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Abstract

Over the years, intrusion detection system has played a crucial role in network security by

discovering attacks from network traffics and generating an alarm signal to be sent to the

security team. Machine learning methods, e.g., Support Vector Machine, K Nearest Neigh-

bour, have been used in building intrusion detection systems but such systems still suffer

from low accuracy and high false alarm rate. Deep learning models (e.g., Long Short-Term

Memory, LSTM) have been employed in designing intrusion detection systems to address

this issue. However, LSTM needs a high number of iterations to achieve high performance.

In this paper, a novel, and improved version of the Long Short-Term Memory (ILSTM) algo-

rithm was proposed. The ILSTM is based on the novel integration of the chaotic butterfly

optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accu-

racy of the LSTM algorithm. The ILSTM was then used to build an efficient intrusion detec-

tion system for binary and multi-class classification cases. The proposed algorithm has two

phases: phase one involves training a conventional LSTM network to get initial weights, and

phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the

weights of LSTM to improve the accuracy. The performance of ILSTM and the intrusion

detection system were evaluated using two public datasets (NSL-KDD dataset and LITNET-

2020) under nine performance metrics. The results showed that the proposed ILSTM algo-

rithm outperformed the original LSTM and other related deep-learning algorithms regarding

accuracy and precision. The ILSTM achieved an accuracy of 93.09% and a precision of

96.86% while LSTM gave an accuracy of 82.74% and a precision of 76.49%. Also, the

ILSTM performed better than LSTM in both datasets. In addition, the statistical analysis

showed that ILSTM is more statistically significant than LSTM. Further, the proposed ISTLM

gave better results of multiclassification of intrusion types such as DoS, Prob, and U2R

attacks.

1 Introduction

With the growth of the internet and the increasing use of technology in our daily lives, cyber-

crime has become a major concern for individuals, businesses, and governments alike.
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Cybercrime refers to criminal activities that are carried out using computers or the internet,

such as hacking, phishing, identity theft, and malware attacks [1]. Many of the applications

(like online banking, e-commerce, and healthcare services) which we use in our daily lives con-

tain confidential and personal information that needs to be protected. To protect these appli-

cations, it is important to take a proactive approach to cybersecurity [2]. Furthermore, with

the increasing number of connected smart devices in the IoT environment, there are also

increasing security threats and vulnerabilities. Therefore, additional security considerations

are necessary to safeguard these devices and the data they transmit. AI-based security solutions

such as anomaly and intrusion detection and network traffic monitoring can be useful tools in

enhancing IoT security [3, 4].

The concept of intrusion detection (ID) dates back to 1970 when it was extensively adopted

to protect computer networks against both known and unknown attacks [5]. An intrusion

detection system (IDS) is software that monitors a network for malicious activities and gener-

ates an alarm signal to be sent to the security team. Anomaly- and signature-based are the two

main methods used in IDS. Signature-based IDS detects attacks based on matching input data

with the signatures of known attacks. An anomaly-based IDS catches attacks by comparing

abnormal behaviour to normal behaviour. Signature-based detection is unable to detect attacks

that have not been seen before while anomaly-based detection often has high false positive

rates [6].

Machine learning (ML) algorithms have been used for over 20 years to improve the perfor-

mance of IDS [7]. Two types of ML have been for building anomaly detection models: shallow

learning and deep learning. In general, shallow learning (Bayesian networks, support vector

machines (SVMs), and artificial neural networks (ANNs)) depends on extracting features cre-

ating the prediction model [2] while deep learning has the ability to generate superior models

by extracting better representations from the raw data [8]. Deep learning is a type of ML that

uses artificial neural networks with multiple layers to learn hierarchical representations of

data. DL can learn feature hierarchies based on massive amounts of unlabeled information,

making it particularly useful for processing complex, high-dimensional data. Examples of DL

algorithms include deep neural networks (DNNs) [9], convolutional neural networks (CNNs)

[10], and recurrent neural networks (RNNs). One of the advantages of DL is that it can auto-

matically learn relevant features from data, without the need for explicit feature engineering.

This makes DL models more adaptable and flexible, as they can handle a wide range of input

types and sizes. In the domain of intrusion detection, the most recent papers are using DL [8,

11–13]. RNN is one of the most popular deep learning algorithms for the classification of

sequential data due to its recurrent (circular) manner of connections. Thus, RNN can recall all

previous knowledge acquired from previous inputs during a training phase [14]. Recently,

Long short-term memory (LSTM) has gained much attention due to its ability to solve the

drawback of RNN in vanishing gradients by using a gating mechanism to learn long-term

dependencies [15]. LSTM is also employed in attack detection, with the ability to detect unique

attacks, as in [16].

Swarm intelligence (SI) algorithms (such as Butterfly optimization algorithm (BOA) [17],

grey wolf optimizer [18], and particle swarm optimization (PSO) [19]) are widely used in

global optimization and parameters tuning. BOA is inspired by the foraging behaviour of but-

terflies and it has the ability to find the optima in the hyper-search space [17]. Utilizing chaotic

maps, a new version of BOA called chaotic Butterfly optimization algorithm (CBOA) has been

proposed in [20]. This CBOA algorithm showed to be better than BOA in improving classifica-

tion accuracy and reducing classification errors.

LSTM algorithm has been used in proposing different intrusion detection methods such

as in [21] and in [22]. However, LSTM performance is impacted by extra problems with
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random weight initialization [23] and overfitting [24]. In other words, although LSTM has

been used in many intrusion detection systems but it still suffers from two main limitations:

(1) taking high numbers of iterations to find the best weight value of its network which

affects the computational costs, and (2) its classification performance is still not high. The

objective of this paper is to minimize the number of iterations needed to find the best weight

values of LSTM network and improving the classification performance in intrusion detection

systems.

To achieve this objective, an improved version of LSTM (i.e., ILSTM) was suggested. In the

ILSTM, hybrid swarm algorithms, CBOA and PSO, were employed to optimize LSTM weights

while using a fewer number of iterations. The ILSTM was then used for proposing an efficient

and accurate intrusion detection system for two cases: binary (normal or abnormal) and

multi-class (classifying many attacks) classification.

The contribution of this work can be summarised as follows:

1. Proposing a novel and improved version of LSTM called ILSTM in which hybrid swarm

intelligence algorithms (i.e., CBOA and PSO) were employed to optimize the weights of the

LSTM algorithm which led to better performance using a fewer iterations.

2. Building an efficient (i.e., fewer iterations) and accurate ILSTM-based intrusion detection

system for binary (normal and abnormal) and multi-class classification (classifying more

than attacks such as DoS, Prob, and U2R attacks).

3. Evaluating the performance of the new ILSTM and the intrusion detection system. Thor-

ough evaluation was done using nine performance metrics (accuracy, detection rate, false

alarm rate, precision, f–measure, false negative rate, mathew correlation coefficient and

kappa coefficient) under two public datasets (NSL-KDD dataset and LITNET-2020). The

ILSTM performed better than LSTM in both datasets.

4. Comparing the results of the proposed solution with various deep learning algorithms. The

comparison demonstrated that the proposed ISTLM gave better results in binary and

multi-classification of intrusion types such as DoS, Prob, and U2R attacks.

5. Conducing statistical analysis using Wilcoxon Signed-Rank test which showed that ILSTM

is more statistically significant than LSTM.

The subsequent sections of this paper are as follows: Section 2 of the paper discusses some

related works on swarm intelligence, deep learning, and network intrusion detection methods.

Section reference 3 contains all implemented algorithms that were used in the development of

the proposed algorithm. Section 4 includes the proposed algorithm (ILSTM). Section 5 pro-

vides an experimental setup for implementation the proposed algorithm, parameter setting,

performance metrics, and preprocessing phase on the NSL-KDD and the LITNET-2020 data-

sets. Section 6 illustrates and discusses the performance of the proposed algorithm in binary

and multi-class classification as well as comparisons with other deep learning and machine

learning algorithms. Section 7 presents the conclusion of this work and future work.

2 Literature review

IDS are critical components of computer network defense. In prior studies, several approaches

proposed intrusion detection based on deep learning. In [14], RNN classifier is proposed by

using one hidden layer with eighty hidden nodes and 0.1 learning rate for binary and multi-

class classification on the NSL-KDD dataset. However, applying RNN has the drawback of

exploding and vanishing gradients, which this method does not solve.
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In [8], an integrated intrusion detection model based on a staked denoising auto-encoder

and deep belief network (SADE-ELM and DBN-SoftMax)is developed to overcome the short-

comings of existing deep neural network models, including their long learning times and poor

classification accuracy, The proposed model only achieves 76.64% for accuracy in binary clas-

sification on the NSLKDD dataset.

The authors of [13] developed an intrusion detection model based on bidirectional long

short-term memory (BiDLSTM) and convolution LSTM, and the results show that the pro-

posed BiDLSTM is more effective than convolution LSTM. The accuracy of convolution

LSTM is 89.81% but BiDLSTM reach to 94.26% in binary classification. Despite BidLSTM

gives best result than convolution LSTM, it requires more training time than other compared

algorithm.

The authors of [25] proposed a BAT-MC hybrid method of BLSTM and attention mecha-

nism and compare it to other machine learning algorithms (J48, Naive Bay, NBTree, Random

Forest, and SVM) using the NSL-KDD dataset in binary classification. The proposed method

accomplishes 84.25% for accuracy in binary classification but has the lowest accuracy for U2R

and R2L attacks in multi-class classification.

Jiang et al. [26] combined hybrid sampling techniques with deep learning networks (CNN)

as a method for intrusion detection. They use one-side-selection (OSS) to reduce the noise

samples in the majority categories and increase the minority categories by the synthetic minor-

ity over-sampling technique (SMOTE). The accuracy of this method is only 83.58% on the

NSL-KDD dataset in binary classification and 82.74% in multi-class classification. However,

while this method has a high detection rate for U2R attacks, it has a lower detection rate for

other attacks such as (normal, Dos, Prob, R2L).

Chora and Pawlicki [27] studied ANN hyperparameters (activation, optimizers, batch size,

epochs, layers, and neurons) for an intrusion detection model using NSL-KDD and CICIDS

2017. When using the parameters tanh, Adam, with 100, 300, 1, and 25, the accuracy was

99.9%. For the other parameters, accuracy dropped to 5.64 percent, demonstrating that the

ANN model is sensitive to parameter values. They further did not consider multiclassification

of intrusion types such as Dos, Prob, U2R, or R2L.

Multiple researchers have studied the use of swarm intelligence algorithms for machine

learning algorithms. ELHasnony et.al [28] developed a hybrid swarm algorithm of BOA and

PSO for selecting the best features. Selected features are applied for machine learning algo-

rithm (KNN) with 5 K fold cross-validation for classification. 25 Datasets from UCI machine

learning repository and COVID-19 dataset are used to evaluate the proposed algorithm,

where proposed algorithm give better result than other swarm algorithms such as BOA, PSO,

and GWO. ALsaleh et al. [29] investigated the impact of the salp sarm algorithm (SSA) for

feature minimization on improving machine learning network-based anomaly detection

classifiers such as XG Boost and Naive Bayes. Improved firefly algorithm is also proposed for

optimizing parameters of XGBoost classifier for intrusion detection in [30], the proposed

algorithm is tested on the NSL-KDD and UNSW-NB15 datasets. Firefly algorithm reduced

the number of features to 19 from 42, where accuracy in binary classification is increased

after selection features but other performance metrics are decreased, such as (precision and

f-score). In multi-classification, most performance metrics give the best results after

selection.

The use of swarm algorithms for deep learning networks was also investigated by research-

ers. As in [31], where the hybrid deep learning model CNN-OLSTM is used to detect DDos

attacks and the grey wolf optimization method is present to choose the best features for detec-

tion, but it obtains a very low specificity of 51%. In [11], a feature reduction model based on

correlation and information gain, followed by using a RNN classifier for the detection of

PLOS ONE iSLTM network for intrusion detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0284795 August 1, 2023 4 / 44

https://doi.org/10.1371/journal.pone.0284795


attacks and non-attacks in a reduced-feature dataset, where 90% of the NSLKDD dataset is

used for training. In [32] suggested that using the whale algorithm to optimize the weights of

LSTM networks to develop an effective model is called WILS, the abbreviation for whale inte-

grated long short term memory to detect a variety of threats on IoT networks. They used the

same dataset for training and testing, using 70% of the NSL-KDD as training data and the

remaining 30% for testing data in binary classification.

Some research papers use mathematics algorithms for optimizing weights of LSTM, such as

[33] which uses four different optimizer (metaheuristic algorithms) such as harmony search

(HS), grey wolf optimizer (GWO), sine cosine (SCA), and ant lion optimization algorithms

(ALOA) to train LSTM for maximizing classification accuracy.

The authors in [34] developed a model (OCNN-HMLSTM) by using lion swarm optimiza-

tion (LSO) for optimization hyperparameters of CNN (spatial features) and using HMLSTM

for learning temporal features. The proposed model for NSL-KDD has a binary classification

accuracy of 90%, while all attack types (Dos, U2R, Prob, and R2L) have higher false positive

rates, reaching 9.92%. In the research paper [35], The authors proposed the firefly algorithm

for feature selection of NSL-KDD and KDD Cup 99 datasets, then used DNN for the classifica-

tion process. Despite the efficiency of the hybrid eFA-DNN framework, it is only proposed for

binary classification algorithms.

The authors applied an evolutionary sparse convolution network (ESCNN) in [36] for

identifying and tracking attacks in distributed denial of service (DDOS) in the IoT. A variety

of DDoS attack-related feature analyses were used to design the technique to reduce net-

work overhead. The proposed network achieves a 98.28% detection rate and 99.29% accu-

racy in binary classification. In [37], a new feature selection strategy has been proposed

using bio-inspired algorithm GWO, in addition authors applied classification method

(ELM) refer to extreme learning machine. Modified GWO was tested using the UNSW NB-

15 dataset and achieved 78% accuracy. In order to boost the accuracy of a machine learning

classifier for intrusion detection systems, relevant features from the UNSW-NB15 and

CICIDS-2017 datasets are selected using the artificial bee colony (ABC) algorithm as

described in [38]. According to [39], the Firefly algorithm is also used in network intrusion

detection to choose features. The Firefly algorithm can choose 10 crucial features from the

KDD CUP 99 dataset, which is applied to bayesian networks (BN) and C4.5 based classifiers

for anomaly detection. Image recognition has also been applied lately in intrusion detection,

as in [40] where a new approach has been proposed using multistage deep learning image

recognition that transforms network features into four channel images (Red, Green, Blue,

and Alpha) that are used in classification. Results reach 99.8% accuracy for the BOUN Ddos

dataset.

From the above literature analysis and summarized in in Table 1, it could be concluded that

the performance of the deep learning-based intrusion detection system could be still improved.

Such improvement should cover two aspects: binary and multi-class classifications of attacks.

It was also noticed that although LSTM has been used in many intrusion detection systems,

such as [21, 22, 25] but it still suffers from two main limitations: (1) taking high numbers of

iterations to find the best weight value of its network which affects the computational costs,

and (2) its classification performance is still not high. In addition, LSTM performance is

impacted by extra problems with random weight initialization [23].

3 Preliminary work

In this section, an overview of the algorithms used in our proposed algorithm and intrusion

detection system is given.
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3.1 Chaotic map

Since the last decade, chaotic maps have been widely appreciated in the field of optimization

due to their dynamic behaviour which helps optimization algorithms explore the search space

more dynamically and globally [43]. Chaotic maps are ten mathematical functions that are

used for the generation of chaotic sequences. In this paper, iterative map developed in [44] is

used instead of random sequences. It has been tested before in [20] and gave better results

than other chaotic maps, It is defined as follows:

xiþ1 ¼ sinð
a∗pi
xi
Þ ð1Þ

Where a=2 (0, 1)and pi=3.14.

Table 1. Comparison of intrusion detection systems.

Citation Algorithm Dataset Advantages Disadvantage

[8] Auto-Encoder,Deep Belief

Network

NSLKDD, KDDCup and

CIDDS-001

reaching to better result in binary classification

on KDDCup and CIDDS-001 datasets

Achieving only 76.64% for accuracy in

binary classification and TPR for some

attacks reach to 0

[13] Bidirectional Long Short

Term Memor(BiDLSTM)

NSLKDD Obtaining a higher accuracy, recall, and F-score

than the conventional LSTM

Requiring more training time

[26] CNN-BiLSTM NSL-KDD and UNSW-NB15 Using (OSS) to reduce the noise samples in

majority category which lead to reduce training

time

Lower detection rate for other types of

attacks such as (Normal, Dos, Prob, R2L)

[31] CNN-O- LSTM DARPA1998, DARPA LLS

DDoS-1.0, CICIDS2017,

NSL-KDD and KDD cup

DDoS detection model through deep learning

methods

Optimization for LSTM donot improve

some metrices which obtains a very low

specificity of 51% in all datasets

[11] RNN NSL-KDD Reducing the number of features, which lead to

reduce preprocessing time

They don’t apply multiclass classification

and use the same dataset for training and

testing don’t use testing dataset of NSLKDD

(KDDTest+)

[41] PCA-PNN KDD99 The computation of data is greatly reduced as

features reduction from 122 to 6 which lead to

reduce the detecting time

Using minimum instances for training and

testing process so most dataset not covered

in results

[42] DSN NSL-KDD Combination the benefits of four machine

learning techniques

Despite using oversampling give minimum

detection rate for R2L and U2R attacks

[32] WILS CIDDS-001, UNSWNB15,

KDD-cup99

Optimization LSTM using whale algorithm help

in gets significant results in in accuracy,

precision, and recall

They Don’t include performance in multi-

class attacks

[25] BLSTM-CNN NSL-KDD dataset Attention mechanism is used to obtain features

which are more related for malicious traffic

detection

Lower detection rate for U2R and R2L

attacks

[34] OCNN-HMLSTM NSL-KDD, ISCX-IDS and

UNSWNB15

Author Implemented hierarchical Multi-scale

LSTM (HMLSTM) for effective extraction and

learning of spatial-temporal features which lead

to achieve binary classification accuracy of 90%

False-positive rates reach 9.92% in all attack

classes

[21] LSTM CIDDS-001 LSTM achieved a reasonable accuracy of 0.85 in

multi-class classification

Binary classification isn’t implemented and

there isn’t any comparison with the

traditional classifiers.

[22] LSTM KDD-cup99 Applying principal component analysis give best

accuracy in binary and multiclass classification

Five categories of attacks are grouped into

three categories of attacks where we can not

measure performance of another attacks.

https://doi.org/10.1371/journal.pone.0284795.t001
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3.2 Butterfly Optimization Algorithm (BOA)

BOA is a swarm optimization algorithm that was inspired from nature and mimics the forag-

ing behaviour of social butterflies [17]. BOA searches both locally and globally for the best

solution for a given problem. In BOA, information is propagated to all other search agents

(solutions) using fragrance to form a collaborative social network. All previous skills in BOA

will help in optimization and searching for optimal parameters. In nature, butterflies use sen-

sors to sense or smell fragrance. Each butterfly scatters a different amount of fragrance accord-

ing to its fitness. A butterfly emits a strong fragrance with intensity when it moves. An

algorithm for standard BOA is shown in Algorithm 1. The fragrance of each butterfly can be

defined as follows.

pfi ¼ cIa ð2Þ

Where pfi represents the perceived magnitude of fragrance, I is fragrance intensity. The param-

eters a and c are the power exponent and the sensor modality, respectively.

The parameter (a) is the power exponent defining the variation of fragrance absorption,

which affects the butterfly’s ability to find the best solution. If a=1, this indicates no absorption

of fragrance. That is, the other butterflies will sense all amounts of the fragrance emitted by a

particle butterfly. If a=0, then the fragrance emitted by a particle butterfly is not perceivable to

any other butterflies. We can see the role of (a) in optimization, so we use the following equa-

tion developed in [28] to balance the BOA search capabilities.

aðtÞ ¼ as � ðas � af Þ � sinðð
p

m
Þ � ð

t
Tmax
Þ

2
Þ ð3Þ

Where as and af are the initial and final values of a, μ is the tuning parameter and Tmax is the

maximum number of iterations. A value of sensor modality c in the range [0, 1]. Its value can

be updated in an iterative BOA process as follows,

ctþ1 ¼ ct þ ð
0:025

ct � Tmax
Þ ð4Þ

Where Tmax is the maximum number of iterations and initial value of c is 0.01.

Each butterfly emits fragrance when it moves and the other butterflies are attracted to it

according to its magnitude of fragrance. This process is called a global search and can be

defined as follows

xtþ1
i ¼ xt

i þ ðr
2 � g∗ � xt

iÞ � fi ð5Þ

Where xt
i is a vector which represents the butterfly (solution) at iteration t, g* is the overall best

solution, r is a random number in [0, 1] and fi is a fragrance of ith butterfly. When the butter-

flies fail to sense the fragrance of the other butterflies, they move randomly in the search space.

The process is called local search and it can be defined as follows.

xtþ1
i ¼ xt

i þ ðr
2 � xt

j � xt
kÞ � fi ð6Þ

Where xt
j ; x

t
k are two vectors that represent two different butterflies in the same population.

Algorithm 1 Butterfly optimization algorithm
1: Set the initial values of the population size n (butterflies),
parameters a (power exponent), c sensory modality, switch probability
ρ, and the maximum number of iterations Maxitr.
2: Set t ≔ 0. . Counter initialization.
3: for (i = 1 : i � n) do
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4: Generate an initial population (butterflies) ~xt
i randomly.

5: Evaluate the fitness function of each butterfly (solution) fð~xtiÞ.
6: Calculate the fragrance for ~xti as shown in Eq 2.
7: Assign the overall best butterfly (solution) ~g∗.
8: end for
9: repeat
10: Set t = t + 1.
11: for (i = 1 : i � n) do
12: Generate random number r, r 2 [0, 1].
13: if (r < ρ) then
14: Move butterflies towards the best butterfly ~g∗ as shown

in Eq 5. . Global search.
15: else
16: Move butterflies randomly as shown in Eq 6. . Local search.
17: end if
18: Evaluate the fitness function of each butterfly (solution) fð~xtiÞ.
19: Assign the overall best solution ~g∗.
20: end for
21: Update the value of parameters a, c.
22: until (t > Maxitr). . Termination criteria satisfied.
23: Produce the best solution ~g∗.

3.3 Chaotic butterfly optimization algorithm (CBOA)

CBOA is a modified version of BOA that uses chaotic maps instead of random variables in Eqs

6 and 7 to update butterfly positions. Thus enhancing BOA’s accuracy, as described in [20].

For global search, Eq 7 can be changed as follows.

xtþ1
i ¼ xt

i þ ðC
2 � g∗ � xt

iÞ � fi ð7Þ

Where xt
i is a vector which represent the butterfly (solution) at iteration t, g* is the overall best

solution, C is a chaotic number and fi is a fragrance of ith butterfly. For local search, Eq 6 can

be updated as follows.

xtþ1
i ¼ xt

i þ ðC
2 � xt

j � xt
kÞ � fi ð8Þ

Where xt
j ; x

t
k are two vectors that represent two different butterflies in the same population.

3.4 Particle swarm optimization (PSO)

Kennedy and Eberhart proposed PSO as one of the bio-inspired algorithms in 1995 [45]. PSO

is established by certain species’ social foraging behaviour, such as schooling behaviour in fish

and flocking behaviour in birds. An algorithm for standard PSO is shown in Algorithm 2. PSO

consists of particles, each of which has its own velocity and position. In PSO, each particle

moves to the best local position Pbest and the best global position gbest, where Pbest is the par-

ticle’s best local location and gbest is the best position from all the best local positions. Each

particle has a velocity defined as follows.

vtþ1
i ¼W � vti þ c1 � r1 � ðpbestti � xt

iÞ þ c2 � r2 � ðgbestti � xt
iÞ ð9Þ

Where i = 1;2. . ..S; and S is swarm size,c1 and c2 are factors of constant cognitive and social

scaling. W is inertia weight was added to boost performance [28]. W is calculated by the
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following equation.

WðtÞ ¼Wmax �
ðWmax � WminÞ � Ti

Tmax
ð10Þ

Where Tmax is the maximum number of iterations, Ti is a current iteration. Wmax and Wmin is

the maximum and minimum value of inertia weight respectively.

The location of the particle at iteration t is calculated as follows.

xtþ1
i ¼ xt

i þ vtþ1
i ð11Þ

Algorithm 2 Particle swarm optimization
1: Input: Randomly initialized position and velocity of Particles: xti
and vt

i

2: Output: Position of the approximate global minimum X*
3: while terminating condition is not reached do
4: for i = 1 to number of particles do
5: Calculate the fitness function f
6: Update personal best and global best of each particle
7: Update velocity of the particle using Eq 9
8: Update the position of the particle using Eq 11
9: end for
10: end while

3.5 Long short term memory (LSTM)

LSTM is an extension of RNN that able to learn long-term dependencies. The LSTM architec-

ture is more complicated than the RNN architecture; it has four hidden layers that use gates to

add and remove cell state information [46].

For one LSTM cell, at time step t, the forget, input and output gates are represented by it,
Ot, ft, respectively, as shown in Fig 1 which discussed before in [47]. Forget gate decides which

information will be deleted from the cell state based on ht� 1 and xt. The input gate determines

which information from the current state will be stored in the cell state and updates it using

the ‘tanh layer’ to generate a vector of new contender values. The final output gate decides how

Fig 1. The architecture of LSTM cell.

https://doi.org/10.1371/journal.pone.0284795.g001
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the output should look and passes it through the ‘tanh layer’ to the next neuron. The following

equations mathematically describe the relationship between the inputs and outputs at time t
and t − 1:

ft ¼ sðWf :½ht� 1; xt� þ bf Þ: ð12Þ

it ¼ sðWi:½ht� 1; xt� þ biÞ ð13Þ

ot ¼ sðWo:½ht� 1;xt
� þ boÞ ð14Þ

gt ¼ tanhðWc:½ht� 1; xt� þ bcÞ ð15Þ

Ct ¼ ft∗Ct� 1 þ it∗gt ð16Þ

ht ¼ ot∗tanhðCtÞ ð17Þ

Where C denotes the cell state The activation functions are defined by sigma (the sigmoid

function) and tanh. x is the input vector, and ht is the output vector. The weights and biases

parameters are represented by W and b, respectively. A tanh layer generates a vector of new

candidate values, g, which can be added to the state.

In this paper, we develop a deeper LSTM network with four hidden layers and two input

and output layers. It starts by mapping inputs to their representations using the feature input

layer. It then feeds the sequence to two double LSTM layers. LSTM outputs are then fed to two

fully connected layers with the rectified linear unit (RELU) as an activation function. Finally,

the fully connected layers learn and compile the extracted data from the LSTM layer to form a

final output that passes through an output layer for classification. Fig 2 displays a summary of

the LSTM network architecture with four hidden layers as a first phase in the proposed

algorithm.

Fig 2. The architecture of ILSTM.

https://doi.org/10.1371/journal.pone.0284795.g002
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4 The proposed ILSTM algorithm

The proposed algorithm (ILSTM) consists of a hybrid LSTM network described in section 3.5

and the hybrid swarm algorithm CBOA and PSO, as briefed in Sections 3.3 and 3.4, respec-

tively. The hybrid CBOA+PSO was used for optimising weights of the LSTM network, which

helps in improving the training of the LSTM network in a minimum number of iterations. In

general, the proposed ILSTM consists of two main phases as described in Fig 2.In the first

phase, the LSTM is traditionally trained to get the best parameters and weights of its internal

network architecture. In second phase, the hybrid CBOA+PSO (see Algorithm (3)) was used

for optimising weights of the trained LSTM network to further find the optimal weights which

can improve the accuracy in both binary and multi-class classification1ion while taking a

fewer iteration. More details are in the following sub-sections and in the ILSTM algorithm

given in Algorithm (3).

4.1 Phase 1: Training LSTM network

In order to obtain better weights from the trained network than random weights for phase ini-

tialization, we first implemented a deeper LSTM network. The LSTM network was trained

with four hidden layers: (LSTM layer 1 + LSTM layer 2) followed by two fully connected Lay-

ers (FCL) with rectified linear unit (Relu). The parameters of LSTM network are described in

Table 4. When the training accuracy of the LSTM network did not show improvement, the

proposed algorithm uses phase 2 to improve performance in a fewer number of iterations.

4.2 Phase 2: LSTM network optimization and acceleration

In this phase, by integrating the capabilities of the individual CBOA and PSO algorithms, we

were able to combine their benefits for accurately optimizing the weights of an LSTM network.

In this case, PSO is employed for the local search for optimal weights while CBOA is used for

the global search for optimal weights. The following steps explain how both algorithms were

used to optimize the weights of the LSTM network.

1. Generation of initial population The proposed algorithm ILSTM initiates with weights

obtained by the conventional LSTM in phase 1, and some parameters are used for CBOA,

such as switch probability (P), sensor modality (c), and power exponent (a), and other parame-

ters are used for PSO, such as minimum and maximum values of velocity inertia weight

(Wmin, Wmax), and constant cognitive factors (c1, c2), as well as a number of iterations (T)

and population size (N) from Table 5. At each iteration values of power exponent and sensor,

modality are updated based on the current iteration. CBOA and PSO are combined in all steps

only in position updating, CBOA is used for global search and PSO is used for local search.

2. Definition of fitness function The fitness function of the proposed algorithm is the maxi-

mization accuracy of ILSTM which is calculated using the ACC equation in 20.

3. Updating weights of network At each iteration, ILSTM updates LSTM network with new

weights and the fragrance of each solution is calculated.

4. Position updating Each solution in the population moves to next position according to the

value of the chaotic number generated by Eq 1. If value of c is greater than P, ILSTM uses

the following equation for updating the position in local search.

xtþ1
i ¼ xt

i þ vtþ1
i ð18Þ

Where vtþ1
i is velocity defined before in Eq 9. If value of c is less than P, ILSTM utilises the
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following equation for updating position in global search.

xtþ1
i ¼ xt

i þ ðC
2 � g∗ � xt

iÞ � fi ð19Þ

At each iteration, ILSTM selects optimal solutions(weights) according to a maximum value

of the fitness function (the maximum value of accuracy).

5. Termination condition When ILSTM algorithm reaches to the maximum number of itera-

tions, optimal weights with the best fitness function are produced. Finally, an optimized

ILSTM network with optimal weights was generated.

Algorithm 3 Proposed algorithm (ILSTM)
1: Set the initial values of the population size S (butterflies),
parameters a (power exponent), c sensory modality, switch probability
ρ, and the maximum number of iterations Maxitr.
2: Get an initial population (weights) from trained LSTM network xt

i.
3: Set t ≔ 0. . Counter initialization.
4: for (i = 1 : i � S) do
5: Evaluate the fitness function of each butterfly (weight) fðxt

iÞ.
6: Calculate the fragrance for xti as shown in Eq 2.
7: Assign the overall best butterfly (weight) g*.
8: end for
9: repeat
10: Set t = t + 1.
11: for (i = 1 : i � S) do
12: Generate chaotic number C by Eq 1
13: if (C < ρ) then
14: Move butterflies towards the best butterfly g* as shown

in Eq 19. . Global search.
15: else
16: Update the velocity using Eq 9.
17: Update the position by Eq 18. . Local search.
18: else if
19: Evaluate the fitness function of each butterfly (weight) fðxt

iÞ.
20: Assign the overall best weights g*.
21: end for
22: Update the value of a according Eq 3.
23: Update the value of c according Eq 4.
24: Update the value of W according Eq 10.
25: until (t > Maxitr). . Termination criteria satisfied.
26: Produce the best solution (optimal weights) g*.
27: Produce optimized LSTM network (ILSTM).

5 Experimental setup

This section gives details about the experimental setup under which the experimental evalua-

tions, in the next section, are conducted. Firstly, all experiments have been conducted on a lap-

top with an Intel(R) Core(TM) i5-6300U CPU@ 2.50 GHz and 8.00 GB of RAM and the

proposed algorithms were implemented using Matlab R2020a running on Windows 10.

In Section (5.1), an overview of the performance metrics used to assess the quality of the

proposed algorithm is given. The section then gives a description and the preprocessing of the

two public datasets (NSL-KDD 2009, LITNET-2020) used for the evaluation process. Finally,

we test our proposed algorithm on a modern dataset, LITNET-2020, to ensure its efficiency.

On the other hand, Table 4 displays a summary of the LSTM network architecture. We com-

pare the algorithm’s performance with state-of-the-art and deep learning methods trained and

tested on the same dataset (i.e., the NSL-KDD dataset).
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5.1 Performance metrics

Nine performance metrics, accuracy (ACC), detection rate (DR), false alarm rate (FAR), preci-

sion (Prec), specificity (SPC), f-measure, false negative rate (FNR), mathematic correlation

coefficient (MCC), and kappa coefficient, were selected to evaluate the performance of ILSTM

[34]. A mathematical representation of all measures can be calculated based on four perfor-

mance measurements, true positive (TP), false positive (FP), true negative (TN), and false neg-

ative (FN). These four measures were collected from the confusion matrix [48].

1. Accuracy: the percentage of correctly classified instances to the total number of instances,

defined as follows.

ACC ¼
TPþ TN

TP þ TN þ FN þ FP
ð20Þ

2. Recall(DR): the equivalent TPR. It is the percentage of instances identified correctly over

the total number of anomaly instances, it can be derived as follows.

DR ¼
TP

TP þ FN
ð21Þ

3. SPC: is computed as follows.

Specifity ¼
TN

TN þ FP
ð22Þ

4. Prec: is calculated as follows.

Precision ¼
TP

TP þ FP
ð23Þ

5. F-measure: computed as follows.

F � measure ¼ 2∗
Precision∗Recall
Precisionþ Recall

ð24Þ

6. FAR: known as FPR, the percentage of the number of normal instances which are misclassified

as anomalies is divided by the total number of normal instances, can be computed as follows.

FAR ¼
FP

FP þ TN
ð25Þ

7. FNR: can be computed as follows.

FPR ¼
FN

FN þ TP
ð26Þ
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8. MCC: varies between −1 and 1 where the best binary classifier obtains positive 1 and worst

classifier obtains negative 1. It is computed as follows

MCC ¼
ðTP∗TNÞ � ðFP∗FNÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP þ FPÞðTPþ FNÞðTN þ FPÞðTN þ FNÞ

p ð27Þ

9. Kappa coefficient: is used to check whether the classifier can process imbalanced data clas-

ses successfully. It is calculated as follows.

kappa ¼
absolute � Expect

1 � Expect
ð28Þ

where Absolute = Accuracy and

Expect ¼
Aþ B

ðTP þ TN þ FPþ FNÞ ð29Þ

values of A and B can be obtained as

A ¼
ðTPþ FNÞðTP þ FPÞ
ðTP þ TN þ FPþ FNÞ

ð30Þ

B ¼
ðFPþ TNÞðFN þ TNÞ
ðTP þ TN þ FP þ FNÞ

ð31Þ

5.2 Dataset 1: NSL-KDD dataset

The NSL-KDD dataset is a refined version of the KDD cup [49]. It has a fair distribution of all

types of attacks [50]. Many researchers employ the NSL-KDD to develop an effective intrusion

detection algorithm, such as in [26, 34, 50]. The NSL-KDD includes 41 attributes that are clas-

sified as normal or attack traffic [49]. The NSL-KDD is divided into a training dataset

(KDDTrain+) and two testing datasets, KDDTest+ and KDDTest-21. All of these datasets have

normal records and four types of attack records, such as probe, remote to local (R2L), denial of

service (Dos), and user to root (U2R). In this paper, all of the KDDTrain+ dataset is used for

training, and all of two other datasets (i.e., KDDTest+ and KDDTest-21) are used for testing,

where the training dataset represents 80% of the NSL KDD dataset and the testing dataset rep-

resents 20% of the NSL KDD dataset as shown in Table 2.

5.2.1 Dataset preprocessing. KDDTrain+, KDDTest+, and KDDTest-21 datasets are pre-

processed before being used for training and testing the LSTM network and the proposed

ILSTM. We apply preprocessing step on raw dataset to better make full use of domain knowl-

edge of network traffic. It contains three processes: (1) mapping symbolic features to numeric

Table 2. NSL-KDD dataset description.

Datasets Normal Dos Probe R2L U2R Total

KDDTrain+ 67343 45927 11656 995 52 125973

KDDTest+ 9711 7458 2421 2754 200 22544

KDDTest-21 2152 4342 2402 2754 200 11850

https://doi.org/10.1371/journal.pone.0284795.t002
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values; (2) sampling imbalanced classes in the dataset; and (3) normalizing features that have a

large scale.

1. Data transformation The NSL-KDD dataset has 38 numeric features and 3 non-numeric

features such as “protocol-type,” “service,” and “flag”. As LSTM classifier accepts only

numeric values, we first convert non-numeric features, as in [51, 52], where we replace

every single value with an integer in order to handle non-numeric features as in Table 3.

One-hot encoding makes our training data more useful and expressive, and it can be

rescaled easily. By using numeric values, we can more easily determine the probability of

our values. In particular, one hot encoding is used for our output values since it provides

more nuanced predictions than single labels. Each value is converted to binary code, so a

protocol type with three values (tcp, udp, and icmp) becomes 1, 2, and 3, which are recog-

nised as [1, 0, 0], [0, 1, 0], and [0, 0, 1]. Finally, NSLKDD has 122 features.

In order to further analyse NSL-KDD, we used SHAP analysis for indication of structural

predictors (inputs) that have the strongest influence on the particular output. This was

done by evaluating the effect of each feature on the target variable and indicating the impor-

tance of each feature in determining the final predicted outputs. The outcome of the SHAP

analysis is given in Figs 3 and 4.

Table 3. Transformation of symbolic features in NSL-KDD.

Symbolic

features

transform number

protocol_type tcp = 1,udp = 2,icmp = 3

service auth = 1, bgp = 2, courier = 3, cenet_ns = 4, ctf = 5, daytime = 6, discard = 7, domain = 8,

domain_ u = 9, echo = 10, eco_ i = 11,ecr_ i = 12, efs = 13, exec = 14, finger = 15, ftp = 16,

ftp_data = 17,gopher = 18, hostname = 19, http = 20, http_443 = 21, http_8001 = 22, imap4 = 23,

IRC = 24, iso_tsap = 25, klogin = 26, kshell = 27, ldap = 28, link = 29, login = 30,mtp = 31,

name = 32, netbios_dgm = 33, netbios_ns = 34, netbios_ssn = 35, netstat = 36, nnsp = 37,

nntp = 38, ntp_ u = 39, other = 40, m_dump = 41, pop_2 = 42, ppop_3 = 43, printer = 44,

private = 45, red_ i = 46, remote_job = 47, rje = 48, sshell = 49, mtp = 50, sql_net = 51, ssh = 52,

sunrpc = 53, supdup = 54, systat = 55, telnet = 56, tftp_ u = 57, tim_ i = 58, time = 59, urh_

i = 60, urp_ i = 61, uucp = 62, uucp_path = 63, vmnet = 64, whois = 65, X11 = 66, Z39_50 = 67

flag SF = 1, S0 = 2, REJ = 3, RSTR = 4, SH = 5, RSTO = 6, S1 = 7, RSTOS0 = 8, S3 = 9, S2 = 10,

OTH = 11

https://doi.org/10.1371/journal.pone.0284795.t003

Fig 3. Shap analysis for NSL-KDD in binary classification.

https://doi.org/10.1371/journal.pone.0284795.g003
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2. Dataset balancing using hybrid sampling There are several aspects that might influence

the performance of learning systems. One of these aspects is related to class imbalance,

which occurs when training data have a larger number of examples for one class than other

classes, such as in the NSL-KDD dataset. The classes in NSL-KDD network traffic data are

not represented equally, where Normal and Dos have larger examples than other types of

attacks such as U2R, R2L and Prob so these imbalanced data make a problem with classifi-

cation as the prediction of the majority class is increased while the detection of the minority

class is very low. Prior to [26], hybrid sampling was used, and the results were better than

those of a standard dataset. Synthetic minority over-sampling technique (SMOTE) is an

over-sampling method [53]. SMOTE forms new minority class examples by matching sev-

eral minority class examples that lie together. SMOTE can avoid overfitting and make

minority class boundaries spread through majority class space. To balance majority classes,

the random under sampling (RUS) [54] technique is used to reduce the number of exam-

ples of the majority classes in the training dataset.

3. Normalization Some features in the NSL-KDD dataset, such as “duration,” “src-bytes”,

and “dst-bytes” have a large scope between the minimum and maximum values, which can

degrade the classification performance [55]. So, we applied the minimum-maximum nor-

malization method [53] which maps features into the normalized range [0, 1]. This method

can be defined as in Eq [32].

Xnorm ¼
X � Xmin

Xmax � Xmin
ð32Þ

Where Xmin and Xmax are the minimum and the maximum values of feature x.

5.2.2 Parameter setting. To determine the value of the parameters of the selected algo-

rithms, we study the performance of LSTM network on NSL-KDD. Then the hybrid algo-

rithms (i.e., CBOA+PSO) was used to optimize the weights of LSTM network and finally we

evaluate the performance of the proposed algorithm ILSTM in binary classification (normal,

anomaly) and five category classification (multi-classification) such as (Dos, Prope, R2L, and

U2R). KDDTest+ dataset is used to determine the optimal parameters and network topology

of the algorithm. These parameters and network topology are then applied to the KDDTest-21

Fig 4. Shap analysis for NSL-KDD in multi-class classification.

https://doi.org/10.1371/journal.pone.0284795.g004
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and LTNET-2020 datasets. The parameters used in the simulation of the LSTM network are

shown in Table 4, where:

1. The adaptive moment estimation (Adam) algorithm is used to update LSTM network’s

parameters. For the binary classification, the loss function was cross-entropy while for

multi-classification the categorical cross-entropy was used. We applied regularization in

range [0.01, 0.001], which came down to adding a cost to the loss function for large weights

to ensure that our network does not overfit the data.

2. When the learning rate of the network is too high, the loss function of networks will oscil-

late without convergence. If the learning rate is too low, the slow convergence rate will hin-

der the updating of networks. Therefore, choosing an appropriate learning rate is very

important for network performance optimization. As in Fig 5 we studied the impact of a set

of learning rates [0.1, 0.01, 0.001, 0.0001] in binary and multi-classification on the

KDDTest+ dataset and selected the best learning rate that achieves high accuracy.

3. An essential component of choosing the overall neural network architecture is determining

the number of neurons in the hidden layers. Applying too few neurons in the hidden layers

will result in a problem called underfitting. When too many neurons are used in the hidden

layers, a problem known as overfitting occurs and training time is increased. In this paper,

we assumed that the number of hidden neurons should be between the size of the input

layer and the output layer in a network model, so we applied Eq 33 as in [56] to get the best

Table 4. Parameter setting for LSTM.

Parameter Binary Multi-class

Optimizer Adam Adam

Learning rate 0.001 0.01

Hidden nodes for LSTM1 64 64

Hidden nodes for LSTM2 32 32

Hidden nodes for FCL1 8 16

Hidden nodes for FCL2 4 8

Epochs 100 100

L2Regularization 0.01 0.0001

Loss function cross entropy cross entropy

output layer activation softmax softmax

https://doi.org/10.1371/journal.pone.0284795.t004

Fig 5. Performance test on KDDTest+ with increasing learning rate.

https://doi.org/10.1371/journal.pone.0284795.g005
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values.

Nh ¼ Nsða� NtðNi þ NoÞÞ ð33Þ

Where Ni = number of input neurons, No = number of output neurons, Ns = number of

samples in training data set, α = an arbitrary scaling factor usually be in the range [2, 10]

and Nt = the number order for hidden layer.

Table 5 studies parameters for the CBOA and PSO algorithms, which are applied in various

research papers like as [17, 28].

5.3 Dataset 2: LITNET-2020 dataset

LITNET-2020 dataset is a relatively new dataset collected by LITNET (Lithuanian research

and education network) academic network in Lithuania’s real-time network traffic. It is a real-

world and up-to-date flow-based network dataset [57] which is developed to test IDS systems.

In this dataset, there were 85 network flow features and 12 attack types, a summary of the

attacks and their instances are given in Table 6.

Table 5. Parameter setting for CBOA and PSO.

Algorithm Parameters Definitions Values

CBOA+PSO S Search agents 100

Maxit Maximum number of iteration 40

R Independent runs 10

CBOA p Switch probability 0.5

a Power exponent 0.1

c Initial value of Sensory modality 0.01

μ Tuning parameter 2

PSO Wmax Min value of velocity inertia weight 0.9

Wmin Max value of velocity inertia weigh 0.2

c1 = c2 Factors of constant cognitive 2

https://doi.org/10.1371/journal.pone.0284795.t005

Table 6. Summary of LITNET-2020 dataset.

Class Size

Benign 36,423,860

SYN flood 3,725,838

Code red 1,255,702

UDP flood 93,583

Smurf 59,479

LAND DoS 52,417

W32.Blaster 24,291

HTTP flood 22,959

ICMP flood 11,628

Port scan 6232

Reaper worm 1176

Spam Botnet 747

Fragmentation 477

https://doi.org/10.1371/journal.pone.0284795.t006
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5.3.1 Dataset preprocessing. By studying the LITNET-2020 dataset, it was found that it

has many features, such as “fwd, opkt, and obyt,” which have only one unique value. Addition-

ally, it contains source and destination IP and port numbers which are distinct features and

could not be used in attack detection. Therefore, there were only 16 features available for

attack classification. Further pre-processing was done where all categorical features were

encoded using label encoding. It was also noticed that some features, such as “sp” and “dp”,

have a large gap between the minimum and maximum values, which can degrade the classifi-

cation performance. So, we applied the minimum-maximum normalization method 32 which

maps features into the normalized range.

Further to that, we use SHAP analysis to explain the proposed algorithm’s prediction by cal-

culating the contribution of each feature to the prediction, because SHAP analysis shows the

importance of each feature on the target variable [58]. The results of the SHAP analysis is illus-

trated in Fig 6.

5.3.2 Dataset balancing using hybrid sampling. LITNET-2020 dataset suffers from

imbalance problem in class distribution, where the number of normal instances (benign)

reaches 3/4 of the size of the dataset, as shown in Table 6. To address this problem, hybrid sam-

pling, as given in point 2 in subsection 5.2.1, was applied to produce a balanced the datasets.

5.3.3 Data splitting approach. We divided the LITNET-2020 dataset to 60% for training

process and 40% for testing and validation. We choose this approach after conducting a small

experiment aiming to find out the best data-splitting approach. The results of this experiment

are summarized in in Fig 7. As shown in this figure, we divided the LITNET-2020 dataset into

4 different training and testing sets. We then tested all of them and it was found that 60:40 set

is the best approach.

Fig 6. SHAP analysis for LITNET-2020 dataset.

https://doi.org/10.1371/journal.pone.0284795.g006
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6 Results and discussion

The section reports the experimental results and their discussion which were conducted on the

two datasets described above. For each dataset, two main experiments are implemented to

study the performance of the proposed algorithm, ILSTM. In the first experiment, the pro-

posed algorithm is investigated for binary classification (i.e., normal or malicious traffic),

while in the second experiment, ILSTM is evaluated against multi-class classification (i.e., to

differentiate among normal, dos, prob, U2R, or R2L). Also, in each experiment, (1) a statistical

analysis (Wilcoxon test) was performed to show the significance of the ILSTM algorithm, and

(2) a comparison with other deep learning and machine learning methods was conducted to

demonstrate the efficiency of the ILSTM algorithm.

6.1 Experiment 1: ILSTM performance for binary classification on

NSL-KDD dataset

The aim of this experiment is to assess the performance of the proposed ILSTM for intrusion

detection in the case of classifying network traffic into normal or abnormal (i.e., binary classifi-

cation). This was done on KDDTest+ and KDDTest-21 datasets, as detailed below.

6.1.1 ILSTM Performance using KDDTest+ dataset. To evaluate the performance of the

proposed ILSTM, it is compared with the original LSTM and two optimized versions of LSTM

using BOA and CBOA. A summary of the results of this experiment is given in Table 7. These

results were recorded from an average of ten runs on the KDDTest+ dataset. It is clear from

this table that the proposed ILSTM algorithm gave the best results achieving an accuracy of

91.31%, a specificity of 96.46%, and a FAR of 3.51% (which is a very important value for intru-

sion detection systems). Other best results are shown in bold text in this table. For detailed

results of this experiment, the confusion matrix was reported in Fig 8.

Another experiment was conducted on the KDDTest+ dataset to investigate the relation-

ship between the accuracy and the number of iterations of the proposed ILSTM and original

LSTM. The results of this experiment were plotted in Fig 9. From this figure, it can be noticed

that the ILSTM took iterations less than the LSTM but the latter achieved a higher accuracy. In

this Fig, two curves are represented as follows: (a) a conventional LSTM achieved an accuracy

Fig 7. LITNET-2020 data splitting approach.

https://doi.org/10.1371/journal.pone.0284795.g007
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Fig 8. Confusion matrices for KDDTest+ in binary classification.

https://doi.org/10.1371/journal.pone.0284795.g008

Table 7. Comparison between LSTM, LSTM-BOA, LSTM-CBOA and ILSTM using KDDTest+ and KDDTest-21 in binary classification with average 10 runs.

Dataset Method ACC DR SPC Preci FAR FNR F1-Score MCC KAPPA

KDDTest+ LSTM 82.74 86.52 79.88 76.49 20.12 13.48 81.2 65.78 65.36

LSTM-BOA 86.56 82.33 89.75 85.88 10.25 17.67 84.06 72.49 72.45

LSTM-CBOA 88.62 79.85 95.25 92.85 4.75 20.15 85.81 77.05 76.40

ILSTM 91.31 84.93 96.46 94.76 3.51 15.07 89.36 82.40 82.05

KDDTest-21 LSTM 69.12 49.67 73.44 29.33 26.56 50.33 36.88 19.31 18.2

LSTM-BOA 83.4 10.69 99.55 87.63 0.46 89.32 17.38 22.55 14.61

LSTM-CBOA 84.59 18.13 99.34 87.22 0.66 81.87 28.16 32.23 24.17

ILSTM 86.65 28.15 99.94 97.80 0.07 80.83 43.20 47.53 38.05

https://doi.org/10.1371/journal.pone.0284795.t007
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of 82.74% at iteration 70 and did not improve between 70-100 iterations while Fig 9b shows

that after using the CBOA and PSO for LSTM weights (i.e., ILSTM) the accuracy improved to

92.41% at iteration 80 and only increased by 1% from iteration 80-100.

6.1.2 ILSTM Performance using KDDTest-21 dataset. The same above experiment was

conducted but using the KDDTest-21 dataset. The aim is to compare the proposed ILSTM

with the original LSTM, LSTM-BOA, and LSTM-CBOA. A summary of the results is given in

Table 7. An average of ten runs were used to get these results. Also, the confusion matrix for all

Fig 9. Accuracy and number of iterations for LSTM and ILSTM using KDDTest+ in binary classifications. A:

LSTM. B: ILSTM.

https://doi.org/10.1371/journal.pone.0284795.g009
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implemented algorithms in this experiment is shown in Fig 10. From these results, it could be

concluded that the proposed ILSTM algorithm gave the best results in an accuracy of 86%,

specificity 99%, precision 97.9%, and FAR 0.07 (which is a very important value for intrusion

detection systems) and when it is small it means that the IDS is efficient. Other best results are

shown in bold text in this table.

Using the KDDTest-21 dataset, we also investigated the relationship between the accuracy

and the number of iterations of the proposed ILSTM and original LSTM. The results of this

experiment were plotted in Fig 11. From this figure, it can be noticed that after applying the

optimization phase using CBOA and PSO on LSTM, the accuracy improved with 18% from

iterations 72-76, see Fig 11B while it remained constant at 68.95% for LSTM without any opti-

mization see Fig 11A).

Fig 10. Confusion matrices for KDDTest-21 in binary classification.

https://doi.org/10.1371/journal.pone.0284795.g010
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6.1.3 Efficiency of ILSTM algorithm in binary classification. Mean squared error

(MSE) is used to calculate the difference between the actual value and the obtained value for

measuring the performance in the optimization phase of LSTM. MSE is calculated using the

following equation as in [59].

MSE ¼
1

n

Xn

i¼1

ðxi � yiÞ
2

ð34Þ

Where xi is a vector of actual data, yi is a vector of predict data and n is the number of instances

in the testing dataset.

Fig 12 summarizes the results of the optimized weights of ILSTM. It can be seen that accu-

racy is not only improving but also the lowest value of MSE is reached in binary classification

(normal or abnormal traffic) using two datasets: KDDTest+ in Fig 12(a) and KDDTest-21 in

Fig 12(b).

Fig 11. LSTM vs ILSTM for KDDTest-21 for binary classification. A: LSTM. B: ILSTM.

https://doi.org/10.1371/journal.pone.0284795.g011
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6.1.4 Wilcoxon signed-rank test for binary classification on KDDTest+ and KDDTest-

21 datasets. In this section, we implement the Wilcoxon signed-rank test to demonstrate the

effectiveness of the proposed algorithm in binary classification using two testing datasets. As

in Table 8, statistics results from Wilcoxon are defined between the accuracy of conventional

LSTM and the accuracy of the proposed algorithm (ILSTM), where the mean difference is

-10.2 for KDDTest + and equal to -22.86 for KDDTest -21. The value of z is 2.8031, and the p-

value is 0.00512 for the KDDTest+ and KDDTest-21 datasets. The results in Table 8 show that

the p = 0.00512 which is lower than the significance level (0.05), so the null hypothesis should

be rejected and it means that there is a significant difference between the proposed ILSTM

algorithm and the other algorithms. This statistical analysis confirms the numerical results

reported above.

From Tables 7 and 8, three remarks can be noticed. Firstly, when using a chaotic map

with BOA as in CBOA algorithm, the results of all evaluation metrics were improved. This

Fig 12. MSE for ILSTM algorithm in binary classification. A: KDDTest+. B: KDDTest-21.

https://doi.org/10.1371/journal.pone.0284795.g012
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is due to the fact that a chaotic map increases the search space for new solutions while

avoiding local minima. Secondly, when using Eq 11 of PSO algorithm in local search

instead of Eq 8, the search for new solutions is improved because the velocity helps in

searching for local and global best solutions. So, using CBOA and PSO in our proposed

ILSTM algorithm improved the results of intrusion detection in both binary classification

in most performance metrics such as (Acc, Spc, Prec, FAR, f1-score, MCC, and Kapp) on

KDDTest+ and KDDTest-21 datasets. Finally, the optimization process improved the

LSTM network with better results in performance metrics and statistical tests than the con-

ventional LSTM.

6.1.5 Comparison of the ILSTM algorithm with related methods. In order to objec-

tively evaluate the performance of ILSTM, we conducted a comparison with other deep and

machine learning methods that were implemented in the intrusion detection literature. In

this comparison, we used machine learning and deep learning methods reported in previous

work such as [13, 14, 25]. The results of this comparison are reported in Fig 13 for machine

learning methods and in Fig 14 for deep learning methods. From these figures, it can be con-

cluded that our proposed algorithm outperformed all other algorithms in binary

classification.

In addition, Table 9 shows the results of comparison with other methods suggested for

binary classification. Those methods were used in [34]. From this table, it can be seen that the

proposed ILSTM algorithm has achieved the best results in most measures, where the best val-

ues are shown in bold text.

6.2 Experiment 2: ILSTM performance for multi- class classification on

NSL-KDD dataset

The aim of this experiment is to assess the performance of the proposed ILSTM for intrusion

detection in the case of classifying network traffic into different types of attacks (i.e., multi-

classification) where there are 5 classes of data Normal and 4 types of attacks (Dos, Prob, U2R,

R2L). Three sub-experiments are conducted. The first and second are designed for the perfor-

mance evaluation of ILSTM under the KDDTest+ and KDDTest-21 datasets, respectively

while comparing it with the most related work. The third experiment was for comparison with

the other related work under eight performance metrics.

6.2.1 ILSTM performance using the KDDTest+ dataset. This experiment aims to study

the performance of ILSTM on accurately identifying four types of attacks (Dos, Prob, U2R,

Table 8. Statistic Test for KDDTest+ and KDDTest-21 in binary classification.

KDDTest+ KDDTest-21

LSTM ILSTM Sign Abs R SignR LSTM ILSTM Sign Abs R SignR

80.39 91.48 -1 11.09 10 -10 67.94 85.75 -1 17.81 2 -2

83.36 91.47 -1 8.11 2 -2 69.12 86.69 -1 17.57 1 -1

79.03 88.73 -1 9.7 5 -5 68.68 86.78 -1 18.1 3 -3

79.34 89.86 -1 10.52 8 -8 59.15 85.45 -1 26.3 8 -8

81.2 90.01 -1 8.81 4 -4 64.6 86.82 -1 22.22 5 -5

78.99 89.78 -1 10.79 9 -9 61.22 86.35 -1 25.13 7 -7

82.8 90.96 -1 8.16 3 -3 62.67 86.69 -1 24.02 6 -6

81.61 86.79 -1 5.18 1 -1 60.11 86.77 -1 26.66 9 -9

83.36 93.09 -1 9.73 6 -6 58.35 86 -1 27.65 10 -10

82.59 92.44 -1 9.85 7 -7 66.45 86.54 -1 20.09 4 -4

https://doi.org/10.1371/journal.pone.0284795.t008
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Fig 13. Comparison between ILSTM and machine learning-based algorithms in binary classification.

https://doi.org/10.1371/journal.pone.0284795.g013

Fig 14. Comparison between ILSTM and deep learning-based algorithms in binary classification.

https://doi.org/10.1371/journal.pone.0284795.g014
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R2L) using KDDTest+ dataset. Also, the results of ILSTM were compared with conventional

LSTM and other optimized versions of LSTM (i.e., LSTM-BOA, and LSTM-CBOA). All four

algorithms (LSTM, LSTM-BOA, LSTM-CBOA, and ILSTM) were implemented and executed

under the same environment to ensure a fair comparison. The results of these experiments are

summarized in Table 10. In addition, the confusion matrix for all implemented algorithms is

shown in Fig 15. From these results, it can be noticed that ILSTM outperformed almost all

other algorithms under all evaluation metrics. This is due to the integration of CBOA with

PSO in the proposed ILSTM algorithm.

Table 9. Comparison between other methods in literature using KDDTest+ for binary classification.

Method ACC Prec Recall F-Score FAR FNR MCC Kappa

NN [34] 83.67 88.406 86.211 83.28 23.47 33.42 78.44 67.90

DNN [34] 89.33 86.67 92.56 90.67 12.67 11.2 81.01 75.67

MSCNN [34] 88.45 79.89 90.11 88.76 9.94 6.67 80.8 83.4

ELM [34] 81.33 81.94 84.91 81.95 26.02 56.28 69.79 77.47

Conv-LSTM [34] 89.94 80.501 88.87 88.77 11.8 9.95 78.9 83.34

MSCNN [34] 88.45 79.89 90.11 88.76 9.94 6.67 80.8 83.4

OCNN [34] 88.67 84.34 90.12 89.78 11.89 7.89 76.78 81.12

HMLSTM [34] 87.11 78.89 93.67 8.4 12.2 6.66 81.10 80

OCNN-HMLSTM [34] 90.67 86.71 95.19 91.46 8.86 5.78 82.22 86.33

CNN-BILSTM [26] 83.58 85.92 84.49 85.14 NA NA NA NA

ILSTM 93.09 95.86 88.88 91.72 2.68 11.12 85.9 85.8

https://doi.org/10.1371/journal.pone.0284795.t009

Table 10. Comparison between LSTM, LSTM-BOA, LSTM-CBOA and ILSTM using KDDTest+ in Multi-class classification with average 10 runs.

Method Class DR Prec SPC FAR FNR F-Score MCC KAPPA

LSTM Normal 91.38 74.28 76.05 23.95 8.62 81.95 66.90 16.86

Dos 84.48 95.38 97.98 2.02 15.52 89.60 85.25 40.34

Prob 82.45 69.72 95.69 4.31 17.56 75.55 72.66 77.28

R2L 25.99 88.40 99.53 0.48 74.00 40.18 44.91 84.58

U2R 19.80 12.5 98.75 1.25 80.20 15.33 14.78 97.71

LSTM-BOA Normal 95.19 76.52 77.89 22.11 4.81 84.84 72.57 14.41

Dos 88.29 89.23 94.73 5.27 11.71 88.76 83.25 37.64

Prob 73.61 87.91 98.78 1.22 26.39 80.13 78.35 80.67

R2L 20.59 94.50 99.83 0.17 79.41 33.81 41.55 85.41

U2R 22.28 9.83 98.15 1.85 77.72 13.64 13.65 97.10

LSTM-CBOA Normal 90.63 77.44 80.13 19.87 10.30 83.09 69.20 18.53

Dos 89.22 89.16 94.69 5.32 11.83 88.63 83.11 37.66

Prob 80.917 72.00 96.09 3.91 17.20 76.98 74.24 77.54

R2L 28.48 91.76 99.59 0.41 69.61 45.44 49.71 84.12

U2R 17.871 22.10 99.26 0.74 83.42 16.81 17.33 98.23

ILSTM Normal 95.57 88.53 91.42 8.80 4.08 91.06 84.63 19.54

Dos 92.23 95.45 97.93 2.08 4.59 94.28 91.46 42.34

Prob 86.55 82.66 98.36 1.87 9.75 84.62 84.57 79.73

R2L 67.13 89.77 99.53 0.41 23.95 78 75.89 83.91

U2R 25.10 45.18 99.89 0.12 72.28 26.67 24.82 98.95

https://doi.org/10.1371/journal.pone.0284795.t010
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Also, the ILSTM was compared with the LSTM in terms of the number of iterations needed

to achieve the highest accuracy and the results were plotted in Fig 16. From this figure, it can

be seen that the proposed ILSTM algorithm achieved a higher accuracy with fewer iterations

compared with the conventional LSTM, which reaches 79.72% with 100 iterations as shown in

Fig 16(a); however, the ILSTM only needs 72 iterations to attain an accuracy of 88.17% as

shown in Fig 16(b). So, the proposed ILSTM can improve intrusion detection performance

and also save on computational costs.

6.2.2 ILSTM performance using KDDTest-21. To further evaluate the proposed ILSTM,

we repeated the same experiment above but using a different dataset, namely KDDTest-21.

The results of this experiment are summarized in Table 11. Also, confusion matrices of all

compared algorithms in this experiment are plotted in Fig 17. From this table and the

Fig 15. Confusion matrices of ILSTM using KDDTest+ for multi-classification.

https://doi.org/10.1371/journal.pone.0284795.g015
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confusion matrix, it can be seen that the ILSTM achieved the best results when compared to

other implemented algorithms.

Under the multi-classification scenario, we also investigated the relationship between the

accuracy of ILSTM and its number of iterations in comparison with the original LSTM. The

results of this experiment were plotted in Fig 18. From this figure, it can be noticed that the

optimization of LSTM using CBOA and PSO can boost the accuracy by 20% in 10 iterations,

while the accuracy of conventional LSTM remains constant starting from iteration 60 to itera-

tion 100. It can be seen that the conventional LSTM gave an accuracy of 52.54% with 100 itera-

tions as illustrated in Fig 18(a), while ILSTM achieved an accuracy of 76.73% in the same

number of iterations as illustrated in Fig 18(b), where optimization process started just after

the LSTM accuracy becomes constant, i.e., at iteration 60.

6.2.3 Efficiency of ILSTM algorithm in multi-class classification. For a further thor-

ough evaluation of the optimization of LSTM, the MSE was computed using Eq 34 in the

context of multi-class classification. The results are summarized in Fig 19 which shows

Fig 16. LSTM vs ILSTM for KDDTest+ in multi-class classification. A: LSTM. B: ILSTM.

https://doi.org/10.1371/journal.pone.0284795.g016

PLOS ONE iSLTM network for intrusion detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0284795 August 1, 2023 30 / 44

https://doi.org/10.1371/journal.pone.0284795.g016
https://doi.org/10.1371/journal.pone.0284795


that optimizing the weights of a conventional LSTM network can enhance the multi-class

accuracy (i.e., detecting different type of attacks) while also achieving the lowest MSE in

multi-class classification for the KDDTest+ and KDDTest-21 datasets, where the

KDDTest+ in Fig 19(a) provided the lowest MSE compared with the KDDTest-21 in Fig

19(b).

6.2.4 Wilcoxon signed-rank test for multi-class classification on KDDTest+ and

KDDTest-21 datasets. To evaluate the significance of the ILSTM, we implemented the

Wilcoxon signed-rank test in multi-class classification using two testing datasets,

KDDTest+ and KDDTest-21 datasets. The Wilcoxon statistics results of the accuracy of the

proposed ILSTM algorithm and the conventional LSTM are shown in Table 12. From this

table, it can be seen that the value of z is 2.8031 and the p-value is.00512 for the KDDTest

+ and KDDTest-21 datasets, and the mean difference for KDDTest+ is -7.99 and the mean

difference for KDDTest-21 is -21.29. The results also show that the p = 0.00512 is lower

than the significance level (0.05). This means that the null hypothesis should be rejected

and it means that there is a significant difference between the proposed ILSTM algorithm

and the other algorithms. This statistical analysis confirms the numerical results reported

above.

As a conclusion of the results given in Tables 10 and 11, ILSTM achieved better than

LSTM, LSTM-BOA, and LSTM-CBOA in terms of DR, Spec, FNR, and MCC for all attack

classes (Normal, Dos, Prob, R2l, U2R). This means using a hybrid optimization of CBOA and

PSO helped in increasing search space for best solutions and finding global optimal solutions

in all testing datasets.

6.2.5 Comparison of the proposed ILSTM algorithm and the other related algo-

rithms. As in the case of binary classification, we also compared ILSTM with other published

Table 11. Comparison between LSTM, LSTM-BOA, LSTM-CBOA and ILSTM using KDDTes-21 in multi-class classification with average 10 runs.

Method Class DR Prec SPC FAR FNR F-Score MCC KAPPA

LSTM Normal 52.84 25.82 66.32 33.68 47.17 34.69 15.28 53.74

Dos 60.69 74.71 88.12 11.88 39.31 66.97 51.43 42.66

Prob 77.81 74.31 93.16 6.84 22.19 76.02 69.78 60.95

R2L 29.376 95.74 99.60 0.40 70.63 44.96 47.56 70.96

U2R 23.5 8.39 95.60 4.40 76.5 12.37 11.59 93.72

LSTM-BOA Normal 45.59 40.32 85.03 14.97 54.41 42.79 29.22 65.95

Dos 79.80 72.13 82.17 17.83 20.20 75.77 60.81 32.91

Prob 68.65 84.96 96.91 3.09 31.35 75.94 71.22 65.14

R2L 63.47 75.44 93.75 6.26 36.53 68.94 60.93 60.46

U2R 18.00 10.14 97.26 2.74 82.00 12.97 11.53 95.40

LSTM-CBOA Normal 43.83 48.35 88.89 11.11 57.50 44.24 33.18 68.69

Dos 83.64 70.98 76.95 20.37 16.36 74.90 59.61 29.42

Prob 81.05 80.50 94.64 5.36 19.16 80.00 75.06 61.04

R2L 50.02 84.66 96.46 3.54 53.7 56.87 53.75 65.67

U2R 18.10 8.45 96.44 3.56 81.9 11.09 9.86 94.62

ILSTM Normal 59.81 67.70 93.44 6.56 37.23 60.61 52.92 70.52

Dos 91.83 82.13 88.39 11.61 6.71 84.80 75.93 30.91

Prob 86.26 82.68 95.95 4.05 14.62 81.32 76.62 62.59

R2L 64.87 87.08 98.93 1.07 35.05 67.75 61.50 70.30

U2R 17.9 28.95 99.05 0.95 82.10 12.05 11.93 97.31

https://doi.org/10.1371/journal.pone.0284795.t011
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work about multi-classification attacks. This comparison included deep and machine learning

methods which have been published in the literature of intrusion detection context [13, 14,

25]. As shown in Figs 20 and 21, the proposed ILSTM algorithm outperformed other existing

machine learning and deep learning methods.

Given the comparison summarized in Table 13, it could be noticed that the proposed

ILSTM algorithm achieved the lowest false alarm rate in all types of attacks. Also, the ILSTM

can reach higher DR, Precision and f-measure in most types of attacks, the best results are

written in bold text. In comparison with other methods, it can be seen that ILSTM gave supe-

rior results in Dos, Prob and R2l attacks in terms of Recall, Precision, F-score and FAR. Addi-

tionally, ILSTM can produce good results in normal but not as well under R2L attacks. This

may be due to the limited number of instants in U2R and R2L attacks in the datasets. Hybrid

sampling can help to resolve this issue by achieving results that are as excellent as those of R2L

Fig 17. Confusion matrices for KDDTest-21 in multi classification.

https://doi.org/10.1371/journal.pone.0284795.g017
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attacks. The best FAR results for U2R attacks, while also increasing accuracy to 31.88, but still

not the best in most metrics for U2R attacks.

6.3 Experiment 3: ILSTM performance for binary classification on

LITNET-2020 dataset

Similarly to NSLKDD dataset, the ILSTM algorithm was evaluated on the LITNET-2020 data-

set, described earlier. Also, the same nine performance metrics were used for evaluating the

conventional LSTM and the proposed ILSTM algorithms. A summary of the results is given in

Table 14. The confusion matrix for binary classification of LSTM before applying the optimi-

zation is given in Fig 22A). On the other hand, the results of applying optimization (i.e.,

ILSTM) is given in Fig 22B). Also, Fig 23 shows how the accuracy increased after using the

ILSTM which starts the optimization process at iteration 58 to improve the accuracy of the

original LSTM which was a constant at iteration 68. As shown in Fig 23B, ILSTM improved

the accuracy from 92% to 94% at iteration 84 while the conventional LSTM gave an accuracy

Fig 18. LSTM vs ILSTM for KDDTest-21 in multi-class classification. A: LSTM. B: ILSTM.

https://doi.org/10.1371/journal.pone.0284795.g018
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Fig 19. MSE evaluation for the ILSTM algorithm in multi-class classification. A: KDDTest+. B: KDDTest-21.

https://doi.org/10.1371/journal.pone.0284795.g019

Table 12. Statistic test for KDDTest+ and KDDTest-21 in multi-class classificatio.

KDDTest+ KDDTest-21

LSTM ILSTM Sign Abs R SignR LSTM ILSTM Sign Abs R SignR

76.5 87.06 -1 10.56 9 9 45.61 76.73 -1 31.12 10 -10

75.92 85.66 -1 9.74 7 7 44.94 70.25 -1 25.31 7 -7

76.88 85.82 -1 8.94 6 6 47.16 72.51 -1 25.35 8 -8

77.92 88.17 -1 10.25 8 8 49.06 67.28 -1 18.22 3 -3

79.14 83.12 -1 3.98 1 1 42.18 66.16 -1 23.98 4 -4

79.51 87.54 -1 8.03 4 4 51.86 76.29 -1 24.43 6 -6

79.3 85.56 -1 6.26 2 2 54.83 65.6 -1 10.77 1 -1

78.56 86.95 -1 8.39 5 5 53.66 77.9 -1 24.24 5 -5

75.5 86.81 -1 11.31 10 10 44.96 74.51 -1 29.55 9 -9

77.43 84.1 -1 6.67 3 3 55.34 69.6 -1 14.26 2 -2

https://doi.org/10.1371/journal.pone.0284795.t012
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Fig 20. Comparison with machine learning methods in multi-class classification.

https://doi.org/10.1371/journal.pone.0284795.g020

Fig 21. Comparison with deep learning methods in multi-class classification.

https://doi.org/10.1371/journal.pone.0284795.g021
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of 92.06% after 100 iterations as shown in Fig 23A. From Fig 23, it can be noticed that ILSTM

has improved DR, Where ILSTM achieved 92.55% for DR but LSTM gave 87.46%.

6.4 Experiment 4: ILSTM performance for mulit-class classification on

LITNET-2020 dataset

In this experiment, the proposed ILSTM is also compared with the original LSTM for a multi-

classification scenario. In this experiment, the nine performance metrics were employed in

Table 13. Comparison between other methods in literature using KDDTest+ for multi-class classification.

Method Class Recall Precision F-Score FAR

RNN [14] Normal 97 73 83 22.50

Dos 83.49 96 89 2.06

Prob 83.40 85 84 2.16

R2L 24.69 83 38 0.80

U2R 11.50 66 20 0.07

CNN [60] Normal 96.73 NA NA 29.50

Dos 85.26 NA NA 1.92

Prob 73.97 NA NA 1.71

R2L 17.78 NA NA 0.27

U2R 8.95 NA NA 0.004

DSN [42] Normal 97.32 NA NA NA

Dos 90.7 NA NA NA

Prob 90.08 NA NA NA

R2L 49.02 NA NA NA

U2R 18 NA NA NA

BAT-MC [25] Normal 97.50 NA NA 25.70

Dos 87.55 NA NA 1.52

Prob 85.76 NA NA 1.15

R2L 44.25 NA NA 0.91

U2R 20.95 NA NA 0.09

CNN-BLSTM [26] Normal 94.11 86.77 90.29 NA

Dos 85.24 96.21 90.39 NA

Prob 68.56 64.86 66.66 NA

R2L 60.45 61.32 60.21 NA

U2R 58.95 61.32 60.11 NA

ILSTM Normal 96.14 91.90 92.55 6.21

Dos 97.60 96.12 94.82 1.56

Prob 90.21 86.05 85.48 1.13

R2L 87.07 91.29 88 0.016

U2R 31.88 57.14 33.6 0.053

https://doi.org/10.1371/journal.pone.0284795.t013

Table 14. Comparison between LSTM and ILSTM using LITNET-2020 in binary classification.

Method ACC DR SPC Preci FAR FNR F1-Score MCC KAPPA

LSTM 92.06 87.46 94.17 87.31 5.83 12.54 87.38 81.59 81.59

ILSTM 93.97 92.55 94.59 88.61 5.41 7.45 90.61 86.22 86.18

https://doi.org/10.1371/journal.pone.0284795.t014
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this comparison and the results are summarised in Table 15. The bold text in this table indi-

cates the best values of the results for the thirteen attack classes. These results showed that

ILSTM can increase DR for the “fragmentation” attack, from 0% to 28.37% and also improved

the DR for spam attack from 66.23% to 100%. Also, the confusion matrix of the multi-classifi-

cation attack detection for the LSTM and ILSTM algorithms is given in Figs 24 and 25,

respectively.

Fig 22. Confusion matrices for LITNET-2020 dataset in binary classification. A: LSTM. B: ILSTM.

https://doi.org/10.1371/journal.pone.0284795.g022
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Using the LITNET-2020, we also investigated the relationship between the accuracy of

ILSTM and the required number of iterations and compared it with the original LSTM. The

results of this experiment were plotted in Fig 26. This figure shows that the proposed ILSTM

algorithm achieved a higher accuracy rate (i.e., 95.77%) compared with the accuracy of the

conventional LSTM, i.e., 91.04%. ILSTM results were achieved using 90 iterations after which

the accuracy value became constant while LSTM achieved it accuracy results using 85 itera-

tions after which the accuracy became constant.

7 Conclusion and future work

In this paper, we developed an improved version of LSTM (called ILSTM) to improve the

accuracy of LSTM-based intrusion detection system. The ILSTM made use of a combination

of two swarm optimisation algorithms, CBOA and PSO, to determine the best weights for the

LSTM network. The ILSTM consists of two phases: one for training the deeper LSTM network

with the best parameters to get initial weights and another for optimizing these weights using

CBOA and PSO. A comprehensive evaluation was conducted to assess the efficiecy of the pro-

posed ILSTM algorithm for intrusion detection systems. Two public datasets (NSL-KDD and

LITNET-2020) and nine evaluation metrics were used. The results showed that the proposed

Fig 23. LSTM vs ILSTM for LITNET-2020 in binary classification. A: LSTM. B: ILSTM.

https://doi.org/10.1371/journal.pone.0284795.g023
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ILSTM algorithm is better than the orginal LSTM and two optimized versions of it (i.e.,

LSTM-PSO, and LSTM-CBOA) in two main cases: binary and multi-class classification. These

results were also achieved using a few number of iterations and these were supported by confu-

sion matrices for all the implemented algorithms. Additionally, by comparing the proposed

Table 15. Comparison between LSTM, ILSTM using LITNET-2020 in multi-class classification.

Method Class DR Prec SPC FAR FNR F-Score MCC KAPPA

LSTM Benign 100 100 100 0 0 100 100 44.78

SYN flood 99.99 99.94 99.99 0.01 0.01 99.97 99.96 60.06

Code red 99.76 94.58 99.20 0.80 0.24 97.10 96.73 74.79

UDP flood 100 91.92 99.32 0.68 0 95.79 95.55 85.11

Smurf 98.90 75.64 96.81 3.19 1.10 85.72 85.02 79.32

LAND DoS 78.65 93.74 99.78 0.22 21.35 85.53 85.34 92.67

W32.Blaster 99.78 60.33 97.47 2.53 0.22 75.19 76.59 90.24

HTTP flood 12.89 45.52 99.72 0.28 87.11 20.09 23.56 97.76

ICMP flood 78.63 98.82 99.89 0.11 21.37 87.58 86.97 81.07

Port scan 0 0 100 0 100 NaN 0.01 99.52

Reaperworm 0.77 1.73 99.36 0.64 99.23 1.07 0.20 97.94

Spam 66.23 99.75 100 0 33.77 79.61 81.15 98.48

Fragmentation 0 0 100 0 100 NaN 0.01 99.13

ILSTM Benign 100 100 100 0 0 100 100 44.78

SYN flood 100 99.94 100 0.01 0.02 100 100 60.06

Code red 99.58 99.88 100 0.02 0 99.72 100 75.41

UDP flood 100 97.52 100 0.20 0 98.74 98.66 85.52

Smurf 100 94.41 100 0.59 0 97.12 96.88 81.33

LAND DoS 78.65 98.68 100 0.04 21 87.54 87.68 92.83

W32.Blaster 100 70.89 98.41 1.58 0 82.9 83.45 91.12

HTTP flood 37.94 54.94 99.44 0.55 62 44.88 44.86 97.06

ICMP flood 100 100 100 0 0 100 100 78.66

Port scan 72.03 100 100 0 28 83.74 84.81 99.18

Reaperworm 0 0 99.06 0.93 100 NaN 1.17 97.66

Spam 100 68.02 99.56 0.43 0 80.97 82.30 97.75

Fragmentation 28.37 100 100 0 72 44.19 53.10 98.88

https://doi.org/10.1371/journal.pone.0284795.t015

Fig 24. Confusion matrix for LITNET-2020 dataset using LSTM algorithm.

https://doi.org/10.1371/journal.pone.0284795.g024
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ILSTM algorithm with published and related machine and deep learning methods, the ILSTM

yields superior results in terms of accuracy, detection rate, precision, and f-measure when test-

ing on KDDTest+ and KDDTest-21. It was noticed that our proposed algorithm accomplished

excellent results when applying optimization, but it needs more time to optimize the popula-

tion within large datasets. So in future work, it is planned to apply optimization with a faster

Fig 25. Confusion matrix for LITNET-2020 dataset using ILSTM algorithm.

https://doi.org/10.1371/journal.pone.0284795.g025

Fig 26. LSTM vs ILSTM for LITNET-2020 in multi-class classification. A: LSTM. B: ILSTM.

https://doi.org/10.1371/journal.pone.0284795.g026
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algorithm. The limitations of the study are as follows: (1) problem of optimization size and

computational effort where the proposed algorithm can take a long time when applying it on

big data with millions of instances, as in the case of the LITNET-2020 dataset. (2) computa-

tional resources: if the problem size is too large, it might not be possible to store the processing

data in the memory of the computer running this algorithm.
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hybrid firefly algorithm: an application to enhance XGBoost tuning for intrusion detection classification.

PeerJ Computer Science, 8, e956. https://doi.org/10.7717/peerj-cs.956 PMID: 35634110

31. Dora V., & Lakshmi V. N. (2022). Optimal feature selection with CNN-feature learning for DDoS attack

detection using meta-heuristic-based LSTM. International Journal of Intelligent Robotics and Applica-

tions, 1–27.

32. Jothi B., & Pushpalatha M. (2021). WILS-TRS—A novel optimized deep learning based intrusion detec-

tion framework for IoT networks. Personal and Ubiquitous Computing, 1–17.

PLOS ONE iSLTM network for intrusion detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0284795 August 1, 2023 42 / 44

https://doi.org/10.1007/s42979-021-00991-0
https://doi.org/10.1371/journal.pone.0278493
https://doi.org/10.1371/journal.pone.0278493
http://www.ncbi.nlm.nih.gov/pubmed/36454861
https://doi.org/10.1016/j.eswa.2021.115524
https://doi.org/10.1016/j.eswa.2021.115524
https://doi.org/10.1109/ACCESS.2017.2762418
https://doi.org/10.1109/MCOM.2018.1701270
https://doi.org/10.1109/MCOM.2018.1701270
https://doi.org/10.1007/s00500-018-3102-4
https://doi.org/10.1016/j.jesit.2017.05.001
https://doi.org/10.1186/s40537-021-00448-4
https://doi.org/10.1109/ACCESS.2020.2973730
https://doi.org/10.1109/ACCESS.2020.2973730
https://doi.org/10.1016/j.neucom.2020.07.138
https://doi.org/10.1111/exsy.12786
https://doi.org/10.1111/exsy.12786
http://www.ncbi.nlm.nih.gov/pubmed/34511693
https://doi.org/10.1109/ACCESS.2021.3102095
https://doi.org/10.1109/ACCESS.2021.3102095
https://doi.org/10.7717/peerj-cs.956
http://www.ncbi.nlm.nih.gov/pubmed/35634110
https://doi.org/10.1371/journal.pone.0284795


33. Rashid T. A., Fattah P., & Awla D. K. (2018). Using accuracy measure for improving the training of

LSTM with metaheuristic algorithms. Procedia Computer Science, 140(October), 324–333. https://doi.

org/10.1016/j.procs.2018.10.307

34. Kanna P. R., & Santhi P. (2021). Unified deep learning approach for efficient intrusion detection system

using integrated spatial–temporal.

35. Zivkovic M., Bacanin N., Arandjelovic J., Strumberger I.,& Venkatachalam K. (2022). Firefly algorithm

and deep neural network approach for intrusion detection. In Applications of Artificial Intelligence and

Machine Learning: Select Proceedings of ICAAAIML 2021 (pp. 1–12). Singapore: Springer Nature

Singapore.

36. Ali M. H., Jaber M. M., Abd S. K., Rehman A., Awan M. J., Damaševičius R., et al. (2022). Threat analy-
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