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Abstract: Deep learning is playing a major role in identifying complicated structure, and it outper-
forms in term of training and classification tasks in comparison to traditional algorithms. In this
work, a local cloud-based solution is developed for classification of Alzheimer’s disease (AD) as MRI
scans as input modality. The multi-classification is used for AD variety and is classified into four
stages. In order to leverage the capabilities of the pre-trained GoogLeNet model, transfer learning is
employed. The GoogLeNet model, which is pre-trained for image classification tasks, is fine-tuned
for the specific purpose of multi-class AD classification. Through this process, a better accuracy of
98% is achieved. As a result, a local cloud web application for Alzheimer’s prediction is developed
using the proposed architectures of GoogLeNet. This application enables doctors to remotely check
for the presence of AD in patients.

Keywords: Alzheimer’s disease; convolution neural network; deep learning; GoogLeNet

1. Introduction

The image modality structural magnetic resonance imaging (MRI) for deep learning
techniques has gained lot of importance within the research community. Many recent stud-
ies state that important feature extraction can be performed automatically using convolu-
tional neural networks (CNNs), and it has ability to handle large image data. Neuroimaging
techniques, such as magnetic resonance imaging (MRI) and positron emission tomography
(PET), have undergone significant advancements in recent years. These techniques play a
crucial role in the identification of structural and molecular biomarkers associated with
Alzheimer’s disease (AD). MRI allows for detailed imaging of brain structures, while
PET enables the visualization and quantification of specific molecular targets relevant to
AD pathology [1]. These neuroimaging techniques contribute to our understanding of
AD and aid in its diagnosis and management. The rapid development of neuroimaging
techniques has presented challenges in effectively integrating large-scale, multidimen-
sional neuroimaging data. As a result, there has been a surge of interest in employing
computer-aided machine learning methods for comprehensive analysis. Promising pattern
analysis techniques, such as linear discriminant analysis (LDA), linear program boosting
method (LPBM), logistic regression (LR), support vector machine (SVM), and support
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vector machine-recursive feature elimination (SVM-RFE), have been employed in the field.
These methods demonstrate potential in the early detection of AD and predicting the
progression of the disease.

CT scans offer quick scanning times and provide clear images, making them suitable
for examining various diseases. However, the resolution of the middle lobe is relatively low,
which can lead to misdiagnosis of mild cognitive impairment (MCI) as a typical age-related
phenomenon. PET imaging, on the other hand, enhances both sensitivity and resolution. To
reduce the influence of tissue attenuation on the image, transmission scanning technology
is employed in the imaging process. This technology aims to minimize the impact and
distortion caused by the attenuation of tissues. On the other hand, magnetic resonance
imaging (MRI) is widely utilized to visualize and examine the internal structures of the
human body. It provides detailed and high-resolution images of various body tissues and
organs. The utilization of rapidly changing gradient magnetic fields significantly enhances
the speed of MRI scans. This advancement enables quicker image acquisition and reduces
the overall scanning time. Moreover, MRI exhibits excellent resolution when imaging soft
tissues, allowing for detailed visualization of anatomical structures and abnormalities.
Importantly, MRI does not involve the use of ionizing radiation, making it a safe imaging
modality with no associated radiation-related harm to the human body. In mental health
trials, the most beneficial approach is computational neuroscientific, and it is very helpful
in health decisions [1]. The number of people with dementia is estimated to be 151 million
by the year 2050 [2]. The human states that are not normal can be monitored through this
field of study. One of the main causes of dementia is Alzheimer’s disease (AD). AD is a
degenerative brain condition characterized by a gradual decline in cognitive abilities. As a
result, significant efforts have been dedicated to devising approaches for early detection,
particularly during the pre-symptomatic stages, with the aim of impeding or halting the
progression of the disease.

Clinical Dementia Rating [3] and Global Deterioration Scale [4] are the clinical tools
used in assessment for tracing of disease. In order to assess, 24 h data need to be collected
from sensor-based systems attached to patients. The field of AD diagnosis has witnessed in-
creased interest in computer vision with the rapid advancements in artificial intelligence. To
address the challenges mentioned previously, researchers are increasingly turning to deep
learning, a burgeoning field within machine learning. Deep learning techniques enable the
direct utilization of raw neuroimaging data, allowing for the generation of features through
dynamic learning processes. This approach, often referred to as “on-the-fly” learning,
has gained significant traction in large-scale, high-dimensional medical imaging analysis.
Notably, deep learning methods, including convolutional neural networks (CNN), have
demonstrated superior performance compared to traditional machine learning approaches.
This has further contributed to the growing interest in deep learning for advancing medical
imaging analysis. Deep learning, a prominent branch of machine learning, has emerged as
the most popular approach to address the limitations of traditional methods. Particularly,
deep learning technology has gained significant traction in medical imaging, allowing
for the automatic extraction of features from medical images to facilitate AD detection.
This innovative application has shown promising results in recent years. For imaging, the
deep learning methods are frequently used for data analysis from neuroimaging [5] and
to detect Alzheimer’s disease. In recent work, biomarkers for genetics are used in deep
learning to diagnose AD. Positron emission tomography and magnetic resonance imaging
are also used to articulate molecular biomarkers and structure in advanced neuroimaging
techniques. A few machine learning algorithms like linear program boosting method and
support vector machine recursive feature elimination have given good results for early
prediction of AD [6], and this has caused quick progress in neuroimaging. In general, four
steps are followed in machine learning classification: a. extraction of features, b. selection,
c. reduction in dimensionality, d. classification based on feature selection. Our proposed
work concentrates on the analysis of Google Net architecture of Convolutional Neural
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Networks architecture for training and classification for predicting the Alzheimer’s disease
using local cloud-based solutions.

Brain imaging techniques play a crucial role in non-invasively assessing the function,
structure, and pharmacology of the brain for Alzheimer’s disease (AD). These techniques
provide valuable insights into the brain’s activities and help in predicting the progression of
AD [7]. The imaging techniques are usually separated into two groups, namely functional
imaging and structural imaging [8]. Functional imaging discusses the activities performed
by the brain, and structural imaging discusses the brain’s structure, including neurons, glial
cells, synapses, etc. [9]. The commonly employed neuroimaging techniques for Alzheimer’s
disease (AD) include magnetic resonance imaging (MRI), positron emission tomography
(PET), and MRI biomarkers specifically associated with AD. These techniques enable the
visualization and assessment of brain structure, function, and specific biomarkers relevant
to AD. They provide valuable diagnostic information and contribute to our understanding
of the disease.

The magnetic resonance imaging (MRI) technique utilizes magnetic fields and radio
waves to generate high-quality and high-resolution images of brain structures in both 2D
and 3D formats. Unlike other imaging methods such as X-rays, MRI does not involve
the use of ionizing radiation. Instead, it employs harmless magnetic fields and radio
waves to create detailed images of the brain’s anatomy. This makes MRI a safe and non-
invasive technique for imaging the brain. The structural MRI is the commonly used MRI,
imaging brain volumes in vivo to notice brain degeneration. Brain degeneration can be
defined as expected progressive module of AD [10,11]. Functional magnetic resonance
imaging (fMRI) is the extensively practiced method, which gauges the human cortex and
identifies brain topography. fMRI offers helpful data about the activities of the human
brain. Single-photon emission computed tomography (SPECT) is delicate for the early
examination of modifications in cerebral blood flow. It is more economical compared to
other techniques [12]. Based on many studies during AD examination, SPECT specifically
computes the cerebral perfusion. A recent study scrutinized 116 patients. A total of
67 individuals had noticeable other neurological concern, 26 of those had evident non-
Alzheimer’s dementia, and 23 of those were labeled as age-matched controls [13]. Cerebral
perfusion, cerebrospinal fluid (CSF)-tau, and cognitive proteins examination was carried
out. The themes were categorized into control and dementia case. Cognitive functions
and functional conditions were classified based on the Cambridge Cognitive Examination,
Mini-Mental State. The CSF-tau protein SPECT is additionally suitable for the inspection of
AD. The positron emission tomography (PET) imaging method makes use of radiotracers,
and the brain’s activities are examined as radioactive spheres.

By utilizing radioligands C-PMP and C-MP4A, acetylcholinesterase was experimental.
These results specify a lessening in the temporal lobes of the AD [14]. Identical refuse was
experiential along with MCI, which ultimately evolved to AD. A temporoparietal hypop-
erfusion intuition was experimental in mainly the AD. False-positive results, for clinical
purposes, render SPECT problematic; by disparity, use of FP-CIT SPECT and neurore-
ceptors are additionally helpful and convenient. This allows visualization of incongruity
in the nigrostriatal dopaminergic neurons and estimation of the direction, position, and
anisotropy in the brain. Though significant studies have been conducted to recognize
CSF-tau biomarker and amyloid levels, there exists a deficiency in unanimous conclusions
that hinder diffusion tensor imaging (DTI) from being incorporated as an unfailing method
for understanding CSF biomarkers [15]. AD MRI biomarkers are considered as one of the
medical symbols with the aim of deliberating precisely [16]. Biomarkers as objects are
defined by the Chemical Safety International Program as an architecture that is measured
and where the existence of a disarray can be completed [17]. The properties with respect to
AD biomarkers are as follows: firstly, they are able to recognize essential characteristics
of AD’s neuropathology; secondly, they are able to attest neuropathologically confirmed
AD cases; thirdly, they are efficient, able to recognize initial AD and to differentiate AD
with a dissimilar outline of dementias; fourth, they are non-invasive, reliable, inexpensive,
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and easy to implement. Biomarkers that also help depict AD: neuroimaging biomarkers,
biochemical, and genetic [18]. MRI biomarkers are measured because of their huge im-
pending in AD detection. Two actions can conclude structural connectivity with functional
connectivity where they consist of additional authority and resources of AD; however, they
silently engage in authorization and regulation to guarantee clinical utility. This indicates
that when hippocampus volume is considered, the structural MRI is the most efficient and
nearly always utilized MRI biomarker.

Considering 11 [19–29] papers, Table 1 gives the top results of guess of MCI to con-
version (AD) and/or diagnostic classification. Only binary classification outcomes are
compared. Accuracy is a quantity utilized constantly in 11 publications. Conversely, one
metric performance uniqueness of the algorithm. Sample sizes, composition, and scan num-
bers examined are noted jointly since accuracy is responsive to unbalanced distributions.

Deep learning approaches involve enormous data, which attain preferred levels of con-
cert accuracy. The original image values were decoded using an autoencoder (AE), which
was similar to the original image, including input, consuming the imperfect neuroimaging
data. Current progress in technology of usability and availability accompanies the con-
ventional hospital-centered concept with the likelihood of collecting info from the user’s
day-to-day personalized interventions. Sensor devices have the benefit of not involving
any relations effort of the patient. Thus, its purpose suggests an ample series of possibili-
ties, with fundamental daily living actions or as the detection of falls [30] or leaving-bed
episodes during nighttime [31]. Wearable sensors discovered for numerous dissimilar
reasons. Gietzelt [32] composed data by a tri-axial accelerometer permissible to distinguish
involving patients who consequently undergo falls, increasing the likelihood of building
evaluation of being a fall risk. By considering 319 non-demented elderly people, sample
analogous results were established through Van Schooten [33]. Supervising of behavioral
disturbances is one more exciting possible applications of wearable accelerometers.
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Table 1. Top results of guess of MCI to conversion (AD) and diagnostic classification.

References Modality Data Processing/
Training Classifier AD: NC

acc. SEN SPE cMCI:nMCI
aa. SEN SPE AD cMCI ncMCI NC Total

Li et al.
(2014) [19] MRI, PET 3D CNN Logistic

regression 92.97 76.21 198 167 236 229 830

Suk et al.
(2014) [20] MRI, PET DBM SVM 97.35 94.6 95.2

75.92
86.75

(MCI:NC)

48.04
95.37

95.23
65.87 93 76 128 101 398

Li et al.
(2015) [21]

MRI, PET,
CSF RBM + drop out SVM 91.4

57.4
76.21

(MCI:NC)
51 43 56 52 202

Suk et al.
(2015) [22]

MRI, PET,
CSF

SAE + sparse
learning SVM 98.8

83.3
90.7

(MCI:NC)
51 43 56 52 202

Liu et al.
(2015) [23] MRI, PET SAE with zero

masking Softmax 91.4 92.32 90.42 92.1

Suk and Shen
(2013) [24]

MRI, PET,
CSF SAE SVM 95.9 75.8 51 43 56 52 202

Cheng and
Liu

(2017) [25]
MRI, PET 3D CNN+ 2D

CNN Softmax 89.64 87.10 92.00 199 229 428

Vu et al.
(2017) [26] MRI, PET SAE+ 3d CNN Softmax 91.14 145 172 317

Liu et al.
(2014) [27] MRI, PET SAE+ NN Softmax 87.76 88.57 87.22 76.92 74.29 78.13 65 67 102 77 311

Choi and Jin
(2018) [28] MRI, PET 3D CNN Softmax 96 93.5 97.8 84.2 81.0 87.0 139 79 92 182 494

Lu et al.
(2018) [29] PET DNN + NN Softmax 84.6 80.2 91.8 82.93 79.69 83.84 238 217 409 360 1224
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Quite a lot of works revealed that actigraphy is capable of recognizing apathy that
represents the majority of recurrent neuropsychiatric symptoms [34–36]. Moreover, Go-
erss et al. [37] calculated patients in the firm phase with sensors for seven days in two
nursing homes. Composed facts were utilized that estimate an AMS, which was certainly
associated with the total intensity. Furthermore, AMS was considerably connected with
precise abnormal behaviors and apathy mannerisms. The analyzed consequences ad-
vise that accelerometry is supportive to build individual predictions and to estimate the
reaction potential treatments. Furthermore, current studies illustrate the usefulness of
accelerometry, which differentiates dementia subtypes—Parkinson’s disease dementia and
dementia with Lewy body—recognizing important diversities in seven conventional gait
features [38]. Modification to gait parameters has been discovered as a risk factor for de-
mentia. Gillain et al. and Kirste et al. [39] calculated each day deeds in 23 patients and also
their unimpaired partners from side to side, and the data were acquired by ankle-mounted
tri-axial accelerometers. Mutually, clusters were distinguished with taxonomy accurateness
of 91%. Fascinatingly, attainment in the Mini-Mental Examination [40], where a concise test
is regularly used for review clinical progression, was considerably associated with motion
features, which proposes a possible utility to recognize the phase of the disease. Further-
more, current studies show promising effectiveness of accelerometry. Circadian rhythm
turbulence is a regular ruling in AD dementia and is estimated with accelerometry [41]. In
a recent work, 189 unimpaired member cerebrospinal fluid analysis examined circadian
rhythms using actigraphic data, which tolerate the survival of preclinical AD to be clear [42].
Independent of age or sex, improved intradaily variability was allied with preclinical AD.
In addition, Li et al. [43] illustrated 1097 cognitively unimpaired seniors who experienced a
broad cognitive study, as well as the estimation of daily motor movement. The frequency
of dementia was extremely connected through degraded motor FR, a good number of
devices that normalize patterns of day-to-day motor activity fluctuations (95% CI 1.15–1.49,
HR 1.31, p < 0.0001). Moreover, extra degraded regulation was connected with quicker
cognitive refuse, signifying that it predicts quick clinical progression. Fascinatingly, these
conclusions headed the diagnosis involves that perturbations of FR perceived by actigraphy
earlier than clinical onset. At the outline, AD appears to go together with the modification
with motor movement features and a sufficient approach to evaluate.

A number of earlier studies revealed how to obtain the benefit of accelerometers that
achieve an expenditure investigation [44] by utilizing those integrated smartphones [45].
Until now, accelerometry was inspected to sense the occurrence of AD, either in the preclin-
ical state or in clinically affected subjects, but not often to identify diverse clinical stages,
where there is capital significance to identify clinical progression. Using sensor-based
devices, various preceding works illustrate the organization of AD patients with three
functional levels [46,47], but CNN was not useful with the dementia staging idea until now.
El Maachi et al. [48] proposed a CNN-based method that identifies Parkinson’s disease
examining data of gait. Bringas et al. [49], civilizing the outcome of Nieto-Reyes et al. [46],
gave an initial advance to the problem using CNN. Adding to introduce preprocessing
structure for data, this paper utilizes a permanent architecture and its parameters sup-
porting exclusively on accuracy, attaining enhanced and extra objective results comparing
earlier methods applied.

1.1. Motivation

Given the current circumstances, there is often a disparity between human intuition
and standard measurements. To address this issue, we must embrace unconventional and
computationally intensive approaches, such as deep learning. Deep learning techniques
are increasingly utilized in disease prediction and visualization, providing insightful and
personalized treatment recommendations. This advancement not only enhances patients’
quality of life, but also assists physicians in making informed treatment decisions and
enables health economists to conduct thorough analyses. Relying solely on medical reports
can cause radiologists to overlook other disease conditions, as they typically consider only



Diagnostics 2023, 13, 2687 7 of 15

a limited number of causes and conditions. The objective at hand is to identify the gaps in
knowledge and potential opportunities associated with deep learning architecture.

1.2. Contribution

In our research, we focus on identifying individuals affected by Alzheimer’s disease
and aim to detect potential cases at an early stage. The datasets for Alzheimer’s disease
are obtained from ADNI and serve as the training data for our deep learning architecture,
specifically GoogLeNet. By leveraging this powerful architecture, we are able to effectively
differentiate affected individuals with a high level of efficiency and speed.

The flow of this paper is organized as follows. reviews previous works on the predic-
tion and analysis of Alzheimer’s disease. Section 2 describes our GoogLeNet architecture
of CNN for prediction of Alzheimer’s. Section 3 shows the experimental results between
proposed and existing methods. Section 4 discusses the results presents the conclusions.

2. Materials and Methods

Detection of Alzheimer’s disease at the early stage shows a vital role in averting and
supervising its progress. A proposed outline for the early detection of Alzheimer’s disease
is presented. In this section, proposed framework details, the dataset used, deployment of
the proposed solution in the local cloud, and the algorithmic flow of the proposed system
are explained.

Dataset

The data used for this paper were collected from the Alzheimer’s Neuroimaging
Initiative (ADNI) Dataset, which can be accessed at http://adni.loni.usc.edu (accessed on
20 March 2023). The ADNI repository was established in 2003 through a public–private
partnership. The primary objective of ADNI was to investigate the combination of sequen-
tial MRI, CT, and PET scans and neurophysical evaluations to study the progression of
mild cognitive impairment and early-stage Alzheimer’s disease. Training data were also
collected in ADNI for 2D. Images in the neuroimaging initiative link will be in DICOM
format. It contains image portrayals like Axia, Sagittal, and Coronal. A total of 300 patient
datasets were collected in ADNI, and they are divided into 4 classes, i.e., LMCI, AD, NC,
and EMCI. LMCI comprises 3460 images, EMCI comprises 5817 images, NC comprises
6775, and finally images from the AD class comprise 5764 images.

The size of the images is 256 × 256, and Table 2 portrays demographic data from
ADNI. The details steps involved in the proposed solution are given in the algorithm below,
taking into consideration image format conversion, the training model using GoogLeNet,
and cloud deployment including the classifier.

Table 2. Three-hundred subjects’ demographic data.

Alzheimer Stages AD LMCI NC EMCI

Subject number 75 75 75 75

Male/female 21/54 43/32 32/43 51/24

Age (mean ± STD) 7 5.95 ± 0.91 77.44 ± 1.33801 75.68 ± 0.469617 76.08 ± 0.89684

Algorithm 1: Proposed Model

Step 1: Input the Dicom image from MRI scans
Step 2: Pre- Process the images and converting them to jpeg format and removing noice
Step 3: Reformat the images and resize them from 256 × 256 to 224 × 224
Step 4: Images are classified into EMCI, NC, LMCI and AD.
Step 5: GoogleNet Model method uses transfer learning technique for training 268 pre trained
images and classify input images as AD and Normal case
Step 6: A web based application is designed to assist docters to check AD from remote place using
local application and Microsoft Azure plaform

http://adni.loni.usc.edu
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The proposed work comprises four stages as show in Algorithm 1:
Stage 1—Data Procurement and Preprocessing Stage: Data images were collected

from Alzheimer’s disease neuroimaging initiative through the link: http://adni.loni.usc.
edu/ (accessed on 20 March 2023), and training data were also collected in ADNI for 2D.
Images in the neuroimaging initiative link will be in DICOM format. It contains image
portrayals like Axia, Sagittal, and Coronal. A total of 300 patient datasets were collected in
ADNI, and they are divided into 4 classes i.e., LMCI, AD, NC and EMCI. LMCI comprises
3460 images, EMCI comprises 5817 images, NC comprises 6775, and finally images in the
AD class comprise 5764 images. The size of the images is 256 × 256, and Table 2 portrays
demographic data from ADNI.

Figure 1 shows 2D imaging slice of MRI and also formation of 3D using 2D image
slices, and Figure 2 demonstrates slices hauled out from an MRI scan. For the proposed
GoogLeNet CNN architecture, the input size is 224 × 224. The image size should be resized
from 256 × 256 to 224 × 224.
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This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

We resampled the data by deleting a few examples that are over-denoted classes,
and replication was performed for under-denoted classes. All AD classes after resam-
pling 6000 MRI images were retained. The data were then preprocessed by resizing and
converting to a suitable format.

Stage 2—Image classification: In this stage, image are classified into EMCI, NC,
LMCI, and AD. The proposed method uses the transfer learning technique, i.e., with the
GoogLeNet model from pre-trained images. Using the ADNI pre-trained images, the
proposed model is generated. In turn, the created trained model will be used for image
classification.

Stage 3—A web-based application was designed to assist doctors to check AD from
a remote place using a local based application and the Microsoft Azure platform. The
developed solution is deployed in Microsoft Azure cloud as System as Service for accessing
the web application remotely. The complete proposed solution is shown in Figure 3. A total
of 27 layers are constituted in GoogLeNet architecture, including the pooling layer, and a
total of nine modules are part of the inception. Sweeping window is exploited across the

http://adni.loni.usc.edu/
http://adni.loni.usc.edu/
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conv and pooling layer. Depth indicates the number of layers in the architecture. One of the
procedures in deep learning is Transfer Learning, which is trained in this neural network.
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3. Results and Discussion

In our research, we employ the principle of transfer learning for classifying medical
images. Transfer learning involves training a neural network model on a similar problem
before addressing the specific issue at hand. This approach offers several advantages:

(i) It leverages the pre-trained weights obtained from training millions of images in a
database.

(ii) It reduces the time required for training a learning model.
(iii) It helps minimize errors in generalization.

Consequently, we utilize the pre-trained GoogLeNet model for multi-class classifica-
tion of MRI images. GoogLeNet is a convolutional neural network with an architecture
consisting of 27 layers. To make it suitable for our medical image classification task, we
perform a basic fine-tuning on the final layer of GoogLeNet. The fine-tuned GoogLeNet has
20,024,184 trainable parameters and zero non-trainable parameters. The specific tuning ad-
justments made to GoogLeNet are detailed in Table 3. The advantages of Transfer Learning
are that its training time is much less and it reduces errors in generalization. Consequently,
we utilized the pre-trained GoogLeNet model for multi-class classification. The tuning
applied to the GoogLeNet model is depicted in Table 3. The multi-class image classification
comparison with the proposed GoogLeNet model is shown in Figure 4. Figure 5 shows the
training and validation accuracy of the proposed model using MatLab.
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Table 3. Tuning performed on GoogLeNet Model.

Model: “Sequential”

Layer (Type) Output Shape Param

GoogleNet (functional) (1,64,24,24) 20,024,184
Flatten (Flatten) (1,4608) 0
dense (Dense) (1,192,12,12) 4,710,612
dense_1 (Dense) (1,480,6,6) 524,800
dense_2 (Dense) (1,832,3,3) 131,528
dense_3 (Dense) (1,1024,1,1) 32,996
dense_4 (Dense) (1,10) 8
Trainable params: 25,424,128
Non-trainable params: 0Diagnostics 2023, 13, x FOR PEER REVIEW  10  of  15 
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The local server is created in order to provide Software as a Service (SaaS), and the
intention of designing the front end is to provide easy access to the system developed.
Thematlab is used to develop, train, and validate the GoogLeNet model for the ADNI image
base. The image will be inputted using the front end from MRI/CT, and the processing
will be performed at the back end. In the back end, the image will be pro processed, and
classification will be performed. In order to achieve this, we used html, css, js, php, and
xampp. The snapshot of the local cloud-based solution is shown in Figure 6.

Table 4 and Figure 5 demonstrate the results of our study on multi-class medical image
classification of AD stages. The fine-tuned GoogLeNet model we proposed achieved the
highest accuracy of 98%. In comparison, Sahumbaiev et al. [10] achieved an accuracy of
88%, while Juan Ruiz et al. [41] had the lowest accuracy of 66.7%. Our proposed solution
proves to be more efficient in this context. Additionally, we achieved promising accuracy
for both binary and multi-class classification tasks.
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Table 4. Comparison of existing and proposed techniques of GoogLeNet model.

Approach Dataset Modality Classification Type Accuracy

Hosseini-Asl et al. [50]

210 subjects (70 AD,
70CAD-dementia

NC, 70 MCI)
ADNI

MRI/CT Binary/Multi

AD vs. EMC vs. HC: 89.1%
AD + MCI/NC: 90.3%

AD/NC: 97.6%
MCI/NC: 90.8%

Sahumbaiev et al. [51]
530 subjects (185 AD, 185,

MCI, 160 HC)
ADNI

MRI/CT Multi AD/MCI/NC: 88.31%

Korolev et al. [52]
50 AD, 43 LMCI, 77 EMCI,

61 NC-
ADNI

MRI/CT Binary

AD vs. NC: 80%
AD vs. EMCI: 63%
AD vs. LMCI: 59%
LMCI vs. NC: 61%

LMCI vs. EMCI: 52%
EMCI vs. NC: 56%

Juan Ruiz et al. [53] 600 brain MRI images-
ADNI MRI/CT Multi AD, EMCI, LMCI, NC:

66.67%

Proposed fine-tuned
GoogleNet model

300 subjects (75 AD, 75
EMCI, 75 LMCI,

75 NC)
MRI/CT Multi AD/EMCI/LMCI/NC:

98%

4. Conclusions

This work introduces a framework that utilizes deep learning convolutional neural
network (CNN) architectures, specifically employing transfer learning. The proposed
method leverages the concept of transfer learning to benefit from pre-trained models.
The GoogLeNet model is fine-tuned and employed for classification tasks, achieving
an impressive accuracy of 98% in multi-stage Alzheimer’s disease (AD) classification.
Additionally, the work proposes an Alzheimer’s checking web application based on the
final architectures developed. The extension of the proposed solution is performed by
developing a cloud-based solution for assisting doctors, and also the solution can be
accessed remotely using the developed interface without any difficulty.
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