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ABSTRACT Wireless Sensor Networks (WSNs) are used to monitor specific areas of the environment by
networkingmultiple sensors and collecting data for analysis. However, due to limited processing capabilities,
the collected data needs to be transmitted to a Base Station (BS) that has high computational power and
storage capacity. As SNs are not directly connected to the BS, multihop data transmissions through other
SNs are required to reach the BS, which leads to congestion and additional energy consumption. To address
these challenges, we propose a novel algorithm called Congestion, Delay, Energy-aware Intelligent Routing
(CDEIR) using the BUG algorithm. The CDEIR approach identifies congested nodes using a Directed
Spanning Tree and avoids traffic through them by paving an alternate path. This approach minimizes delay
and optimizes energy consumption while avoiding congestion, all within a short computational time. We
demonstrate the effectiveness of the CDEIR approach through theoretical analyses and simulations.

INDEX TERMS Bug algorithm, congestion avoidance, delay-aware, directed spanning tree, energy-
efficiency, wireless sensor networks.

I. INTRODUCTION
A responsiveWireless Sensor Network (WSN) is a collection
of interconnected Sensor Nodes (SNs) that detect changes
in their environment and relaying that information to a cen-
tral hub or data processing unit in a timely and efficient
manner [1]. These SNs can be deployed in a variety of
domains, such as environmental monitoring, transportation
[2], industrial automation, and smart cities [3]. One of the
key features of a responsive WSN is its ability to adapt to
changing conditions. This means that the network is able to
detect changes in the environment and adjust its behavior
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accordingly. For example, in an environmental monitoring
application, the network might adjust the frequency of data
collection based on changes in weather conditions or air
quality. It is also important for a responsive WSN to have
the capability to operate efficiently and reliably. In order
to achieve this, SNs must be carefully designed and opti-
mized, as well as communication protocols and SNs that are
energy-efficient [4].

In WSNs, routing is one of the most challenging issues,
because data routing happens through multi-hop communi-
cation among SNs. But, nodes in WSNs are limited in terms
of energy, processing power, and communication capabilities.
Therefore, efficient routing algorithms are needed to ensure
data is routed efficiently. To achieve this, routing algorithms
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must be flexible enough to adapt to the rapidly evolving
network environment. They must also consider the limited
resources of the nodes. Additionally, the algorithms must be
capable of handling the high traffic load and dynamically
adjust directional paths according to the current conditions
in the system [5], [6]. To do this, routing algorithms must
efficiently process data, find shorter paths, and learn from
past experiences. They must also be able to detect and avoid
congestion, prioritize certain types of traffic, and minimize
the number of hops to reduce latency [7]. Furthermore, they
must be able to quickly respond to changes in the network
topology and make decisions based on the current conditions
of the network [8].

Many existing algorithms perform clustering and rout-
ing through various clustering approaches. They construct
the shortest multihop route towards BS using a traveling
salesperson approach. However, this approach has some
disadvantages. For example, it can be computationally expen-
sive, and it can be difficult to find the optimal solution.
Additionally, this approach can be sensitive to changes in
the network, and it can be difficult to scale up [9], [10].
As a result, we propose a novel approach to routing that
aims to avoid congestion, minimize delays, and reduce energy
consumption. The proposed algorithm is called Conges-
tion, Delay and Energy-aware Intelligent Routing (CDEIR)
algorithm. We construct a Directed Spanning Tree (DSP)
and identify the weights of each node, which guides the
load at each SN. In WSNs, this load helps identify the most
efficient route while predicting congestion. As a result of the
intelligent routing architecture, congestion can beminimized,
delays are limited, and energy efficiency can be improved.
In short, the contributions of this paper are summarized as
follows:

• We construct a Directed Spanning Tree repeatedly with
SNs and its available data packets, so that it helps to
identify the weight/load of each node. By using these
weights, we are able to predict congested network situ-
ations even more accurately.

• Once the DSP approach is determined, the load is used
as an input for the Bug algorithm. As a result, the most
efficient route is identified while avoiding the predicted
congested nodes, and maintaining the shortest route at
the same time.

• We simulate this proposed CDEIR approach using a
Python simulator. We perform simulations considering
different metrics related to congestion, delay and energy,
to show the superiority of the proposed work over exist-
ing works.

• We perform theoretical analysis, and we confirm the
superiority of the CDEIR algorithm. Furthermore,
we estimate that the computational complexity of the
proposed algorithm is the least among those already
available.

The remaining sections of this paper are organized as fol-
lows. The literature study on recently published congestion,
delay, and energy-aware algorithms and their limitations is

presented in Section II. The problem formulation for the pro-
posed CDEIR is defined in Section III. The proposed CDEIR
algorithm and its complete discussion through illustrative
examples are presented in Section IV. The experimental
results are evaluated in Section V, using both numerical and
theoretical ways is presented in subsections V-B, and V-C,
respectively. Finally, this paper is concluded with a future
scope in Section VI.

II. LITERATURE STUDY
In this section, we perform the literature study on recently
published congestion, delay and energy-aware routing algo-
rithms for WSNs.

A Reinforcement Learning (RL)-based optimal routing
strategy is proposed by rabhu et al. [11] to achieve energy
efficiency for WSNs. This scheme focuses on routing table
compression, optimal data transmission paths to BS, and
limiting energy consumption in BSs. Despite this, the degree
of computational complexity of this work is high because it
relies heavily on algorithmic learning. A balanced routing
strategy for efficient data transmission, saving energy and
efficient bandwidth utilization is described by Yu et al. [12].
A mathematical model embedded within each SN determines
the transmission radius of each SN. Additionally, this helps
maintain efficient data routing. It prolongs the network’s
lifespan by maintaining even power utilization between lay-
ers. A congestion control approach called RTTICC was
proposed by Suman et al. in [13]. In RTTICC, SNs with
congested traffic in the network are identified by applying
a mathematical strategy. By avoiding congested nodes on
a route, SNs construct dynamic routing paths. This model
uses a RRT1 algorithm used in robot path construction, but
this approach requires more computations. This work fur-
ther extended using meta-heuristic approaches for relay node
selection in [14].

By using a multi-objective Deep Reinforcement Learn-
ing (DRL) approach, the scheme minimizes routing delays,
minimizes energy consumption, and reduces packet loss by
Agarwal et al. [15]. The DRL enables the scheme to quickly
identify fault nodes and route data packets around them to
maintain reliability. Additionally, the DRL can adjust the
route dynamically to account for changes in the network such
as traffic congestion or changes in node availability. This
approach is further extended through mobile sink-based data
routing in [16]. The Deep Graph Reinforcement Learning
(DGRL) model incorporates a graph-based state representa-
tion and a graph-based reward function to learn an optimal
control policy by Huang et al. in [17]. This enables the traffic
control scheme to adapt to the given traffic conditions and
optimize the energy consumption of the nodes in the network.
Similarly, graph-aware deep learning is used for routing in
WSNs by Yang et al. [18]. A feed forward back propagation
is used to optimize data routing for air pollution applications
by Dixit and Jindal [19]. In [20], Dorga et al. implement

1Rapidly-exploring Random Tree.
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dynamic clustering and intelligent routing. In this, a metric
is used to measure the load of a node based on the number
of packets in the queue. In addition, it utilizes a clustering
algorithm to group nodes with similar loads and route traffic
away from congested nodes. This allows traffic to be routed
more efficiently and reduces congestion risk.

A routing protocol based on A∗ and the ant colony
algorithm for efficient routing for data gathering in WSNs
was proposed by Ibrahim and Ahmed [21]. The A∗ algorithm
considers the shortest path between two nodes, while the
ant colony algorithm is used to identify cluster heads in
systems. The combination of these two algorithms allows
for faster and more efficient data gathering in WSNs. The
grasshopper optimization algorithm (GOA) and golden eagle
optimization (GEO) together improve routing efficiency for
WSNs in [22]. Equilibrium optimization and genetic algo-
rithms are employed for efficient clustering and routing for
energy-efficient WSNs in [23]. Equilibrium optimization is
used to determine the optimal number of clusters for a WSN
by minimizing communication energy consumption. Genetic
algorithms are used to generate the most efficient routing
paths between the clusters, based on theWSN topology. From
[24], the Krill herd and Cuckoo search algorithms are used
together to achieve efficient clustering and routing algorithms
to achieve long-term network lifetimes for WSNs. The use of
Recurrent Neural Networks (RNN) is proposed for AI-based
interactive routing for WSNs in [25]. This is because RNN
can learn from experience and adapt to changing situations
quickly. Thus, they can be used for routing in rapidly chang-
ing and unpredictable environments.

The Bayesian machine learning algorithms used in [26]
are able to identify patterns in the data collected by the
WSNs. This enables them to predict the most efficient data
transmission routes. This in turn leads to more accurate rout-
ing and better overall performance approximately 86.67%
comparedwith existing routing algorithms. Chakraborty et al.
[27] introduced a Q-learning-based routing algorithm for
balancing load among SNs. This algorithmworks by using an
iterative learning process to determine themost efficient route
for the nodes to take, based on the current load in the network.
It adapts to changes in the network by continuously learning
and updating the most appropriate route for the nodes to take.
Keum and Ko [28] proposed a method through Q-learning
results focusing on trustworthiness, quality of services, and
energy efficiency, this technology prioritizes mission-critical
data trustworthiness. Similarly, Saleh et al. also proposed a
similar method in [29] using mobile edge nodes for trust-
aware routing. Tewari and Tripathi [30] used a Neuro-fuzzy
approach for minimizing hotspot issues and constructing effi-
cient routing.

As a whole, most existing algorithms use several
meta-heuristics and learning algorithms, but routing algo-
rithms are not responsive or intelligent. All the literature is
compared using Table 1 for easy to refer. In this context,
this paper introduces a routing algorithm that can be aware

of congestion, delay, and energy to construct an intelligent
routing strategy for responsive WSNs.

III. PROBLEM DEFINITION
We consider an area A with a set of SNs (S = {Si}∀1 ≤

i ≤ n) which are deployed randomly. SNs are connected with
other based on a communication range (rc) to communicate
control signals. Data packets can also be transmitted between
Si and Sj∀i, j ∈ (1, n) over the transmission range (rt ).
A single BS (S0) collects data from all the nodes in the
network. We assume connected SNs and base station are
treated as an undirected graph G. From G, we assume edges
are communication paths between SNs, and vertices are SNs.
We consider S ∪ S0 are considered as non-stationary from
deployment to until end of simulation. Routing process of G
uses the tree topology while transmitting data from S to S0.
NNi = {Sj | d(Si,Sj) ≤ rc ∀i ̸= j ∧ Sj ∈ S} is considered
as neighbour node set of Si, where d(Si,Sj) indicates the
distance from node Si to Sj. The initial G can be split into k
number of trees during routing, whereas each tree Tk contains
a common root node i.e., S0, and Tk ⊆ G. The nodes involved
in each Tk dynamically change during simulation while rout-
ing data. 1k is considered as the depth of Tk , which is also
defined as the number of edges between Si, ∀1 ≤ i ≤ 1k
and S0. Tk is uni-directional from leaf node Si, ∀1 ≤ i ≤ 1k
to S0. ϑ is considered as packet service rate and it is unique
∀S until end of T , where T indicates total simulation time.
The energy model used is different for various networks,
however in this paper we use according to Donta et al. [31].

While sending3 data packets from Si to Sj energy exhaust
is calculated according to Eq. (1)

E tij = (3 × a) + (3 × b× d2ij) (1)

where a and b are amplification, and processing energy for a
single bit data, respectively. 3 is the amount of data packets
transmitted between Si and Sj. Similarly, a node ⟩ take to
receive 3 data from its NNi is considered as Eq (2).

Erxi = r × 3 (2)

where r means the energy exhaust for receiving a single
bit from NNi. Overall, a SN Si ’s energy exhaust for both
transmission and receiving of data is reepresented in Eq (3)

Ei = E txij + Erxi (3)

After a particular amount of energy among available energy
is exhausted, we calculate remaining energy using Eq. (4).

ξi =

{
E0 − Ei First iteration
ξi − Ei Otherwise

(4)

The network lifespan of WSN in this paper is considered
as the time until the first node exhausts its energy completely
as per Donta et al. [9], and it is calculated mathematically as
shown in Eq. (5).

N = E0 × (ℸ)−1 (5)
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TABLE 1. Summary of recently published literature study.

where E0 indicate the initial available energy of SNs, and ℸ
indicates the maximum energy consumed at a time t inG, and
it is calculated using Eq. (6).

ℸ = max
i∈n

(Ei) (6)

where Ei is calculate using Eq. (3).
PDR refers to the ratio between packets received by the

sink (R) and packets transmitted by the SNs (ϒ) during the
time T . This ratio gives us an indication of the network’s
overall performance in terms of packet delivery rate. It tells
us how many packets are being successfully delivered by
the SNs and how many are being received by the sink. It is
computed mathematically using Eq. (7).

PDR =
1
ϒ

×R (7)

whereR ≤ ϒ , and ϒ is calculated using the Eq. (8)

ϒ ∼=

n∑
i=1

P(Si) (8)

where the data packets available at Si in a particular time t is
denoted using P(Si).
A BS’s throughput (σ ) is measured by the number of

packets it receives during a given unit of time T and math-
ematically denoted as shown in Eq. (9).

σ =
1
T

×R (9)

Latency (/mathcal[L]) of a packet refers to the amount of
time it takes to receive a packet (p) from Si to S0. The goal
of latency optimization is to minimize the total time spent
sending a packet from its source to its destination. To achieve
this, techniques such as packet queueing, packet scheduling,
and packet routing are optimized. The L includes the radio
propagation delay (Lr ), queueing delay (Lq), transmission

delay (Lt ), and signal processing delay (Ls). From these,
Lr (k) ≈ Ls(k) ≤ 1, so we neglect Lr (k) and Ls(k) because
of no effect on outcome. It is computed using Eq. (10).

L(p) =

{
Lt (p) + Lq(p) For Successful(
Lt (p) + Lq(p)

)
× η(p) For re-transmission

(10)

where the η(p) denotes retransmission count of packet p. The
average latency (La) of a WSN is measured using Eq. (11)

La =

n∑
i=1

P(Si)∑
p=1

(
L(p)

) × (R)−1 (11)

As part of the CDEIR, the objective is to improve the PDR,
N and σ of the WSNs by minimizing their Ea (measured
using Eq. (16)) and La.

IV. PROPOSED CDEIR
There are two stages in the proposed CDEIR algorithm:
DST construction and route construction. During the DST
construction stage, a spanning tree is constructed according
to data availability with each SN direction specifying trans-
mission order. Then, during the route construction stage, the
optimal route is determined for each SN direction by consid-
ering global minima. It is calculated by adding the number
of hops and residual energy of each node in the path while
avoiding congested nodes. This helps to ensure that the opti-
mal intelligent route is chosen while conserving energy and
reducing delay. The following subsections provide in-depth
information on DST construction and intelligent route
determination.

A. DST CONSTRUCTION
Each SN in the network is measured using DST in order to
determine its weight and it further helps to identify whether
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the node is congested or not, which is motivated from [32].
From the given deployment graph G, it constructs a spanning
tree T . At a time t , each sensor node is assigned a weight (p)
based on how many packets it generates or relays. A DST is
constructed in two phases as shown below:

Step I: If node Si is within BS premises, then it will be
connected to BS.

Step II: The SN Si forwards its data to the SN Sj when pi <

max (pj)∀ j ∈ N (j) is met. Therefore, Sj becomes the
parent of Si. If two neighbor nodes have the same p, the
neighbor with the smallest hop count becomes the parent
node.

Step III: Otherwise (pi ≥ max (pj)∀ j ∈ N (j)), Si chooses
its parent Sj based on its hop count to the base station
instead of looking at the neighbour nodes. It chooses
the node with the minimum weight when two or more
nodes have the same hop count. Nevertheless, the tie is
not broken, so the node with more children becomes the
forwarding node for Si.

The weight is denoted usingW , and it indicates the weight
of the node and all its children’s weight. TheW is calculated
once the T is constructed. The weight of Si i.e.,Wi is calcu-
lated using Eq. (12)

Wi =


pi iffN (i) = φ ∑
j∈N (i)

pj

 + pi Otherwise
(12)

where N (i) is the children of the node Si.
We provide an illustrative example for better understanding

of the proposed DST construction. In this illustration we
consider 17 SNs and each associated with a different amount
of packets at a time t , as shown in Fig. 1(a). The initial
weights are also shown in Table 2. SNs deployed randomly
are connected via edges if the transmission ranges for both
are within the range of each sensor node. According to the
communication ranges of the SNs, initial connections are
assumed. Initially, step I is validated with all SNs in WSNs.
For this example, step I decides nodes {S4,S5,S7,S10,S17}
to be connected to BS i.e., S0 because they are in proximity
to it. The direction to be adjusted towards S0.

Now apply step II (Fig. 1(b)) to the remaining nodes. Now
we consider each node and create a direction edge from lower
weight nodes to higher weight nodes. The node S1 makes
a direction to node S5, because node S5 provides more
data packets (i.e., 21) which is higher compared to node S1
(i.e., 18). Next, node S3 makes a direction to node S17,
because node S17 contains more data packets (i.e., 27) com-
pared to node S3 (i.e., 18). Next, node S6 makes a direction
to node S5, because node S5 contains more data packets
(i.e., 21) compared to node S6 (i.e., 12). Next, node S8 makes
a direction to node S7, because node S7 contains more
data packets (i.e., 12) than node S8 (i.e., 11). After that,
node S9 makes a direction to node S10, because node S10
contains more data packets (i.e., 19) than node S9 (i.e., 16).

Similarly, node S11 make a direction to node S13, S12 makes
a direction to node S14, S13 make a direction to node S15,
S14 make a direction to node S15, S15 make a direction
to node S17, and S16 make a direction to node S15. After
Step II, all nodes except S2 are connected. Now, we move to
Step III (Fig. 1(c)), and node S2 can change data transmission
direction to node S4, because both S2 S4 contains 19 data
packets, but node S4 is already connected with minimum hop
count from S0.
Next, we calculate the Forwarding Weight (FW) of each

node using Eq. (12). In this case, the weights of leaf nodes
are the same as the FWs. For example, The FW of node S1 is
same as its weight i.e., 18. Similarly, FW of node S16 is
same as its weight i.e., 11. Other than leaf nodes, node FW
is calculated by combining their own weight and all their
children’s weights. For example, the FW of S5 is the weight
of itself and its children i.e., S1 and S6. So, the FW of
S5 is considered in this case as (21 + 18 + 12 = 51). The
resultant forwarding weight of each SN for the DST is shown
in Fig. 1(d) and is summarized using Table. 2.

Congested nodes are identified according to the buffer size
and forwarding weight of sensor nodes. We use Eq. (13) to
identify whether a node is congested or not.

C(Si) =


ρ × P

G × Bi + ϵ
NNi ̸= 0

0 Otherwise
(13)

where ρ indicates mean processing delay at source node Si,
P indicates the amount of data packets p are competitive
to occupy buffer Bi, which is computed as (Wi − pi). G
is denoted as the mean time gap between two data packets
competing for Bi. ϵ is a constant for avoiding divided by zero
error.

From the running example shown in Fig.(1), and the com-
puted W shown in Table 2, we can find congested nodes.
We identify that two nodes possibly cause congestion in G,
and they are S15 and S17. Now, it is necessary to balance the
weights in these routes to mitigate congestion, and the Bug2
algorithm is used to balance and adjust routing in the next
subsection i.e., Section IV-B.

B. INTELLIGENT ROUTING
The intention of Intelligent Routing (IR) is to mitigate con-
gestion by altering the data forwarding route towards S0,
by considering the number of relay nodes (which help to
reduce energy consumption due to unnecessary relays), and
also avoid the delay to reach data packets timely to the BS. In
this context, we use the Bug2 algorithm [33], which is used
to identify an optimal obstacle-aware path for a robot. The
Bug2 algorithm is capable of detecting and avoiding obstacles
while simultaneously minimizing the cost of routing. This
is achieved by using two basic behaviors: bug-to-goal and
bug-to-obstacle. The Bug2 algorithm is suitable for IR, as it
is designed to optimize paths in both static and dynamic
environments. In IR approach, Bug 2 consider an obstacle
as a congested node. The IR through Bug2 is based on an
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FIGURE 1. Example (a) WSN with its IDs and weights (b) Step I (c) Step II (d) Step III - Constructed DST.

TABLE 2. Weights and FW’s for each sensor node in Illustrative example.

iterative process, wherein the solution is improved by taking
into account local neighborhoods of the current solution.
This helps to reduce the computational cost of the process,
while still achieving local maxima. Also, it checks the alter-
nate minimum distance between the source node Si and the
S0 simultaneously. Fig. 2 shows a flow diagram of the Bug
algorithm to construct IR between a node and BS.

As soon as a congestion node (any Sj) is recognized in a
routing path, the Bug2 algorithm begins alternate possibil-
ities around its neighbour nodes NNj. In order to avoid Sj,
it computes an alternative route from Si’s current location
(loi, lai), and the next visiting point (loj, laj) is considered a
non-congested route and the slope and y-intercept are deter-
mined using Equation, following which the next node in the
route is considered as a straight line Eq. (14) and Eq. (15).

slope = tanh
(
laj − lai
loj − loi

)
(14)

intcpt = laj − (slope× loj) (15)

After identifying the congestion node, the Bug2 algorithm
determines theNN of the congested nodes and traverses them
that way. Further, there are multiple routes to traverse around
the congested nodes, but it determines which is the shortest
path to traverse towards BS. The algorithm also calculates the
number of hops from the node to BS and stores it in the node
as shown in Algorithm 1. Finally, it sends the data back to BS
for further processing.

From Algorithm 1, Initially, the routing starts from the
leaf node. Then, it moves towards the closest neighbor which
has less hop count from BS. Additionally, the nodes between
them will be checked for congestion. If it find any congested
node/s, it eliminates the route through congested node and
builds an alternate path between the SN and BS. Finally, the
packet is routed to the BS by the shortest alternate path. If
a congested node is not found, the shortest path between SN
and BS is selected. The packet is then routed to the BS along
this path. The data packet is then transmitted from one node
to the next until it reaches the BS. The BS then processes the
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FIGURE 2. The general working procedure of the BUG algorithm during path construction.

Algorithm 1 Intelligent Route Construction Using Bug
Algorithm
1: while TRUE do
2: repeat
3: Move MS from current location to BS.
4: until Oi = TRUE
5: if status(S) == VISITED then
6: STOP
7: end if
8: repeat
9: Travel near Ci’s neighbor

10: until status(S) == VISITED
11: Calculate least hop-count
12: Move to the initial SN Si
13: ifMove to next SNs then
14: GOAL not reached
15: EXIT
16: end if
17: end while

packet and responds back to the SN. The response follows
the same path in reverse. In this way, all the congested nodes
are avoided in the routes, while the congested nodes become
normal by emptying their buffers and by avoiding the relay
data from its neighbour nodes. Thus, delays and energy are

optimized, and congestion is reduced. The data packet is
then transmitted back to the SN, and the communication is
complete.

We use the running example shown in Fig. 1(b), and opti-
mize the route by avoiding congested nodes. From Table 2,
and Eq. (13), we identify the node S15 is congested (which
is highlighted in Fig. 3(a)). From this figure (Fig. 3(a)), the
nodes S11 (16 packets), S12 (10 packets), S13 (21 packets),
S14 (19), and S16 (12 packets) are traveling through node S15
followed by S17 and S0. In this way, the node S15 relays
78 packets along with 22 packets. It appears that the buffer
B15 is almost full in this case which causes congestion at
this time t . Choose alternate routes for each node towards BS
once the congested node has been identified. First, the leaf
node S11 with its 16 packets are transmitted to its neighbours
either S10 or S12, but the Bug2 algorithm chooses S10. After
diverting S11 packets to S10, still there is no congestion pos-
sibility at node S10. Further, the node S13 diverts its packets
to node BS, through S11 followed by node S10. However,
this decision does not cause any congestion at S11 or S10.
Similarly, the data packets from node S16 are also routed
to node S3, and node 15 is free from congestion, and there
are no further congested nodes. The updated routes which
are generated through Bug2 while avoiding congestion are
shown in Fig. 3(b). Using this process, alternate routes will
be generated dynamically in every iteration, while improving
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FIGURE 3. Illustrative example of Route construction (a) Congested node identified (b) Alternate path using Bug2 is determined.

throughput, decreasing delay, and reducing energy consump-
tion, as well as avoiding congestion. As a result, the network
can adapt to changing conditions in real-time, leading to
improved performance for the overall system. This can be
seen as a major advantage compared to traditional static
routing methods.

V. RESULT AND COMPARISON
In this section, we present simulation setup and simulators
used to evaluate numerical results. Further, we plot numerical
evaluations, and mention the reasons for the improvements in
proposed work. Finally, we provide a theoretical analysis on
the proposed CDEIR algorithm.

A. SIMULATION SETUP
The proposed CDEIR and existing approaches are imple-
mented and tested using a Python simulator (Python 3.11).
There are 500-1000 SNs deployed within an area of
600 square meters, and these deployments are generated
according Sah et al. [34]. All deployed SNs are equipped
with a 194.4 KJ battery capacity, and all batteries are fully
charged at the beginning of the deployment. For both the
existing and proposed models, the simulation time is consid-
ered 120 hours. We summarize the remaining metrics used
during simulation in table 3. Furthermore, these metrics were
used to compare the performance of proposed work and
existing approaches at various levels, including the lifespan
of the WSN, energy-efficiency, buffer usage, throughput,
latency, and connectivity efficiency. A time-driven network
and an event-driven network are used to estimate these met-
rics. A WSN with event-driven acquisition acquires packets
only when an event occurs in the network, while a WSN
with time-driven acquisition acquires packets continuously
regardless of external events occurring in the network. The
properties of event-driven acquisition and time-driven acqui-
sition are similar to Kafi et al. [35].

B. NUMERICAL EVALUATION
In this section, different metrics (lifetime, energy effi-
ciency, latency, etc.) are evaluated with numerical values

TABLE 3. Simulation Parameters.

to demonstrate the superiority of the proposed algorithm
for CDEIR. This helps to objectively compare the proposed
algorithm to existing algorithms in terms of how well it
performs in specific tasks. It also helps to identify areas for
improvement and assess trade-offs between different metrics.

1) NETWORK LIFETIME
One of the most important metrics used to measure the per-
formance of a WSN is its lifetime (N ). N is calculated by
taking into account the initial battery charge (E′) and the
power consumed by the nodes for a given period of time (T ).
The WSN’s lifetime is then determined by how long it takes
for the battery charge to drop to zero, which is signified by the
Eq. (5). Fig. 4(a) shows event-driven scenario and 4(b) shows
time driven scenarios of N for the given metrics shown in
Table 3.
FromFig. 4(a), we notice the change inN such as improve-

ment of proposed CDEIR by ≈1.223112-21.2112122%
compared with NFEER, ≈1.9654-22.89618% compared
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FIGURE 4. Network lifespan of s (a) Event-driven WSNs (b) Time-driven WSNs.

with RRTICC, ≈7.57245-72.77457% over BRATRA, and
≈9.9954754-12.547156% compared with CADA for event-
driven WSNs. Similarly, in the scenario#2 (Fig. 4(b)),
the proposed CDEIR performed better than the NFEER,
RRTICC, BRATRA, and CADA in terms of N . NFEER
resulting maximum of 4698 minutes, RRTICC achieve max-
imum of 4683 minutes, BRATRA achieve maximum of
4536 minutes, and CADA 4420 minutes and overall N of
CDEIR sustain minimum of 5.62-7.21% longer compared
to existing NFEER, RRTICC, BRATRA, and CADA. So,
CDEIR in event-driven acquisition can sustain a longer life-
time since it only acquires packets when an event occurs,
while time-driven acquisition requires more energy to acquire
packets continuously. Moreover, event-driven acquisition has
higher accuracy inN since the SNmaintains its energy during
events, while time-driven acquisition continuously exhausts
its energy.

2) AVERAGE ENERGY DRAIN
The AED helps to determine how much energy is being
consumed by each node, as well as the overall performance
of the network. By understanding the AED, network admin-
istrators can better manage the energy consumption of their
nodes and optimize their WSNs. Furthermore, the AED can
be used to identify the most energy-efficient nodes in the
network, allowing network administrators to determinewhich
nodes should be used more often. This helps to ensure that
the network is running at its optimal efficiency, while also
reducing the overall energy consumption. We measure AED
using Eq. 16.

Ea =

n∑
i=1

Ei

n
(16)

In this paper, we analyze the AED of the CDEIR and
existing works based on event-driven (as shown in Fig. 5(a))

and time-driven WSNs(as depicted in Fig. 5(b)). In both
scenarios, we noticed improvements in the proposed CDEIR
algorithm. In the first scenario, the improvements plotted in
Fig. 5(a) shows ≈8.2147887-19.77844667% lower efficient
compared with NFEER, RRTICC resulting in 9.87-20.47%
of lower efficiency than CDEIR. Similarly, BRATRA
results in 19.9982-29.34 percent, and CADA approaches
21.43-37.51 percent lower energy efficiency compared with
CDEIR approach. On the other side, Fig. 5(b) illustrates
performance variations in Time-driven WSNs applications
between the CDEIR algorithm and others. The perfor-
mance improvement of AED over NFEER is approximately
1.67 − 9.8898×, RRTICC and CDEIR is ≈ 2.38 − 6.995×,
4.712− 8.1211×, and 7.323− 12.79112× in CADA. This is
due to its ability to find optimal routes using a combination of
data from the environment, energy efficiency, and delay cost.
This also demonstrates that CDEIR achieves better energy
efficiency in both scenarios. This provides a benefit to the
user and WSNs in terms of energy savings, cost savings, and
improved performance.

3) FAIRNESS INDEX OF ENERGY DRAIN
In order to identify the energy drain of a specific region of
WSN and an inability to identify the bottleneck through the
AED metric, the fairness index (F) is estimated. In WSNs,
congestion causes a particular node or region to be congested,
so theF metric is useful. The range ofF exists between 0 and
100, where a higher value indicates a better result, and vice
versa. We estimate F according to Donta et al. [36] as shown
in Eq. (17).

F =

(
1 −

ζ × 2
max{E ta} − min{E ta} + ϵ

)
× 100 (17)

where the standard deviation of energy drain denoted using ζ ,
max{E ta} indicates the maximum AED at time t and min{E ta}
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FIGURE 5. Average Energy Drain of (a) Event-driven WSNs (b) Time-driven WSNs.

is the minimum AED at a time t . In the event of similar max
and min energies, ϵ prevents the [divided by zero] error. In
order to determine the ζ value, we apply Eq. (18).

ζ =
1

√
n

√√√√ n∑
i=1

(Eci − E ta)2 (18)

A comparison is made between the F of the proposed
CDEIR and the F of existing works using two scenarios.
In these two scenarios, the number of n is varied between
500 and 1000, and plot using Fig. 6. From Fig. 6(a),
we notice performance of the CDEIR algorithm is signif-
icantly better than that of the RRTICC algorithm, ranging
from 1.21142 to 1.944574%. Both BRATRA and CADA
have similar relationships, with cost or time near 2.711426-
3.11028× and 2.91142-7.1211452×, respectively, lower than
CDEIR. In Fig. 6(b), time-drive F are plotted. Compared
to RRTICC, BRATRA, and CADA, CDEIR has shown sig-
nificant improvements in F over the existing approaches
that range from 1.2214 to 4.2214×, 2.2214-5.1124×, and
4.77584-6.774774×. This demonstrates the effectiveness of
CDEIR over existing approaches in terms of fairness index of
energy. The use of Bug2 algorithm results in efficient alter-
nate routing with high throughput and minimizes the cause
of congestion in the data routes. Therefore, the improved
results of CDEIR demonstrate its potential for improving the
performance of responsive WSNs.

4) BUFFER UTILIZATION
Efficient usage of buffers (BU) during data routing deter-
mines the efficiency of the routing process. The efficiency
of the data collection process can be defined with the help
of this metric, as well as the efficiency of resource use. BU
ultimately determines how much data is collected, how much
data is lost in the network, and what data collection method

is most effective. When BU is used efficiently, data can travel
through the network more quickly and with less latency.
This increases the speed of data collection and decreases the
amount of data lost. Additionally, efficient usage of BU can
help to identify the most efficient data collection methods,
as certain methods can cause more data to be lost than others.
Consequently, WSN congestion can be mitigated. We can use
the Eq. (19) to estimate the BU.

BU =

n∑
i=1

Bi × (Bmax × n)−1 (19)

Using 500 to 1000 SNs as a range, we estimate the
BU of the CDEIR algorithm for event-based and time-
dependent WSNs. We notice that CDEIR outperforms
existing applications, but it is also true that event-driven
applications perform better. This is due to the fact that
CDEIR is designed to process data from event-driven appli-
cations more efficiently, as it is able to quickly detect
and respond to changes in the environment. Additionally,
CDEIR reduces the need for frequent updates from time-
dependent WSNs, which further contributes to its improved
performance. From Fig. 7(a), existing RRTICC performs
poorly i.e., approximately 1.112 - 2.28211% lower than the
performance of CDEIR. Also, CDEIR outperforms BRA-
TRA by 1.65589% and CADA by 3.665896%. NFEER also
resulted low performance approximately 0.889-1.998%. BU
performances are improved by at least 1.53% compared to
existing and published approaches by CDEIR, as shown
in Fig. 7(b) for time-driven scenario by approximately
1.6677%, 2.00121%-2.611427%, 2.99587%-4.33655662%,
and 4.2211451%-6.88454% from NFEER, RRTICC, BRA-
TRA, and CADA approaches, respectively. The proposed
CDEIR algorithm reduces the probability of packet drop-
ping and maintains quality of service. Furthermore, it also
improves latency and reduces overall network cost.
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FIGURE 6. Fairness Index of Energy Drain of WSNs in (a) Event-driven (b) Time-driven.

FIGURE 7. Buffer Utilization of (a) Event-driven WSNs (b) Time-driven WSNs.

5) NETWORK THROUGHPUT
Network throughput (0) is the amount of data that can be
transmitted between two points in a given amount of time. By
dividing the number of packets (|Pi|) acquired during simu-
lation time (T ) by the number of packets acquired, we can
determine the rate of data transmission. This is how we can
determine the throughput of the network. This is represented
mathematically by Eq. (20).

0 =
1
T

n∑
i=1

|Pi| (20)

The 0 value is then estimated through variation of the
n value between 100-1000 in Fig. 8(a). In comparison to
NFEER, RRTICC, BRATRA, andCADAalgorithms, CDEIR
has improved 0 by 0.666667% 0.799548%, 3.447554%,

and 5.01145221%, respectively. In order to comply with the
CDEIR rules in time-driven algorithms, NFEER, RRTICC,
BRATRA, and CADA have 0 greater than 0.4114114%,
0.4411254%, 0.5569985%, and 0.88999874%, respectively
as shown in Fig. 8(b). On the basis of these numeri-
cal analyses, CDEIR and existing strategies achieve higher
throughputs. It has been observed that the improved 0 of
CDEIR is a result of the Bug approach used to determine
the near-optimal congestion, delay, and energy aware route
in the WSNs. This means that the Bug approach is able
to reduce the overall energy consumption of the network
by finding routes that have the shortest delays and lowest
congestion levels. This results in a decrease in the overall
energy consumption of the network, improving the overall
throughput of the network.
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FIGURE 8. Throughput of (a) Event-driven WSNs (b) Time-driven WSNs.

6) END-TO-END DELAY
End-to-End (E2E) delays are applied in this study (1) to data
packets returned by the BS (S0). Performance is improved
when algorithms have a lower E2E. By applying E2E delays,
we can reduce the amount of time it takes for data packets
to be returned from SNs to the BS. This can help improve
performance by reducing the amount of time spent waiting at
SNs. Additionally, by using the formula in Eq. (21) we can
accurately calculate E2E delays and ensure that performance
is increased.

1 =

n∑
i=1

Pi∑
j=1

(ϕwij + ϕmij ) × (n× Pi)−1 (21)

where ϕmij is the time awaiting of jth packet of node i at MS
and, ϕwij is the waiting time of jth packet of node i at SN, before
it is routed to the BS. Pi indicates the total packets generated
by node i. In this paper, a number of existing approaches are
evaluated, including the 1 based CDEIR, as well as time-
driven WSNs.

Based on the plots shown in Fig. 9(a), we under-
stand how the E2E delay varies among the different
algorithms when they are applied to event-driven WSN
applications, and we also see that CDEIR has a lower
delay than the other algorithms. Performance improvements
of 1.8876-5.47557×, 2.3651-6.2368×, 1.88475-7.69856×,
and 5.055214-8.9954552× are achieved by the proposed
CDEIR over the existing NFEER, RRTICC, BRATRA,
and CADA. In time-driven applications, we estimate the
E2E delay of WSNs with 100 SNs in Fig. 9(b). Although
the CDEIR algorithm performs better than the exist-
ing NFEER, RRTICC, BRATRA, and CADA strategies,
which are respectively 1.1128-3.44323×, 1.451-3.99548×,

1.99856-4.84457×, and 5.0120014-6.847754×. The CDEIR
algorithm provides a more efficient solution of reducing
the end-to-end delay since it takes into account the size of
the data packet and the load of the nodes on the network.
This allows for the optimal routing of the packet and the
reduction of transmission time. The CDEIR algorithm works
by considering the size of the data packet, the load on the
nodes and the available bandwidth. This allows it to select
the most efficient route for the packet, reducing transmission
time and increasing the chances of the packet being delivered
on time.

7) EFFICIENCY OF CONNECTIVITY
In this study, the Efficiency of Connectivity (EoC) is esti-
mated by counting the number of SNs that become isolated
when their energy has evaporated completely. A detailed
analysis of the data transmission efficiency between SNs is
also provided. Eq. (22) shows the estimated EoC for the
proposed CDEIR, which was obtained from Donta et al. [10].

EoC =
n− ξ ′

n
× 100 (22)

where ξ ′ during time T is estimated using Eq. (23).

ξ ′
=

n∑
i=1

Ci (23)

where Ci can be treated as Eq.(24).

Ci =

{
1 ξi ≡ 0
0 Otherwise

(24)

By applying CDEIR routing to WSNs and the effect on
complete energy drain, we estimate the EoC of these SNs in
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FIGURE 9. End-to-end delay of (a) Event-driven WSNs (b) Time-driven WSNs.

FIGURE 10. Efficiency of Connectivity Vs. (a) Simulation time (b) # Sensor nodes.

the WSNs. Two scenarios were considered: the first, increas-
ing simulation time and plotting in Fig. 10(a) and second
changing the number of SNs as shown in Fig. 10(b). The
results showed that CDEIR routing was able to drastically
reduce the energy consumption of WSNs, as well as lengthen
the lifetime of the nodes. On the other hand, a value of
100% indicates that all SNs are fully connected (no iso-
lated nodes in WSNs). A value of less than 100% indicates
that there might be isolated nodes in the network. From
Fig. 10(a), we enhance the simulation and observe the EoC
of the proposed and existing approaches. According to the
proposed CDEIR, SNs are well connected and there is no
isolated node until the 564th time unit. Increasing the sim-
ulation time changes the alternate data packet transmission,

resulting in a decrease in EOC. As we vary the number of
SN (100-600), we also observe an increase in EoC in WSNs,
as shown in Fig. 10(b). The proposed CDEIR always results
in higher EoC than the existing algorithms. This demon-
strates the effectiveness of the proposed CDEIR in improving
the energy efficiency of WSNs. This can be attributed to
the fact that the proposed CDEIR algorithm balances the
energy consumption of the nodes by evenly distributing
the energy among them. This ensures that the nodes have
sufficient energy to communicate with each other, leading
to better connectivity and fewer isolated nodes. Addition-
ally, the proposed algorithm also reduces the overall energy
consumption of the network, leading to higher energy effi-
ciency. Furthermore, CDEIT also provides better connectivity
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and fewer isolated nodes compared to other existing
algorithms.

C. THEORETICAL EVALUATIONS
Theoretical analysis of the proposed CDEIR approach fol-
lows according to Banoth et al. [37], where they used to
estimate the connection and coverage efficiency, which is also
suitable for congestion avoidance.
Theorem 1: The worst and average case time complex-

ity of the CDE Intelligent Routing is O(n3) and O(nlogn),
respectively.

Proof 1: In order to determine the time complexity of
the proposed CDEIR, we follow these steps. It is a combi-
nation of DST construction, congestion node identification
and intelligent route construction. The DST of the proposed
CDEIR algorithm will take approximately O(nlogn), where
n is the number of deployed SNs. Determining congestion
among n nodes along with computing their W and C(Si)
neededO(n) time complexity. Finally, Algorithm 1 isO(nδ2),
where δ is the maximum depth of the responsive WSN
G from the S0. There is very often deployment of WSNs
with δ = n, in such case Algorithm 1require O(n3), and
overall Asymptotic time complexity of CDEIR is O(n3)
in the worst case. According to the average case, it takes
O(nlogn).
Theorem 2: The responsive WSN (i.e., G) is well con-

nected and any Si, ∀ 1 ≤ i ≤ n can able to send its data
either directly or through relay to S0

Proof 2: There is a strong connection between two
nodes Si and Sj if at a time t there are connections between
them and if there is a path from S0 to every node in G.
A pair of undirected edges exists between any two arbitrary
nodes in S = Si∀1 ≤ i ≤ n, either between (Si,Si+1)
(∀(i + 1) < n) or between (Si+1,Si) and tested for all nodes
from 1 ≤ i ≤ n. A depth-first search tree is also used to
determine if the S = Si∀0 ≤ i ≤ n is connected to the
S0. The CDEIR algorithm proves that S and S0 are well con-
nected if DFS(G,S0) and local connectivity of the nodes are
satisfied.

VI. CONCLUSION
For responsive WSNs, we present an intelligent routing
approach considering congestion, delay and energy con-
straints and we named this as CDEIR algorithm.We construct
a directed spanning tree within which based on the SNs relay
and its own data, we determine the possible congested nodes
in WSNs. Once the congested nodes are identified, we use
a Bug algorithm which constructs an intelligent route while
avoiding the congested nodes with a minimal hop count. The
proposed CDEIR algorithm performs the above-mentioned
operations with limited computational complexity which is
better when compared with existing algorithms. Additionally,
we confirm that CDEIR results in the shortest and most
efficient routes, which further minimizes delay and energy
usage. Also, it outperforms other approaches in terms of

several performance metrics such as lifespan, energy effi-
ciency, throughput and delay. By means of simulations and
theoretical proofs, we confirm that our approach performs
better than existing approaches. Our work can be further
extended by considering dynamic network conditions and
testing real-world applications.
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