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A B S T R A C T

Parkinson’s disease (PD) is a neurodegenerative disorder that produces both motor and non-motor complica-
tions, degrading the quality of life of PD patients. Over the past two decades, the use of wearable devices
in combination with machine learning algorithms has provided promising methods for more objective and
continuous monitoring of PD. Recent advances in artificial intelligence have provided new methods and
algorithms for data analysis, such as deep learning (DL). The aim of this article is to provide a comprehensive
review of current applications where DL algorithms are employed for the assessment of motor and non-
motor manifestations (NMM) using data collected via wearable sensors. This paper provides the reader with a
summary of the current applications of DL and wearable devices for the diagnosis, prognosis, and monitoring
of PD, in the hope of improving the adoption, applicability, and impact of both technologies as support tools.
Following PRISMA (Systematic Reviews and Meta-Analyses) guidelines, sixty-nine studies were selected and
analyzed. For each study, information on sample size, sensor configuration, DL approaches, validation methods
and results according to the specific symptom under study were extracted and summarized. Furthermore,
quality assessment was conducted according to the Transparent Reporting of a multivariable prediction model
for Individual Prognosis Or Diagnosis (TRIPOD) method. The majority of studies (74%) were published within
the last three years, demonstrating the increasing focus on wearable technology and DL approaches for
PD assessment. However, most papers focused on monitoring (59%) and computer-assisted diagnosis (37%),
while few papers attempted to predict treatment response. Motor symptoms (86%) were treated much more
frequently than NMM (14%). Inertial sensors were the most commonly used technology, followed by force
sensors and microphones. Finally, convolutional neural networks (52%) were preferred to other DL approaches,
while extracted features (38%) and raw data (37%) were similarly used as input for DL models. The results
of this review highlight several challenges related to the use of wearable technology and DL methods in the
assessment of PD, despite the advantages this technology could bring in the development and implementation
of automated systems for PD assessment.
1. Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder caused
by the loss of dopaminergic neurons in the region of the substantia
nigra pars compacta, located in the midbrain. PD manifests with var-
ious movement-related symptoms (e.g., tremor, rigidity, bradykinesia,
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akinesia, or postural instability) termed motor symptoms and mental
health-related symptoms (e.g., memory problems or dementia) termed
non-motor manifestations (NMM) (Armstrong & Okun, 2020; Goetz,
2011; Tolosa, Wenning, & Poewe, 2006). In general, symptoms appear
gradually and become more evident as the disease progresses (Sica
et al., 2021). The presence of these symptoms leads to a gradual loss of
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autonomy, resulting in a reduced quality of life (QoL) for patients (Zhao
et al., 2021).

The prevalence of PD increases with age, being rare before the
age of 50 and more common in men than in women (Reeve, Simcox,
& Turnbull, 2014; Wirdefeldt, Adami, Cole, Trichopoulos, & Mandel,
2011). Due to the ageing population, the prevalence of the disease is
expected to increase significantly worldwide, from 6.9 million in 2015
to approximately 12 million in 2040 (Dorsey, Sherer, Okun, & Bloem,
2018).

The diagnosis of PD is based on clinical criteria and the presence
of bradykinesia, described as slowness of movements, together with
symptoms such as rigidity and/or tremor and the presence of sup-
portive features (Jankovic, 2008; Kobylecki, 2020). Despite advances
in the fields of neuroimaging, genetics, and biomarkers, the accuracy
of clinical diagnosis of PD has been suboptimal, with no substantial
improvement, especially in the early stages of the disease or in the
presence of signs of atypical parkinsonism (Rizzo et al., 2016).

Currently, PD has no cure, and pharmacotherapy and surgery are
the most commonly used supporting therapies. Drugs such as levodopa
and dopamine agonists remain the most effective treatments to improve
the signs of PD (Armstrong & Okun, 2020; Reich & Savitt, 2019). These
drugs offer good control of motor symptoms in the early stages of
the disease but do not stop neurodegeneration, disease progression,
or increased disability (Balestrino & Schapira, 2020). Moreover, after
several years of drug treatment, the efficacy of these therapies de-
creases, and side effects such as motor fluctuations and dyskinesias
(e.g., involuntary movements) occur (Jankovic, 2005).

The current standard for the assessment of PD is the clinical ex-
amination of patients by a neurology specialist using semi-quantitative
rating scales. The most commonly used scale to measure PD progression
is the Movement Disorder Society-sponsored revision of the Unified
Parkinson’s Disease Rating Scale (MDS-UPDRS) (Goetz et al., 2008).
During the examination, the neurologist assesses the patient’s motor
and mental state while performing specific tasks.

Although clinical scales such as the MDS-UPDRS are widely used,
they are affected by subjectivity and often high inter-rater and intra-
rater variability (Monje, Foffani, Obeso, & Sánchez-Ferro, 2019). More-
over, clinical assessments are commonly performed during pre-
scheduled medical visits (e.g., every 6 or 9 months) (Albanese, 2013).
In this context, the limited periodicity of the visit makes it difficult
for neurologists to assess short-term changes in the patient’s disability,
while the subjective nature of the clinical examination may lead to
biased assessment results (Rodríguez-Martín et al., 2022). This makes
it difficult to implement appropriate therapeutic adjustments, thus re-
ducing the effectiveness of treatments (Bhidayasiri & Martinez-Martin,
2017). Therefore, the need for objective assessment mechanisms has
led to the emergence of technological tools to facilitate PD management
and optimize long-term follow-up (Channa, Popescu, & Ciobanu, 2020;
Luis-Martínez, Monje, Antonini, Sánchez-Ferro, & Mestre, 2020; Monje
et al., 2019; Warmerdam et al., 2020).

Currently, the combination of technologies such as wearable devices
(wearables) and artificial intelligence offers several possibilities to
monitor patients with chronic diseases (Luis-Martínez et al., 2020). In
particular, the use of these technologies in PD can help overcome the
drawbacks of monitoring, such as the lack of objective information ob-
tained by traditional methods or the fact that the hospital environment
is not considered the most convenient scenario for a proper patient
assessment (Rodríguez-Martín et al., 2022). In this context, continuous
monitoring in daily living conditions becomes the most appropriate
way to characterize the patient’s condition.

1.1. Review objectives

This article aims to provide a comprehensive review of current
applications in which deep learning (DL) architectures and wearables
2

are used to evaluate motor aspects and NMM. Specifically, this review
summarizes the application areas, data processing approaches, data sets
used to evaluate the performance of the algorithms, and experimental
methodologies proposed for automatic PD assessment. This article pro-
vides quick access to relevant literature and allows for the identification
of existing gaps and opportunities for the application of DL techniques
and algorithms to improve PD outcomes and management.

Previous studies have systematically and extensively examined the
use of machine learning (ML) and/or wearables for the assessment of
PD. Channa et al. (2020) and Mughal, Javed, Rizwan, Almadhor, and
Kryvinska (2022) examined the state-of-the-art (SOTA) of wearable so-
lutions to improve early diagnosis and monitoring of PD. However, ML
algorithms were not the main focus. Loh et al. (2021), Mei, Desrosiers,
and Frasnelli (2021), and Tanveer, Rashid, Kumar, and Balasubrama-
nian (2022) analyzed studies that proposed ML and DL models for
the automatic assessment of PD. Different types of modalities were
considered, including imaging techniques and wearable sensors. How-
ever, these studies focused specifically on computer-assisted diagnosis
and/or differential diagnosis tools. Consequently, only a few PD symp-
toms, such as gait, writing, and speech, were evaluated. In addition,
little information on wearables (e.g., type, number, location) was pro-
vided. Finally, Giannakopoulou, Roussaki, and Demestichas (2022)
reviewed research works that used ML in combination with wearable
and non-wearable sensors to monitor PD. However, information was
reported according to the type of sensor, which makes it difficult to
compare different approaches for assessing PD symptoms.

This article aims to complement the current literature and pro-
vide the reader with a summary of the current applications of DL
and wearables for the diagnosis, prognosis, and monitoring of motor
manifestations and NMMs, in the hope of improving the adoption,
applicability, and impact of both technologies as support tools in PD.
The present study reviews relevant research articles published between
2012 and 2022 focused on the diagnosis, monitoring, and prediction
of the response to treatment using DL approaches and wearables. The
main contributions of this paper are summarized as follows.

a. The use of wearable devices is summarized, including information
on the type and number of sensors and their placement on the human
body. DL methods, data processing and transformation techniques,
and objectives (classification, regression) are discussed. Data sources,
sample sizes, and data collection procedures are presented, as well as
performance evaluation strategies and metrics.

b. The information extracted is reported according to the specific
motor symptoms and NMMs examined. Data, wearable sensors, data
processing, DL methods, validation procedures, and results are reported
for each symptom. This allows an immediate comparison between the
different proposed solutions.

c. Limitations and risk of bias in the reviewed literature are pre-
sented. Based on these considerations, some guidelines are given, in
the hope of improving the future application of DL and wearables for
comprehensive PD assessment and monitoring.

The rest of the document is organized as follows. Section 2 presents
the context, including a description of the wearable technology and the
ML/DL algorithms. Section 3 describes the methodology used for the
systematic review, including the search strategy used to find relevant
articles. Section 4 presents the results of this literature review, sum-
marizing wearable sensors and DL approaches. In addition, this section
includes a comprehensive review of the specific symptoms to which
these technologies have been applied. Section 5 provides a discussion
of the main findings, potential, and limitations of DL and wearable
technology as a tool to support PD assessment. Finally, the conclusions
of this work are given in Section 6.

2. Background

This section provides an overview of the wearable devices used for
healthcare applications, further discussing the wearable sensors used
for the diagnosis and monitoring of PD (Section 2.1). In addition, classic
ML approaches used for data analysis are described, together with
more advanced DL methods (Section 2.1). Finally, the performance

evaluation strategies and metrics are summarized in Section 2.3.
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2.1. Wearable devices

Wearables is the common term to describe electronic devices that
can be worn on the body, integrated into clothing, or designed as wear-
able accessories (Bonato, 2010; Johansson, Malmgren, & Alt Murphy,
2018). This group of devices includes smart glasses, smartphones, smart
watches, smart clothes, and smart shoes, among others.

In recent years, wearable devices have shown the potential to ad-
dress some of the limitations of conventional assessment in healthcare
and medicine through digital and mobile health (m-health) technolo-
gies. They enable continuous, longitudinal health monitoring outside
the clinic, in a discreet and comfortable manner (Dunn, Runge, &
Snyder, 2018).

Wearable devices are equipped with special hardware and software
technology to collect accurate measurements of physical parameters. In
addition, these devices offer excellent wireless communication, process-
ing, and data storage capabilities (Heikenfeld et al., 2018; Park, Lee, &
Park, 2019). The sensors embedded in wearables are as follows:

• Inertial sensors (i.e. gyroscopes, accelerometers, and magnetome-
ters) can provide spatio-temporal kinematic parameters.

• Acoustic sensors such as microphones can be used to detect speech
disturbances from voice signals.

• Optical sensors use light to detect biological signals such as heart
rate and oxygen saturation.

• Electrical sensors such as electrocardiography (ECG), electroen-
cephalography (EEG), and electromyography (EMG) measure
heart rate, brain activity, and muscle movement, respectively.

In the context of monitoring neurological disorders, wearables of-
er the possibility to perform objective and long-term monitoring of
ovement patterns or physiological variables in laboratory, hospital,

nd free-living environments (Johansson et al., 2018; Mughal et al.,
022; Rovini, Maremmani, & Cavallo, 2017). In this sense, the proper
mplementation of this technology has the potential to provide accu-
ate assessment of motor symptoms (Channa et al., 2020; Del Din,
irk, Yarnall, Rochester, & Hausdorff, 2021; Rovini et al., 2017) and
MM (Morgan et al., 2020; van Wamelen et al., 2021), resulting

n improved diagnosis, more sensitive monitoring, and more precise
djustments of drug therapies (Monje et al., 2019).

Despite the potential of wearable devices to optimize the clini-
al management of PD, this technology has not currently achieved
idespread clinical adoption due to several factors, including a lack
f technical and clinical validation. This situation hinders obtaining
pproval from regulatory bodies (e.g., European Medicines Agency,
ood and Drug Administration) (Espay et al., 2019). Furthermore, the
ack of validation of the algorithms used to assess PD under real-
orld conditions was identified, partly due to the lack of gold-standard

eferences to compare against (Del Din et al., 2021).

.2. Machine and deep learning

Despite the potential of wearables for cost-effective data collection,
he data generated by these devices must be processed to derive clini-
ally relevant information. The management of a huge amount of data
Big Data) has been achieved with the use of artificial intelligence and
ata analysis techniques such as data mining.

For this reason, ML has become a key element in the development
f remote monitoring systems based on wearables. ML algorithms
ffer methods for analyzing sensor data and extracting meaningful
nformation or discovering hidden patterns in a semi-automatic way.
or PD assessment, ML techniques have been successfully applied to
onitor various motor symptoms and NMM using motion data, video,
euroimaging, voice, and cerebrospinal fluid, among others (Lu et al.,
020; Mei et al., 2021; Morgan et al., 2020; van Wamelen et al., 2021).

In traditional (shallow) ML approaches, a process of feature extrac-
3

ion and selection is often necessary, as ML models alone are unable v
to learn from high-dimensional data in their raw form (e.g., medical
images or time series recorded by sensors) (Mirza et al., 2019). The
complexity in the design and selection of feature sets is an obstacle
to the implementation of large-scale monitoring systems and limits
the implementation of ML in clinical applications. However, among
ML techniques, DL algorithms have been successfully employed in
recent years in applications where shallow ML algorithms were tra-
ditionally used, leading to state-of-the-art (SOTA) applications for PD
management (Mei et al., 2021; Tanveer et al., 2022)

One of the main advantages of using DL over shallow ML is that the
former can extract high-level features directly from the data. Therefore,
DL approaches allow the development of end-to-end models that reduce
the time and effort required for the design of classical pipeline-based
approaches, including the selection of appropriate features (Alzubaidi
et al., 2021; Sarker, 2021).

DL is a representation learning method based on complex networks.
These are composed of several processing layers that can learn data
representations with multiple levels of abstraction (LeCun, Bengio,
& Hinton, 2015). A DL architecture can be defined as an artificial
neural network (ANN) with two or more hidden layers (Shamshirband,
Fathi, Dehzangi, Chronopoulos, & Alinejad-Rokny, 2021). Although
conventional ANN consists of at least three main components, i.e. the
input layer, the hidden layer, and the output layer, architectures known
as deep neural networks (DNNs) use many more hidden layers to
enhance the predictive capabilities of the network (Deng & Yu, 2014).
In a conventional DNN, input values are weighted, bias-corrected, and
passed through a non-linear activation function, such as rectified linear
unit (ReLU) or softmax, to obtain an output (Schmidhuber, 2015).

DL offers a wide variety of architectures, including convolutional
neural networks (CNN), recurrent neural networks (RNN), and Trans-
former networks. These architectures employ different processing lay-
ers, such as densely connected (dense), convolutional, attention, or
recurrent, including gated recurrent unit (GRU) or long short-term
memory (LSTM). When several of these processing layers are stacked
as intermediate layers, highly abstract functions can be created, able to
automatically extract high-level features from the raw data.

2.3. Performance evaluation

When developing ML models for classification or regression pur-
poses, the evaluation of model performance is of paramount impor-
tance. To perform this procedure correctly, the original data set is
divided into training and test sets. The former is used to train the
model and optimize its architecture and internal parameters. The opti-
mized model is then tested on the test subset, and the performance is
evaluated on the latter. There are different types of validation/testing
approaches, based on the criterion of splitting data between the training
and the test set.

The leave-one-subject-out (LOSO) validation consists of training the
classification model with data from all but one patient, which is used
as a test. This process is repeated N times, with N corresponding to the
otal number of subjects. This is a subject-independent (S-I) validation
rocedure, as data from a single patient are not shared between training
nd test subsets, thus providing generalized models (i.e., models with
robust ability to generalize to unseen subjects).

Hold-out validation/testing consists of using a certain percentage of
ata for training and the rest for testing. K-fold cross-validation (CV)
onsists of dividing the data set into k parts, then iteratively training
he classification model using k-1 parts and testing the remaining
art. The procedure is performed k times. Both hold-out and k-fold
alidation can be performed with a subject-independent or subject-
ependent (S-D) approach. In the latter case, models are trained and
ested on data from a single subject to develop subject-specific models
hat can work well on a single patient. Finally, the random-shuffle
RS) strategy consists of randomly shuffling the original data set before

alidation/testing by mixing data from different patients together. This
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procedure does not guarantee the independence of the subjects in the
training and test subsets. Therefore, it may produce overestimated re-
sults and lead to overfitting, thus reducing the generalization capability
of the algorithm.

To evaluate classification performance, the following metrics are
defined. True positives (TP) are true samples correctly identified by
the model. False positives (FP) represent negative samples incorrectly
predicted as positive. False negatives (FN) correspond to positive sam-
ples that were not detected by the model. Finally, true negatives
(TN) represent correctly classified negative instances. Sensitivity/recall
and specificity (Eq. (1)) represent the algorithms’ capability to detect
TP and TN samples, respectively. Accuracy (Eq. (2)) summarizes the
performance of a classification model as the percentage of correct
predictions. The F-score is the harmonic mean of sensitivity and pre-
cision (Eq. (3)), with precision computed as in Eq. (4). In the case
of unbalanced data, the F-score is preferred to accuracy as the global
classification metric. Finally, the area under the receiver operating
characteristic (AUROC) measures the ability of a classifier to distin-
guish between classes and is used as a summary of the ROC curve, while
the equal error rate (EER) corresponds to the error observed at the point
on the ROC curve where sensitivity equals specificity.

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁
𝑇𝑁 + 𝐹𝑃

(1)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁

(2)

− 𝑠𝑐𝑜𝑟𝑒 =
2 ⋅ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ⋅ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

(3)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(4)

Regression metrics are calculated comparing predictions (𝑦) with
the true values (�̂�). Specifically, Pearson’s correlation coefficient
(Eq. (5)) measures how well the model fits the dependent variable,
i.e. how much variability in the dependent variable can be explained
by the model; it ranges between 0 and 1, with larger values indicating
better performance. Root mean square error (RMSE, Eq. (6)) and mean
absolute error (MAE, Eq. (7)) are absolute measures of the goodness of
fit, providing the entity of deviation from the target values. While MAE
treats all errors the same, RMSE gives a greater penalization to large
prediction errors.

𝑟 =

√

√

√

√1 −
∑𝑁

𝑖=1(𝑦𝑖 − �̂�)2
∑𝑁

𝑖=1(𝑦𝑖 − �̄�)
(5)

𝑅𝑀𝑆𝐸 =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1
(�̂�𝑖 − 𝑦𝑖)2 (6)

𝑀𝐴𝐸 = 1
𝑁

𝑁
∑

𝑖=1
|𝑦𝑖 − �̄�| (7)

3. Methods

This section presents the methods used to conduct the systematic
review. This review was registered in the Prospective International
Register of Systematic Reviews (PROSPERO ID: CRD42021283099), a
database of systematic review protocols maintained by the Centre for
Reviews and Dissemination at the University of York. Furthermore, the
methodology used in this review follows the recommendations of the
Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) (Moher, Liberati, Tetzlaff, & Altman, 2009) as a reporting
guideline. The remainder of this section describes the Research ques-
tions (Section 3.1), the search strategy (Section 3.2), inclusion and
exclusion criteria (Section 3.3), data extraction (Section 3.4), and the
criteria used to perform the quality report assessment of the selected
studies (Section 3.5).
4

3.1. Research questions

This review aims to collect, process, and analyze studies in the
literature to gather information on DL methods applied to wearable
sensor data for motor symptoms and NMM assessment. To achieve this
goal, the following research questions were raised.
RQ-1 What are the motor and NMM in which DL methods are used?
RQ-2 What wearable devices are used for the evaluation of PD?
RQ-3 What DL algorithms have been used to assess motor and NMM in
PD?
RQ-4 What are the challenges and opportunities present in the current
use of DL to assess motor and NMM in PD?

3.2. Search strategy

On April 15, 2022, a literature search was conducted on PubMed,
IEEE Xplore, and Web of Science databases for all the returned results.
The string included keywords related to the disease under investigation,
the sensors used to collect the data, and the DL algorithms used to
process the data. Specifically, the Boolean search string used was as
follows:

(Parkinson) AND (deep learning OR neural network OR deep neural
etwork OR convolutional neural network OR CNN OR recurrent neural
etwork OR RNN OR long short-term memory OR LSTM OR autoencoder
R AE OR deep belief network OR DBN) AND (sensor OR wearable
R body-worn OR clothes OR internet of things OR inertial OR IMU OR
ccelerometer OR gyroscope OR smartphone OR smartwatch OR actigraphy
R force sensor OR insoles OR electromyography OR EMG OR electroen-
ephalography OR EEG OR polysomnography OR PSG OR electrooculogram
R EOG OR electrocardiography OR ECG OR skin conductance OR GSR).

No additional filters were applied in the literature search. All re-
rieved studies were systematically identified and screened, and the
ata were extracted for relevant information following the PRISMA
uidelines (Moher et al., 2009).

.3. Inclusion and exclusion criteria

The topic of this review concerns the diagnosis and monitoring
f PD, along with the prediction of the treatment response. In this
tudy, journal articles published between January 2012 and April 2022
nd written in English were included if they used DL methods on
ata extracted from wearables for diagnosis or monitoring of PD. The
xclusion criteria were as follows:

1. The literature was not written in English.
2. Papers without peer review, conference papers, books, book

chapters, or published as ‘‘letter’’, ‘‘comments’’, ‘‘case reports’’,
‘‘surveys’’ or ‘‘reviews’’.

3. Studies related to Parkinsonism and/or diseases other than PD.
4. Studies that did not use any wearable sensors for data acquisi-

tion.
5. Studies that did not include DL methods for data analysis

(e.g., feature extraction, classification, regression).
6. Studies that did not involve detection, monitoring, or prediction

of response to treatment in PD.
7. Studies that did not use metrics that measure classification or

regression performance.

.4. Data extraction

Two authors (L.S. and L.B.) independently selected candidate stud-
es by reviewing the title and abstract and repeated the process until
hey reached a consensus. The same procedure was performed for the
election based on the full-text evaluation. Finally, candidate studies
hat met the eligibility criteria were selected for inclusion in the re-
iew. The following information was included in the data extraction
rocedure:
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Fig. 1. PRISMA flow diagram of literature search and selection process showing the number of studies identified, screened, and included in the review.
(a) Study identification, including authors, title, and citation.
(b) Objective, including diagnosis, monitoring, or assessment of

response to therapy.
(c) Characteristics of the data set, including the type of data set,

sample size, and sociodemographic characteristics.
(d) Type, number, and location of the wearable sensors used for data

acquisition.
(e) Motor or NMM being investigated.
(f) Information on the algorithmic approach, including preprocess-

ing, segmentation, feature extraction, and feature selection.
(g) Deep learning architectures.
(h) Input data for classification or regression.
(i) Validation method.
(j) Performance evaluation metrics.

3.5. Quality report assessment

There are currently no quality scales for ML predictions. Therefore,
the quality of the study was assessed using an adapted version of
transparent reporting of a multivariate prediction model for Individual
Prognosis Or Diagnosis (TRIPOD) (Moons et al., 2015). For this task, 18
items (12 for methods and 6 for results) were assessed using an adapted
TRIPOD checklist (Moons et al., 2015; Wang et al., 2020).

Most of the terms described in the TRIPOD documentation were
used to assess the quality of the methods and results. In particular,
three items were adapted (as reported in Wang et al. (2020)) to assess
DL studies. In addition, two items related to blinded actions to assess
outcomes and predictors (6b, 7b) were excluded because they did not
apply to most of the studies examined. In particular, the reporting of the
selection of hyperparameters was included in item 10b. Furthermore,
item 15a was adapted to include the specification of links to the final
model, coding of predictors or final parameters/coefficients, and with
the architecture described in full in the article.

The adapted TRIPOD checklist is provided in Supplementary Table
5

S1.
4. Results

This section reports the results of the systematic review process.
Specifically, Section 4.1 describes the results of the literature search
and the selection of studies, while Section 4.2 reports the quality assess-
ment. The trend of publication, along with the main application areas,
are reported in Section 4.3. (Section 4.4) presents the data source and
sample size, while Section 4.5 summarizes the wearable devices and
their positioning. In addition, input data type and data transformation
methods (Section 4.6), DL methods (Section 4.7), model optimization
procedures (Section 4.8), and performance evaluation procedures (Sec-
tion 4.9) are reported and discussed. Furthermore, this section presents
a detailed description of each motor symptom (Section 4.10) and NMM
(Section 4.11) in which the use of wearables and DL was reported.
Finally, a summary of the results is presented (Section 4.12).

4.1. Systematic review

Based on the search criteria, we retrieved 595 papers from PubMed,
57 from IEEE Xplore, and 304 from Web of Science, for a total of
956 publications. After removing duplicates (n = 180), we screened
776 publications for titles and abstracts, after which we excluded 268
based on the exclusion criteria. Of the remaining 508 records, 3 were
excluded because full text was not available. We screened 505 full-
text articles for eligibility and excluded 436 records according to the
exclusion criteria. In the end, 69 research studies were included and
analyzed. The PRISMA flowchart used for the literature search and
selection is shown in Fig. 1.

4.2. Quality assessment

Fig. 2 shows the number of studies that correctly reported the
corresponding TRIPOD assessment items. For each study, 18 items were
assessed, with a maximum score of 18 (1 point for each item). The

assessed items correspond to the reporting of methods and results.
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Fig. 2. Number of studies that reported the corresponding TRIPOD assessment items. YES=1, NO=0. The * indicates criteria adjusted for DL models.
Fig. 3. Publication trend of collected research studies, along with their primary
objective.

According to Fig. 2, none of the 69 studies received the maximum score
(18 items). Thirty-two (46%) obtained scores between 10 and 15, and
only two studies (3%) received the maximum score (15 items). The
remaining thirty-seven studies (54%) received a score smaller than 10.

The design and source of the study data (4a), the study setting (5a),
the definition of the outcome (6a), the definition of all predictors (7a),
the description of how the predictors were handled (10a), the type of
model (10b), the measures to evaluate the model (10d), the flow of
participants (13a), the description of participants (13b) and the number
of participants and the outcomes (14a) were adequately reported in
most studies. However, key study dates (4b), participant eligibility cri-
teria (5b), handling of missing data (9), unadjusted association between
predictors and outcomes (14b), presentation of the full model (15a),
explanation of how to use the predictive model (15b), and report of
performance measures with confidence intervals were scarcely reported
in most studies.

The use of TRIPOD guidelines indicates a lack of important in-
formation from the evaluated studies. Five items (4b, 9, 14b, 15b,
16) were poorly reported, some of which are related to the use of
freely available databases. This situation makes it difficult to access
specific information (e.g., key dates of studies or data handling) and
hinders the accuracy of the information reported. In addition, the report
of the unadjusted association between each candidate predictor and
the outcome was often not reported. Furthermore, reporting of the
hyperparameter selection process (included in item 10b) was often
neglected, although the selection of an accurate set of hyperparameters
6

can have a great impact on performance. In addition, the presentation
of the complete model and the explanation of how to use it was rarely
reported, a situation that hinders the reproduction of results and the
comparison of different algorithmic approaches. On the contrary, clear
definitions of predictors and outcomes were found, generally reporting
the use of raw sensory signals and standardized rating scales.

4.3. Publication trend and objective

Fig. 3 shows the number of publications per year in the last decade,
together with the application areas. Until 2017, very few studies (n
= 3, 4.4%) used DL methods to analyze data from patients with PD
(PwPD). Since 2018, a solid positive trend has been observed, with
15 articles (21.7%) published between 2018 and 2019. Most research
papers (n = 51, 73.9%) were published in the last three years, with 45
studies (65.2%) published between 2020 and 2021. However, for 2022,
there is not enough information to determine the trend, as this review
considered studies published up to April 2022 (n = 6, 8.7%).

In the context of the evaluation of PD, previous studies (Deb, An,
Bhat, Shill, & Ogras, 2022; Monje et al., 2019) classified the applica-
tion areas of wearable technologies into the following primary areas:
diagnosis, monitoring, and prediction of treatment response. Based on
this classification, the application areas of research studies in which
DL approaches were used in combination with wearables are shown
in Fig. 3. Monitoring represents the main application (n = 41, 59%),
with a positive publication trend since 2018. An even stronger trend is
observed for computer-assisted diagnosis (n = 25, 37.2%), with most
studies (n = 21) published in the last three years. Finally, some studies
published in the last three years (n = 3, 4.4%) attempted to predict the
response to treatment.

Among the signs of PD, motor symptoms have been investigated
in 86% of the studies, while only 14% of the works addressed NMM
(Fig. 4a). Fig. 4b shows the motor symptoms assessed by the studies
under review. Gait impairment was found to be the most frequently
investigated aspect (31%), followed by tremor and freezing of gait
(FOG, 21% each), and bradykinesia (14%). Other symptoms addressed
include dyskinesia (4%), fine motor impairment (4%), rigidity (1%),
and balance (1%). Fig. 4c reports the NMM assessed by the collected
research articles. Among them, speech impairment represents the most
frequently investigated aspect (74%). Brain dysfunction was evaluated
in 13% of the studies, while cognitive impairment and emotional
expression dysfunction were addressed in 7% of the cases.
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Fig. 4. Motor and non-motor symptoms investigated.
Fig. 5. Sample size in public and proprietary databases.

4.4. Data source and sample size

Research studies used private data sets (n = 37, 53.6%) more
frequently than publicly available databases (n = 32, 46.4%). Fig. 5
shows the sample size for proprietary and public data sets. The number
of PwPD enrolled ranges from 1 to 524 (mean: 55, median: 22) and
from 10 to 188 (mean: 51, median: 21) for private and public databases,
respectively. In general, most studies (92%) enrolled less than 50
PwPD, with only 5 studies (7.2%) using data collected from more than
100 patients.

The most frequently used publicly available databases included
Physionet Gait in Parkinson’s Disease (PhysioNet Gait) (n = 10, 31.2%)
and Daphnet (n = 7, 21.9%). Physionet Gait in Neurodegenerative
Disease Database (PhysioNet GNDD), REMPARK, and mPower data sets
were used in two studies each (6.2%). The remaining data sets included
Amigos, SEED-IV, CuPiD, Parkinson Speech data set with Multiple
Types of Sound Recordings Data Set (Parkinson Speech), Parkinsons
Data Set (Oxford), Parkinson Telemonitoring, Parkinson’s disease clas-
sification, Parkinson’s Speech, and Physical Activity Monitoring Data
Set (PAMAP2), used each in a single study. Table 1 summarizes the
most frequently used databases and their principal characteristics.

4.5. Wearable sensors

Different types of wearables were used for the analysis of motor
symptoms and NMM in PD. Fig. 6a shows the sensing technology
used in the studies reviewed. It should be noted that some studies
used a combination of different sensors. Motion sensors were the most
7

widely used; these sensors include accelerometers (37.7%), gyroscopes
(22.6%), and magnetometers (6.6%), either alone or in combination
with other sensors (e.g., EMG, force sensors), or integrated into devices
such as smartphones, smartwatches, or smart bands. Force sensors were
used in 14.2% cases, alone or in combination with an accelerometer
and gyroscope. The use of EMG was relatively rare (0.9%), in a half
cases in combination with accelerometers. Finally, the keypad and
instrumented glove were used only once. The microphone was the
sensor most commonly used to assess NMM (9.4%), representing one-
third of all sensors used. Almost a fifth of the studies used the Emotiv
headset (1.9%) or deep brain stimulation (1.9%) device to record
cerebral activity.

Fig. 6b shows the position of the sensor on the human body. It
should be noted that some studies used several sensors at different
positions on the body. The size of the circles at each position is
proportional to the frequency of occurrence.

The most common position for motion sensors (accelerometer, gy-
roscope, magnetometer) is the wrist (18.2%), followed by the lower
leg (13.6%), waist (12.1%), upper leg (9.1%) and foot (6.1%). Other
less frequent points are the hand, arm, pocket, chest, and finger. Force
sensors were placed under the soles of the feet. The microphone was
placed near the patients’ mouths. Finally, the EEG headset was attached
to the scalp of the subjects, and the EMG sensor to the patient’s arm.
Most of the studies (53%) used sensors embedded in commercially
available devices, while the remaining studies used prototype sensors.
Smartphone sensors (e.g., accelerometer, gyroscope, magnetometer,
touchscreen, microphone) were used in 17.6% of the studies.

4.6. Feature engineering

Fig. 7 shows the type of input data used to train and evaluate the
proposed DL architectures. On the one hand, given the capabilities of
DL to process different data modalities, 38% of the studies used raw
data to train and evaluate the proposed algorithmic approaches. On the
other hand, 37% of the studies exclusively used hand-crafted features,
including time domain features extracted from the raw time series and
frequency domain features extracted after transforming the raw time
series into the frequency domain.

Another data transformations methods reported in these studies in-
clude fast Fourier transform (FFT) (4%), continuous wavelet transform
(4%), discrete Fourier transform (DFT) (1%), and Mel spectrogram

(1%). The remaining studies used mixed data modalities, such as the
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Table 1
List of the most frequently used databases. FOG: freezing of gait; IMU: inertial measurement unit; acc: accelerometer; gyro: gyroscope; mag: magnetometer; HC: Healthy control;
ALS: amyotrophic lateral sclerosis; ADL: activities of daily living; HD: Huntington’s disease; Parkinson’s Speech: Parkinson Speech data set with Multiple Types of Sound Recordings
Data Set; PhysioNet Gait: PhysioNet Gait in Parkinson’s Disease; PhysioNet GNDD: PhysioNet Gait in Neurodegenerative Disease Database; n.r.: not reported.

Symptom Database name Database description Device Sensor Number of
sensors

Sensor
location

Bradykinesia,
gait,
dysphonia

mPower
(Sage Bionetworks, 2016)

Crowd-sourced data from
8003 subjects including
memory, tapping, gait
and voice-based tests

Smartphone acc,
touchscreen,
microphone

3 Hand,
mouth

Dysphonia Parkinson’s Disease
Classification
(Sakar et al., 2019)

Speech features
extracted from samples
of 188 PD and 64 HC

n.r. Microphone 1 Mouth

Dysphonia Parkinson Speech
data set
(Sakar et al., 2013)

20 HC and 20 PD
pronouncing
a list of numbers, words,
and sustained vowels

Consumer
microphone

Microphone 1 Mouth

Dysphonia Parkinsons Telemonitoring
(Tsanas, Little, McSharry,
& Ramig, 2009)

Speech features extracted
from speech of 42
early-stage PD subjects
in a six-month test

Smartphone Microphone 3 Mouth

Dysphonia Parkinsons Data
Set (Oxford)
(Little, Mcsharry, Roberts,
Costello, & Moroz, 2007)

Speech features from
31 people (23 PD)

Head-
mounted
microphone

Microphone 1 Mouth

FOG Daphnet
(Bachlin et al., 2009)

Gait and FOG
measurements of 10
PD subjects

Prototype
IMU

acc, gyro,
mag

3 Waist,
upper-leg,
lower-leg

FOG CuPiD
(Mazilu et al., 2013)

Gait and FOG
measurements of 18
PD subjects

Prototype
IMU

acc, gyro 1 Wrist

FOG REMPARK
(Rodríguez-Martín et al.,
2017)

Gait and FOG
measurements of 21
PD subjects performing
scripted ADL

Prototype
IMU

acc, gyro 1 Wrist

Gait
impairment

PhysioNet Gait
(Goldberger et al., 2000)

Gait measurements of
93 PD and 73 HC

Prototype Force 16 Feet

Gait
impairment

PhysioNet GNDD
(Hausdorff et al., 2000)

Gait database with
13 ALS, 20 HD, 15 PD,
and 16 HC

Prototype Force 16 Feet
Fig. 6. Type and body-location of sensing technology. EEG: electroencephalography; EMG: electromyography; DBS: deep brain stimulation.
combination of raw signals with hand-crafted features (9%) or the
application of principal component analysis (PCA) to extracted features
(4%).

4.7. Deep learning methods

Fig. 8 shows the DL models used in the studies investigated. CNNs
represent more than half (52%) of the implemented DL algorithms.
RNN and multi-layer perceptron (MLP) were used in 24% and 14% of
the studies, respectively, while deep autoencoders (DAE) were used in
8

7% of the studies. The remaining studies reported miscellaneous DL
architectures.

More in detail, most of the proposed DL architectures to assess
motor symptoms and NMM used CNN-based architectures. These ar-
chitectures used CNNs as discriminative blocks to learn features di-
rectly from raw data without the need for a manual feature extraction
process. Furthermore, these CNN blocks included pooling operations
(e.g., maximum, average, or global pooling) commonly placed after the
convolution to reduce the size of feature maps. Finally, fully connected
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Fig. 7. Pie chart of data used to feed the deep learning algorithms.

Fig. 8. Pie chart of the deep learning algorithms.

layers blocks were placed at the top of CNN blocks to perform classifi-
cation or regression tasks. In the reviewed studies, standard CNN-based
architectures followed a pyramid-inverted scheme, where the size of the
input data was gradually reduced by means of convolution operations,
pooling operations, and fully connected blocks to produce a result
corresponding to the expected prediction (classification or regression).

Meanwhile, the RNN-based architectures used LSTM layers (22%)
for sequential modeling followed by fully connected blocks to produce a
prediction output. Other recurrent processing layers used in the studies
under review include bidirectional LSTM (6%), GRU (2%), and convo-
lutional recurrent neural network (CRNN) (1%). Furthermore, only 3%
of the studies reported the use of the attention mechanism (Niu, Zhong,
& Yu, 2021) in combination with RNN.

The use of DAE was reported in 7% of the studies. Most of these
studies used DAE to learn efficient data representations from raw sig-
nals in an unsupervised fashion. The DAE were commonly implemented
using a combination of CNN and fully connected layers. In general,
CNNs (4%) and fully connected layers (3%) were used to implement
encoder and decoder blocks, while a single fully connected layer was
used as latent space for dimensional reduction.

Other studies reported the use of multilayer perceptron architec-
tures composed of fully connected layers, generally used to process
hand-crafted features. Furthermore, miscellaneous DL architectures in-
cluding sequence-optimized modular neural networks, dynamic neural
networks, probabilistic neural networks and graph neural networks
were proposed and evaluated.

4.8. Hyperparameter optimization

The performance of ML and DL models depends on their hyperpa-
rameters. During DNN training, the weights and biases of the network
layers are updated; however, this process is difficult due to the number
of parameters to be adjusted in each layer (Glorot & Bengio, 2010).
9

Fig. 9. Pie chart of the hyperparameter optimization approaches.

In the DL context, hyperparameters refer to parameters that cannot
be updated during the training of a model (i.e. the number of hidden
layers, layer type, layer parameters, activation function, learning rate,
batch size, or optimizer algorithm). Accurate selection (optimization)
of these hyperparameters has a great influence on model performance
and controls the training process in terms of computational processing.

Fig. 9 shows the hyperparameter optimization approaches reported
in the studies under investigation. In this review, 45% of studies
reported the implementation of hyperparameter optimization, 13% did
not perform hyperparameter optimization, and the remaining 42%
did not report the hyperparameter optimization process in their stud-
ies. Among the studies that reported the hyperparameter optimization
process, 16% used the grid search method, 3% employed Bayesian op-
timization, 1% used the Hyperband method, 1% the Broyden–Fletcher–
Goldfarb–Shanno (BFGS), and the remaining 24% reported the use of
different techniques including manual search, Tubu search bias value
optimization or mixed approaches.

4.9. Performance evaluation

Classification tasks were addressed in 90% of the studies, while
regression tasks were performed in only 10% of the studies. Fig. 10a re-
ports the main classification metrics calculated in the studies reviewed.
Accuracy was the most frequent metric (68.8%), followed by sensitivity
(57.4%) and specificity (50.8%). The area under the curve (AUC) was
reported in 32.8% of the cases, F-score in 27.9%, and precision in
22.9%. Other classification metrics include the equal error rate (EER,
2 studies) and Matthew’s correlation coefficient (MCC, 4 studies).

Fig. 10b shows the most employed regression metrics. The Pearson’s
correlation coefficient (𝑟) was reported in all studies. More than a half
of the studies (57.1%) also reported the mean absolute error (MAE),
while root mean square error (RMSE), and mean square error (MSE)
were reported in 28.6% and 14.3% of the studies, respectively. Further-
more, two studies assessed inter-rater reliability in evaluating specific
motor symptoms. To this end, the intra-class correlation coefficient
(ICC) or the Cohen’s kappa (k) coefficient were reported.

4.10. Motor symptoms

Several studies employed DL approaches to assess motor manifesta-
tions and cardinal symptoms of PD. This section describes technological
solutions based on wearable sensors and DL methods to assess the
different motor aspects of PD, including FOG (Section 4.10.1), gait
impairment (Section 4.10.2), tremor (Section 4.10.3), bradykinesia
(Section 4.10.4), and dyskinesia (Section 4.10.5). A summary of each
of these symptoms is presented in the following subsections, where
the data set, signal processing techniques, DL methods, validation
approaches, and results are reported and briefly discussed.
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Fig. 10. Radar plot of the classification (a) and regression (b) metrics used for performance evaluation.
4.10.1. Freezing of gait
Fifteen studies used wearables and DL methods for FOG detection.

Information on the sample, sensor technology, methods, and results are
summarized in Table 2 and discussed in detail below.

Data. The number of participants enrolled ranged from 7 (Naghavi
& Wade, 2022; O’Day et al., 2022) to 63 (Shi et al., 2022). In more de-
tail, seven studies (Ashfaque Mostafa, Soltaninejad, McIsaac, & Cheng,
2021; Ashour, El-Attar, Dey, El-Kader, & Abd El-Naby, 2020; Esfahani,
Dyka, Ortmann, & Langendörfer, 2021; Li et al., 2020; Mohamma-
dian Rad, Van Laarhoven, Furlanello, & Marchiori, 2018; Noor, Nazir,
Wahab, & Ling, 2021; San-Segundo, Navarro-Hellín, Torres-Sánchez,
Hodgins, & De la Torre, 2019) used the Daphnet (Bachlin et al.,
2009) data set, which includes acceleration data recorded from 10
PwPD using three inertial sensors placed on the lower back, thigh,
and ankle. Participants were asked to perform three different types
of walking tasks that simulate activities of daily living (ADL). A total
of 237 episodes of FOG were recorded during the experiments. Two
studies (Camps et al., 2018; Sigcha et al., 2020) used the REMPARK
data set (Rodríguez-Martín et al., 2017), comprising data from 21
PwPD recorded with a single inertial measurement unit (IMU) mounted
at the waist. The subjects performed various programmed activities,
simulating those of daily life. A total of 1058 FOG episodes were
collected during the recordings. The CUPID data set (Mazilu et al.,
2013) was used in Kim et al. (2018). It includes accelerometer and
gyroscope recordings from an IMU placed on the wrists of 11 patients
while they performed walking, turning, and obstacle negotiation tasks.
The data collected included a total of 184 episodes of FOG. In Shi et al.
(2022), 63 PwPD were asked to perform a 7-m timed-up-and-go (TUG)
test and a free-walking task while wearing two IMUs on their ankles. A
total of 486 FOG episodes were recorded. In Naghavi and Wade (2022),
two IMUs were applied to the ankles of 7 PwPD while they walked
in a narrow corridor. During the experiments, 154 episodes of FOG
were recorded. In Shalin, Pardoel, Lemaire, Nantel, and Kofman (2021),
plantar pressure data from 11 PwPD were recorded while walking a
predefined path that included entering a narrow corridor, turning at
different angles, and voluntary stops. In total, 362 FOG events were
registered. In Kim et al. (2018), a smartphone was placed in different
positions (e.g., pocket, waist, and lower limb) and used to collect
inertial data from 32 PwPD. Participants were asked to perform various
walking tasks, including a 3-m TUG, turning around, and opening and
entering a door. The experiments resulted in the collection of 110
episodes of FOG. Finally, in O’Day et al. (2022), six IMUs were attached
to the top of both feet, the lateral side of both shins, and the lumbar (L5)
and thoracic regions. Inertial data were recorded while participants
performed several walking trials consisting of two ellipses and two
figures of eight around high barriers. A total of 211 FOG episodes were
recorded.

Pre-processing. Low-pass (Camps et al., 2018), high-pass
(San-Segundo et al., 2019), and band-pass (Naghavi & Wade, 2022;
10
Sigcha et al., 2020) filters were used to remove low-frequency trends
and high-frequency noise. Other processing techniques included data
normalization (Noor et al., 2021; O’Day et al., 2022; Shi et al., 2022),
outlier filtering (Li et al., 2020; Noor et al., 2021), data balancing (Ash-
faque Mostafa et al., 2021; Li et al., 2020; Shalin et al., 2021), and
data augmentation (Camps et al., 2018; O’Day et al., 2022). Thirteen
studies used fixed-length windows for the segmentation of inertial
data into temporal frames, with time windows ranging from 1 s to
4 s. Specifically, most studies used window sizes between 2 s and 3
s (Ashfaque Mostafa et al., 2021; Bikias et al., 2021; Camps et al.,
2018; Kim et al., 2018; Naghavi & Wade, 2022; Noor et al., 2021;
O’Day et al., 2022), followed by longer windows (up to 4 s) (Li et al.,
2020; San-Segundo et al., 2019; Shi et al., 2022; Sigcha et al., 2020),
while windows shorter than 1 s were sparsely used (Esfahani et al.,
2021; Mohammadian Rad et al., 2018). An overlap between 10% and
75% was used in eight studies (Bikias et al., 2021; Camps et al., 2018;
Li et al., 2020; Mohammadian Rad et al., 2018; Naghavi & Wade,
2022; San-Segundo et al., 2019; Shi et al., 2022; Sigcha et al., 2020),
while three studies did not use any overlap (Ashfaque Mostafa et al.,
2021; Esfahani et al., 2021; Noor et al., 2021). Finally, single-sample
classification was exploited in Shalin et al. (2021).

Deep learning models. Eight studies (Ashfaque Mostafa et al., 2021;
Bikias et al., 2021; Camps et al., 2018; Kim et al., 2018; Naghavi &
Wade, 2022; O’Day et al., 2022; San-Segundo et al., 2019; Shi et al.,
2022) used CNN fed with raw data (Bikias et al., 2021; Naghavi &
Wade, 2022; O’Day et al., 2022; San-Segundo et al., 2019), CWT (Shi
et al., 2022), DWT (Ashfaque Mostafa et al., 2021), and FFT (Camps
et al., 2018; Kim et al., 2018). Three studies (Ashour et al., 2020;
Esfahani et al., 2021; Shalin et al., 2021) used LSTM fed with raw
data (Ashour et al., 2020) and kinematic features (Shalin et al., 2021);
two articles (Li et al., 2020; Sigcha et al., 2020) exploited a combination
of both models, using raw data (Li et al., 2020) and the FFT (Sigcha
et al., 2020) as input; finally, two studies used a convolutional denois-
ing autoencoder (CDA) (Mohammadian Rad et al., 2018; Noor et al.,
2021) fed with raw data.

Validation procedure. Six studies (Bikias et al., 2021; Li et al., 2020;
Naghavi & Wade, 2022; San-Segundo et al., 2019; Shalin et al., 2021;
Sigcha et al., 2020) used a leave-one-subject-out (LOSO) validation to
evaluate the performance of the proposed system. Five studies (Ashour
et al., 2020; Camps et al., 2018; Esfahani et al., 2021; Noor et al., 2021;
Shi et al., 2022) used hold-out validation. Of these, four studies (Ashour
et al., 2020; Camps et al., 2018; Noor et al., 2021; Shi et al., 2022) used
an S-I approach, while only one study (Esfahani et al., 2021) used an
S-D approach. Finally, two studies (Ashfaque Mostafa et al., 2021; Kim
et al., 2018) used k-fold CV. In particular, 5- and 10-fold CV was used
in Ashfaque Mostafa et al. (2021) and Kim et al. (2018), respectively.
Both studies used an RS strategy to split the data set before validation,
without guaranteeing the independence of the subjects in the training
and test subsets.



Expert Systems With Applications 229 (2023) 120541L. Sigcha et al.

s
p
2
0
s
s
e
H
e
t
(
s
w
I
e
a
i
2

Table 2
List of studies that used wearable sensors and DL methods for freezing of gait detection (FOG). ACC: accuracy; Sens: sensitivity; Spec: specificity; AUC: area under the curve;
acc: accelerometer; gyro: gyroscope; CWT: continuous wavelet transform; CNN: convolutional neural network; LSTM: Long-short term memory; ANN: artificial neural; LOSO:
leave-one-subject-out; CDA: convolutional denoising autoencoder; DWT: discrete wavelet transform; S-I: subject independent; S-D: subject dependent; RS: random shuffle.

Study # PD
subjects

Sensor type
(position)

Model
(Input)

Validation Performance

Shi et al. (2022) 63 acc, gyro
(ankles)

CNN
(CWT)

Hold-out
(S-I)

Sens 0.878
Spec 0.864
ACC 0.871

Esfahani et al.
(2021)

10 acc
(ankle)

LSTM
(raw data)

Hold-out
(S-D)

Sens 0.926
Spec 0.956
AUC 0.976

Naghavi and Wade
(2022)

7 acc, gyro
(ankles)

CNN
(raw data)

LOSO
(S-I)

Sens 0.630
Spec 0.986

Noor et al. (2021) 10 acc
(thigh)

CDA
(raw data)

Hold-out
(S-I)

Sens 0.909
Spec 0.670
ACC 0.790

Ashour et al. (2020) 10 acc
(back, thigh, ankle)

LSTM
(raw data)

Hold-out
(S-I)

ACC 0.834

Shalin et al. (2021) 11 force
(feet)

LSTM
(16 features)

LOSO
(S-I)

Sens 0.821
Spec 0.895
F-score 0.350

Li et al. (2020) 10 acc
(back, thigh, ankle)

CNN+LSTM
(raw data)

LOSO
(S-I)

Sens 0.875
Spec 0.923
ACC 0.920

Sigcha et al. (2020) 21 acc
(waist)

CNN+LSTM
(FFT)

LOSO
(S-I)

Sens 0.871
Spec 0.871
AUC 0.939

Ashfaque Mostafa
et al. (2021)

10 acc
(back)

CNN
(DWT)

k-fold
(RS)

Sens 0.946
Spec 0.952
ACC 0.946

San-Segundo et al.
(2019)

10 acc
(back, thigh, ankle)

CNN
(raw data)

LOSO
(S-I)

Sens 0.950
Spec 0.725
AUC 0.930

Bikias, Iakovakis,
Hadjidimitriou,
Charisis, and
Hadjileontiadis
(2021)

11 acc, gyro
(wrists)

CNN
(raw data)

LOSO
(S-I)

Sens 0.830
Spec 0.880

Kim et al. (2018) 32 acc, gyro
(pocket)

CNN
(FFT)

k-fold
(RS)

Sens 0.938
Spec 0.901
F-score 0.920

Camps et al. (2018) 21 acc, gyro
(waist)

CNN
(FFT)

Hold-out
(S-I)

Sens 0.919
Spec 0.895
ACC 0.890

O’Day et al. (2022) 7 acc, gyro
(back, ankles)

CNN
(raw data)

LOSO
(S-I)

AUC 0.830

Mohammadian Rad
et al. (2018)

10 acc
(back, thigh, ankle)

CDA
(raw data)

Hold-out
(S-D)

AUC 0.770
2
c
S
O
M
2
2

Results. Most studies reported results in terms of sensitivity and
pecificity, while two studies (O’Day et al., 2022; Peraza et al., 2021)
rovided only the area under the curve (AUC) and one (Ashour et al.,
020) the accuracy alone. Sensitivity and specificity ranged from 0.63–
.95 and 0.67–0.99, respectively. The geometric mean between sen-
itivity and specificity (GM) ranged from 0.78 to 0.95. Only three
tudies (Ashfaque Mostafa et al., 2021; Camps et al., 2018; Esfahani
t al., 2021; Kim et al., 2018) reported a GM greater than 0.90.
owever, when considering the type of validation, in Ashfaque Mostafa
t al. (2021) and Kim et al. (2018) RS k-fold CV was used, thus reducing
he reliability of the results; in Esfahani et al. (2021) a subject-specific
S-D) algorithm was implemented so that a direct comparison with
imilar studies is not possible; in Camps et al. (2018), a hold-out test
as used, in which the classification model was tested on 4 new PwPD.

n terms of DL algorithms, CDA performed poorly (Mohammadian Rad
t al., 2018; Noor et al., 2021); CNN performed better than LSTM, on
verage; finally, the combination of CNN and LSTM produced sensitiv-
ty and specificity above 0.87 in LOSO CV (Li et al., 2020; Sigcha et al.,
020).
11

L

4.10.2. Gait impairment
Twenty-two studies used wearables and DL methods to assess gait

impairment. Eighteen studies specifically focused on gait analysis,
while the remaining four analyzed gait impairment in addition to
bradykinesia, dysphonia, and cognitive impairment (Prince, Andreotti,
& De Vos, 2019); bradykinesia and tremor (Stamate et al., 2018);
balance (Moon et al., 2020) and bradykinesia; and dysphonia (Deng
et al., 2022). The information on the samples, sensor technology,
methods, and results are summarized in Table 3 and discussed in detail
below.

Data. The number of PwPD enrolled ranged from 12 (Stamate et al.,
018) to 645 (Deng et al., 2022). Most of the articles included healthy
ontrols (HC) in their studies, except two articles (Moon et al., 2020;
tamate et al., 2018). In more detail, ten studies (Alharthi, Casson, &
zanyan, 2021; Balaji, Brindha, Vinodh Kumar, & Vikrama, 2021; El
aachi, Bilodeau, & Bouachir, 2020; Jane, Nehemiah, & Arputharaj,

016; Liu, Li, Liu, Du, & Zo, 2021; Oğul & Özdemir, 2022; Pham,
021; Setiawan & Lin, 2021; Xia, Yao, Ye, & Cheng, 2020; Zhao, Qi,
i, Dong, & Yu, 2018) used the PhysioNet Gait database (Goldberger
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et al., 2000), two studies (Berke Erdas, Sumer, & Kibaroglu, 2022; Lin,
Wen, & Setiawan, 2020) used the PhysioNet GNDD (Hausdorff et al.,
2000), two studies (Deng et al., 2022; Prince et al., 2019) used data
collected through the mPower application, seven studies (Chen, Fan,
Li, Zou, & Huang, 2021; Fernandes et al., 2021; Lin et al., 2022; Moon
et al., 2020; Peraza et al., 2021; Stamate et al., 2018; Steinmetzer,
Maasch, Bönninger, & Travieso, 2019) used proprietary databases, and
a single study (Zhao et al., 2022) used a combination of three data
sources (e.g., Daphnet Bachlin et al., 2009, PhysioNet Goldberger et al.,
2000, and PhysioNet GNDD Hausdorff et al., 2000). The PhysioNet Gait
data set includes gait data from 93 patients with idiopathic PD and 73
HC. Eight Vertical Ground Reaction Force (VGRF) sensors were placed
below the foot of each patient to record data at a sampling rate of
100 Hz. As part of the data collection protocol, subjects were instructed
to walk back and forth to the corridor at a normal pace for approxi-
mately two minutes. The PhysioNet GNDD consists of gait data from 64
subjects (13 with amyotrophic lateral sclerosis, 20 with Huntington’s,
15 with PD, and 16 HC). Data were collected using force-sensitive
resistors placed under the feet. In Prince et al. (2019), data collected
from 377 PwPD and 247 HC were used for gait assessment. Data
were recorded via the mPower mobile application while the subjects
performed various activities (e.g., walking back and forth, tapping their
feet, and performing memory and vocal tasks). In Deng et al. (2022),
data from the DREAM Parkinson’s disease challenge (mPower) (Sieberts
et al., 2021) were used. Data used for gait assessment included 645
PwPD and 2084 HC performing 30-step walking trials. With regard to
proprietary databases, in Lin et al. (2022) data from 32 PwPD and 16
HC were recorded using an IMU while the participants walked back
and forth for 10 m. In Steinmetzer et al. (2019), two smart bracelets
were used to collect arm swing measurements of 15 PwPD and 24 HC
performing the TUG test. In Chen et al. (2021), data were collected
from 50 PwPD and 50 HC walking in a straight line for 50 meters with
a prototype IMU attached to their foot. In Stamate et al. (2018), data
were recorded from 12 PwPD while they performed MDS-UPDRS tasks;
this protocol included walking in a straight line for 5 m, turning, and
returning to the starting point while carrying a smartphone in their belt
or trouser pocket. In Moon et al. (2020), 524 PwPD were asked to wear
six IMUs while performing walking and standing tests. In Peraza et al.
(2021), 6 PwPD and 6 HC were equipped with four IMUs on the wrist,
waist, and legs, and asked to perform different walking tasks (slow,
normal, fast walking, and TUG test). In Fernandes et al. (2021), gait
recordings of 14 subjects with vascular PD, 15 with idiopathic PD, and
34 HC were recorded in both ON and OFF states while walking for 60
m. For this task, two wearable motion sensors were attached to the
back of each shoe with two elastic bands. In Zhao et al. (2022), three
data sources were used, including PhysioNet Gait in Parkinson’s Dis-
ease (Goldberger et al., 2000), PhysioNet Gait in NDD (Hausdorff et al.,
2000), and Daphnet (Bachlin et al., 2009). For the latter, acceleration
measurements of PwPD performing walking tasks (e.g., walking in a
straight line, turning, and performing ADL tasks) were recorded using
three sensors (triaxial accelerometers) attached to the participants’ hips
and legs.

Pre-processing. Band-pass filtering (Peraza et al., 2021) was used to
process inertial data. Other processing techniques applied to gait as-
sessment include data normalization (Alharthi et al., 2021; Chen et al.,
2021; Prince et al., 2019; Setiawan & Lin, 2021; Zhao et al., 2018),
zero-padding (Xia et al., 2020), QR code transformation (Berke Erdas
et al., 2022), and data balancing (Pham, 2021). Regarding signal
segmentation, 15 studies used fixed-length windows between 0.8 s (Lin
et al., 2022) and 12 s (Jane et al., 2016). Specifically, most studies used
windows between 0.8 s and 5 s (Alharthi et al., 2021; Balaji et al., 2021;
Chen et al., 2021; El Maachi et al., 2020; Lin et al., 2022; Liu et al.,
2021; Peraza et al., 2021; Stamate et al., 2018; Steinmetzer et al., 2019;
Xia et al., 2020; Zhao et al., 2022, 2018), while windows of 12 s (Jane
et al., 2016), 10 s (Lin et al., 2020; Setiawan & Lin, 2021) or longer
12

(10 s, 15 s, and 30 s) (Setiawan & Lin, 2021) were used. In addition, r
an overlap of 50% was used (Chen et al., 2021; El Maachi et al., 2020;
Stamate et al., 2018), 60% in Balaji et al. (2021), and 70% in Lin et al.
(2020). The remaining studies (Berke Erdas et al., 2022; Deng et al.,
2022; Fernandes et al., 2021; Moon et al., 2020; Oğul & Özdemir, 2022;
Pham, 2021; Prince et al., 2019; Setiawan & Lin, 2021) did not use
any sliding window strategy. Instead, they used data from the entire
walking session to evaluate the algorithms.

Deep learning models. Thirteen studies (Alharthi et al., 2021;
erke Erdas et al., 2022; Chen et al., 2021; Deng et al., 2022;
l Maachi et al., 2020; Fernandes et al., 2021; Lin et al., 2022,
020; Peraza et al., 2021; Prince et al., 2019; Setiawan & Lin,
021; Stamate et al., 2018; Steinmetzer et al., 2019) used CNN
ith raw data (Alharthi et al., 2021; Chen et al., 2021; Deng et al.,
022; El Maachi et al., 2020; Lin et al., 2022, 2020; Stamate et al.,
018), CWT (Setiawan & Lin, 2021; Steinmetzer et al., 2019), Mel’s
pectrogram (Peraza et al., 2021), and specific features (Berke Erdas
t al., 2022; Fernandes et al., 2021; Prince et al., 2019). Furthermore,
even studies (Balaji et al., 2021; Liu et al., 2021; Oğul & Özdemir,
022; Pham, 2021; Xia et al., 2020; Zhao et al., 2022, 2018) used RNN
rchitectures. Among this group, two studies (Balaji et al., 2021; Xia
t al., 2020) used LSTM networks fed with raw data, and one study used
eatures (Pham, 2021). Furthermore, in Oğul and Özdemir (2022) the
uthors introduce a Siamese recurrent network with attention (RSRNA)
ed with raw data. Another paper introduced a recurrent model named
orrelative memory neural network (CorrMNN) fed with features (Zhao
t al., 2022). Furthermore, the introduction of a dual-branch CNN
ith BiLSTM (Liu et al., 2021) and the combination of CNN with
STM (Zhao et al., 2018) fed with raw signals have been reported.
inally, two studies used ANN fed with features (Moon et al., 2020)
r raw signals (Jane et al., 2016).
Validation. Several validation methods were used to estimate the

erformance of the algorithms, including k-fold (Berke Erdas et al.,
022; Chen et al., 2021; Deng et al., 2022; El Maachi et al., 2020;
ernandes et al., 2021; Jane et al., 2016; Lin et al., 2022; Moon et al.,
020; Oğul & Özdemir, 2022; Pham, 2021; Prince et al., 2019; Setiawan

Lin, 2021; Steinmetzer et al., 2019; Xia et al., 2020; Zhao et al.,
018), hold-out (Alharthi et al., 2021; Balaji et al., 2021; Liu et al.,
021; Zhao et al., 2022), and LOSO CV (Lin et al., 2020; Peraza et al.,
021; Stamate et al., 2018). In more detail, most studies used k-fold
trategies, including stratified k-fold (Fernandes et al., 2021; Prince
t al., 2019; Xia et al., 2020), k-fold with random shuffling (Berke Erdas
t al., 2022; Chen et al., 2021; Jane et al., 2016; Lin et al., 2022; Moon
t al., 2020; Pham, 2021; Setiawan & Lin, 2021; Steinmetzer et al.,
019; Zhao et al., 2018), and k-fold with subject-independent data
plit (Deng et al., 2022; El Maachi et al., 2020; Oğul & Özdemir, 2022).
pecifically, 5-fold strategies were used in Chen et al. (2021), Deng
t al. (2022), Fernandes et al. (2021), Lin et al. (2022) and Xia et al.
2020), 10-fold strategies in Berke Erdas et al. (2022), El Maachi et al.
2020), Jane et al. (2016), Oğul and Özdemir (2022), Pham (2021),
rince et al. (2019), Setiawan and Lin (2021), Zhao et al. (2018), and
-fold strategies in Moon et al. (2020) and Steinmetzer et al. (2019).
inally, four studies (Alharthi et al., 2021; Liu et al., 2021; Zhao et al.,
022, 2018) used a hold-out split approach, randomly dividing the data
et into training sets and evaluation sets.
Results. Regression models were used in two studies (Berke Erdas

t al., 2022; Peraza et al., 2021) to predict the severity of gait im-
airment (Berke Erdas et al., 2022) and to extract gait parameters
e.g., step length, stride speed, stride length, and stride velocity) (Per-
za et al., 2021), while the remaining works aimed to classify the
resence or severity of gait impairment. In Berke Erdas et al. (2022),
earson’s correlation coefficient 𝑟 of 0.79 was obtained when compar-
ng the prediction of the model with the severity of gait impairment,
hile in Peraza et al. (2021) 𝑟 coefficient ranged from 0.753 to 0.892
ere reported. For the classification task, accuracy was the most re-
orted metric. According to Table 3, an accuracy of up to 1 was

eported (Pham, 2021) using a k-fold strategy (random shuffling),
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Table 3
List of studies using wearable sensors and DL methods for the assessment of gait impairment. ACC: accuracy; Sens: sensitivity; Spec: specificity; AUC: area under the curve; RMSE:
root mean square error; MSE: mean square error; MAE: mean absolute error; acc: accelerometer; gyro: gyroscope; mag: magnetometer; CNN: convolutional neural network; RNN:
recurrent neural network; LSTM: long short-term memory; BiLSTM: Bi-directional long short-term memory; ANN: artificial neural network; CWT: continuous wavelet transform;
LOSO: leave-one-subject-out; S-I: subject independent; RS: random shuffle.

Study # PD subjects
(# Controls)

Sensor type
(position)

Model
(Input)

Validation type Performance

Xia et al. (2020) 93
(73)

force
(feet)

LSTM with Attention
(raw data)

k-fold
(stratified)

ACC 0.990

Alharthi et al.
(2021)

93
(73)

force
(feet)

CNN
(raw data)

Hold-out
(S-I)

ACC 0.955
F-score 0.960

Lin et al. (2022) 32
(16)

acc, gyro, mag
(waist, leg, wrist)

CNN
(raw data)

k-fold
(RS)

ACC 0.997
Sens 0.995
Spec 0.900

Prince et al. (2019) 377
(247)

acc, gyro
(waist, hand)

CNN
(features)

k-fold
(stratified)

ACC 0.774
F-1 score 0.830

Oğul and Özdemir
(2022)

93
(73)

force
(feet)

RNN with Attention
(raw data)

k-fold
(S-I)

ACC 0.810
AUC 0.878

Zhao et al. (2022) 108
(89)

force, acc, image
(feet, waist, leg)

RNN
(features)

Hold-out
(S-I)

ACC 0.989

Liu et al. (2021) 93
(73)

force
(feet)

CNN,BiLSTM
(raw data)

Hold-out
(S-I)

ACC 0.992
Sens 1.0
Spec 0.980

Zhao et al. (2018) 93
(73)

force
(feet)

CNN, LSTM
(raw data)

k-fold
(RS)

ACC 0.988

Balaji et al. (2021) 93
(73)

force
(feet)

LSTM
(raw data)

Hold-out
(S-I)

ACC 0.986
Sens 0.982
Spec 0.991

El Maachi et al.
(2020)

93
(73)

force
(feet)

CNN
(raw data)

k-fold
(S-I)

ACC 0.853
F-score 0.850

Steinmetzer et al.
(2019)

15
(24)

acc, gyro, mag
(wrist)

CNN
(CWT)

k-fold
(RS)

ACC 0.933
Sens 0.934
Spec 0.932
F-score 0.930

Berke Erdas et al.
(2022)

15
(16)

force
(feet)

CNN
(features)

k-fold
(RS)

RMSE 0.92
MSE 0.850
MAE 0.710
r 0.79

Chen et al. (2021) 50
(50)

acc, gyro
(feet)

CNN
(raw data)

k-fold
(RS)

ACC 0.914
AUC 0.93
Sens 0.901
Spec 0.917

Stamate et al.
(2018)

12 acc
(pocket, leg, hand,
finger)

Recurrent-CNN
(raw data)

LOSO
(S-I)

ACC 0.780
AUC 0.870
F-score 0.820

Moon et al. (2020) 524 acc, gyro, mag
(wrist, feet, chest,
waist)

ANN
(features)

k-fold
(stratified)

ACC 0.89
Sens 0.61
F-score 0.61

Jane et al. (2016) 93
(73)

force
(feet)

ANN
(raw data)

k-fold
(RS)

ACC 0.922
RMSE 0.615

Peraza et al. (2021) 6
(6)

acc
(wrist, waist, leg)

CNN
(Mel spectrogram)

LOSO
(S-I)

MAE 22.82
r>0.75

Fernandes et al.
(2021)

29
(34)

acc, gyro, force
(feet)

CNN
(features)

k-fold
(stratified)

ACC 0.860
Sens 0.800
Spec 0.900

Deng et al. (2022) 645
(2084)

acc
(hand)

CNN
(raw data)

k-fold
(S-I)

AUC 0.898

Pham (2021) 93
(73)

force
(feet)

LSTM
(features)

k-fold
(RS)

AUC 1.0
Sens 1.0
Spec 1.0

Lin et al. (2020) 15
(16)

force
(feet)

CNN
(raw data)

LOSO
(S-I)

ACC 0.967
AUC 0.960
Sens 0.932
Spec 0.978

Setiawan and Lin
(2021)

93
(73)

force
(feet)

CNN
(CWT)

k-fold
(RS)

ACC 0.983
AUC 0.980
Sens 0.977
Spec 0.988
13
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while the Hold-out (subject-independent data shuffling) and LOSO
approaches provided an accuracy of 0.992 (Liu et al., 2021) and
0.967 (Lin et al., 2020), respectively. Higher accuracy values were
reported using force sensors from the PhysioNet Gait in Parkinson’s
Disease database (0.810 (Oğul & Özdemir, 2022) to 1 (Liu et al.,
2021)) and PhysioNet Gait in NDD (0.967 (Oğul & Özdemir, 2022) to
0.989 (Liu et al., 2021)). However, the conservative results reported in
a subject-independent k-fold validation (El Maachi et al., 2020; Oğul
& Özdemir, 2022) provided an accuracy of up to 0.853 (El Maachi
et al., 2020) and an AUC of up to 0.944 (Deng et al., 2022). The latter
approaches ensured subject independence in the training-test procedure
and provided an unbiased estimation of results. The use of inertial
sensors presented results comparable to those based on force sensors,
achieving an accuracy ranging from 0.78 (Stamate et al., 2018) to
0.997 (Lin et al., 2022). On the other hand, the use of RNN, including
LSTM (Balaji et al., 2021; Pham, 2021; Xia et al., 2020; Zhao et al.,
2018) and Bi-LSTMS (Liu et al., 2021), presented a better performance
for gait assessment than the CNN and ANN approaches in most of the
studies listed in Table 3.

4.10.3. Tremor
A total of sixteen studies used wearables and DL methods for

the assessment of tremor. Eleven studies (Han Byul et al., 2018;
Hssayeni, Jimenez-Shahed, Burack, & Ghoraani, 2019; Ibrahim, Zhou,
Jenkins, Trejos, & Naish, 2021; Papadopoulos, Kyritsis et al., 2020;
Phokaewvarangkul, Vateekul, Wichakam, Anan, & Bhidayasiri, 2021;
Qin, Jiang, Chen, Hu, & Ma, 2019; San-Segundo et al., 2020; Sigcha
et al., 2021; Tong, He, & Peng, 2021; Varghese et al., 2021; Varghese,
Fujarski, Hahn, Dugas, & Warnecke, 2020) focused on the assessment
of tremor, while five studies analyzed tremor in combination with
symptoms such as dyskinesia (Roy et al., 2013), fine motor impairment
(FMI) (Papadopoulos, Iakovakis et al., 2020), cognitive and speech im-
pairment (Lauraitis, Maskeliunas, Damasevicius, & Krilavicius, 2020a),
gait (Stamate et al., 2018), and bradykinesia (Lonini et al., 2018;
Stamate et al., 2018). The sample information, sensor technology,
methods, and results of these studies are summarized in Table 4 and
discussed in detail below.

Data. The number of PwPD enrolled in these studies ranged from
(Lauraitis et al., 2020a) to 260 (Varghese et al., 2021). All studies

isted in Table 4 used proprietary databases in their studies. In twelve
tudies (Han Byul et al., 2018; Hssayeni et al., 2019; Ibrahim et al.,
021; Lonini et al., 2018; Papadopoulos, Iakovakis et al., 2020; Pa-
adopoulos, Kyritsis et al., 2020; Phokaewvarangkul et al., 2021; Qin
t al., 2019; Roy et al., 2013; San-Segundo et al., 2020; Sigcha et al.,
021; Stamate et al., 2018) the MDS-UPDRS scale was used as a refer-
nce to assess the severity of the tremor. More specifically, in Ibrahim
t al. (2021) 18 PwPD performed MDS-UPDRS tasks to assess resting,
ostural, and action tremors using IMUs placed on the wrist and hand.
n Papadopoulos, Kyritsis et al. (2020), accelerometer measurements
f 45 PwPD were recorded in the wild using a smartphone. In Tong
t al. (2021), acceleration data was collected from 10 patients while
erforming scheduled activities (e.g., walking, standing, or turning)
sing a watch-like IMU. In Qin et al. (2019), surface electromyog-
aphy (sEMG) was used to acquire data from 147 PwPD. In Sigcha
t al. (2021), several MDS-UPDRS tasks, including resting tremor, were
ecorded from 18 PwPD using a consumer smartwatch accelerometer
laced on the dominant hand with tremor. In Han Byul et al. (2018),
remor signals were recorded from 92 PwPD using a custom-developed
rist and finger device. The MDS-UPDRS scale was used to assess the

everity of the tremor. In Hssayeni et al. (2019) 24 PwPD performed a
eries of ADLs wearing a motion sensor placed on the wrist and ankle of
he most affected side. In San-Segundo et al. (2020), data were collected
n the laboratory and free-living settings of 12 PwPD while performing
arious ADLs (for example, writing, typing, and playing chess/cards).
ata were collected from two smart bands. In Phokaewvarangkul et al.
14

2021), a glove connected to a mobile application was used to assess, e
stimulate, and quantify tremors in 20 PwPD. The glove was equipped
with electrical muscle stimulation (EMS) to provide muscle stimulation
on-demand to suppress tremors. In Lauraitis et al. (2020a) a smart-
phone with a specific application was used to collect data from 15
subjects (1 PD, 6 with cognitive and motor impairments, 8 HC) while
performing cognitive and language tasks. In Stamate et al. (2018), the
cloudUPDRS application and smartphones were used to collect data
from 12 PwPD while performing guided MDS-UPDRS tasks. In Lonini
et al. (2018), 20 PwPD wore adhesive biosensors attached to their
skin while performing common tasks (e.g., walking, moving hands,
typing). A total of 6 sensors were placed on both hands, thighs, and
forearms. In Roy et al. (2013), 19 PwPD wore four sensors attached to
each extremity while performing unrestrained activities (e.g., sitting,
standing, walking). Data were recorded for 4 h to capture a complete
on/off cycle. In Papadopoulos, Iakovakis et al. (2020), data from 40
PwPD were captured by an Android application during user interaction
with the device. In Varghese et al. (2021), 260 PwPD performed a
predefined neurological examination (duration 15 min) while wearing
two smartwatches. In Varghese et al. (2020), acceleration recordings
of 192 PwPD were collected from two consumer smartwatches while
performing ten different coordination tasks while sitting in a chair.

Pre-processing. Low-pass (Papadopoulos, Kyritsis et al., 2020), high-
ass (Han Byul et al., 2018; San-Segundo et al., 2020; Stamate et al.,
018), and band-pass (Hssayeni et al., 2019; Ibrahim et al., 2021;
onini et al., 2018; Sigcha et al., 2021; Tong et al., 2021) filtering
ere used to remove low-frequency trends (including motion band) and
igh-frequency noise in inertial data. In addition, eleven studies used
ixed-length windows to segment inertial data into temporal frames,
ith time windows between 1 s (Tong et al., 2021) and 50 s (Han Byul
t al., 2018). Specifically, most studies used window sizes between 2
and 5 s (Hssayeni et al., 2019; Lonini et al., 2018; Papadopoulos,

akovakis et al., 2020; Papadopoulos, Kyritsis et al., 2020; Qin et al.,
019; Roy et al., 2013; San-Segundo et al., 2020; Sigcha et al., 2021;
tamate et al., 2018; Tong et al., 2021), while in Han Byul et al. (2018)
longer window (50 s) was used. An overlap of 50% was used in 6

tudies (Lonini et al., 2018; Roy et al., 2013; San-Segundo et al., 2020;
igcha et al., 2021; Stamate et al., 2018; Tong et al., 2021), while two
tudies did not use any overlap (Hssayeni et al., 2019; Papadopoulos,
akovakis et al., 2020).
Deep learning models. Ten studies (Han Byul et al., 2018; Ibrahim

t al., 2021; Lonini et al., 2018; Papadopoulos, Iakovakis et al., 2020;
apadopoulos, Kyritsis et al., 2020; Qin et al., 2019; San-Segundo et al.,
020; Sigcha et al., 2021; Stamate et al., 2018; Tong et al., 2021)
sed CNN with raw data input (Ibrahim et al., 2021; Papadopoulos,
yritsis et al., 2020; Sigcha et al., 2021; Stamate et al., 2018), FFT (Han
yul et al., 2018; Sigcha et al., 2021), and specific features (time and
requency domain) (Lonini et al., 2018; Papadopoulos, Iakovakis et al.,
020; Qin et al., 2019; San-Segundo et al., 2020; Tong et al., 2021).
hree studies (Hssayeni et al., 2019; Lauraitis et al., 2020a; Phokaew-
arangkul et al., 2021) used LSTM fed with raw data (Phokaew-
arangkul et al., 2021) and features (Hssayeni et al., 2019; Lauraitis
t al., 2020a). One work used a dynamic neural network (Roy et al.,
013). Finally, two studies used MLP architectures fed with FFT (Vargh-
se et al., 2021) and features in combination with FFT (Varghese et al.,
020). Furthermore, only in a single study (Hssayeni et al., 2019)
he best results were obtained using the gradient tree boost algorithm
shallow ML).
Validation. Several validation methods were used to evaluate the

erformance of the tremor algorithms, including LOSO CV (Lonini
t al., 2018; Papadopoulos, Iakovakis et al., 2020; Papadopoulos, Kyrit-
is et al., 2020; San-Segundo et al., 2020; Sigcha et al., 2021; Stamate
t al., 2018; Tong et al., 2021), k-fold CV with k equal to 10 (Han Byul
t al., 2018; Lauraitis et al., 2020a) or 3 (Phokaewvarangkul et al.,
021), hold-out (Hssayeni et al., 2019; Ibrahim et al., 2021; Qin et al.,
019; Roy et al., 2013) and nested CV with k equal to 5 (Varghese

t al., 2021, 2020). The nested CV procedure involves treating the
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Table 4
List of studies that used wearable sensors and DL methods for tremor assessment. ACC: accuracy; AUC: area under the curve; Sens: sensitivity; Spec: specificity; MAE: mean
absolute error; acc: accelerometer; gyro: gyroscope; mag: magnetometer; CNN: convolutional neural network; LSTM: long short-term memory; ANN: Artificial neural network LOSO:
leave-one-subject-out; FFT: fast Fourier transform; CV: cross validation; S-I: subject independent; S-D: subject dependent; RS: random shuffle.

Study # PD subjects
(# Controls)

Sensor type
(location)

Model
(Input)

Validation
type

Performance

Ibrahim et al.
(2021)

18 gyro
(wrist, finger)

CNN
(raw data)

Hold-out
(S-I)

ACC 0.992

Papadopoulos,
Kyritsis et al. (2020)

31
(14)

acc
(hand)

CNN
(raw data)

LOSO
(S-I)

Sens 0.612
Spec 0.850

Tong et al. (2021) 5
(5)

acc, gyro, mag
(wrist)

CNN
(features)

LOSO
(S-I)

ACC 0.973
Sens 0.915
Spec 0.972

Qin et al. (2019) 147 sEMG
(arm)

S-Net (CNN)
(features)

Hold-out
(S-D)

ACC 0.906
Sens 0.906

Sigcha et al. (2021) 18 acc
(wrist)

Multi-task CNN
(raw data, FFT)

LOSO
(S-I)

AUC 0.936
Sens 0.861
Spec 0.861
r 0.969

Han Byul et al.
(2018)

92 acc, gyro
(wrist)

CNN
(FFT)

K-fold
(RS)

ACC 0.85
𝑟 0.93

Hssayeni et al.
(2019)

24 acc, gyro
(wrist, leg)

LSTM
(features)

LOSO
(S-I)

r 0.77
MAE 1.32

San-Segundo et al.
(2020)

12 acc
(wrist)

CNN
(features)

LOSO
(S-I)

AUC 0.884
Spearman 0.9

Phokaewvarangkul
et al. (2021)

20
(20)

gyro
(wrist)

LSTM
(raw data)

K-fold
(S-I)

ACC 0.865
Spearman
0.77

Lauraitis et al.
(2020a)

1
(8)

touchscreen
(hand)

LSTM (Ensemble)
(features)

K-fold ACC 0.961
Sens 0.961
Spec 0.953

Stamate et al.
(2018)

12 acc
pocket, leg, hand,
finger

Recurrent CNN
(raw data)

LOSO
(S-I)

ACC 0.78
AUC 0.87

Lonini et al. (2018) 20 acc, gyro
(hand, arm, leg)

CNN
(features)

LOSO
(S-I)

AUC 0.79

Roy et al. (2013) 19
(4)

acc, sEMG
(arm, leg)

Dynamic Neural Network
(features)

Hold-out
(S-I)

Sens 0.917
Spec 0.929

Papadopoulos,
Iakovakis et al.
(2020)

40
(139)

acc, touchscreen
(hand)

CNN Ensemble
(features)

LOSO
(S-I)

AUC 0.87
Sens 0.83
Spec 0.91

Varghese et al.
(2021)

260
(89)

acc
(wrist)

ANN
(FFT, questionary data)

nested CV ACC 0.823
Sens 0.905

Varghese et al.
(2020)

192
(51)

acc
(wrist)

ANN
(FFT, features)

nested CV ACC 0.89
Sens 0.92
optimization of the model’s hyperparameters as part of the model itself
and evaluating it within the k-fold. In practice, nested CV involves the
implementation of a double loop, an outer loop that is used to evaluate
the quality of the model, and an inner loop that is used for parameter
selection.

Results. In one study (Hssayeni et al., 2019), a regression model
was used to predict the clinical reference scale (UPDRS). In this work,
Pearson’s correlation coefficient 𝑟 of 77 and an MAE of 1.32 were
reported to evaluate the performance of the model. The other fifteen
studies performed classification tasks to detect the presence and sever-
ity of tremor, with two studies (Han Byul et al., 2018; Sigcha et al.,
2021) reporting both classification metrics (accuracy 0.85 Sigcha et al.,
2021, AUC 0.936 Han Byul et al., 2018) and strong correlations (𝑟 >
0.93) with the clinical score. Most studies reported results in terms
of accuracy, with values ranging from 0.78 (Stamate et al., 2018) to
0.992 (Ibrahim et al., 2021). Furthermore, the sensitivity ranged from
0.612 (Papadopoulos, Kyritsis et al., 2020) to 0.946 (Lauraitis et al.,
2020a) and the specificity from 0.850 (Papadopoulos, Kyritsis et al.,
2020) to 0.972 (Tong et al., 2021). Furthermore, five studies (Lonini
15
et al., 2018; Papadopoulos, Iakovakis et al., 2020; San-Segundo et al.,
2020; Sigcha et al., 2021; Stamate et al., 2018) provided an AUC
ranging from 0.79 (Lonini et al., 2018) to 0.936 (Sigcha et al., 2021).
Regarding the DL models, on average, CNN performed better in terms
of accuracy than the LSTM and MLP approach, while LSTM can provide
a high correlation (𝑟 0.77) (Hssayeni et al., 2019) compared to UPDRS.

4.10.4. Bradykinesia
A total of twelve studies used wearable sensors and DL methods

for the detection and/or monitoring of bradykinesia, including the
evaluation of FMI (Iakovakis et al., 2020; Papadopoulos, Iakovakis
et al., 2020; Prince et al., 2019). Of these studies, two focused on
the evaluation of bradykinesia (Borzì et al., 2020; Park et al., 2021),
while ten studies analyzed bradykinesia in combination with symptoms
such as dyskinesia (Pfister et al., 2020), tremor (Lonini et al., 2018;
Papadopoulos, Iakovakis et al., 2020; Stamate et al., 2018), gait (Deng
et al., 2022; Prince et al., 2019; Stamate et al., 2018), dysphonia (Deng
et al., 2022; Oung, Muthusamy, Basah, Lee, & Vijean, 2018; Prince
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et al., 2019; Shichkina, Stanevich, & Irishina, 2020), and rigidity (Iako-
vakis et al., 2020). Information on the sample, sensor technology,
methods, and results is summarized in Table 5 and discussed below.

Data. The sample size ranged from 10 (Shichkina et al., 2020) to
98 (Deng et al., 2022) PwPD. In nine studies, proprietary databases
ere used, while in Hssayeni, Jimenez-Shahed, Burack et al. (2021) a
roprietary database (ADL-like tasks) was used in addition to the Phys-
cal Activity Monitoring Data Set (PAMAP2) for transfer learning tasks.
n Deng et al. (2022) and Prince et al. (2019), data were collected using
he mPower application. Patients were asked to touch the touchscreen
f the smartphone as fast as possible. The acceleration and position
f the touch on the screen were recorded during the experiments.
n more detail, in Prince et al. (2019) data were collected from 799
wPD and 534 HC while performing the finger touch task (Bot et al.,
016). In Deng et al. (2022) data from the DREAM Parkinson’s disease
hallenge (mPower) (Sieberts et al., 2021) were used. Data used for the
valuation of FMI included data (finger tapping activity) from 1057
wPD and 5343 HC. In Shichkina et al. (2020), data were collected
hrough a smartphone application when subjects performed a wide
ange of tests, also recording background data (sensor data). In Park
t al. (2021), 25 PwPD and 21 HC were evaluated while performing
hree selected elements of Part III of MDS-UPDRS (e.g., finger tapping,
and movements, and alternating rapid movements), with two gyro-
copes on the thumb and index finger recording data. In Borzì et al.
2020), 93 PwPD were fitted with a smartphone on their thigh and had
o perform the MDS-UPDRS leg agility task (Item 3.8). In Stamate et al.
2018), a smartphone application was developed to guide patients in
erforming certain tasks and to collect and analyze data. In particular,
and pronation–supination, leg agility, and finger touch were analyzed
o detect bradykinesia. In Lonini et al. (2018), 20 PwPD were equipped
ith 6 flexible wearable sensors (with accelerometer and gyroscope)
ttached to their hands, arms, and thighs. They were instructed to per-
orm various tasks, including some ADL (e.g., walking, sitting upright),
tems related to MDS-UPDRS (e.g., finger on nose, alternating hand
ovements), and other more specific tasks (e.g., organizing a series

f folders, folding towels, pouring water from a bottle, and drinking).
n Oung et al. (2018), accelerometer and gyroscope recordings were
ecorded from four IMUs placed on the hands and upper limbs of 65
articipants. Subjects were asked to perform a series of standardized
ctivities, including getting up from a chair, moving their hands, tap-
ing their fingers, touching their feet, and moving their legs. Finally,
n Iakovakis et al. (2020) data from typing sessions were collected using
touchscreen using a mobile application (iPrognosis).
Pre-processing. Low-pass (Borzì et al., 2020; Stamate et al., 2018) and

and-pass filters (Hssayeni, Jimenez-Shahed, Burack et al., 2021; Lonini
t al., 2018; Pfister et al., 2020; Stamate et al., 2018) were used to
emove low-frequency trends and high-frequency noise, while in Park
t al. (2021) signal integration was used to convert angular velocity
ata into an angle to track the movement of the patient’s hand. Two
tudies (Borzì et al., 2020; Park et al., 2021) analyzed the data collected
rom the entire task, while the other studies divided the original signal
nto time windows of equal duration. Specifically, sliding windows of
s (Hssayeni, Jimenez-Shahed, Burack et al., 2021; Lonini et al., 2018;
apadopoulos, Iakovakis et al., 2020; Stamate et al., 2018), 10 s (Oung
t al., 2018; Park et al., 2021), and 60 s (Pfister et al., 2020) were used
n the inertial signal segmentation procedure.
Deep learning models. Seven studies used CNNs (Deng et al., 2022;

akovakis et al., 2020; Lonini et al., 2018; Papadopoulos, Iakovakis
t al., 2020; Pfister et al., 2020; Prince et al., 2019; Stamate et al.,
018), including a recurrent CNN (Stamate et al., 2018), a CNN en-
emble (Papadopoulos, Iakovakis et al., 2020), and an autoencoder
NN (Iakovakis et al., 2020). Among these models, four networks were

ed with raw signals (Deng et al., 2022; Lonini et al., 2018; Pfister et al.,
020; Stamate et al., 2018), while three were fed with features (Iako-
akis et al., 2020; Papadopoulos, Iakovakis et al., 2020; Prince et al.,
16

019). In one study (Oung et al., 2018), EWT was calculated and used s
as input for a probabilistic neural network (PNN). In other studies,
a set of features extracted from the temporal and spectral domains
was fed by an ANN (Borzì et al., 2020; Park et al., 2021), a deep
ensemble (Hssayeni, Jimenez-Shahed, Burack et al., 2021), and a GRU
model (Shichkina et al., 2020).

Validation procedure. Different validation methods were used in
hese studies. Four articles used k-fold CV, with k equal to 5 (Deng
t al., 2022; Park et al., 2021) and 10 (Oung et al., 2018; Prince et al.,
019). The other approaches included hold-out (Iakovakis et al., 2020;
hichkina et al., 2020) and LOSO CV (Borzì et al., 2020; Hssayeni,
imenez-Shahed, Burack et al., 2021; Lonini et al., 2018; Papadopoulos,
akovakis et al., 2020; Pfister et al., 2020; Stamate et al., 2018). All
hese validation methods guarantee the independence of the subjects
n the training-test procedure and provide an unbiased estimation of
he results.
Results. In two studies (Borzì et al., 2020; Hssayeni, Jimenez-Shahed

nd Burack, 2021), regression models were used to predict the clinical
eference scale for the specific symptom, while the remaining works
imed to classify the presence or absence of the symptom. Pearson’s
orrelation coefficient and RMSE (Borzì et al., 2020) were used to eval-
ate the performance of the regression model, while AUC, accuracy,
ensitivity, and specificity were used to evaluate the performance of
lassification algorithms. In Borzì et al. (2020), a strong correlation
𝑟 = 0.92) was obtained by comparing the prediction of the model
ith the mean severity of bradykinesia assessed by four experienced

linicians. Accuracy of up to 0.89 (Shichkina et al., 2020) was reported
nd the AUC ranged from 0.77 (Lonini et al., 2018) to 0.93 (Park
t al., 2021) for the detection of bradykinesia. When bradykinesia
as assessed using data collected from finger or toe tapping activities,

he combination of features and ANN showed very good results, with
n AUC greater than 0.92 (Borzì et al., 2020; Park et al., 2021),
lightly lower than CNN fed raw data (Deng et al., 2022). Evaluation
f additional activities (e.g., walking (Lonini et al., 2018), postural
ransitions (Oung et al., 2018)) did not provide an improvement in
erformance.

.10.5. Dyskinesia
Three studies used the combination of wearables and DL models for

he detection and/or monitoring of dyskinesia. Of this group, one study
ocused on dyskinesia (Hssayeni, Jimenez-Shahed, Burack, 2021), while
he other two studies also analyzed bradykinesia (Pfister et al., 2020)
nd tremor (Roy et al., 2013) in addition to dyskinesia. Information on
he sample, sensor technology, methods, and results is summarized in
able 6 and discussed below.
Data. In all studies, proprietary data sets were used, with sample

izes ranging from 15 (Hssayeni, Jimenez-Shahed, Burack, 2021) to
0 (Pfister et al., 2020) PwPD. In Hssayeni, Jimenez-Shahed, Burack
2021), 15 PwPD wore two inertial sensors on the wrist and ankle of
he most affected side and performed four sets of ADLs under different
reatment conditions (e.g., OFF, ON, and after a certain period of time
fter taking the medication). Activities included walking, resting, and
arious other ADLs (e.g., using a knife and fork to cut food, putting
n and taking off a coat, and drinking water from a cup). In Pfister
t al. (2020), inertial data from 30 PwPD were recorded using an IMU
ensor worn on the wrist of the most affected side. Various activities
ere recorded in free-living conditions, including sitting, lying down,
alking, standing, and sleeping. In Roy et al. (2013), 19 PwPD were
quipped with a wearable sensor (incorporating an accelerometer and
EMG) on each limb (e.g., two on the forearms and two on the lower
egs). Data were recorded in a simulated home environment while
ubjects performed simple (e.g., sitting, standing, walking, lying down)
nd complex (e.g., preparing snacks, eating, reading, writing) ADLs.
Pre-processing. Band-pass filtering (Hssayeni, Jimenez-Shahed, Bu-

ack, 2021; Pfister et al., 2020) was used to remove low-frequency
rends and high-frequency noise. Three studies segmented the recorded

ignals into data windows of 2 s (Roy et al., 2013), 5 s (Hssayeni,
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Table 5
List of studies that used wearable sensors and DL methods for the detection or monitoring of bradykinesia. ACC: accuracy; Sens: sensitivity; Spec: specificity; AUC: area under
the curve; ; RMSE: root mean square error; MAE: mean absolute error; FMI: fine motor impairment; acc: accelerometer; gyro: gyroscope; mag: magnetometer; CNN: convolutional
neural network; GRU: gated recurrent unit; ANN: artificial neural network; RCNN: recurrent CNN; PNN: probabilistic neural network; EWT: empirical wavelet transform; LOSO:
leave-one-subject-out; S-I: subject independent; S-D: subject dependent; RS: random shuffle.

Study # PD subjects
(# Controls)

Sensor type
(position)

Model
(Input)

Validation Performance

Prince et al.
(2019)

799
(524)

acc, touchscreen
(waist, hand)

CNN
(features)

k-fold
(stratified)

ACC 0.707 (FMI)
ACC 0.774 (gait)

Borzì et al.
(2020)

93 acc, gyro
(thigh)

ANN
(features)

LOSO
(S-I)

r 0.92
RMSE 0.42
AUC 0.920

Hssayeni,
Jimenez-
Shahed,
Burack et al.
(2021)

24
(9)

gyro
(wrist, leg)

Deep Ensemble
(features)

LOSO
(S-I)

r 0.79
MAE 5.95

Shichkina
et al. (2020)

10
(18)

acc, touchscreen GRU
(features)

Hold-out
(S-D)

ACC 0.890

Pfister et al.
(2020)

30 acc
(wrist)

CNN
(raw data)

LOSO
(S-I)

Sens 0.645
Spec 0.892
ACC 0.654

Park et al.
(2021)

25
(21)

gyro
(index, thumb)

ANN
(features)

k-fold AUC 0.926

Stamate
et al. (2018)

12 acc
(variable)

RCNN
(raw data)

LOSO
(S-I)

AUC 0.870
F-score 0.820

Lonini et al.
(2018)

20 acc, gyro
(hands, forearm, thighs)

CNN
(raw data)

Hold-out
(S-I)

AUC 0.776

Papadopou-
los, Iakovakis
et al. (2020)

40
(139)

acc, touchscreen
(hand)

CNN Ensemble
(features)

LOSO
(S-I)

Sens 0.83
Spec 0.91
AUC 0.87

Oung et al.
(2018)

50
(15)

acc, gyro, mag
(wrists, legs)

PNN
(EWT features)

k-fold
(RS)

ACC 0.899

Deng et al.
(2022)

698
(4329)

acc, touchscreen
(hand)

CNN
(raw data)

k-fold
(S-I)

AUC 0.944

Iakovakis
et al. (2020)

22
(17)

touchscreen
(hand)

CNN Autoencoder
(features)

Hold-out
(S-I)

AUC 0.97 (UPDRS 23)
AUC 0.93 (UPDRS 31)
Table 6
List of studies that used wearable sensors and DL methods for the detection or monitoring of dyskinesia. ACC: accuracy; Sens: sensitivity; Spec:
specificity; MAE: mean absolute error; acc: accelerometer; gyro: gyroscope; sEMG: surface electromyography; CNN: convolutional neural network;
BiLSTM: Bidirectional long short-term memory network; ANN: artificial neural network; S-I: subject independent; LOSO: leave-one-subject-out;
LOTO: leave-one-task-out.

Study # PD subjects
(# Controls)

Sensor type
(position)

Model
(Input)

Validation Performance

Pfister et al. (2020) 30 acc
(wrist)

CNN
(raw data)

LOSO
(S-I)

ACC 0.654
Sens 0.64
Spec 0.89

Roy et al. (2013) 19
(4)

acc, sEMG
(forearm, leg)

ANN
(features)

Hold-out
(S-I)

Sens 0.917
Spec 0.895

Hssayeni,
Jimenez-Shahed,
Burack (2021)

15 acc, gyro
(wrist, ankle)

BiLSTM
(features)

LOTO
(S-I)

r 0.87
MAE 1.74
Sens 0.850
Spec 0.850
Table 7
List of studies using wearable sensors and DL methods to detect other motor symptoms. acc: accelerometer; gyro: gyroscope; mag: magnetometer; CNN: convolutional neural
network; ANN: artificial neural; ACC: accuracy; Sens: sensitivity; AUC: area under the curve; S-I: subject independent.

Study # PD subjects
(# Controls)

Sensor type
(position)

Model
(Input)

Validation Performance

Moon et al. (2020) 524 acc, gyro, mag
(wrist, feet,
chest, waist)

ANN
(features)

k-fold
(stratified)

ACC 0.89
Sens 0.61
F-score 0.61

Iakovakis et al.
(2020)

22
(17)

touchscreen
(hand)

CNN Autoencoder
(features)

Hold-out
(S-I)

AUC 0.97
(MDS-UPDRS 22)
17
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Jimenez-Shahed, Burack, 2021), and 60 s (Pfister et al., 2020), with
(Pfister et al., 2020; Roy et al., 2013) or without (Hssayeni, Jimenez-
Shahed, Burack, 2021) overlap.

Deep learning models. Two out of three studies used extracted fea-
ures to feed a BiLSTM network (Hssayeni, Jimenez-Shahed, Burack,
021) and an ANN (Roy et al., 2013). A single study employed a CNN
odel fed with raw data.
Validation procedure. Several validation methods were used, includ-

ng 5-fold CV (Pfister et al., 2020), hold-out (Roy et al., 2013), and
ubject-dependent leave-one-task-out (LOTO) CV (Hssayeni, Jimenez-
hahed, Burack, 2021). Unlike the first two approaches, the latter
akes advantage of the availability of several recording sessions of each
articipant to perform subject-dependent classification. Specifically, it
onsists of training the classification/regression model with data from
ll but one session, which is used as a test.
Results. In one study (Hssayeni, Jimenez-Shahed, Burack, 2021),

regression model was used to predict dyskinesia severity using the
linical reference scale. In this case, Pearson’s correlation coefficient
nd MAE were used to evaluate the model’s performance. The other two
tudies (Pfister et al., 2020; Roy et al., 2013) performed classification
asks to detect the presence or absence of dyskinesia. Accuracy (Pfister
t al., 2020), sensitivity, and specificity (Roy et al., 2013) were used to
ssess the performance of the classification models. The LSTM predic-
ion was strongly correlated (𝑟 = 0.87) with the modified involuntary
bnormal movements scale (mAIMS) in Hssayeni, Jimenez-Shahed,
urack (2021). Sensitivity ranged from 0.64 (Pfister et al., 2020) to
.92 (Roy et al., 2013) and specificity from 0.89 (Hssayeni, Jimenez-
hahed, Burack, 2021) to 0.90 (Pfister et al., 2020; Roy et al., 2013).
NN fed with extracted features (Roy et al., 2013) showed superior
esults compared to other DL methods (Hssayeni, Jimenez-Shahed,
urack, 2021; Pfister et al., 2020).

.10.6. Other motor symptoms
Two studies also analyzed other motor aspects, including balance

Moon et al., 2020) and rigidity (Iakovakis et al., 2020). The first (Moon
t al., 2020) analyzed gait impairment in addition to balance, while
he second (Iakovakis et al., 2020) analyzed bradykinesia and FMI in
ddition to rigidity. Sample information, sensor technology, methods,
nd results are summarized in Table 7 and discussed below.
Data. In studies investigating balance (Moon et al., 2020) and rigid-

ty (Iakovakis et al., 2020), proprietary databases were used with 524
nd 22 PwPD, respectively. In more detail, in Moon et al. (2020), PwPD
n = 524) and those with essential tremor (n = 43) were equipped with
ix IMUs and asked to perform standing and walking tests. From these
ata, several balance and gait variables were extracted from inertial
ignals. In Iakovakis et al. (2020), data from typing sessions, including
emporal information associated with key presses and key releases (key
ynamics), were collected using a touchscreen and a mobile application
iPrognosis). These data were compared with the stiffness score using
he MDS-UPDRS Part III item 22 guidelines.
Pre-processing. Various preprocessing techniques were applied to

nalyze movement characteristics (Moon et al., 2020) and sequences
f key-stroke dynamics (Iakovakis et al., 2020). In Moon et al. (2020),
he set of balance and gait features was balanced using the SMOTE
echnique. In Iakovakis et al. (2020), a conditional filter was applied
o discard outliers (e.g., prolonged presses) from the key dynamics
equences. In addition, zero padding was applied to fill in smaller
equences.
Deep learning models. In Moon et al. (2020), an ANN architecture was

sed, fed with balance and gait features extracted using commercial
oftware (Moon et al., 2020). In Iakovakis et al. (2020), CNN coders
ere used to analyze the temporal information associated with key
ynamics.
Validation. The k-fold stratification was used in Moon et al. (2020)

ith a k equal to 3. This CV procedure was used to maintain the sample
18

ate for each class during training and evaluation. In Iakovakis et al. H
(2020), holdout-out validation was employed in a subject-independent
manner, ensuring the independence of subject data in training-test
subsets.

Results. In Moon et al. (2020), classification was used to distinguish
etween PD and subjects with essential tremor. In this study, the use
f ANN and movement features provided the best results in terms
f accuracy (0.89), sensitivity (0.61), and F-score (0.61) compared to
lassical ML algorithms. In Iakovakis et al. (2020), the best results in the
iagnosis of PD (AUC 0.97) were obtained using the predicted stiffness
ndices obtained from the CNN autoencoder fed with key dynamics data
see Table 7).

.11. Non-motor symptoms

Fifteen studies employed DL approaches to assess NMM. This section
escribes technological solutions based on wearable sensors and DL
ethods to assess different NMM of PD, including speech impairment

Section 4.11.1) and cognitive impairment (Section 4.11.2). A summary
f these symptoms is presented in the following subsections, where
he data set used, signal processing techniques, DL methods, validation
ethodologies, and results are reported and briefly discussed.

.11.1. Speech impairment
The review of the literature conducted in this study revealed eleven

rticles aimed at evaluating language impairment in PwPD through the
nalysis of vocal samples recorded using smartphones and professional
icrophones. Table 8 reports the information derived from the iden-

ified works, including sample size, sensor technology, methods, and
esults.
Data. Eleven articles (Berus, Klancnik, Brezocnik, & Ficko, 2018;

eng et al., 2022; Prince et al., 2019; Wan, Liang, Zhang, & Guizani,
018; Xiong & Lu, 2020; Zhang, 2017; Zhang, Wang, Zhang, Jin, &
hang, 2021) used freely available databases, including mPower (Bot
t al., 2016) and feature sets from University of California Irvine (UCI)
achine learning archives (Little et al., 2007; Sakar et al., 2013, 2019;
sanas et al., 2009). In more detail, the authors in Prince et al. (2019)
sed a subset of data from 1072 subjects (679 PwPD and 393 HC) from
he mPower database (Sage Bionetworks, 2016), a crowd-sourced cor-
us in which enrolled volunteers performed the required tests through
n iPhone application. All samples were collected unsupervised and
he expert’s diagnosis was reported by the participants themselves.
n this corpus, the speakers had to perform various motor tasks and
ecord the vowel /a/ in a sustained manner for 10 s. Similarly, in Deng
t al. (2022) recordings of the DREAM challenge on Parkinson’s dis-
ase (mPower) were used to compare FMI diagnosis with voice-based
iagnosis models. The data used for the voice analysis corresponded to
ecordings of the vowel /a/ (sustained mode) of 645 PwPD and 2084
C. In Berus et al. (2018), Wan et al. (2018), Xiong and Lu (2020) and
hang (2017), the UCI datasets provide pre-extracted feature vectors
alculated from samples recorded in different languages, recording
onditions, and techniques. In more detail, the authors in Xiong and Lu
2020) performed their analysis on the Parkinson’s Disease Classification
ata Set collected in Sakar et al. (2019), which includes recordings
f 188 PwPD and 64 HC pronouncing the vowel /a/ in a sustained
anner. In Wan et al. (2018), the authors’ main objective was to

stimate the severity of PD using smartphones, so they conducted their
nalysis on the Parkinson’s Telemonitoring Data Set collected in Tsanas
t al. (2009), which includes features extracted from sustained vowel
honations of 42 PwPD at an early stage of the disease engaged in a
ix-month telemonitoring tool. The authors of Zhang (2017) used two
ifferent UCI datasets for their analysis: the first Parkinson’s Data Set
ollected in Little et al. (2007) and consisting of features extracted
rom voice measurements of 31 individuals (23 PD), and the second
arkinson Speech Dataset with Multiple Types of Sound Recordings Data
et collected in Sakar et al. (2013) which includes 20 PwPD and 20

C. This second corpus was also used in Berus et al. (2018), whose
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authors analyzed not only the features derived from sustained vow-
els, but also nine Turkish words and a list of numbers. Finally, four
studies (Lauraitis, Maskeliūnas, Damaševičius, & Krilavičius, 2020b;

ung et al., 2018; Shichkina et al., 2020; Zhang et al., 2021) used
roprietary databases for their analyzes. In more detail, the authors
f Lauraitis et al. (2020b) collected 339 voice samples from 7 patients
ith neurological disorders (1 with PD) and 8 HC in 5 face-to-face
isits. The task is part of a mobile application proposed by the authors
hat guides users in reading a short text of a predefined poem and
ecords using the microphone of the mobile device. Similarly, the
ata set used for the analysis in Shichkina et al. (2020) was derived
rom voice samples collected through a mobile application. As reported
n the study, 28 subjects (10 with PD) were enrolled in the data
ollection procedure and asked to pronounce the vowel /a/ for as long
s possible. In Oung et al. (2018), voice recordings were recorded
sing a headset microphone when subjects sustained the vowel /a/
or as long as possible, trying to keep frequency and amplitude stable.
inally, (Zhang et al., 2021) explored the learning of multivariate time
eries representations for the diagnosis of chronic diseases. For this
urpose, the authors used two different data sets, the first consisting of
8 PwPD and 20 HC pronouncing different types of sound recordings,
nd the second comprising a heterogeneous data source consisting of
dvanced imaging, biological sampling, and clinical and behavioral
ssessments of 466 PwPD and 217 HC.
Pre-processing. Most of the reviewed studies did not report compre-

ensive information on the pre-processing techniques applied to the
nput signals, also due to the presence of pre-extracted feature sets.
egarding window lengths and overlap, only the authors of Lauraitis
t al. (2020b) reported the values adopted for the segmentation of
peech signals into time intervals (e.g., window length = 0.0052 ⋅Fs,

overlap = 0.0042 ⋅Fs). Five studies (Berus et al., 2018; Lauraitis et al.,
2020b; Prince et al., 2019; Shichkina et al., 2020; Wan et al., 2018)
applied a normalization step, which in Wan et al. (2018) was also
combined with a low-pass filter to de-noise the signal. In addition,
the authors of Lauraitis et al. (2020b) and Oung et al. (2018) applied
silence removal using a threshold approach (Lauraitis et al., 2020b)
or endpoint detection (Oung et al., 2018), while (Zhang et al., 2021)
used a filler algorithm to have predefined signal lengths before feature
extraction.

Deep learning models. Two studies employed RNN, including BiL-
STM (Lauraitis et al., 2020a, 2020b) and GRU (Shichkina et al., 2020).
On the other hand, two studies (Berus et al., 2018; Wan et al., 2018)
used ANN, and two studies (Deng et al., 2022; Prince et al., 2019) pro-
posed CNN models. Regarding (Xiong & Lu, 2020; Zhang, 2017; Zhang
et al., 2021), the use of autoencoders for automatic feature extraction
was proposed. However, in Xiong and Lu (2020) and Zhang (2017) the
features extracted by the autoencoder were used in conjunction with
the linear discriminant analysis (LDA) and k-nearest neighbors (kNN)
classifiers, while in Zhang et al. (2021) the use of MLP layers was
proposed for classification tasks. Finally, in a single study (Oung et al.,
2018), the EWT was calculated and used as input for a PNN.

Validation. Two studies (Berus et al., 2018; Wan et al., 2018) used
LOSO validation, which guarantees speaker independence in the case
of multiple recordings of the same individual. The k-fold CV approach
was employed in Deng et al. (2022), Lauraitis et al. (2020a), Oung
et al. (2018), Prince et al. (2019) and Xiong and Lu (2020). In Lauraitis
et al. (2020a), Oung et al. (2018), Prince et al. (2019) and Xiong
and Lu (2020), the number of folds was set to 10, while in Deng
et al. (2022) the number of folds was set to 5. Furthermore, as the
authors of Lauraitis et al. (2020a), Oung et al. (2018), Prince et al.
(2019) and Xiong and Lu (2020), the number of folds was fixed at
10, while in Deng et al. (2022), the number of folds was fixed at 5.
Furthermore, as the authors of Prince et al. (2019) demonstrated the
possibility of predicting PD in the presence of missing source data.
Specifically, the data set was previously divided into two subgroups
19

comprising individuals with missing and complete source data, to be e
used during the training/validation and testing phases, respectively.
Finally, four of the reviewed articles used a hold-out approach with
different percentages of subjects in training and testing sets: 70%–
30% in Lauraitis et al. (2020b), 80%–20% in Shichkina et al. (2020),
50%–50% in Zhang (2017), and 90%–10% in Zhang et al. (2021).

Results. Accuracy was used mainly to measure the performance of
odels to diagnose, predict, and monitor PD through speech analysis.

n more detail, accuracy values ranging from 0.8 (Wan et al., 2018) to
.98 (Zhang, 2017) were reported. In Prince et al. (2019), the authors
referred the F-score to the accuracy metric due to the unbalanced
istribution of the data set across classes, reporting an F-score of 0.850.
urthermore, the authors used sensitivity and specificity widely to
escribe the predictive capacity of the models. Regarding sensitivity,
t ranged from 0.73 (Wan et al., 2018) to 0.969 (Zhang et al., 2021),
hile specificity ranged from 0.725 (Wan et al., 2018) to 0.92 (Xiong
Lu, 2020). A single paper (Deng et al., 2022) reported an AUC of

.834. It is worth noting that Lauraitis et al. (2020a, 2020b), O’Day
t al. (2022), Shichkina et al. (2020) and Zhang (2017) only reported
ccuracy values.

.11.2. Cognitive aspects
Five studies used wearable technology and DL to investigate cogni-

ive aspects of PD, both for diagnostic and monitoring purposes. Two
tudies focused on the assessment of brain function (AlZubi et al., 2020;
h et al., 2020), two on the assessment of cognitive health (Lauraitis
t al., 2020a; Prince et al., 2019), and a single study (Dar et al.,
022) investigated emotional dysfunction. Table 9 shows information
rom the identified works, including sample size, sensor technology,
ethods, and results.
Data. Three studies (AlZubi et al., 2020; Lauraitis et al., 2020a; Oh

t al., 2020) used proprietary databases, while (Prince et al., 2019)
sed the mPower (Sage Bionetworks, 2016) database, and Dar et al.
2022) incorporated proprietary data and a combination of publicly
vailable data sets. More specifically, in Prince et al. (2019) memory
ctivity data were used to assess NMM of PD. Data were collected from
9 participants (25 PwPD and 14 HC), who were asked to recall a
rawing based on a grid of flowers that appeared on an iPhone screen.
n Oh et al. (2020), the authors proposed an EEG-based DL approach
o identify PD, based on proprietary data. Data collection involved 40
ubjects (20 PwPD and 20 age-matched HC). For this task, 5 min of EEG
n the resting state were recorded through a 14-channel EEG headset.
n AlZubi et al. (2020), a proprietary database of patients’ brain activity
as collected to predict changes in brain function. Data were collected

rom 16 PwPD using a deep brain simulation (DBS) sensor. During
his process, the electrodes of the DBS device were connected to a
mall (wearable) stimulator/sensor placed at the chest. Neural and
ognitive deficits were also studied in Lauraitis et al. (2020a), based
n self-administered cognitive tests. The self-administered gerocogni-
ive examination (SAGE) was digitized in a mobile application; data
ere collected from 7 subjects with neurological disorders (1 PwPD,
subjects with cognitive and motor deficits) and 8 HC. Finally, an

EG-based approach was also adopted in Dar et al. (2022), to classify
motional states in PD. Two public data sets (AMIGOS, SEED-IV) were
ncorporated into a proprietary data set for PD. The AMIGOS and PD
ata sets contained labels for six basic emotion categories (i.e. hap-
iness, sadness, surprise, fear, anger, and disgust), while the SEED-IV
ncluded the classes neutral, sad, fear, and happy. Similarly to the PD
ata set, the AMIGOS database consisted of a 14-channel EEG recorded
hrough a headset. In contrast, the SEED-IV data set comprises 64-
hannel EEG recordings, from which only 14 channels were selected
or standardization.
Pre-processing. Band-pass filtering and threshold-based artifact re-

oval were used for EEG data analysis (Oh et al., 2020). Other pro-
essing techniques included normalization in DBS (AlZubi et al., 2020)
nd EGG (Dar et al., 2022) data. In Lauraitis et al. (2020a) and Prince

t al. (2019), no preprocessing was reported for data collected from



Expert Systems With Applications 229 (2023) 120541L. Sigcha et al.
Table 8
List of studies using wearable sensors and DL methods for the evaluation of speech impairment. SP: smartphone; ACC: accuracy; Sens: sensitivity; Spec: specificity; EWT: empirical
wavelet transform; CNN: convolutional neural network; PNN: probabilistic neural network; GRU: gated recurrent unit; BiLSTM: Bidirectional long short-term memory network;
LOSO: leave-one-subject-out; S-I: subject independent; S-D: subject dependent; RS: random shuffle.

Study # PD subjects
(# Controls)

Sensor type Model
(Input)

Validation type Performance

Prince et al. (2019) 679
(393)

SP microphone CNN
(features)

k-fold
(stratified)

ACC 0.782
F-1 score 0.850

Lauraitis et al.
(2020b)

1
(8)

SP microphone BiLSTM
(features)

Hold-out
(S-D)

ACC 0.945

Xiong and Lu
(2020)

188
(64)

microphone AutoEncoder
(features)

k-fold ACC 0.91
Sens 0.94
Spec 0.92

Wan et al. (2018) 62
(20)

SP microphone ANN
(features)

LOSO
(S-I)

ACC 0.80
Sens 0.73
Spec 0.725

Shichkina et al.
(2020)

10
(18)

SP microphone GRU
(features)

Hold-out
(S-D)

ACC 0.890

Zhang (2017) 71
(28)

microphone AutoEncoder
(features)

Hold-out
(S-D)

ACC 0.98

Lauraitis et al.
(2020a)

15
(8)

SP microphone BiLSTM
(features)

K-fold
(RS)

ACC 0.943

Oung et al. (2018) 50
(15)

microphone PNN
(EWT features)

k-fold
(RS)

ACC 0.911

Deng et al. (2022) 645
(2084)

SP microphone CNN
(raw data)

k-fold
(S-I)

AUC 0.834

Zhang et al. (2021) 514
(237)

microphone AutoEncoder
(features)

Hold-out
(RS)

ACC 0.946
Sens 0.969

Berus et al. (2018) 20
(20)

microphone ANN
(features)

LOSO
(S-I)

ACC 0.865
Sens 0.889
Spec 0.840
Table 9
List of studies that used wearable sensors and DL methods for cognitive aspects. SP: smartphone; ACC: accuracy; Sens: sensitivity; Spec: specificity; EEG: Electroencephalography;
DBS; Deep brain simulation; ANN: artificial neural; CNN: convolutional neural network; HTSMNN: Heuristic tubu optimized sequence modular neural network; LSTM: Long short-term
memory network; S-I: subject independent.

Study # PD subjects
(# Controls)

Sensor type Model
(Input)

Validation type Performance

Prince et al. (2019) 25
(14)

SP touch screen ANN Ensemble
(features)

k-fold
(stratified)

ACC 0.692
F-1 score 0.790

Oh et al. (2020) 20
(20)

EEG headset CNN
(raw data)

k-fold
(stratified)

ACC 0.883
Sens 0.847
Spec 0.918

AlZubi, Alarifi, and
Al-Maitah (2020)

16 DBS HTSMNN
(features)

Hold-out ACC 0.982
Sens 0.978

Lauraitis et al.
(2020a)

1
(8)

SP touch screen LSTM
(Ensemble)
(features)

k-fold ACC 0.961
AUC 0.983
Sens 0.961
Spec 0.953
F1-score 0.96

Dar, Akram,
Yuvaraj, Gul
Khawaja, and
Murugappan (2022)

20
(68)

EEG headset CNN+LSTM
(features)

LOSO
(S-I)

ACC 0.751
20
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smartphone screens. In more detail, in Dar et al. (2022) EEG data from
the SEED-IV data set were resampled at 200 Hz and PD data were
further resampled at 128 Hz (Dar et al., 2022). The authors of Oh
et al. (2020) used a band-pass filter (1–49 Hz) for EEG and applied
a threshold technique (100 𝑚𝑚𝑢𝑉 ) to discard artifacts due to blinking.

he EEG signals were segmented into 2 s windows for further analysis.
n Dar et al. (2022), all EEG recordings were referred to the common
ean, and the first 5 s of each EEG recording were considered as

aseline activity. Baseline removal was performed in 1 s mini-epochs by
ubtracting the mean baseline value from the raw EEG activity in each

s mini-epoch. The mini-epochs were further standardized using z-
core normalization. Frequency bands (i.e. delta, theta, alpha, beta, and
amma) were extracted from each mini-epoch through a filter and used
s a feature vector for the DL architecture. Topological scalp maps were
lso constructed to observe, for each brain region, the contribution of
ifferent frequency bands in the elicitation of emotional states. Little
nformation on the preprocessing of the SAGE questionnaire scores was
rovided in Lauraitis et al. (2020a).
Deep learning models. A single study (Prince et al., 2019) used an

nsemble consisting of an ANN, logistic regression (LR), and random
orest (RF) fed by features. In Oh et al. (2020), a CNN fed with raw
ultichannel EEG data was implemented. In AlZubi et al. (2020), the
se of a sequence-optimized modular neural network (kHTSMNN) was
roposed, fed with features. This network decomposes the input fea-
ures into small tasks to reduce complexity; furthermore, the number of
idden layers was dynamically determined during the analysis process.
n Lauraitis et al. (2020a), an ensemble method was implemented
omprising both DNN such as LSTM, and shallow models. Finally,
n Dar et al. (2022) the authors employed a CRNN consisting of a CNN,
n LSTM, and an MLP.
Validation. In four studies, a k-fold CV was adopted during training,

ith k set to 10 (Lauraitis et al., 2020a; Oh et al., 2020; Prince et al.,
019) and 20 (Dar et al., 2022). Furthermore, stratified approaches
ere used in Oh et al. (2020) and Prince et al. (2019) to divide the
ata. A single study (AlZubi et al., 2020) used the hold-out validation
ethod, with a split ratio of 80/20% for the training and test set,

espectively. Furthermore, in Dar et al. (2022) the authors incorporated
OSO CV to assess the generalizability of the proposed architecture.
Results. All studies reported overall accuracy as a metric to measure

odel performance, with values ranging from 0.692 (Prince et al.,
019) to 0.982 (AlZubi et al., 2020). An AUC of 0.983 was reported
n Lauraitis et al. (2020a). In both (Lauraitis et al., 2020a; Oh et al.,
020), sensitivity and specificity metrics were also provided, with
alues of 0.847 and 0.918 in Oh et al. (2020) and 0.961 and 0.953
n Lauraitis et al. (2020a), respectively. The authors also reported the F-
core with values of 0.790 in Prince et al. (2019) and 0.960 in Lauraitis
t al. (2020a).

.12. Results summary

The results of the review indicate that the combination of DL
nd wearables presents attractive solutions to objectively assess motor
ymptoms and NMM in PD. The use of wearables allows for the col-
ection of different data modalities (e.g., inertial signals, bioelectrical
ignals, speech recordings, questionnaire data, etc.) in an economic
nd non-intrusive fashion. In addition, the application of DL techniques
rings powerful methods for processing these data in their raw forms,
educing the efforts of pre-processing and feature engineering tasks
i.e., filtering, data transformation, feature extraction, and feature se-
ection). A summary of application areas, wearable technology, DL
lgorithms, validation methodologies, data source, and algorithmic
pproaches reported in the selected studies is presented below.
Application area. In total, sixty-nine studies were identified that used

a combination of wearables and DL to assess motor symptoms and
NMM in PD. The most common application area was disease monitoring
21

(n = 41, 60%), followed by computer-assisted diagnosis (n = 25, 37%), u
while only three studies (4%) were identified to focus on predicting
response to treatment.

Symptoms. Fifty-nine studies (85%) focused on the analysis of motor
ymptoms, while ten studies (15%) addressed NMM. Among the studies
onsidered in this review, only five studies (Deng et al., 2022; Lauraitis
t al., 2020a; Oung et al., 2018; Prince et al., 2019; Wan et al., 2018)
tudied both motor symptoms and NMM simultaneously. Regarding
otor symptoms, different motor manifestations were studied, includ-

ng cardinal symptoms such as tremor, bradykinesia, and rigidity. In
ddition, other motor aspects such as FOG, dyskinesia, and gait im-
airment were addressed. In detail, more than half of the studies were
onducted to assess gait disturbances and tremor. The most studied
otor symptom was gait impairment (n = 22), which was used for

omputer-assisted diagnosis and prediction of disease severity. Tremor
n = 16) and FOG (n = 15) were studied to monitor disease severity. On
he other hand, bradykinesia and FMI (n = 12) were evaluated for the
iagnosis and monitoring of PD. Other important motor aspects such
s dyskinesia (n = 3), balance (n = 1), and rigidity (n = 1) were poorly
ddressed. With regard to NMM, most of them focused on diagnosis
nd monitoring. Speech impairment (n = 11) was the most frequently
ssessed symptom, followed by brain dysfunction (n = 2), cognitive
ealth (n = 2), and emotional expression disturbance (n = 1).
Wearable technology. Inertial sensors were the most common sensing

echnology, accounting for 67% of the studies reviewed. Specifically,
he accelerometer was the most used sensor (38%), followed by the
yroscope (23%). Force sensors (14%) were used to assess gait im-
airment, including FOG, while the smartphone touchscreen (6%) was
sed to monitor bradykinesia and FMI. EEG and EMG sensors were
ittle used (< 3%), while other types of physiological sensors were
ot employed (e.g., ECG, galvanic skin response). The upper body
ensors were located on the wrist (18%), while the lower body sensor
ositions included the waist (12%), legs (23%), and feet (6%). The
MG sensor was attached to the forearm, whereas the EEG sensor was
ttached to the scalp. The authors developed the sensing devices in
7% of the cases, while commercially available devices were used in
he remaining works. A large variety of commercial sensors have been
sed, including smartphones (18%), which represent the most widely
sed technology. Surprisingly, few studies (4%) exploited the potential
f consumer smartwatches to monitor signs of PD. Instead, dedicated
ardware (e.g., commercial IMUs) was mainly used.
Deep learning algorithms and inputs. CNNs were the most widely used

L model (52%), followed by RNN-based architectures (24%), ANN
ased on MLP (14%), and autoencoders (7%). In most studies, CNN
ayers were often used for feature extraction, while MLP-based blocks
ere cascaded to perform classification and regression tasks. CNN
locks were often fed with raw data, hand-created features, or sensor
ignals transformed in the frequency domain using, for example, FFT,
WT, DWT, or Mel’s spectrogram. The use of CNN was more extensive
han RNN, although the latter was designed to process time series and
apture temporal dependencies. This could be due to the faster training
ime and lower computational complexity of CNN models compared to
NNs. However, the potential of RNNs to process sequential data has
een exploited more than that of classical ANNs, which are usually fed
ith hand-created features.

In four studies, autoencoder architectures (based on MLP and CNN
ayers) were used to process hand-created features, often used for di-
ensional projection. Autoencoders were mainly used in studies related

o speech disorders (Xiong & Lu, 2020; Zhang, 2017; Zhang et al.,
021), but also to assess bradykinesia (Iakovakis et al., 2020) and
OG (Mohammadian Rad et al., 2018). Only three studies proposed
he combination of convolutional and recurrent layers in the same net-
ork (Dar et al., 2022; Li et al., 2020; Sigcha et al., 2020). Finally, only

wo studies (Oğul & Özdemir, 2022; Xia et al., 2020) reported the use
f attention mechanisms in combination with recurrent architectures to
mprove performance in gait disorders. Attention mechanisms are often

sed in transformer-based architectures to analyze an input sequence
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and decide which parts of the sequence are important for a specific
task.

In addition, other DL approaches and variants of the standard
DL architectures were proposed including recurrent CNN (Stamate
et al., 2018), multitask CNN (Sigcha et al., 2021), dynamic neural
network (Roy et al., 2013), GRU (Shichkina et al., 2020), BiLSTM (Lau-
raitis et al., 2020a, 2020b; Liu et al., 2021), probabilistic neural net-
works (PNN) (Oung et al., 2018), heuristic tubu optimized sequence
modular neural network (HTSMNN) (AlZubi et al., 2020) and ensemble
models composed of DL networks (Hssayeni, Jimenez-Shahed, Burack
et al., 2021; Lauraitis et al., 2020a; Papadopoulos, Iakovakis et al.,
2020; Prince et al., 2019). Surprisingly, few studies (Bikias et al., 2021;
Hssayeni, Jimenez-Shahed, Burack et al., 2021; Iakovakis et al., 2020;
Lin et al., 2020; Naghavi & Wade, 2022; Setiawan & Lin, 2021) used
transfer learning to train models, although transfer learning is widely
used in areas such as image analysis. Transfer learning is a strategy in
which a source (pre-trained) model designed for a task is reused as the
starting point for a secondary task.

Validation. In this review, the performance of the algorithms was not
compared among the studies due to the different validation methodolo-
gies and databases used in each study. However, validation is a crucial
step in the development of a model that can be generalized beyond the
sample population. In some studies, DL models were trained on a subset
of patients and tested on new unseen subjects. This process allows for a
general model that can be used on new subjects, without the need for
further training. Other studies developed subject-specific DL models,
trained and tested on each (single) subject. This approach provides
better performance and is more sensitive to the motor fluctuations of a
single patient. However, a specific model needs to be implemented for
each subject, and this increases the difficulty in model development
and reduces patients’ compliance. Some works used an RS k-fold CV,
which does not guarantee subject independence. This increases the
risk of overfitting and reduces the generalizability of the implemented
models. Finally, most studies used internal validation methods (training
and testing division and CV), while only two studies used external
validation on a different data set (Li et al., 2020; Shalin et al., 2021).

Data. The use of proprietary or public databases varied according to
he specific symptom under investigation. Publicly available data sets
ere frequently used for the assessment of gait (64%), speech (64%),
nd cognitive (60%) impairment, and for FOG detection (53%). On
he other hand, public data were scarcely used for the evaluation of
radykinesia (25%). Finally, only proprietary data were used for the
etection and estimation of the severity of tremor and dyskinesia. The
umber of subjects enrolled varies widely among studies and symptoms
nder investigation. The sample size was reduced in FOG detection (4
tudies > 20 PD and 1 > 50) and dyskinesia (1 study > 20 PD). On the
ther hand, the number of subjects gradually increases, moving from
he detection of tremor (9 studies > 20 and 4 > 50) to the estimation
f bradykinesia (11 studies > 20 and 6 > 50) and to the analysis of
peech impairment (10 studies > 20 and 7 > 50). The experimental
rotocol designed for data collection varied across applications. Most
tudies used standardized exercises and/or motor tasks (e.g., MDS-
PDRS items, walking tasks). Some studies performed data acquisition
sing simulated ADL in supervised settings. Finally, a limited number
f works (Iakovakis et al., 2020; Papadopoulos, Iakovakis et al., 2020;
apadopoulos, Kyritsis et al., 2020; Pfister et al., 2020; San-Segundo
t al., 2020) analyzed data from free-living activities carried out in
nsupervised environments.
Symptom-specific algorithmic approaches. As shown in the previous

ections, most studies related to the assessment of motor aspects used
NN-based architectures to process multivariate data collected with

nertial sensors. In addition, RNN was the preferred method for pro-
essing data for the assessment of NMM, including speech impairment,
rain dysfunction, cognitive health, and emotional expression dysfunc-
ion. For validation purposes, most of the results of these algorithmic
pproaches were compared with scores obtained with standardized
22

cales such as MDS-UPDRS (Part III) or mAIMS. u
More specifically, to assess gait impairment, most studies used raw
ignals captured by force sensors adapted in the insoles to feed CNN-
nd RNN-based architectures. The best performance was obtained using
STM and BiLSTM recurrent networks. In addition, most studies used
ignal segmentation (i.e., sliding windows) with window sizes up to
0 s, while eight studies used entire waking recordings (i.e., 2 min)
o achieve an accuracy of up to 1.0 in the diagnosis of PD and the
ssessment of disease severity.

For FOG evaluation, most studies used raw signals captured by
ccelerometers located at the ankles and thighs to feed CNN and
NN-based architectures. The best performance in FOG detection was
btained by feeding these DNNs with data transformations, including
WT and FFT. Most studies used sliding windows of a fixed size of 1–
s, due to the need for algorithms capable of running in real time for

ait assistance.
Most studies used feature sets extracted from accelerometers and

yroscopes placed on the wrist to assess tremor severity. These data
ere used to feed CNN, LSTM, and ANN-based architectures. Most

tudies reported higher accuracy using CNN and its variants (i.e. re-
urrent, multitask, or ensemble) in combination with sliding windows
f fixed size ranging from 2 s to 5 s. No constraints on window size
ere identified, however, short windows were the preferred method

or signal segmentation.
For the assessment of bradykinesia, most studies used feature sets

xtracted from data recorded by accelerometers and gyroscopes located
n the upper and lower limbs. These data were commonly used to feed
NN- and ANN-based architectures to achieve higher accuracy and
trong correlation. The most widely used approach was based on the
se of 5–60 s sliding windows and data corresponding to the execution
f MDS-UPDRS tasks (Part III). The use of larger sliding windows was
ound compared to other motor manifestations, probably because the
ymptom is assessed by observing the evolution of repetitive exercises.

All studies related to dyskinesia used accelerometers, alone or in
ombination with gyroscopes or sEMG sensors located in the upper
nd lower limbs. The feature sets and raw signals collected from these
ensors were used to feed CNN, BiLSTM, and ANN-based architectures.
ariable results were reported in the detection of dyskinesia and pre-
iction of severity using scales such as mAIMS. Finally, the preferred
ethods for signal segmentation were 2–60 s sliding windows.

For balance assessment, a series of gait and balance character-
stics were extracted from inertial sensors placed on different parts
f the body. Data were processed using an ANN-based architecture,
hich provided an accuracy of 0.89 to discriminate between PwPD and

ubjects with essential tremor.
To assess rigidity, a set of features extracted from typing sessions

as collected using the touch screen of a mobile phone. Data were
rocessed with a CNN autoencoder to extract temporal information and
iagnose PD. This approach reported high accuracy compared to the
DS-UPDRS assessment.

For speech disturbances, most studies have used pre-extracted fea-
ure sets obtained from speech signals captured by the smartphone
icrophone. These data were used to feed RNN- and CNN-based ar-

hitectures. The proposed approaches were used to identify between
D and CH and estimate the severity of PD. The highest performance in
D diagnosis based on speech analysis was obtained using autoencoder-
xtracted feature sets, while signal segmentation information was not
learly reported.

To assess brain function, two studies used feature sets and raw data
xtracted from EEG and DBS systems to feed CNN- and ANN-based
rchitectures, respectively. Sufficient accuracy in the diagnosis of PD
as reported using raw EEG signals segmented into 2 s windows and a
NN, while changes in brain function were detected with high accuracy
sing a DBS system and a modular neural network.
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For the assessment of cognitive health, two studies used memory
and cognitive test data collected with a smartphone touchscreen to
analyze neural and cognitive deficits. These data were used to feed
ensemble architectures comprising ANN and LSTM models, in addition
to classical ML (shallow) algorithms. The best results were obtained
using an ensemble that included an LSTM model. In these approaches,
data segmentation was not used due to the nature of the data.

Finally, emotional dysfunction was assessed in a single study. A set
of features was extracted from the EEG data to detect emotional states
in PwPD. Data was used to feed an architecture that combined CNN
and LSTM layers. In this approach, a sliding window of 1 s was used
for signal segmentation.

5. Discussion

The results of this review show that the adoption of DL techniques
and wearables for PD assessment is currently at an early stage, as
evidenced by the low number of published studies, compared to the
number of studies employing classical ML reported in Mei et al. (2021)
and Tanveer et al. (2022). However, there is a growing interest in the
use of DL and wearables to assess PD, as evident from the number of
studies published since 2018 (n = 66, 96%).

The main reasons for the attractiveness of DL techniques lie in their
otential to provide superior performance compared to classical ML
pproaches and the opportunity to process data in their raw form.
he latter can reduce the effort of designing feature sets limited by
uman knowledge in a specific task. Furthermore, DL can benefit from
he rise of paradigms such as big data in healthcare, particularly for
he collection of large amounts of data obtained from sources such as
earable or smart devices.

Although the combination of DL and wearable technology has been
pplied in areas such as diagnosis, treatment response prediction, and
onitoring of motor symptoms and NMM, this review highlights sev-

ral challenges that limit the implementation of these technologies
n clinical practice. These challenges include the transparency of the
lgorithms, implementation requirements (a large amount of data and
omputational processing), and imbalance in the type of symptoms
nalyzed.

In this context, the following subsections discuss these challenges
nd provide recommendations for improving future work. Specifically,
he discussion section is divided into the following subsections: Sec-
ion 5.1 reports and discusses the challenges of PD assessment with
earables and DL algorithms. Section 5.2 provides suggestions to over-

ome the current challenges. Finally, the limitations of this review are
ummarized in Section 5.3.

.1. Challenges

Although DL techniques have gained notoriety for producing SOTA
esults using large data sets, one of its main criticisms is that the
esulting models are difficult to interpret. This is a major problem in
he algorithmic domain, causing models to be viewed as ‘‘black boxes’’
ue to the lack of explainability and statistical interpretability of the
echanism involved in model predictions. This situation limits the im-
lementation of this technology in clinical practice, as the predictions
ould be used in decision-making to adapt patient treatments or to
upport disease diagnosis.

With regard to the symptoms analyzed, most of the studies reviewed
86%) focused on the analysis of motor symptoms, while the remaining
tudies (14%) analyzed NMM. This indicates a strong imbalance in the
nalysis of the two aspects, although NMM occurs in approximately
0% of patients at all stages of the disease (Chaudhuri, Odin, Antonini,
Martinez-Martin, 2011). This may be due to the fact that wearable

echnology is generally designed to analyze physical variables rather
han cognitive aspects; this still represents a challenge in objective
onitoring to provide a holistic approach to disease management.
23
Furthermore, more than half of the studies examined in this review
were conducted to assess gait disturbances and tremor. Other important
motor aspects such as dyskinesia, postural instability, and rigidity
were considered in less than 7% of the studies. However, these latter
motor aspects have a strong impact on patient’s daily life and routines,
limiting motor performance and increasing the risk of falls.

For data collection, wearables have been widely used to assess
motor symptoms, mainly using inertial sensors. On the other hand,
a small number of wearables (e.g., microphones, smartphones, and
portable EEG) have been used to monitor NMMs. This imbalance
reveals the lack attention paid to monitoring NMM and the difficulty
of assessing aspects related to mental health. With regard to NMM, the
use of microphones and smartphones is a clear option to collect data
remotely or in the clinic, given the nature of the data analyzed to assess
aspects of language and cognition. However, for motor symptoms, great
heterogeneity in data collection methodologies was identified, as well
as low adoption of consumer devices such as smartwatches. Therefore,
consensus on the number, type of sensors, and body position remains
unclear, regardless of data analysis technologies.

In addition, most of the studies examined were conducted in the lab-
oratory, often using standardized exercises (e.g., MDS-UPDRS Part III or
TUG) and programmed ADLs (e.g., walking, sitting, standing, reading,
and writing). Only five studies (Iakovakis et al., 2020; Papadopoulos,
Iakovakis et al., 2020; Papadopoulos, Kyritsis et al., 2020; Pfister et al.,
2020; San-Segundo et al., 2020) used data collected in free-living and
wild-life contexts.

Often the predictive performance of the model obtained under free-
living conditions tends to be lower than that obtained in the laboratory.
However, results obtained under free-living conditions can better repre-
sent the symptomatology and characteristics of PD, avoiding occasional
evaluations or the effect of Hawthorne observation. Therefore, there is
still a need to improve the accuracy and results of systems designed for
free-living monitoring, considering the complexity and heterogeneity of
PD manifestations in daily life.

Furthermore, the size of the data sets used to train and evaluate
the predictive models varied widely between studies. Despite larger
data sets may be useful for improving the predictive power of DL-based
approaches (Sarker, 2021), most of the studies reviewed in this survey
considered a low number of subjects (𝑛 < 30). The use of data of a
low number of participants may not be representative of the entire PD
population, given the heterogeneity of symptoms. This situation hinders
the development of generalized models that can be implemented in
real-world clinical or research applications.

Finally, this review reveals that private databases were used more
frequently (54%) than public databases. In specific, only private data
sets were used to assess tremor and dyskinesia, whereas few public
databases were used for FOG detection (14%) and the estimation of
bradykinesia (25%). In contrast, public databases were used in all
studies related to speech impairment and 68% of the studies related
to gait impairment. According to these results, the amount of research
articles to assess these latter manifestations seems to be driven by the
availability of public databases. Conversely, the use of proprietary data
sets and the lack of gold-standard databases can severely limit the
comparison between studies, the generalizability of results, and the
advancement of the SOTA.

5.2. Guidelines

To overcome the identified challenges and improve reporting stan-
dards, some guidelines are proposed in the following subsection. These
could encourage the implementation of DL algorithms in combina-
tion with wearable technology as complementary tools in clinical and
research contexts, as well as help improve the usefulness of current
studies in future research.
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First, the performance and interpretability of the model are equally
important for healthcare problems. Physicians are unlikely to adopt a
system they cannot understand. Therefore, model explainability and
interpretability of results are key steps in developing reliable and
trustworthy systems for PD evaluation (Miotto, Wang, Wang, Jiang,
& Dudley, 2017). Future research on PD assessment could consider
the use of interpretation tools to provide more explainable analysis
methods (Li et al., 2022) to support the end-users adoption.

Second, despite the potential of combining DL and wearables for PD
assessment, few studies have discussed actual implementations in clin-
ical practice, providing limited evidence of the advantages of this tech-
nology over standard assessment methods. Therefore, clear evidence
is needed to determine the benefits and validity of this technology
in real-life conditions. The use of standardized tasks and supervised
environments may be the basis for the development of new automatic
assessment tools. Moreover, passive PD monitoring in the home envi-
ronment and free-living data can help demonstrate the advantages of
DL and wearables over other approaches.

Third, in regard to the area of application, most studies focused
on PD monitoring (60%) and diagnosis (36%), while predicting the
response to therapy and rehabilitation are underrepresented applica-
tions. These latter aspects should be further investigated because proper
planning and implementation of therapy in the early stages can improve
the quality of life and present a long-term benefit for the patient’s
health (Kilzheimer, Hentrich, Burkhardt, & Schulze-Hentrich, 2019).
Furthermore, a clear imbalance in the assessment of symptoms has been
observed. A large number of studies have focused on symptoms such as
gait impairment, FOG, tremor, and speech disorders. In part, progress
in the assessment of these symptoms is due to the existence of a wide
variety of data sets, which provide a solid basis for research and the
development of new methods. In this context, new open-access sources
are needed to promote research on other significant features such as
rigidity, dyskinesia, postural instability, and cognitive impairment.

Fourth, in regard to the evaluation of the quality report, several
weaknesses were identified that can be improved in future studies. Most
of the studies did not provide sufficient details on the implementation
of DL models, training settings, and the validation procedure. This
reduces the transparency of the reported results due to the limited
evidence of accuracy in different contexts. This situation severely limits
the reproducibility of results and the generalizability of algorithmic
approaches to other data sets. Only a few studies (Camps et al., 2018;
Deng et al., 2022; Lonini et al., 2018; O’Day et al., 2022; Papadopoulos,
Iakovakis et al., 2020; Pfister et al., 2020; Pham, 2021; Prince et al.,
2019; Shichkina et al., 2020; Zhao et al., 2022) published the architec-
ture and parameters of the DL model in online repositories. In addition,
a comprehensive performance evaluation was rarely reported in the
studies. As can be seen in Fig. 10, accuracy was reported in less than
70% of the studies, sensitivity and specificity in less than 60%, and
AUC and F–score in less than 35%. However, the AUC is one of the
most important evaluation metrics to verify the performance of any
classification model. Unlike sensitivity and specificity metrics, which
depend on the classification threshold selected, the AUC is threshold-
independent and provides an overall measure of the model’s diagnostic
ability. Furthermore, the F–score (i.e. the harmonic ratio between
sensitivity and accuracy) is preferable to accuracy when dealing with
unbalanced data sets, which are common in the assessment of PD
symptoms. Regarding the regression task, correlation coefficients were
always reported (Fig. 10). However, error measures were reported less
frequently (MAE: 57%, RMSE: 29%), although these metrics are crucial
for assessing the goodness of fit by providing the degree of deviation
24

from target values.
Finally, making the developed algorithms and models fully and
publicly available and sharing the data used for experiments is im-
portant for several reasons. First, the use of databases available online
allows a direct comparison of methods and results. Furthermore, the
problem of a small and unrepresentative sample can be solved by
using different data sets collected under similar conditions. Finally,
different datasets can be used as external validation test sets (Borzì,
Sigcha, Rodríguez-Martín, & Olmo, 2023; Collins et al., 2014), which
are useful for verifying the generalizability of the developed model.
Likewise, the transparency of the architecture and parameters of the DL
model, together with the training settings, is of paramount importance
for the reproducibility of the results. Therefore, it is recommended to
provide detailed information on all model-building procedures and the
optimization process. Additionally, the model information should be
reported in such a way that the developed algorithm can be reproduced.
Finally, sharing the model and/or the code used for the experiments (as
done in O’Day et al. (2022) and Roy et al. (2013)) would ensure the
immediate reproducibility of the results, thus considerably reducing the
time and effort devoted to their reproduction.

5.3. Limitations of this study

In this review, studies published within the last 10 years were
considered, with most of them published within the last three years.
The strong positive publication trend recorded is set to increase in the
coming years. Therefore, a large number of new research papers will
soon be available. Future systematic reviews and literature surveys will
be able to make use of the larger number of available studies, providing
additional information and new insights.

A total of sixty-nine studies were found that used DL and wearable
sensor data to assess PD symptoms. However, these aspects were not
equally represented. In particular, motor symptoms were studied much
more than NMM. Furthermore, some motor aspects (e.g., gait distur-
bances, tremor) were addressed much more frequently than others
(e.g., rigidity, dyskinesia, postural instability), with the latter being
addressed in less than 4% of the articles. The same imbalance was ob-
served in the non-motor aspects, where the number of studies on speech
disorders was three times higher than the number of studies focusing
on all other non-motor disorders. In summary, a strong imbalance in
the assessment of symptoms was observed. Thus, comparative analyses
of methods and results are limited to some aspects of PD, while others
remain underrepresented or even unexplored.

Comparison of model performance between studies may provide
useful information for future research studies. However, the hetero-
geneity of the samples under investigation and the validation methods
did not allow solid conclusions to be drawn. Indeed, the use of propri-
etary data sets and the lack of standards for the validation phase limit
the comparison of methods and results between studies.

6. Conclusions

The need for objective monitoring of PD has led to the develop-
ment of systems for the automatic assessment of motor and non-motor
symptoms. These systems have used wearable technology and artificial
intelligence to provide objective monitoring mechanisms in various
contexts, such as the laboratory, the clinic, and free life. In this con-
text, DL methods are powerful tools that allow computers to learn
from a large amount of data collected with wearable technology in a
cost-effective and non-invasive manner.

According to this review, the use of wearable sensors to detect
motor symptoms and NMMs is widely adopted. However, the adoption
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of DL techniques as data processing mechanisms is currently under
development, as evidenced by the large number of studies conducted
under laboratory conditions. Therefore, the clinical adoption of these
technologies is still limited in clinical practice. This is due to the lack of
clear evidence of the advantages of this technology over standard data
analysis methods.

Although the use of DL enabled SOTA results, this study reveals
that researchers downplayed the importance of interpretability in favor
of obtaining significant improvements in model performance. Further-
more, several challenges related to the transparency and interpretabil-
ity of algorithms should be addressed. This would increase acceptability
by physicians and support the gradual adoption of these technologies
and the development of reliable and trustworthy systems. Furthermore,
a significant imbalance in the area of application was observed, with
monitoring being the most common area of application, and predict-
ing response to therapy being the least studied. In addition, a small
number of studies were observed on specific (but important) features of
PD, such as cognitive impairment or balance. Furthermore, significant
heterogeneity was identified in the sample size (most studies were
conducted with data from only a few PwPD) and in the use of different
algorithmic approaches. However, CNN and RNN architectures were
identified as the preferred methods to analyze data collected from
wearable devices, including consumer devices such as smartphones and
smartwatches.

Finally, this review proposes some guidelines to overcome the iden-
tified challenges. These aim to improve reporting standards and in-
crease the usefulness of future research by making algorithms and
data available. This would allow external validation in various contexts
or the application of advanced techniques such as transfer learning.
Furthermore, the interpretability of the algorithms should be addressed
to increase the acceptability of this technology and enable the develop-
ment of reliable systems for PD assessment. Also, the application of the
developed wearable solutions under real-life conditions could be useful
to provide insights into the benefits of combining these technologies for
the evaluation of different motor symptoms and NMMs, as well as the
application of technologies such as transfer learning.

Future trends include advances in both hardware components and
the algorithmic area. The former includes the use of minimally inva-
sive wearable technologies. Consumer devices such as smartphones,
smartwatches, and smart rings can be used to collect and analyze
data in an environmentally friendly way. Moreover, new advances in
smart clothes and smart patches would enable continuous monitoring
of mobility in unsupervised contexts. Multimodal data including move-
ment and physiological signals (e.g., ECG, PPG, GSR) would allow a
better understanding of motor and non-motor aspects of PD. Regard-
ing the development of algorithms, the collection of large amounts
of data in unsupervised contexts and the use of semi-supervised DL
approaches would increase the detection and estimation performance
of the severity of PD symptoms, fostering the generalization capability
25

of developed solutions.
Acronyms

PD Parkinson’s disease
NMM Non-motor manifestations
QoL Quality of life
MDS Movement disorder society
UPDRS Unified Parkinson’s disease rating scale
DL Deep learning
ML Machine learning
SOTA State-of-the-art
ECG Electrocardiography
EEG Electroencephalography
EMG Electromyography
ANN Artificial neural network
DNN Deep neural network
ReLU Rectified linear unit
CNN Convolutional neural network
RNN Recurrent neural network
GRU Gated recurrent unit
LSTM Long short-term memory
LOSO Leave-one-subject-out
S-I Subject-independent
S-D Subject-dependent
RS Random shuffle
PRISMA Preferred reporting items for systematic reviews and

meta-analyses
PwPD Patients with Parkinson’s disease
FFT Fast Fourier transform
CWT Continuous wavelet transform
DWT Discrete wavelet transform
DFT Discrete Fourier transform
PCA Principal component analysis
MLP Multi-layer perceptron
DAE Deep autoencoders
MNN Modular neural network
Bi-LSTM Bi-directional long short-term memory
CRNN Convolutional recurrent neural network
BFGS Broyden–Fletcher–Goldfarb–Shanno
MCC Matthew’s correlation coefficient
MSE Mean square error
ICC Intra-class correlation coefficient
ADL Activities of daily living
IMU Inertial measurement unit
TUG Timed-up and go
CDA Convolutional denoising autoencoder
CV Cross validation
GM Geometric mean
HC Halthy controls
VGRF Vertical ground reaction force
RSRNA Siamese recurrent network with attention
CorrMNN Correlative memory neural network
FMI Fine motor impairment
EMS Electrical muscle stimulation
PNN Probabilistic neural network
EWT Empirical wavelet transform
LOTO Leave-one-task-out
mAIMS modified involuntary abnormal movements scale
SMOTE Synthetic minority oversampling technique
LDA Linear discriminant analysis
kNN k-nearest neighbor
DBS Deep brain simulation
SAGE Self-administered gerocognitive examination
LR Logistic regression

HTSMNN Sequence-optimized modular neural network
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