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Abstract: Modern nuclear energy systems often employ MHD and feature radiative heat 

transfer. Motivated by studying the near-wall transport phenomena in such applications, the 

article examines the simultaneous influence of thermal radiative flux and 

magnetohydrodynamics (MHD) on two-dimensional electrically conducting turbulent flow and 

natural convective heat transfer about a vertical surface under a transverse static magnetic field 

using the low Reynolds number (LRN) kinetic energy and dissipation (k-ε) model. The 

Rosseland diffusion flux model is deployed for radiative heat transfer. An optimized Crank-

Nicolson finite difference method (FDM) is applied to solve the non-linear and coupled system 

of Reynolds-averaged boundary layer equations, which includes the equation of average 

continuity, momentum, energy, kinetic energy, and dissipation rate of kinetic energy. Detailed 

computations are conducted to visualize  the streamlines and heat lines in laminar and turbulent 

regimes via mathematical stream and heat functions based on the Bejan approach. A detailed 

paramateric study of the effects of the magnetic field, radiative flux and turbulent Reynolds 

number on flow average velocity, temperature, kinetic energy, and dissipation rate is 

conducted. The simulations reveal that an increase in the magnetic field intensity (as simulated 

via the magnetic interaction number) reduces the average velocity and dissipation rate, whereas 

an increase in thermal radiation decreases the time mean temperature. The study also includes 

contour plots of kinetic energy and dissipation rate, along with skin friction coefficient and 

Nusselt number. The obtained numerical outcomes are compared to previous literature, and a 

good agreement is found. The investigation provides a comprehensive insight into coupled 

MHD radiative turbulent natural convection flows and a solid benchmark which may further 

be generalized to three-dimensional simulations.  

Keywords: Magnetic field, Vertical plate, turbulence; k-ε model, Thermal radiation, Low 

Reynolds number, Free convection; Bejan heatline visualization; nuclear engineering. 

Nomenclature: 

𝑥      : Axial coordinate in the mean flow path 

𝑦      : Horizontal coordinate normal to the isothermal plate 

𝑋     : Dimensionless axial coordinate in the mean flow path 
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𝑌     : Dimensionless horizontal coordinate normal to the isothermal plate 

�̅� , �̅�: Time average velocities along 𝑥  and 𝑦 directions, respectively 

𝜏𝑤   ∶ 𝜇 (
𝜕𝑢

𝜕𝑦
) − 𝜌𝑢′𝑣′̅̅ ̅̅ ̅̅ , is the total wall shear stress of the turbulent flow 

𝑈, 𝑉 ∶ Dimensionless mean flow velocity in the 𝑋  and 𝑌 paths 

�̅�       ∶ Time average energy 

𝑇      : Nondimensional time mean energy 

𝑡′      ∶ Time 

𝑡      ∶ Nondimensionless time 

𝑔     ∶ Gravitational field 

𝐺𝑟𝑡  ∶ Turbulent thermal Grashof parameter 

𝑃𝑟𝑡  ∶Turbulent Prandtl number 

𝑅𝑒𝑡 ∶ Turbulent Reynolds number 

𝑀   ∶  Magnetic parameter 

𝑁𝑟 ∶ Thermal radiation parameter 

𝑘∗   ∶  Mean absorption coefficient 

𝜎𝑠   ∶ Stefan Boltzmann radiation constant 

𝐻  ∶ Dimensionless turbulent heat function 

�̅�   ∶ Dimensional turbulent heat function 

 ∶ Dimensionless turbulent stream function 

𝐶1, 𝐶2: Empirical constants 

𝑓1,  𝑓2, 𝑓𝜇:  Damping functions for LRN k-ε turbulence model 

𝑘  ∶ Time average turbulent energy 

𝜖  ∶ Time average turbulence energy dissipation rate 

𝐾 ∶ Dimensionless turbulent flow’s kinetic energy 

𝐸 ∶ Dimensionless turbulent energy’s dissipation 

𝐶𝑘 ∶ Arbitrary Prandtl number-dependent coefficient 

𝐶𝜇 ∶ Proportional constant 

𝐾𝑇 ∶ Thermal conductivity 

�̅�∞  : Ambient average velocity 

𝐶𝑝  ∶ Specific heat capacity at constant pressure 

Greek symbols 
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𝛼𝑡: Turbulent thermal diffusivity 

𝜎𝑇 , 𝜎𝑘: Turbulent Prandtl numbers for �̅�and 𝑘 

𝜎𝜖: Dissipation Prandtl number 

𝜇: Laminar dynamic viscosity 

𝜇𝑡: Dynamic viscosity for turbulent flow 

𝜈, 𝜈𝑡 : Laminar and turbulent kinematic viscosities, respectively 

𝜈𝑡

𝜈
: Viscosity ratio parameter 

𝜌:  Density 

𝛽�̅�: Volumetric thermal expansion coefficient 

Subscripts: 

𝑙, 𝑚 ∶ Grid levels in (𝑋, 𝑌) coordinate space 

𝑤:    Surface condition 

∞:  Free stream condition 

Superscripts: 

𝑛:  Time step level 

1.Introduction:  

Turbulent flows are fundamental to practically every branch of engineering [1] and 

environmental sciences [2]. These flows are highly chaotic and often feature heat transfer and 

also mass transfer. All types of vehicles, including automobiles, aeroplanes [3,4], ships, and 

submarines, exhibit turbulence phenomena in the external flow. Turbulent flow is also a crucial 

mechanism in natural or free convection that influences the weather by causing large-scale 

circulation in the atmosphere and bodies of water, such as lakes and oceans, and cools 

electronic circuit boards in computers [5]. This phenomenon is caused by density gradients and 

a gravitational field. Furthermore, studying natural convection turbulent flows with different 

physical and chemical effects has significant applications in diverse areas of science and 

technology. In the context of nuclear engineering power systems, turbulence is also a 

significant consideration. To control the temperatures and regulate complex duct flows, MHD 

(magnetohydrodynamics) is often deployed. This involves the interaction of externally applied 

magnetic fields and electro-conductive fluids such as potassium and sodium-water solutions 

which arise in nuclear reactors. Many components of modern nuclear reactors feature MHD 

turbulence including liquid metal [6], lithium blankets in fusion reactors [7], flow-couplers for 
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fast breeder reactors [8, 9],  thermal mixing argumentation and flow damping mechanisms for 

experimental fusion reactors  [10] and divertors in helical reactors [11]. Further applications of 

MHD turbulent flows include pumping, stirring and levitation devices for liquid metals. 

Another important consideration in nuclear power systems is high temperature which invokes 

radiative heat transfer. This is also often accompanies by turbulent convection. Examples 

include prismatic-block type components in high temperature reactors (HTR) [12] wherein 

excessive decay heat is extracted most efficiently via conduction and radiation from the fuel to 

the vessel and via radiation and natural convection from the vessel to a water-based circuit 

positioned on the vault walls. Further nuclear engineering applications of turbulent radiative 

flows is the Pebble Bed Modular Reactor (PBMR) [13] and sodium pool combustion in fast 

breeder reactors  [14]. Radiative turbulence is also common in fire dynamics [15] and plasma 

astrophysics [16]. In all these applications, the addition of thermal radiation effects to 

buoyancy-driven turbulent flow allows for more accurate prediction of heat transfer rates and 

temperature distributions on solid wall surfaces. In particular, advanced radiative turbulence 

models can be utilized very effectively to optimize the design of these heat transfer systems in 

addition to cooling towers and solar collectors. Deatiled numerical simulations of turbulent 

radiative flows therefore play a crucial role in energy transmission between a solid surface and 

the fluid flowing which enable more robust predictions of thermal transfer rates and energy 

distributions above the surface of solid geometries. 

Turbulent flow has been extensively investigated using a variety of theoretical, 

experimental and numerical approaches due to its complexity. However no comprehensive 

established theory currently exists. Although direct computer generation of chaotic flow via 

Navier-Stokes (NS) equations is theoretically possible, statistical models are typically used in 

practice to reduce computational times. These models rely on Reynolds decomposition, which 

describes a chaotic flow in terms of its average velocity and chaotic intensity components [17]. 

Many approaches are available for simulating turbulent flows including large eddy simulation 

(LES), direct numerical simulation (DNS), Monte-Carlo stochastic models, shear-stress 

transport models (SST) etc. However they are very expensive computationally and require 

exceptionally powerful hardware. The RANS (Reynolds-averaged N-S equations) procedure is 

computationally efficient, involving the solution of time-averaged Navier-Stokes equations 

with semi-empirical turbulence modeling. A Reynolds-averaged chaotic flow simulation 

employs a statistical model such as the kinetic energy-dissipation (k-ε) model, which 

characterizes chaotic flow using turbulence energy and dissipation rate as the key 
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characteristics, and permits relatively  easy enforcement of the boundary conditions. To this 

end, the low Reynolds number (LRN) k-ε model is selected in the present study. 

As a foundation for turbulent radiative MHD flow simulation, a number of studies have 

scrutinized unsteady laminar flows in external boundary layer flows for various geometries 

with different physical and chemical effects. These studies provide a deep insight into the 

interaction of multiple physics effects such as magnetic fields, radiation heat transfer, viscous 

heating, mass transfer, rotation, unsteady flow etc. This then provides a good platform for 

interpreting more complex turbulent simulations involving these multi-physics effects. In order 

to investigate the magnetized thermal buoyancy-driven dissipative flow around an isothermal 

vertical plate under the impact of a uniform transverse magnetic field, Soundalgekar and 

Takher [18] employed a series solution technique. They observed that the dissipation effects in 

the flow regime are enhanced by amplifying the Lorentz hydromagnetic body force and the 

Prandtl number. Ganesan and Rani [19, 20] investigated combined thermo-solutal free 

convection around a vertical cylinder under a radial magnetic field effect. Reddy et al. [21] 

utilized the Crank-Nicolson finite difference scheme to compute the mixed MHD radiative 

convective flow from a vertical wall with an energy source/sink. Using the same numerical 

method, Takhar et al. [22] studied the unsteady buoyancy-driven flow along a plate using 

inconstant surface energy. Additionally, Seth et al. [23] found theoretical solutions using the 

Laplace transformation method for the influence of radiation and rotation impacts on unsteady 

magneto-convection from an impulsively moving wall with ramped temperature in a porous 

medium. Poonia and Umashankar [24] reported analytical solutions for impulsive thermal 

radiative MHD flows in  a porous medium with ramped temperature using an analytical 

solution with homogenous chemical reaction. Mehta and Kataria [25] investigated the energy 

generation/absorption effect on transient free-driven oscillating magnetized second grade 

viscoelastic fluid flow with radiative flux and chemical reaction. Many other excellent studies 

have been communicated by Ullah et al. [26], Hasanuzzaman et al. [27], Bordoloi et al. [28] 

and Gopal et al. [29]. Many of these investigations utilized the Rosseland algebraic flux model 

which is valid for optically thick “ gray“ fluids (gases or liquids) in absorbing and emitting but 

non-scattering conditions. 

Turbulent convective flows with thermal radiation or MHD among other effects have also 

received some attention in recent years. Ji and Gardner [30] utilized the k-ε turbulence model 

to examine electromagnetic and turbulent convective flow in an electrically insulated pipe with 

a uniform heat flux at the wall, under radial magnetic field, achieving good correlation 
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experimental results. They showed that magnetohydrodynamic fluxes can be handled by the k-

ε turbulence model and that turbulence suppression is achieved with strong magnetic field 

intensity, with Lorentz force successfully dmaping inertial force. Cheng and Miller [31] 

conducted a numerical and experimental investigation on turbulent free air-driven flow in a 

vertical rectangular channel with a one-sided heated wall under thermal radiation flux. They 

assumed the fluid (air) to be radiatively non-participating and the channel walls as grey and 

diffuse and deployed a surface to surface net-radiation method for enclosures with associated 

view factors in the FLUTAN CFD code. They noted that higher radiative influx is present at 

the inlet and outlet regions compared to the core zone due to radiative losses. They further 

observed that at high wall emissivity, greater heat transfer from the wall is associated with 

radiation rather than convection. The effect of a magnetic field in turbulence closure models 

with additional source terms due to Lorentz force was examined by Kenjeres and Hanjalic [32] 

using the standard LRN k-ε model. They employed a DNS (direct numerical simulation) 

approach and simulated the 3-D entry flow of mercury in a rectangular duct under strong 

transverse magnetic field (Hartmann number of 700). They obtained the experimentally-

obsrved M-shaped velocity profiles and demonstrated that the LRN  model is superior to the 

eddy viscosity turbulenc model.  They also showed that significant turbulence damping is 

produced at high magnetic field, and partial re-laminarization is induced. Kobayashi [33] 

employed subgrid models to linearize turbulent MHD channel flows with a magnetic field 

perpendicular to the insulated walls at low magnetic Reynolds number. They found that as 

Lorentz force increases, the natural magnetic chaotic flow transitions to a laminar MHD flow 

at a critical Hartmann number. Marigi et al. [34] used a Reynolds averaged Navier-Stokes 

(RANS) model to simulate turbulent MHD flow of a rotating fluid past an impulsively started 

semi-infinite plate using the finite difference method. Kinyanjui et al. [35] investigated the 

turbulent rotating flow from a semi-infinite vertical porous plate in the presence of a variable 

magnetic field, also with a RANS model, computing the wall momentum and mass transfer 

rates using Newton's interpolation formula. Gebre et al. [36, 37] utilized the RANS model to 

simulate magnetized turbulent flows from a vertical wall with viscous dissipation, thermal 

radiation, Ohmic heating and thermal buoyancy effects. Similar studies exploring the collective 

effects of thermal radiation, magnetic fields, viscosity, porous media drag, mass transfer and 

rotation about a non-constant vertical porous plate on flow variables using RANS models have 

been communicated by Ngari et al. [38] and Ganga et al. [39] (for nanofluids).These studies 

showed that the average energy distribution decays with an increase in Prandtl and Lewis 

numbers. Xenos [40] computed the turbulent compressible Reynolds averaged boundary layer 
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(RABL) convective flow along a wall with the combined effects of magnetic field, thermal 

radiation, and local wall suction using the Keller box method. He utilized the Baldwin Lomax 

and extended Kays-Crawford turbulent models for simulating kinematic eddy viscosity and 

turbulent Prandtl number, respectively. He noted that judicious combinations of thermal 

radiation flux and magnetic field provide a wall cooling effect and this is amplified for the case 

of high free-stream temperature. Ochola et al. [41] addressed the transient free-driven 

magnetized turbulent flow with Hall and ion slip currents using a finite difference technique 

and RANS model. Anvesh and Harish [42] used the Lambremhorst turbulence model and the 

Chandrasekhar discrete ordinates method (DOM) to compute the radiative turbulent air 

entering into a convectively heated vertical channel with buoyancy effects. They showed that 

much greater isotherm magnitudes are computed with radiation for the buoyancy-assisted 

scenario, and that significant flow acceleration is also induced. Chepkemoi and Mukuna [43] 

studied the magnetized transient free motion turbulent flow about an infinite heat-absorbing 

wall with the Prandtl Mixing length model.  

Rather than solely analyzing the averaged flow of fluids, visualization of turbulent flows is 

crucial for furnishing a comprehensive understanding of fluid mechanics as the movements of 

fluids are often invisible to the human eye. To visualize fluid motions and their interactions 

with surroundings, various innovative techniques have been developed over time. These 

visualization techniques allow us to observe turbulent flow patterns and gain insight into the 

theories that can be applied. Thermal radiation is an effective means of optimizing the design 

of systems that involve solid boundaries and is useful in visualizing turbulence flow patterns 

around geometric structures. The concepts of heatlines and streamlines are significant 

contributions to the growth of the theory of single-phase convection energy transfer theory and 

fluid flow, and they are important tools for visualizing and understanding thermal energy 

distribution and thermal mixing inside or close to the boundary layer of a given geometry. 

Although much research has been conducted on heatlines and streamlines in laminar 

convection flows during the last thirty years, there have been rather limited investigations of 

their application in turbulent flow visualization. Kimura and Bejan [44] introduced the concept 

of heat function and heat lines as an alternative to traditional isotherm approaches. This 

approach has been further developed and extended by several researchers including Littlefield 

and Desai [45], Aggarwal and Manhapra [46], Morega and Bejan [47] and Costa [48], etc. 

Similarly, Rani and Reddy [49] conducted heat flow visualization in couple stress fluid 

convection external to a hollow cylinder. Rani et al. [50] computed energy and mass flow 
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visualizations of a couple stress boundary layer convection adjacent to a hot cylinder using the 

finite difference Crank-Nicolson method. Further, Reddy et al. [51-53] described the heat flow 

visualization of non-Newtonian fluids, including Casson, micropolar and third-grade fluids, in 

external boundary layer flows from a cylinder. Tao et al. [54] conducted a comprehensive 

evaluation and comparison of the heat line concept and field synergy principle. Islam et al. [55] 

performed heat line visualization for magnetohydrodynamic natural convective nanofluid in a 

prismatic enclosure using the Galerkin finite element approach. Furthermore, Kumar and 

Mondal [56] used Bejan's heat function and finite difference method to visualize the 

magnetized Casson fluid flow across a wavy wall. Venkatadri et al. [57] used both Bejan’s 

heatline method and the Hooman energy flux vector method to visualize radiative flux effects 

on buoyancy-driven convection in a solar collector enclosure. These studies as elaborated 

earlier have been confined to laminar rather than turbulent convection flows. However, recently 

turbulent heat line visualizations have appeared in the literature. Sukanta [58] introduced the 

concept of turbulent heat function by using a four-equation low Reynolds k-ε algebraic 

turbulence model without boundary layer approximations to visualize the direction of heat flow 

along a heated vertical flat plate in a buoyancy-driven turbulent flow. Suresha and Reddy [59] 

visualized turbulent boundary layer flow along a vertical wall using the LRN kinetic energy 

and dissipation rate model. Suresha et al. [60] utilized Bejan heat and mass line visualization 

and the LRN k-ε model with a finite difference method for turbulent convective flow. Despite 

these developments, a scrutiny of the literature has revealed that thus far no studies have 

reported heatline visualization of magnetohydrodynamic radiative turbulent boundary layer 

flows. This is the focus and novelty of the present work in which consider the average heat flow 

visualization in convective boundary layer flow from a vertical surface with thermal radiation 

flux and a transverse magnetic field using the LRN k-ε model. Rosseland’s flux model is 

deployed [57]. While this is a relatively simple radiative model  and other more sophisticated 

flux models are available e.g. Cogley-Vincenti-Giles non-gray gas model [61],  Schuster-

Schwartzchild 2-flux [62], surface-to-surface (STS) model in ANSYS FLUENT software [63] 

and the Traugott P1 differential approximation [64], these have generally been deployed in 

laminar convective-radiative boundary flows only. The present approach is the first step in 

building more comprehensive numerical models for turbulent radiative flows and therefore 

Rosseland’s model is a good starting point. The governing equations of the fluctuating flow 

are nonlinear and coupled, and therefore the partial differential conservation equations are 

discretized with an optimized Crank-Nicolson implicit finite difference scheme. To visualize 

the turbulent flow, mathematically constructed heat and stream functions are formulated and 
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solved using a second-order central difference scheme. The computer-generated mean velocity, 

temperature, kinetic energy, and dissipation rate are studied by varying all the key control 

factors such as the turbulent Reynolds number (𝑅𝑒𝑡)  magnetic field (𝑀) and thermal radiation 

(𝑁𝑟).  This paper rigorously visualizes the contours of average velocity, temperature, turbulent 

kinetic energy, and dissipation rate of kinetic energy, along with heat lines and streamlines for 

the first time in the presence of magnetohydrodynamic (MHD) body force and radiative heat 

transfer. Additionally, we demonstrate the difference between laminar and turbulent heat flow 

visualization using flow field contours. The simulations find important applications in nuclear 

engineering duct flows and provide a foundation for extension to more complex 3-D 

viualizations. 

2.  Statement of the turbulent MHD radiative convective nuclear flow problem: 

The effects of thermal radiation and magnetic field on incompressible natural 

convective Newtonian electro-conductive turbulent flow from a vertical isothermal plate, are 

studied, as depicted in Figure 1. A rectangular geometry is used, with the 𝑥-axis along the 

vertical plate and the 𝑦-axis normal to the plate. The free stream mean energy, �̅�∞, is the 

stationary surrounding average temperature located away from the solid surface (wall i.e. 

plate). The initial time is 𝑡′ = 0, and the flow is initiated at 𝑡′ > 0, the average temperature on 

the plate is �̅�𝑤(> �̅�∞), and is maintained at the same level for all 𝑡′ > 0. As a result of this 

mean temperature difference, density variations occur in the turbulent flow regime, which 

causes the flow to move under the influence of gravitational force in the natural convection 

process. The transition of average velocity and temperature occurs in a thin layer next to the 

plate, which is known as the turbulent boundary layer. Under the assumptions and the use of 

Boussinesq's approximation, the resulting turbulent boundary layer approximations of the 

average mass, momentum, temperature, turbulence energy and turbulent dissipation rate 

equations are given by extending the model in Suresha et al. [53] to include magnetic Lorentz 

body force and thermal radiation flux effects: 
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Figure 1: Coordinate system for MHD turbulent radiative boundary layer flow. 

 

2.1 Governing equations of turbulent flow: 

Average continuity equation: 

𝜕𝑢

𝜕𝑥
+

𝜕�̅�

𝜕𝑦
= 0                       (1) 

Average momentum equation: 

𝐷𝑢

𝐷𝑡′
=

𝜕

𝜕𝑦
[(𝜈 + 𝜈𝑡)

𝜕𝑢

𝜕𝑦
] + 𝑔𝛽�̅�(�̅� − �̅�∞) −

𝜎𝐵0�̅�
2

𝜌
      (2) 

Average energy equation: 

𝐷�̅�

𝐷𝑡′
=

𝜕

𝜕𝑦
[(𝜈 +

𝜈𝑡

𝜎𝑇
)

𝜕�̅�

𝜕𝑦
] +

16𝜎𝑠�̅�∞
3

𝜌𝐶𝑝𝑘∗

𝜕2�̅�

𝜕𝑦2
        (3) 

Typically, turbulence modeling involves the incorporation of eddy viscosity 𝜈𝑡 into the 

momentum and energy conservation equations (2) and (3). There are various methods for 

modeling eddy viscosity, such as algebraic methods, k-ε, k-ω, and Spalart-Allmaras models. 

Here we implement the LRN k-ε turbulence model due to its computational efficiency and 

Newtonian electro-conductive gray fluid  

Uni-directional radiative flux 

Transverse static 

magnetic field, Bo 

flux 
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simplicity. In equations (1)-(3), the turbulent kinematic viscosity (𝜈𝑡) is calculated using 

additional transport equations for turbulence energy (𝑘) and its dissipation rate (𝜖). As there 

are more unknowns than equations, additional transport equations are necessary to close the 

turbulence model. The equations for 𝑘 and 𝜖 can be derived from the Reynolds decomposition 

of Navier-Stokes equations [59] and are presented below: 

Turbulence energy equation: 

𝐷𝑘

𝐷𝑡′ =
𝜕

𝜕𝑦
[(𝜈 +

𝜈𝑡

𝜎𝑘
)

𝜕𝑘

𝜕𝑦
] + 𝜈𝑡 (

𝜕𝑢

𝜕𝑦
)

2

− 𝜖 − 2𝜈 (
𝜕𝑘

1
2⁄

𝜕𝑦
)

2

                   (4) 

Kinetic energy’s dissipation rate equation: 

𝐷𝜖

𝐷𝑡′ =
𝜕

𝜕𝑦
[(𝜈 +

𝜈𝑡

𝜎𝜖
)

𝜕𝜖

𝜕𝑦
] + 𝐶1

𝜖𝜈𝑡𝑓1

𝑘
(

𝜕𝑢

𝜕𝑦
)

2

− 𝐶2𝑓2
𝜖2

𝑘
+ 2𝜈𝜈𝑡 (

𝜕2𝑢

𝜕𝑦2)
2

                 (5) 

Where 
𝐷

𝐷𝑡′ =
𝜕

𝜕𝑡′ + �̅�
𝜕

𝜕𝑥
+ �̅�

𝜕

𝜕𝑦
  is the material derivative. 

The expression for eddy viscosity (𝜈𝑡)  of the turbulent flow in the k-ε turbulence model is 

given by 

𝜈𝑡 = 𝐶µ
𝑘2

𝜖
𝑓𝜇            (6) 

Further, the LRN k-ε turbulence model constants and corresponding values in the Eqs. (1)-(6) 

are given in the below Table-1 [59]: 

𝐶µ  𝐶1 𝐶2 𝜎𝑇 𝜎𝑘 𝜎𝜖 𝑓1 𝑓2 𝑓µ 

0.09 1.45 2.0 0.9 1.0 1.3 1.0 1 − 0.3exp(−𝑅𝑒𝑡
2) 

exp (
−2.5

1 +
𝑅𝑒𝑡

50

) 

 

Table-1: Constants and corresponding values for turbulence model. 

The initial and boundary conditions for turbulent energy transfer are given below [59]: 

𝑡′ ≤ 0 ;           �̅� = 0, �̅� = 0,   𝑘 = 0,   𝜖 = 0,  �̅� = �̅�∞ for all 𝑥 and 𝑦 

𝑡′ > 0 ;           �̅� = 0, �̅� = 0,   𝑘 = 0,   𝜖 = 0,  �̅� = �̅�𝑤  at 𝑦 = 0                (7) 

          �̅� = 0, �̅� = 0 , 𝑘 = 0,   𝜖 = 0, �̅� = �̅�∞  at  𝑥 = 0 

          �̅� → 0, �̅� → 0, 𝑘 → 0, 𝜖 → 0,    �̅� → �̅�∞ as 𝑦 → ∞ 
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Next, the following dimensionless scaling parameters [65-66] are invoked: 

𝑋 = 𝐺𝑟𝑡
−

11

12
𝑥

𝑙
  ,     𝑌 =

𝑦

𝑙
 ,    𝑈 =

𝐺𝑟𝑡
−

11
12𝑢 𝑙

𝜈
,   𝑉 =

�̅�𝑙

𝜈
 ,  𝑡 =

𝜈𝑡′

𝑙2
,   𝑇 =

�̅�−�̅�∞

�̅�𝑤−�̅�∞
 

𝐺𝑟𝑡 =
𝑔𝛽�̅�𝑙3(�̅�𝑤−�̅�∞)

𝜈2
,𝐾 =

𝑘𝑙2𝐺𝑟
−

22
12

𝜈2
, 𝐸 =

𝜖𝑙4𝐺𝑟
−

22
12

𝜈3
, 𝑃𝑟𝑡 =

𝜈

𝛼𝑡
 , 𝑅𝑒𝑡 =

𝑘2

𝜈𝜖
        (8)    

𝜈𝑡

𝜈
= 𝐶µ𝑅𝑒𝑡exp (

−2.5

1+
𝑅𝑒𝑡
50

), 𝛼𝑡 =
𝐾𝑇

𝜌𝐶𝑝
, 𝑀 =

𝜎𝐵0
2𝑙2

𝜌𝜈
, 𝑁𝑟 =

𝑘∗𝐾𝑇

4𝜎𝑠�̅�∞
3 

Here all parameters are defined in the notation section. Using Eqn. (8) in Eqs. (1)-(5) & (7), 

the analogous non-dimensional equations emerge as follows. 

𝜕𝑈

𝜕𝑋
+

𝜕𝑉

𝜕𝑌
= 0            (9) 

𝐷𝑈

𝐷𝑡
= (1 +

𝜈𝑡

𝜈
)

𝜕2𝑈

𝜕𝑌2 + 𝐺𝑟𝑡

1

12𝑇 − 𝑀𝑈                                         (10) 

𝐷𝑇

𝐷𝑡
= [

1

𝑃𝑟𝑡
(1 +

4

3𝑁𝑟
) +

𝜈𝑡

𝜈𝜎𝑇
]

𝜕2𝑇

𝜕𝑌2                           (11) 

𝐷𝐾

𝐷𝑡
=

𝜕

𝜕𝑌
[(1 +

𝜈𝑡

𝜈𝜎𝑘
)

𝜕𝐾

𝜕𝑌
] +

𝜈𝑡

𝜈
(

𝜕𝑈

𝜕𝑌
)

2

− 𝐸 − 2 (
𝜕𝐾

1
2⁄

𝜕𝑌
)

2

                (12) 

𝐷𝐸

𝐷𝑡
=

𝜕

𝜕𝑌
[(1 +

𝜈𝑡

𝜈𝜎𝜖
)

𝜕𝐸

𝜕𝑌
] + 𝐶1

𝐸𝜈𝑡

𝜈𝐾
(

𝜕𝑈

𝜕𝑌
)

2

− 𝐶2[1 − 0.3 exp(−𝑅𝑒𝑡
2)]

𝐸2

𝐾
+ 2

𝜈𝑡

𝜈
(

𝜕2𝑈

𝜕𝑌2)
2

           (13)   

Where 
𝐷

𝐷𝑡
=

𝜕

𝜕𝑡
+ 𝑈

𝜕

𝜕𝑋
+ 𝑉

𝜕

𝜕𝑌
  is the dimensionless material derivative. 

The associated dimensionless initial and boundary conditions become: 

𝑡 ≤ 0 ;           𝑇 = 0,   𝑈 = 0,    𝑉 = 0, 𝐾 = 0, 𝐸 = 0     for all  𝑋 and 𝑌 

𝑡 > 0 ;           𝑇 = 1,   𝑈 = 0,    𝑉 = 0, 𝐾 = 0, 𝐸 = 0    at  𝑌 = 0                         (14) 

        𝑇 = 0,   𝑈 = 0,    𝑉 = 0, 𝐾 = 0, 𝐸 = 0     at  𝑋 = 0 

        𝑇 → 0 , 𝑈 → 0,    𝑉 → 0, 𝐾 → 0, 𝐸 → 0    as 𝑌 → ∞ 

3. Numerical methodology:  

3.1 Finite difference discretization 
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For the discretization of the dimensionless Eqs. (9)-(13), the Crank-Nicolson finite difference 

method (FDM) is applied which offers exceptional stability and excellent convergence. The 

algebraic difference equation of the above Eqs. (9) is as follows: 

 

𝑈𝑙,𝑚
𝑛+1−𝑈𝑙−1,𝑚

𝑛+1 +𝑈𝑙,𝑚
𝑛 −𝑈𝑙−1,𝑚

𝑛

2∆X
+

𝑉𝑙,𝑚
𝑛+1−𝑉𝑙,𝑚−1

𝑛+1 +𝑉𝑙,𝑚
𝑛 −𝑉𝑙,𝑚−1

𝑛

2∆𝑌
= 0               (15) 

The finite difference discretization of the momentum equation (10) is given by: 

  

𝑈𝑙,𝑚
𝑛+1−𝑈𝑙,𝑚

𝑛

∆𝑡
+

𝑈𝑙,𝑚
𝑛

2∆X
(𝑈𝑙,𝑚

𝑛+1 − 𝑈𝑙−1,𝑚
𝑛+1 + 𝑈𝑙,𝑚

𝑛 − 𝑈𝑙−1,𝑚
𝑛 ) +

𝑉𝑙,𝑚
𝑛

4∆𝑌
(𝑈𝑙,𝑚+1

𝑛+1 − 𝑈𝑙,𝑚−1
𝑛+1 + 𝑈𝑙,𝑚+1

𝑛 −

𝑈𝑙,𝑚−1
𝑛 ) =  (1 +

𝜈𝑡

𝜈
) (

𝑈𝑙,𝑚+1
𝑛+1 −2𝑈𝑙,𝑚

𝑛+1+𝑈𝑙,𝑚−1
𝑛+1 +𝑈𝑙,𝑚+1

𝑛 −2𝑈𝑙,𝑚
𝑛 +𝑈𝑙,𝑚−1

𝑛

2∆𝑌2
) + (

𝑇𝑙,𝑚
𝑛+1+𝑇𝑙,𝑚

𝑛

2
) 𝐺𝑟𝑡

1

12 −

𝑀 (
𝑈𝑙,𝑚

𝑛+1+𝑈𝑙,𝑚
𝑛

2
)                     (16) 

 

The tridiagonal form of Eqn. (16) is as follows:  

𝐴1𝑈𝑙,𝑚−1
𝑛+1 + 𝐵1𝑈𝑙,𝑚

𝑛+1 + 𝐶1𝑈𝑙,𝑚+1
𝑛+1 = 𝐷1                 (17) 

Here 𝐴1 = −
𝑉𝑙,𝑚

𝑛 Δ𝑡

4Δ𝑌
−

Δ𝑡

2(∆𝑌)2 (1 +
𝜈𝑡

𝜈
), 𝐵1 = 1.0 +

Δ𝑡𝑈𝑙,𝑚
𝑛

2Δ𝑋
+

Δ𝑡

(∆𝑌)2 (1 +
𝜈𝑡

𝜈
) +

𝑀Δ𝑡

2
, 𝐶1 =

𝑉𝑙,𝑚
𝑛 Δ𝑡

4Δ𝑌
−

Δ𝑡

2(∆𝑌)2 (1 +
𝜈𝑡

𝜈
), 𝐷1 = 𝑈𝑙,𝑚

𝑛 −
Δ𝑡𝑈𝑙,𝑚

𝑛

2Δ𝑋
(𝑈𝑙,𝑚

𝑛 − 𝑈𝑙−1,𝑚
𝑛+1 − 𝑈𝑙−1,𝑚

𝑛 ) −
𝑉𝑙,𝑚Δ𝑡

𝑛

4Δ𝑌
(𝑈𝑙,𝑚+1

𝑛 − 𝑈𝑙,𝑚−1
𝑛 ) +

Δ𝑡

2(∆𝑌)2 (1 +
𝜈𝑡

𝜈
) (𝑈𝑙,𝑚+1

𝑛 − 2𝑈𝑙,𝑚
𝑛 + 𝑈𝑙,𝑚−1

𝑛 ) −
𝑀𝑈𝑙,𝑚

𝑛 Δ𝑡

2
+ Δ𝑡 (

𝑇𝑙,𝑚
𝑛+1+𝑇𝑙,𝑚

𝑛

2
) 𝐺𝑟𝑡

1

12. 

 

The finite difference discretization of the averaged energy equation (11) takes the form: 

𝑇𝑙,𝑚
𝑛+1−𝑇𝑙,𝑚

𝑛

∆𝑡
+

𝑈𝑙,𝑚
𝑛

2∆X
(𝑇𝑙,𝑚

𝑛+1 − 𝑇𝑙−1,𝑚
𝑛+1 + 𝑇𝑙,𝑚

𝑛 − 𝑇𝑙−1,𝑚
𝑛 ) +

𝑉𝑙,𝑚
𝑛

4∆𝑌
(𝑇𝑙,𝑚+1

𝑛+1 − 𝑇𝑙,𝑚−1
𝑛+1 + 𝑇𝑙,𝑚+1

𝑛 −

𝑇𝑙,𝑚−1
𝑛 ) = [

1

𝑃𝑟𝑡
(1 +

4

3𝑁𝑟
) +

𝜈𝑡

𝜈𝜎𝑇
] (

𝑇𝑙,𝑚+1
𝑛+1 −2𝑇𝑙,𝑚

𝑛+1+𝑇𝑙,𝑚−1
𝑛+1 +𝑇𝑙,𝑚+1

𝑛 −2𝑇𝑙,𝑚
𝑛 +𝑇𝑙,𝑚−1

𝑛

2∆𝑌2
)              (18) 

 

The tridiagonal form of Eq. (18) is then: 

𝐴2 𝑇𝑙,𝑚−1
𝑛+1 + 𝐵2𝑇𝑙,𝑚

𝑛+1 + 𝐶2𝑇𝑙,𝑚+1
𝑛+1 = 𝐷2                 (19) 

Here the following definitions apply: 𝐴2 = −
𝑉𝑙,𝑚

𝑛 𝛥𝑡

4𝛥𝑌
−

𝛥𝑡

2(∆𝑌)2 [
1

𝑃𝑟𝑡
(1 +

4

3𝑁𝑟
) +

𝜈𝑡

𝜈𝜎𝑇
], 𝐵2 = 1.0 +

𝛥𝑡𝑈𝑙,𝑚
𝑛

2𝛥𝑋
+

𝛥𝑡

(∆𝑌)2 [
1

𝑃𝑟𝑡
(1 +

4

3𝑁𝑟
) +

𝜈𝑡

𝜈𝜎𝑇
], 𝐶2 =

𝑉𝑙,𝑚
𝑛 𝛥𝑡

4𝛥𝑌
−

𝛥𝑡

2(∆𝑌)2 [
1

𝑃𝑟𝑡
(1 +

4

3𝑁𝑟
) +

𝜈𝑡

𝜈𝜎𝑇
] and 𝐷2 = 𝑇𝑙,𝑚

𝑛 −
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𝑈𝑙,𝑚𝛥𝑡
𝑛

2𝛥𝑋
(𝑇𝑙,𝑚

𝑛 − 𝑇𝑙−1,𝑚
𝑛+1 − 𝑇𝑙−1,𝑚

𝑛 ) −
𝑉𝑙,𝑚𝛥𝑡

𝑛

4𝛥𝑌
(𝑇𝑙,𝑚+1

𝑛 − 𝑇𝑙,𝑚−1
𝑛 ) +

𝛥𝑡

2(∆𝑌)2 [
1

𝑃𝑟𝑡
(1 +

4

3𝑁𝑟
) +

𝜈𝑡

𝜈𝜎𝑇
] (𝑇𝑙,𝑚+1

𝑛 − 2𝑇𝑙,𝑚
𝑛 + 𝑇𝑙,𝑚−1

𝑛 ).  

 

The finite difference discretization of the turbulent kinetic energy equation (12) is:  

𝐾𝑙,𝑚
𝑛+1−𝐾𝑙,𝑚

𝑛

∆𝑡
+

𝑈𝑙,𝑚
𝑛

2∆X
(𝐾𝑙,𝑚

𝑛+1 − 𝐾𝑙−1,𝑚
𝑛+1 + 𝐾𝑙,𝑚

𝑛 − 𝐾𝑙−1,𝑚
𝑛 ) +

𝑉𝑙,𝑚
𝑛

4∆𝑌
(𝐾𝑙,𝑚+1

𝑛+1 − 𝐾𝑙,𝑚−1
𝑛+1 + 𝐾𝑙,𝑚+1

𝑛 −

𝐾𝑙,𝑚−1
𝑛 ) = (1 +

𝜈𝑡

𝜈𝜎𝑘
) (

𝐾𝑙,𝑚+1
𝑛+1 −2𝐾𝑙,𝑚

𝑛+1+𝑇𝑙,𝑚−1
𝑛+1 +𝐾𝑙,𝑚+1

𝑛 −2𝐾𝑙,𝑚
𝑛 +𝐾𝑙,𝑚−1

𝑛

2(∆𝑌)2
) +

𝜈𝑡

𝜈
(

𝑈𝑙,𝑚+1
𝑛 −𝑈𝑙,𝑚−1

𝑛

2∆𝑌
)

2

−

(
𝐸𝑙,𝑚

𝑛+1+𝐸𝑙,𝑚
𝑛

2
) − 2 (

(𝐾
1

2⁄ )
𝑙,𝑚+1

𝑛+1
−(𝐾

1
2⁄ )

𝑙,𝑚−1

𝑛+1
+(𝐾

1
2⁄ )

𝑙,𝑚+1

𝑛
−(𝐾

1
2⁄ )

𝑙,𝑚−1

𝑛

4∆𝑌
)

2

              (20)    

The tridiagonal form of Eq. (20) is as follows: 

𝐴3 𝐾𝑙,𝑚−1
𝑛+1 + 𝐵3𝐾𝑙,𝑚

𝑛+1 + 𝐶3𝐾𝑙,𝑚+1
𝑛+1 = 𝐷3                 (21) 

Here 𝐴3 = −
𝑉𝑙,𝑚

𝑛 𝛥𝑡

4𝛥𝑌
−

𝛥𝑡

2(∆𝑌)2 (1 +
𝜈𝑡

𝜈𝜎𝑘
), 𝐵3 = 1.0 +

𝑈𝑙,𝑚
𝑛

2𝛥𝑋
+

𝛥𝑡

(∆𝑌)2 (1 +
𝜈𝑡

𝜈𝜎𝑘
), 𝐶3 =

𝑉𝑙,𝑚
𝑛 𝛥𝑡

4𝛥𝑌
−

𝛥𝑡

2(∆𝑌)2 (1 +
𝜈𝑡

𝜈𝜎𝑘
) and 𝐷3 = 𝐾𝑙,𝑚

𝑛 −
𝑈𝑙,𝑚𝛥𝑡

𝑛

2𝛥𝑋
(𝐾𝑙,𝑚

𝑛 − 𝐾𝑙−1,𝑚
𝑛+1 − 𝐾𝑙−1,𝑚

𝑛 ) −
𝑉𝑙,𝑚𝛥𝑡

𝑛

4𝛥𝑌
(𝐾𝑙,𝑚+1

𝑛 −

𝐾𝑙,𝑚−1
𝑛 ) +

𝛥𝑡

2(∆𝑌)2 (1 +
𝜈𝑡

𝜈𝜎𝑘
) (𝐾𝑙,𝑚+1

𝑛 − 2𝐾𝑙,𝑚
𝑛 + 𝐾𝑙,𝑚−1

𝑛 ) +
𝜈𝑡𝛥𝑡

𝜈
(

𝑈𝑙,𝑚+1
𝑛 −𝑈𝑙,𝑚−1

𝑛

2∆𝑌
)

2

−

𝛥𝑡 (
𝐸𝑙,𝑚

𝑛+1+𝐸𝑙,𝑚
𝑛

2
) − 2𝛥𝑡 (

(𝐾
1

2⁄ )
𝑙,𝑚+1

𝑛+1
−(𝐾

1
2⁄ )

𝑙,𝑚−1

𝑛+1
+(𝐾

1
2⁄ )

𝑙,𝑚+1

𝑛
−(𝐾

1
2⁄ )

𝑙,𝑚−1

𝑛

4∆𝑌
)

2

. 

 

The finite difference discretization of the dissipation rate of the turbulent kinetic energy 

equation (13) is formulated as follows:      

𝐸𝑙,𝑚
𝑛+1−𝐸𝑙,𝑚

𝑛

∆𝑡
+

𝑈𝑙,𝑚
𝑛

2∆X
(𝐸𝑙,𝑚

𝑛+1 − 𝐸𝑙−1,𝑚
𝑛+1 + 𝐸𝑙,𝑚

𝑛 − 𝐸𝑙−1,𝑚
𝑛 ) +

𝑉𝑙,𝑚
𝑛

4∆𝑌
(𝐸𝑙,𝑚+1

𝑛+1 − 𝐸𝑙,𝑚−1
𝑛+1 + 𝐸𝑙,𝑚+1

𝑛 −

𝐸𝑙,𝑚−1
𝑛 ) = (1 +

𝜈𝑡

𝜈𝜎𝜖
) (

𝐸𝑙,𝑚+1
𝑛+1 −2𝐸𝑙,𝑚

𝑛+1+𝐸𝑙,𝑚−1
𝑛+1 +𝐸𝑙,𝑚+1

𝑛 −2𝐸𝑙,𝑚
𝑛 +𝐸𝑙,𝑚−1

𝑛

2(∆𝑌)2
) +

 𝐶1
𝜈𝑡

𝜈
(

𝐸𝑙,𝑚
𝑛+1+𝐸𝑙,𝑚

𝑛

2𝐾𝑙,𝑚
𝑛 ) (

𝑈𝑙,𝑚+1
𝑛 −𝑈𝑙,𝑚−1

𝑛

2∆𝑌
)

2

− 𝐶2[1 − 0.3 exp(−𝑅𝑒𝑡
2)]

(𝐸𝑙,𝑚
𝑛 )

2

𝐾𝑙,𝑚
𝑛 +

 2 
𝜈𝑡

𝜈
(

𝑈𝑙,𝑚+1
𝑛 −2𝑈𝑙,𝑚

𝑛 +𝑈𝑙,𝑚−1
𝑛

(∆𝑌)2 )
2

                         (22) 

The tridiagonal form of Eq. (22) is as follows: 

 𝐴4 𝐸𝑙,𝑚−1
𝑛+1 + 𝐵4𝐸𝑙,𝑚

𝑛+1 + 𝐶4𝐸𝑙,𝑚+1
𝑛+1 = 𝐷4                 (23) 
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Where 𝐴4 =
𝑉𝑙,𝑚

𝑛 𝛥𝑡

4𝛥𝑌
−

𝛥𝑡

2(∆𝑌)2 (1 +
𝜈𝑡

𝜈𝜎𝜖
), 𝐵4 = 1.0 +

𝑈𝑙,𝑚𝛥𝑡
𝑛

2𝛥𝑋
+

𝛥𝑡

(∆𝑌)2 (1 +
𝜈𝑡

𝜈𝜎𝜖
) −

 𝐶1
𝛥𝑡𝜈𝑡

2𝜈𝐾𝑙,𝑚
𝑛 (

𝑈𝑙,𝑚+1
𝑛 −𝑈𝑙,𝑚−1

𝑛

2∆𝑌
)

2

, 𝐶4 =
𝑉𝑙,𝑚

𝑛 𝛥𝑡

4𝛥𝑌
−

𝛥𝑡

2(∆𝑌)2 (1 +
𝜈𝑡

𝜈𝜎𝜖
), 𝐷4 = 𝐸𝑙,𝑚

𝑛 −
𝑈𝑙,𝑚𝛥𝑡

𝑛

2𝛥𝑋
(𝐸𝑙,𝑚

𝑛 − 𝐸𝑙−1,𝑚
𝑛+1 −

𝐸𝑙−1,𝑚
𝑛 ) −

𝑉𝑙,𝑚𝛥𝑡
𝑛

4𝛥𝑌
(𝐸𝑙,𝑚+1

𝑛 − 𝐸𝑙,𝑚−1
𝑛 ) +

𝛥𝑡

2(∆𝑌)2 (1 +
𝜈𝑡

𝜈𝜎𝜖
) (𝐸𝑙,𝑚+1

𝑛 − 2𝐸𝑙,𝑚
𝑛 + 𝐸𝑙,𝑚−1

𝑛 ) +

 𝐶1
𝛥𝑡𝜈𝑡𝐸𝑙,𝑚

𝑛

2𝜈𝐾𝑙,𝑚
𝑛 (

𝑈𝑙,𝑚+1
𝑛 −𝑈𝑙,𝑚−1

𝑛

2∆𝑌
)

2

− 𝐶2𝛥𝑡[1 − 0.3 𝑒𝑥𝑝(−𝑅𝑒𝑡
2)]

(𝐸𝑙,𝑚
𝑛 )

2

𝐾𝑙,𝑚
𝑛 +

2 
𝛥𝑡𝜈𝑡

𝜈
(

𝑈𝑙,𝑚+1
𝑛 −2𝑈𝑙,𝑚

𝑛 +𝑈𝑙,𝑚−1
𝑛

(∆𝑌)2 )
2

. 

The approximated solutions of Eqs. (9)-(14) are obtained in the rectangular region in 

which 𝑋𝑚𝑖𝑛 = 0, 𝑋𝑚𝑎𝑥 = 1,𝑌𝑚𝑖𝑛 = 0 and 𝑌𝑚𝑎𝑥 = 40, where 𝑌𝑚𝑎𝑥 corresponding to 𝑌 = ∞ is 

located at the edge of the average momentum and temperature turbulent boundary layers. To 

achieve a steady-state numerical approximation of the average velocity, energy, turbulent 

kinetic energy (TKE), and dissipation rate of TKE profiles, the initial mesh size was taken as 

100 × 500. This mesh size varies to the 2nd decimal with that of 50 × 250 and also a 

difference in fifth decimal with 200 × 1000. Hence, the  100 × 500 mesh design which 

achieves grid independence is selected for the current study in which cell sizes of 0.08 and 0.01 

along the 𝑌 and  𝑋 paths, respectively. Additionally, ∆𝑡 =  0.01 is selected as the time step, 

which  has been tested and provides reliable results. Furthermore, for transient or steady-state 

solutions of the average turbulent flow variables, an error of less than 10−5 is the absolute 

difference between flow fields at two subsequent time intervals at all mesh nodes. The average 

temperature field is first determined by solving the energy Eq. (11). Using known values of 𝑇,  

subsequently the velocity 𝑈 is determined from Eq. (10). Similarly, kinetic energy (𝐾) and 

dissipation rate (𝐸) are calculated from Eqs. (12) and (13) using the Reynolds averaged Navier-

Stokes (RANS) equations (9) and (10).  

The finite difference versions of Eqs. (10)-(13) are written in the tridiagonal recurrence 

three-term form in Eqs.(17), (19), (21) & (23), at (𝑛 + 1)th computation. As a result, Eqs.(17), 

(19), (21) & (23) construct a tridiagonal expression for each inner node at a certain 𝑙-level. 

These equations are solved using the popular Thomas algorithm. In addition, using the given 

values of 𝑈, the velocity, 𝑉, is determined directly from Eq. (9). This method continues again 

for all future 𝑙-levels with longer time steps until all mean flow field variables meet the 

convergence criteria i.e. tolerance level= 10−5. 

 

3.2. Development of turbulent heat and stream functions: 
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Average heat function:  

To derive the turbulent heat function, the average energy equation (3) must be satisfied. 

Additionally, the net energy flux of the mean flow in the 𝑦 and 𝑥 directions can be defined as 

follows [59]: 

𝜕�̅�

𝜕𝑥
= 𝜌𝑐𝑝�̅�(�̅� − �̅�∞) − (𝑘 +

𝜈𝑡

𝜎𝑇
𝜌𝑐𝑝 +

16𝜎𝑠�̅�∞
3

𝑘∗
)

𝜕�̅�

𝜕𝑦
                                          (24) 

𝜕�̅�

𝜕𝑦
= −𝜌𝑐𝑝�̅�(�̅� − �̅�∞)                    (25) 

It is evident that equations (24) and (25) comply with the steady-state energy equation (3), 

indicating that they accurately depict the dimensional turbulent heat function �̅�(𝑥, 𝑦) for 

natural convective turbulent heat transfer in a Cartesian coordinate system. Hence, equations 

(24) and (25) can be considered correct representations of the aforementioned function. 

Next, we introduce the dimensionless turbulent heat function   𝐻 =

�̅�

(�̅�−�̅�∞)𝐺𝑟𝑡

1
12(𝑘+

𝜈𝑡
𝜎𝑇

𝜌𝑐𝑝+
16𝜎𝑠�̅�∞

3

𝑘∗ )

 into the above Eqs. (24) and (25) to convert the non-dimensional 

turbulent heat function in order that its supreme value is equal to the overall heat transfer rate 

of mean flow on a heated solid wall [46]. Then Eqs. (24) & (25) can be written as follows: 

𝜕𝐻

𝜕𝑋
= 𝐻𝑇𝑇𝑉 −

𝜕𝑇

𝜕𝑌
                    (26) 

𝜕𝐻

𝜕𝑌
= −𝐻𝑇𝑈𝑇                      (27) 

where 𝐻𝑇 =
1

(
1

𝑃𝑟𝑡
(1+

4

3𝑁𝑟
)+

𝜈𝑡
𝜈𝜎𝑇

)
 . Equations (26) and (27) fulfill the dimensionless steady-state 

average energy equation (11), confirming that they are correct representations of the 

dimensionless turbulent heat function 𝐻(𝑋, 𝑌) for natural convective turbulent heat transfer in 

a Cartesian coordinate system. By differentiating equations (26) and (27) with respect to 𝑋 and 

𝑌, respectively, and adding them together, the turbulent heat function (𝐻) can be obtained. The 

resulting expression is presented below: 

𝜕2𝐻

𝜕𝑋2
+

𝜕2𝐻

𝜕𝑌2
= 𝐻𝑇 (𝑇

𝜕𝑉

𝜕𝑋
+ 𝑉

𝜕𝑇

𝜕𝑋
− 𝑈

𝜕𝑇

𝜕𝑌
− 𝑇

𝜕𝑈

𝜕𝑌
) −

𝜕2𝑇

𝜕𝑋𝜕𝑌
               (28) 

Thus, Eq. (28) is the appropriate partial differential equation required to estimate the 

value of the heat function 𝐻 throughout the entire turbulent flow domain. It is crucial to 

compute the average temperature gradient with higher accuracy near the plate since this 

gradient is directly integrated over the plate height to determine the total average heat 
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dissipated by the plate. The resulting value is then set as the boundary value of 𝐻 at the top 

edge of the plate. Moreover, the value of 𝐻 at the first grid point near the plate is directly 

assigned to the plate as  
𝜕𝐻

𝜕𝑌
 vanishes on a solid wall. The boundary conditions for 𝐻 can also 

be obtained from equations (26) and (27) [59]. 

Average stream function:  

Turbulent flow motion can be visualized using the dimensionless turbulent stream function, , 

which is obtained by fulfilling the continuity equation (9). In the case of two-dimensional 

flows, the Cauchy-Riemann equations are used for the turbulent stream function,  and the 

average velocity components can be expressed as follows: 

𝑈 =
𝜕

𝜕𝑌
,   𝑉 = −

𝜕

𝜕𝑋
                     (29) 

The above terms in Eq. (29) may be homogenized to yield a single equation which is given 

below: 

𝜕2

𝜕𝑋2 +
𝜕2

𝜕𝑌2 =
𝜕𝑈

𝜕𝑌
−

𝜕𝑉

𝜕𝑋
                    (30) 

 

The values of 𝐻 and  respectively can be determined by computing the derivatives in 

equations (28) and (30) using the second-order central difference scheme. 

4. Simulated results and discussion: 

4.1. Validation: 

The obtained time-independent average heat transfer results in the present article are compared 

with Suresha and Reddy [59] by ignoring thermal radiation and magnetic field effects i.e. 

setting M =0, Nr=. Table-2 confirms that the current results are proven to match the prior 

solutions precisely. 

𝑷𝒓𝒕 𝑹𝒆𝒕 Temporal maximum time 

(𝒕) of 

Steady-

state time 

(𝒕) 

Maximum values at 𝑿 =
𝟏. 𝟎         of 

  𝑼 𝑻 𝑲 𝑬  𝑼 𝑲 𝑬 

Suresha and Reddy [59] 

0.71 395 4.56 4.27 4.52 4.63 10.72 0.4890 0.02820 0.1020 

7.20 295 4.59 4.30 4.53 4.65 9.28 0.4932 0.0258 0.1107 
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Present solutions 

0.71 395 4.560 4.271 4.520 4.630 10.720 0.4891 0.02820 0.1021 

7.20 295 4.591 4.300 4.530 4.649 9.280 0.4932 0.0257 0.1107 

 

Table-2: Validation of current results with benchmarking to existing result of Suresha and 

Reddy [59]. 

 

4.2. Approximated numerical results: 

4.2.1. Impact of magnetic field interaction parameter (𝑀): 

Mean velocity:  

With the variation of the magnetic field, the simulated average velocity field is pictured in Fig. 

2. It is perceived from the Fig. 2(a) that initially, all flow fields merged with each other since 

conduction dominates over convection flow at the position (1, 0.8). After around time  𝑡 = 1.0, 

the flow field is altered since convection dominates the conduction. Further, the mean velocity 

commences from zero, attains the maxima with time progression, then decreases, and finally 

tends to a steady state. Also, steady state mean velocity at 𝑋 = 1.0 is demonstrated in Fig. 2(b) 

under the influence of a magnetic field. Initially, the turbulent flow field starts from zero near 

the hot vertical plate, reached its maxima, then asymptotically tends to zero along 𝑌 direction. 

In addition, increasing the magnetic field decreases the average flow field in Fig. 2a,b, both in 

time and space, since increasing the magnetic field enhances the Lorentz magnetic force which 

counteracts the inertial force. The Lorentz magnetic force induces a damping effects and 

opposes the motion of charged particles in the electrically conducting fluid. This opposition 

reduces the velocity fluctuations in the fluid, leading to a decrease in the overall velocity. 

Turbulent momentum boundary layer thickness will therefore be increased. Turbulence is 

therefore suppressed with increasing magnetic field intensity. The magnetic interaction 

parameter, M = =
𝜎𝐵0

2𝑙2

𝜌𝜈
 appears in the Lorentz body force in the dimensionless momentum 

eqn. (8). Also known as the Stuart magnetic number [67], it expresses the ratio of 

electromagnetic (Lorentz) force to inertial force. It is also equal to the ratio of the square of the 

Hartmann number to the Reynolds number. When M = 0, the magnetic body force vanishes 

and both unsteady (Fig. 2a) and steady (Fig 2b) time-mean velocities are clearly maximized.  

For M = 2.0 the Lorentz force is double the inertial force and very quickly the velocity profiles 
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are stabilized. Chaotic motion is therefore evidently mitigated with strong magnetic field, 

confirming the trends computed in other studies including Xenos [40]. Since positive values of 

velocity are sustained in both the unsteady and steady cases, even maximum magnetic field 

strength does not induce boundary layer flow separation or flow reversal, although coherent 

turbulent structures will be impeded. In the unsteady case, the oscillations are damped rather 

quickly after an initial spike with increasing M.   

 

Fig-2. Time-mean velocity field for various values of 𝑀 at (a) unsteady state; (b) steady state 

with fixed 𝑅𝑒𝑡 = 500, 𝑃𝑟𝑡 = 0.73,  𝐺𝑟𝑡 = 1.0 & 𝑁𝑟 = 1.0. 

Another interesting point is that stronger magnetic field displaces the peak velocity location 

i.e. more time is needed to attain it in the unsteady case. In the steady case the peak velocity 

migrates velocity closer to the wall in the which has also been highlighted by Moreau [68]. The 

smooth steady topologies of velocity at larger times (Fig. 2a) confirm the prescription of a 

sufficiently large time domain in the computations. Similarly the asymptotically smooth 

profiles computed with distance, Y, verify that a sufficiently large infinity boundary condition 

is prescribed in the numerical code. 

 

Mean temperature:  

Figure 3a,b display the numerical results for average temperature again over time (Fig. 3a) 

and space (Fig. 3b) with a variation in magnetic interation parameter, M. At the position  

(1, 0.9), Fig. 3(a) demonstrates that mean energy fields accumulate since conduction 
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dominates convection until 𝑡 = 3.0. The profiles subsequently split into discrete lines with 

convection dominating. Temperature oscillations are damped rapidly however although they 

are much larger in the absence of magnetic field (M = 0) than when it is present (M >0). Peak 

temperature is arises quicker for the non-magnetic scenario and is progressively delayed as M 

increases. Maximum temperature clearly corresponds to the maximum value of magnetic 

parameter, M = 2.  

 

Fig-3. Time-mean energy field for various values of 𝑀 at (a) unsteady state; (b) steady state 

with fixed 𝑅𝑒𝑡 = 500, 𝑃𝑟𝑡 = 0.73,  𝐺𝑟𝑡 = 1.0 & 𝑁𝑟 = 1.0. 

Turbulent thermal boundary layer thickness will therefore be a maximum for this case whereas 

it will be minimized for the electrically non-conducting case (M = 0).  At large times, the 

chaotic behaviour in temperature is smoothed out and essentially a steady-state condition is 

achieved for all values of magnetic parameter. However, the time required to attain this steady 

state is increased with enhancing magnetic field. Heating in the turbulent boundary layer is 

evidently exacerbated with stronger magnetic field. The supplementary work expended by the 

fluid in dragging against the action of the Lorentz body force is dissipated as heat. This effect 

is amplified with time initially but stabilized eventually. The time-independent temperature 

distribution with  𝑌 is shown in Fig. 3(b) over the same range of M values as in the unsteady 

plot (Fig. 3a). Peak temperature always arises at the hot plate wall 𝑋 = 1.0 and monotonically 

decreases to zero in the free stream. Fig. 3b confirms the classical response in MHD boundary 

layers, namely that increasing the Lorentz forces enhances the mean temperature profile in the 

steady state. As noted earlier the friction generated in the fluid due to the work performed 
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against the magnetic field increases the rate of energy dissipation which in turn elevates thermal 

boundary layer thickness. In the steady state, this response is sustained at all locations 

transverse to the hot wall i.e. it is not a localized phenomena.   

Dissipation rate of turbulent energy:  

The simulated dissipation rate of the kinetic energy profile is portrayed in Fig. 4a,b with 

reference to magnetic interaction parameter, 𝑀.  

 

Fig-4. Time-mean kinetic energy dissipation rate profile for different values of 𝑀 at (a) 

unsteady state; (b) steady state with fixed 𝑅𝑒𝑡 = 500, 𝑃𝑟𝑡 = 0.73,  𝐺𝑟𝑡 = 1.0 & 𝑁𝑟 = 1.0. 

It is observed from Fig. 4(a) at (1, 1.92) that the dissipation field ascends rapidly from zero, 

peaks at a short time thereafter, exhibits a chaotic trend and then eventually tends to the steady 

state. The oscillatory zones are both compressed and suppressed with stronger magnetic field. 

Much higher amplitudes of  kinetic energy dissipation arise for the non-magnetic case (M = 0) 

and these are significantly damped with increment in magnetic field (M = 0.5, 1.5, 2.0). The 

turbulence suppression associated with magnetic field is therefore again verified. It is also 

apparent that prior to imposing a magnetic field (M =0), there is a sharp trough and crest 

computed in the dissipation profile but with the presence of a magnetic field, this is reduced. 

Further, attaining the steady state increases with the magnifying the magnetic field intensity. 

In addition, the dissipation field decays with the amplification of the magnetic field since in 

turbulent flow, the motion of charged particles in the presence of a magnetic field can induce 

electrical currents, which in turn generate a magnetic field that opposes the original field. This 
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opposition, known as magnetic damping, leads to the transformation of turbulence energy into 

thermal energy, resulting in a reduction in the dissipation rate of kinetic energy.  The steady-

state dissipation rate field is plotted in Fig. 4(b) with the impact of Lorentz force. It shows that 

initially dissipation rate of the kinetic energy field starts at zero (at the plate surface, Y = 0), 

reaches maxima, then monotonically decreases to zero up to intermediate distance from the 

wall ( 𝑌 = 16). However thereafter there is a switch-over in the profiles and a weak 

enhancement in kinetic energy dissipation rate is observed into the free stream.  

4.2.2. Impact of turbulent Reynolds number (𝑹𝒆𝒕): 

Turbulent kinetic energy:  

Figure 5 a,b illustrates the influence of turbulence Reynolds number on the kinetic energy 

profile in the turbulent boundary layer region both in time and space. At position (1, 1.92),  

Fig. 5(a) discloses that the kinetic energy rises from zero by dominating the conduction field; 

shortly after with convection dominating, the kinetic energy reaches a maximum, then 

oscillates and profiles all stabilize at large times behaving independently of time. Further, the 

time required to attain the steady state is amplified with enhancing 𝑅𝑒𝑡. Clearly the contribution 

of interial forces relative to viscous forces is enhanced with increment in 𝑅𝑒𝑡. This contributes 

to the escalation in kinetic energy in the turbulent boundary layer. The time-independent 

response in kinetic energy to the influence of 𝑅𝑒𝑡 is pictured in Fig. 5(b). Inverse parabolic 

topologies are observed indicating that at the wall and in the free stream the  kinetic energy 

vanishes whereas at intermediate distance from the hot wall it achieves peak magnitude. The 

profiles are slightly skewed towards the wall with increasing turbulent Reynolds number i.e. 

the symmetry is warped. Furthermore, the transient kinetic energy profile magnifies with 

magnifying 𝑅𝑒𝑡 parameter over the range 800 to 1200 but thereafter it is reduced. This initial 

accentuation in knetic energy is associated with the proliferation in eddies and vortices of 

varying sizes, velocities, and directions compared to a laminar flow. These eddies and vortices 

contribute to the kinetic energy of the fluid, and as the Reynolds number increases, the number 

and intensity of these turbulent motions also increase, hence kinetic energy amplifies.  However 

there is a critical point at which the kinetic energy attained peaks and thereafter with subsequent 

elevation in turbulent Reynolds number it is reduced (with Ret = 1400). This upper limit to the 

kinetic energy is associated with a drain in energy available in turbulent flow, which cacades 

after a threshold, as result of the interplay between inertial and viscous forces, as noted in 

Cebeci and Smith [69]. The presence of equal electromagnetic and inertial forces (M = 1.0) 
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may also contribute to the damping in kinetic energy at high turbulent Reynolds number, as 

elaborated by Brandenburg and Dobler [70].   

 

Fig-5. Time-mean kinetic energy profile for different values of 𝑅𝑒𝑡 at (a) unsteady state; (b) 

steady state with fixed 𝑀 = 1.0, 𝑃𝑟𝑡 = 0.73,  𝐺𝑟𝑡 = 1.0 & 𝑁𝑟 = 1.0. 

4.2.3. Impact of thermal radiation (𝑁𝑟): 

Mean temperature:  

Figure 6 a,b depict the simulated average temperature profiles (T) for distinct values of thermal 

radiation parameter (Nr) in the vicinity of the hot isothermal vertical plate. Fig. 6(a) discloses 

the transient behavior of the time mean temperature at (1, 0.9). Very sharp oscillations are 

computed in temperature at small times but these are progressively damped out. From t~10, 

the steady state tempereatures are attained and there is a clear depletion in mean temperature 

with increasing radiation parameter. Nr is also known as the Boltzmann or Stark radiation-

conduction parameter. It features in the augmented thermal diffusion term in eqn. (11), viz, 

[
1

𝑃𝑟𝑡
(1 +

4

3𝑁𝑟
)]

𝜕2𝑇

𝜕𝑌2. 𝑁𝑟 =
𝑘∗𝐾𝑇

4𝜎𝑠�̅�∞
3 and expresses the relative contribution of thermal conduction 

and thermal radiation heat transfer. When  𝑁𝑟 = 1 both thermal radiation and thermal 

conduction modes contribute equally. For 𝑁𝑟 →, thermal conduction dominates and thermal 

radiation heat flux vanishes. In this case, the diffusion term contracts to the classical case of 

convection-conduction in turbulent boundary layer flow. As 𝑁𝑟 is increased the contribution 

of thermal radiation flux is progressively reduced. Thermal radiation only dominates for 𝑁𝑟 < 

1 whereas it is diminished with Nr > 1. The energization of the turbulent shear layer is therefore 
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decreased with greater values of Nr as observed in Fig 6a,b. The maximum contribution 

computed for radiative heat transfer is therefore for Nr = 1 and this corresponds to the highest 

unsteady (Fig. 6a) and steady (Fig. 6b) temperatures, although in the latter, very weak elevation 

is achieved.  

 

Fig-6. Time-averaged temperature profile for different values of 𝑁𝑟 at (a) unsteady state; (b) 

steady state with fixed 𝑀 = 1.0, 𝑃𝑟𝑡 = 0.73,  𝐺𝑟𝑡 = 1.0 & 𝑅𝑒𝑡 = 500. 

The modification in temperature is much more dramatic over time compared with distance. 

The intensification in turbulence may be associated with this effect, as noted in Cheng and 

Miller [31]. Effectively with time a cooling effect is induced with extraction of radiative heat 

flux. Thermal boundary layer thickness is therefore depeleted with weaker radiative flux (Nr = 

5.0) compared with stronger radiative flux (Nr = 1.0). Furthermore, the presence of turbulence 

can also affect the temperature profile by enhancing the mixing of fluid particles and in 

conjunction with the supply of more radiative energy, turbulent thermal boundary layer 

thickness will be increased. It is also important to note that the inclusion of radiative heat 

transfer in turbulent simulations offers a more accurate depiction of nuclear reactor duct near-

wall flows [4-6]; neglecting of this mode of heat transfer will clearly lead to an underprediction 

in actual mean temperatures and also thermal boundary layer thickness.  Of course the present 

analysis is restricted to optically dense fluids by virtue of the Rosseland flux approximation. 

Optical thickness of operational fluids (air, water etc) in nuclear designs is an important 

parameter to consider since it will influence the distribution of thermal energy in the boundary 
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layer. In this regard the  Trauggot P1 differential flux approximation [64] may offer an 

improved methodology and is under consideration for future studies 

 

4.3. Engineering quantities of interest in laminar and turbulent flows: 

The accurate computation of wall skin friction coefficient (𝐶𝑓
̅̅ ̅) and Nusselt number (𝑁𝑢̅̅ ̅̅ ) are 

extremely important in both laminar and turbulent boundary layers [70]. Originating in 

aerodynamics, these quantities are also critical in nuclear and energy systems design. 𝐶𝑓
̅̅ ̅ 

represents the frictional (viscous drag) force per unit area acting on a surface due to the 

turbulent flow of a fluid. Nusselt number is the ratio of convective heat transfer to conductive 

heat transfer and also quantifies the rate of heat transmission to the boundary (wall). The 

accurate evaluation of these dimensionless quantities furnishes excellent insight into the wall 

characteristics of both laminar and turbulent flows [3,4].   

 

4.3.1. Skin friction coefficient of turbulent flow(𝐶𝑓
̅̅ ̅):  

The average momentum transfer rate  of the turbulent flow from 𝑋 = 0.0 to  𝑋 = 1.0 along the 

solid plate in dimensionless form is computed as follows [59]: 

𝐶𝑓
̅̅ ̅ = ∫ (

𝜕𝑈

𝜕𝑌
)

𝑌=0
𝑑𝑋

1

0
                                                                   (31) 

 

Skin friction coefficient profile:  

The skin friction coefficient variation with time for both laminar and turbulent flow cases under 

the effect of magnetic field is portrayed in Figs. 7(a) & 7(b) respectively. In both plots similar 

profiles are computed and the response to increasing magnetic field intensity is the same- i.e. 

skin friction is damped with stronger magnetic field. The shearing action of the fluid along the 

plate is therefore significantly suppressed both in laminar and turbulent flow with stronger 

transverse magnetic field. It is observed from the Fig. 7a that the laminar skin friction 

coefficient attains the steady state topology more smoothly than the  turbulent skin friction in 

Fig. 7b, which experiences an oscillatory phase at small times but eventually smooths out. The 

fluctuation in the turbulent case is associated with the chaotic motions at smaller times. These 
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trends have also been observed by Xenos [40] although he considered compressible flows.  

Overall, with increasing the magnetic field, the damping action of the Lorentz force suppresses 

turbulence and reduce momentum transfer at the boundary. Turbulent momentum boundary 

layer thickness is therefore elevated. Similarly there is a significant increase in laminar 

boundary layer thickness with stronger magnetic field. The potency of magnetic field 

application in flow control is therefore clearly demonstrated and has been confirmed in many 

other studies including Satake et al. [9]. 

 

Fig-7. Average momentum profile for different values of 𝑀 at (a) laminar(𝑅𝑒𝑡 = 0.0); 

(b)turbulent (𝑅𝑒𝑡 = 500) with fixed 𝑁𝑟 = 1.0, 𝑃𝑟𝑡 = 0.73 & 𝐺𝑟𝑡 = 1.0. 

 

4.3.2. Nusselt number of turbulent flow (𝑁𝑢̅̅ ̅̅ ):  

The average heat transfer rate of the turbulent flow from 𝑋 = 0.0 to  𝑋 = 1.0 along the solid 

plate in dimensionless form is evaluated using the following expression [59]: 

   𝑁𝑢̅̅ ̅̅ = − ∫ (
𝜕𝑇

𝜕𝑌
)

𝑌=0
𝑑𝑋

1

0
                                                                                                       (32) 

The integrals in both Eqns. (31) & (32) are calculated using the five-point approximation 

formula and then computed in MATLAB with the Newton-Cotes integration method. 

Nusselt number profile:  
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The approximated average Nusselt number is visualized in Fig. 8a,b with a variation in the 

magnetic field against time, again for both n laminar and turbulent regimes.  It reveals that the 

turbulent heat transfer decreases with the increasing magnetic field since it is directly connected 

to the formula 𝑁𝑢̅̅ ̅̅  with a negative sign of temperature profile (Eq. (32)). Also, the magnetic 

field can suppress heat transfer by reducing the velocity and turbulence intensity of the fluid 

near the boundary. This trend is consistent with the elevation in temperatures generated with 

greater magnetic field. This escalation drains heat way from the wall and therefore suppresses 

the net heat transfer to the wall. This produces the depletion in Nusselt numbers for both 

laminar and turbulent flow cases.  

 

Fig-8. Average heat transfer rate for different values of 𝑀 at (a) laminar(𝑅𝑒𝑡 = 0.0) ; 

(b)turbulent (𝑅𝑒𝑡 = 500) with fixed 𝑁𝑟 = 1.0, 𝑃𝑟𝑡 = 0.73 & 𝐺𝑟𝑡 = 1.0. 

The energy transfer rate to the wall, is highest at the initial time near the plate, and sharply 

decreases, eventually tending to a steady state in both regimes. Thermal management at the 

boundary is therefore very effectively controlled via the mechanism of an external magnetic 

field which is non-intrusive.   

4.4. Visualization of turbulent flow: 

4.4.1. Comparison between laminar and turbulent flows: 

To convert laminar to turbulent flow, the kinematic viscosity of the turbulent flow, 𝜈𝑡 is 

considered as zero.  
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Figure 9: Steady-state contours of velocity (𝑈), temperature (𝑇), streamlines (), and heat 

lines (𝐻) for (a) Laminar flow (𝑅𝑒𝑡 = 0); (b) Turbulent flow (𝑅𝑒𝑡 = 500) with fixed 𝑃𝑟𝑡 =

0.73, 𝑀 = 1.0, 𝐺𝑟𝑡 = 1.0 & 𝑁𝑟 = 1.0. 

Hence, the simulated magnetized thermal radiative results are studied to compare the laminar 

(Fig. 9(a)) and turbulent (Fig. 9(b)) cases using the contours of velocity (𝑈), temperature (𝑇),  

heat  (𝐻)  and stream (  ) lines with varying turbulent Reynolds number (𝑅𝑒𝑡). It is noticed 

from the velocity contours (𝑈) of Figs. 9(a) and 9(b) that the velocity contour values of 

turbulent flow are smaller than laminar flow. Therefore, the velocity magnitudes associated 

with laminar flow are higher than that of turbulent flow, which is attributable to the much 

greater energy dissipation due to turbulence. Further, velocity contour lines of turbulent flow 

are more deviated away from the hot solid vertical wall than that of laminar flow due to 

fluctuations near the surface- this is confirmed by referring to the velocity contour value 0.26. 

Wedge topologies are observed for the laminar flow velocity contours which converge towards 

the lower left corner whereas monotonic bands are associated with the turbulent case emanating 

from the top left corner and converging in the bottom right coner. It is also noteworthy that 

these profiles are computed in the presence of intermediate magnetic field (M = 1.0), a balance 



29 
 

of thermal buoyancy and viscous forces (Grt = 1.0) and strong radiative flux (Nr =1.0).   

Temperature contours (𝑇)  in Figs. 9(a) and 9(b) show that energy transfer in the laminar regime 

is also more intensive than the turbulent regime. There is an intimate interplay between thermal 

and momentum diffusion in the boundary layer. Since higher velocities are computed for 

laminar flow (Fig. 9a), the heat transfer in the boundary layer is also enhanced as compared to 

the turbulent case (Fig. 9b). Also, the temperature contours in the turbulent case deviate more 

prominently from the heated wall than for the laminar flow case, which can be observed by 

referring to the contour value 0.05. In accordance with this, the contours of temperature 

(isotherms) are considerably more clustered around the wall in the laminar case whereas they 

fan out and are more sparsely dispersed for the turbulent scenario. Further, Figs. 9(a) & 9(b) 

disclose the distribution of heat function (𝐻) for both laminar and turbulent flows. In close 

proximity to the hot wall in the laminar regime, the rate of energy transfer is high as compared 

with the turbulent flow since 𝑁𝑢̅̅ ̅̅  at 𝑌 = 0 is high for laminar flow as compared with turbulent 

flow. Also, the contour value 0.1 in heat lines is observed in the turbulent flow at 𝑋 = 1.0 but 

in the case of laminar flow, it is observed near the leading edge of the plate. Furthermore, in 

laminar flow, the deviation of energy transfer from the hot vertical wall is greater than that of 

turbulent flow and this can be analyzed by taking the contour value as 0.1 in both regimes. In 

addition, heat lines near the hot plate are denser i.e. more constricted, for lesser values of  𝑋 in 

the laminar regime and higher values of 𝑋 in the turbulent regime. Furthermore, turbulent heat 

lines exhibit stronger curvature and are clustered essentially in the left half space whereas they 

are more widely dispersed in the laminar case. Inspection of the simulated streamlines ()  for 

both laminar and turbulent regimes in Figs 9(a) & 9(b)  indicates that the laminar streamlines 

are denser in the region of 1.4 < 𝑌 < 2.4, than those computed for turbulent flow. 

Additionally, streamlines in the turbulent regime deviate more strongly from the hot vertical 

solid wall when compared to the laminar regime. This difference can be observed by referring 

to the contour value of 0.20 in both regimes. Also, the laminar streamlines are denser at the top 

edge of the plate whereas the turbulent streamlines are denser at the leading edge of the plate. 

 

4.4.2. Contour plots for turbulent flows: 

The simulated contours of velocity, energy, kinetic energy, dissipation rate of kinetic energy, 

heatlines and streamlines for turbulent flow with different values of magnetic field (𝑀) are 

displayed in Fig. 10.  
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Figure 10: Steady-state contours of velocity(𝑈), temperature(𝑇), kinetic energy(𝐾), dissipation 

rate (𝐸), heat(𝐻), and stream() lines of the turbulent flow at (𝒂) 𝑅𝑒𝑡 = 500, 𝑀 = 0.5, 𝑁𝑟 =

1.0; (𝒃) 𝑅𝑒𝑡 = 500, 𝑀 = 1.5, 𝑁𝑟 = 1.0 with fixed 𝑃𝑟𝑡 = 0.73, 𝐺𝑟𝑡 = 1.0. 

It is apparent that with higher values of 𝑀, the contour values of average velocity diminish and 

are displaced further from the hot plate due to the action of the electromagnetic Lorentz force. 

Temperature contours also exhibit some deviation, but this is less pronounced than the disparity 

in velocity contours. However larger high temperature bands are computed with M = 1.5 (Fig. 

10a) than with M = 0.5 (Fig. 10b) indicating that a heating effect closer to the wall is induced 

with stronger magnetic field, as observed in earlier graphs. Also contour lines of kinetic energy 

decrease for raising the values of 𝑀 since increasing 𝑀  cause charged particles in the system 

to move more rapidly, and also overall energy in the system is increased. Further, dissipation 

rate contour values increased as more energy is being lost from the system, leading to a greater 

rate of dissipation. Additionally, velocity contours are formed somewhat away from the hot 

solid wall, whereas kinetic energy and its dissipation rate contours are clustered more densely 

near the vertical plate. Furthermore, contour plots of heat lines (𝐻) and streamlines () 

displayed allow an examination of heat flux and momentum deviation from the vertical hot 
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plate. It is observed that variation of streamlines in occurs somewhat further from the hot wall 

than heat lines due to no-slip condition at the wall and hence the average velocity is small. 

Overall, the present methodology enables quite clear and comprehensive visualization of 

turbulent streamlines and isotherms in the magnetized radiative convective turbulent boundary 

layer regime.  

 

5. Conclusions:  

Motivated by studying nuclear engineering near-wall duct transport, a mathematical model has 

been developed for turbulent hydromagnetic convective boundary layer flow with appreciable  

radiation heat transfer in the vicinity of a vertical isothermal plate. The transformed non-

dimensional governing non-linear and coupled partial differential conservation equations have 

been solved using an implicit Crank-Nicolson finite difference method (FDM). For the 

turbulent kinematic viscosity, the LRN k-ε turbulence model has been employed. Rosseland’s 

diffusion algebraic model has been applied for simulating uni-directional radiative transfer for 

optically dense fluids. Further, the turbulent heat function has been constructed and used to 

visualize the proper path of turbulent heat flow with thermal radiation and magnetic field 

effects in the two-dimensional domain. Also, the construction of this turbulent heat function 

(Eq. 28), enables a more comprehensive visualization of the mean heat flow. The numerical 

computations for all key variables including velocity, temperature, kinetic energy, dissipation 

rate, heat function and streamlines, have been displayed via graphs and contour plots for a 

range of the governing parameters i.e. magnetic interaction parameter, 𝑀, radiation-conduction 

parameter, 𝑁𝑟 and turbulent Reynolds number 𝑅𝑒𝑡. Validation of the solutions has been 

included where possible. The important findings of the current study may be summarized as 

follows: 

➢ The numerical results show excellent correlation with previous non-magnetic, non-

radiative special cases from the literature. 

➢ Average velocity and dissipation rate fields decay whereas the average temperature is 

strongly amplified with higher magnetic parameter values i.e. stronger Lorentz force. 

➢ Time-mean temperature field is enhanced with stronger thermal radiation parameter 

(i.e. lower Nr values). 
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➢ Visualization of contours reveals that velocity magnitudes associated with laminar flow 

exceed that of turbulent flow, which is due to the larger energy dissipation due to 

turbulence.  

➢ Temperature contours (isotherms) are more strongly clustered near the plate in the 

laminar case whereas they are more sparsely dispersed for the turbulent scenario.  

➢ Near the wall, in the laminar regime, the Nusselt number (heat transfer rate to the wall) 

exceeds that computed for turbulent flow. 

➢ Very distinct spiked oscillations are observed in temperature at small times but these 

are progressively damped out with time progression in the turbulent flow. 

➢ Overall significant turbulence suppression is achieved with stronger magnetic field and 

strong accentuation in heat diffusion and thicker thermal boundary layers are generated 

with stronger radiative flux primarily for the turbulent flow case. 

The present investigation has revealed some interesting characteristics of 

magnetohydrodynamic radiative turbulent (and laminar) boundary layer flows. Attention has 

however been restricted to the case of an isothermal  vertical wall and Newtonian fluid. Future 

works may address non-isothermal flow and also mass diffusion and additionally examine non-

Newtonian fluid behaviour, all of which are relevant to nuclear engineering transport 

phenomena.  
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