properties could affect stability 

(Grilli et al., 2016; Landi et al., 2018; Baumgartner, 2020, Bascompte & Scheffer, 2023). 

Clearly, more research is required on the stability properties of the community structures of 

infectious agents.  

It is possible that including more remotely-sensed variables affecting infectious agent 

transmission and establishment might ultimately increase the encouraging predictiveness we 

have observed here. In our current study we a priori focussed specifically on EVI due to its 

embodiment of primary productivity, which we expected (as set out in the Introduction) to 

drive infection levels through effects on host availability and host immunocompetence. 

However, we note that EVI would also be expected to correlate with other environmental 

variables, such as temperature or precipitation (Felton et al., 2021), that might have 

separate, direct effects on infectious agent dynamics (Arneberg et al., 1998; Mouritsen & 

Poulin, 2002). For example, temperature change may alter the rate of development or the 

survival of infective stages, whilst precipitation may also alter the dynamics of transmission 

in free-living stages. Whilst all of these processes might not always drive infection burden in 

the same direction, nonetheless, our present result suggests that, overall, there may be a 

consistent pattern. Thus, EVI, with its links to primary production, precipitation and 

temperature seems likely to provide a valuable “all-in-one” predictor, but more work, with 

new datasets, is necessary to assess additional predictors and also to assess the optimal 

time intervals and time lags at which EVI is most predictive.          

In conclusion, we have shown proof-of-principle that remotely-sensed data, reflecting 

primary productivity, can predict fluctuations in the burden and community structure of 

infections in wild vertebrates in near-real-time, when standardised within localities. The 

sequels of greening that we observed in infectious agent communities seem most likely to 

limit the spread of infection and the chance of transboundary emergence.  Thus, greening is 

associated with overall decreases in the burden of infection that would be expected to 

reduce the probability of transmission. Moreover, greening is also associated with increased 

modularity and diminished connectance in the infectious agent community. These 

tendencies may affect community stability, which, in turn, might determine the propensity for 

novel community dynamics leading to new infection risks. Given the recent clear overall 

worldwide greening trend (Nemani et al., 2003; Mao et al., 2016; Zhu et al., 2016; Buitenwerf 

et al., 2018; Winkler et al., 2019), albeit with some evidence this may be slowing down, or 

patchy on some geographical scales (Winkler et al., 2021)), our results suggest that, at least 

in stable habitats (i.e., those not disrupted by new human encroachment or excessive 

climate driven change), infection risks may have been diminishing, all other things being 

equal. Recent studies of global land use change have predicted drastic future mass 



extinctions of parasites (up to 30% of parasitic worm species by 2070) due to loss of habitat 

(Carlson et al., 2017), which might have a suppressive influence on global infection risks. 

Moreover, our results suggest this could be compounded, assuming continued greening, in 

surviving intact habitats, by within-habitat reduction in the overall abundance of infectious 

agents. On the other hand, in the case of greening trends decelerating, our results may give 

cause for concern. Whilst zoonotic emergence has been observed to increase overall in 

recent decades, which has been attributed mostly to anthropogenic disturbance of natural 

habitats (Eby et al., 2023), this trend may have been restrained, if our present results are 

correct, by declining infection risks from relatively undisturbed ecoystems (for example, 

potentially reducing the set of pathogens available for transboundary emergence in habitats 

prior to disturbance). Thus, if greening were to slow or reverse in the future, our findings 

suggest the rate of zoonotic emergence would accelerate (for example, increasing the set of 

pathogens available for transboundary emergence when habitats are disturbed).  In practical 

terms, our results provide optimism that routinely collected remote-sensing data could 

provide useful low-cost forecasting of changing within-habitat infection risk in natural animal 

populations.  We suggest that more research is warranted to explore this possibility, 

including to elucidate the intervening causal chain and dynamics that link primary 

productivity to fluctuations in natural communities of infectious agents.   
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Figure 1. Association between Total Abundance Index (TAI), reflecting overall infection 

burden, and Enhanced Vegetation Index (EVI), reflecting primary productivity in the quarter 

before sampling. Based on a linear mixed model (LMM) run with site-standardised data. 

Shown are the predicted effect (solid line) with 95% confidence limits (dashed lines) and 

partial residuals for site × year sampling points.    

 

 

 



Figure 2. Association between abundance (mean raw counts) of phylum-level groups and 

Enhanced Vegetation Index (EVI), reflecting primary productivity in the quarter before 

sampling. Based on linear mixed models (LMMs) run with site-standardised data. Shown are 

the predicted effects (solid lines) with 95% confidence limits (dashed lines) and partial 

residuals for site × year sampling points (black points, Egypt; grey points, Poland). GI: 

gastrointestinal.    

 

 

  



Figure 3. Variation in network statistics with the Enhanced Vegetation Index (EVI), reflecting 

primary productivity in the quarter before sampling, and with Total Abundance Index (TAI), 

reflecting overall infection burden. The four left-hand panels are based on linear mixed 

models (LMMs) run with site-standardised data; shown are the predicted effects (solid lines) 

with 95% confidence limits (dashed lines) and partial residuals for site × year sampling 

points (black points, Egypt; grey points, Poland). The right-hand panel shows the crude 

association between site-standardised weighted connectance and weighted modularity, with 

a least squares regression line shown for reference (black points, Egypt; grey points, 

Poland).     

 

 


