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Abstract: Unsupervised anomalous sound detection, especially self-supervised methods, plays a
crucial role in differentiating unknown abnormal sounds of machines from normal sounds. Self-
supervised learning can be divided into two main categories: Generative and Contrastive methods.
While Generative methods mainly focus on reconstructing data, Contrastive learning methods refine
data representations by leveraging the contrast between each sample and its augmented version.
However, existing Contrastive learning methods for anomalous sound detection often have two main
problems. The first one is that they mostly rely on simple augmentation techniques, such as time or
frequency masking, which may introduce biases due to the limited diversity of real-world sounds
and noises encountered in practical scenarios (e.g., factory noises combined with machine sounds).
The second issue is dimension collapsing, which leads to learning a feature space with limited
representation. To address the first shortcoming, we suggest a diffusion-based data augmentation
method that employs ChatGPT and AudioLDM. Also, to address the second concern, we put forward
a two-stage self-supervised model. In the first stage, we introduce a novel approach that combines
Contrastive learning and masked autoencoders to pre-train on the MIMII and ToyADMOS2 datasets.
This combination allows our model to capture both global and local features, leading to a more
comprehensive representation of the data. In the second stage, we refine the audio representations for
each machine ID by employing supervised Contrastive learning to fine-tune the pre-trained model.
This process enhances the relationship between audio features originating from the same machine ID.
Experiments show that our method outperforms most of the state-of-the-art self-supervised learning
methods. Our suggested model achieves an average AUC and pAUC of 94.39% and 87.93% on the
DCASE 2020 Challenge Task2 dataset, respectively.

Keywords: anomalous sound detection; masked autoencoders; Contrastive learning; Variance—
Covariance Regularization; diffusion-based data augmentation

1. Introduction

Maintaining and supervising the performance of industrial machines is an important
task in every industry. By effectively analyzing machine behavior, sudden faults can
be anticipated and prevented. These analyses can be performed either by experts or by
automatic processes. Automatic anomaly sound detection has received significant attention
in the research community and numerous methods have been proposed, including one-
class classifiers [1], autoencoders [2,3], Contrastive learning and self-supervised learning
(SSL) [4–6]. These methods are typically trained on datasets that primarily consist of normal
sounds [2–12]. Thus, a major challenge in designing an anomaly detector lies in finding
a more informative data representation that can effectively differentiate between normal
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and anomalous sounds, Furthermore, while real-world environments are characterized by
domain shifting, diverse noise sources, and various anomalies, there are not any robust
data sets for real-world scenarios.

In response to the optimal data representation problem, deep learning-based ap-
proaches leverage audio augmentation techniques to enhance the model’s representation
ability [13,14]. However, most existing audio augmentation methods, such as SpecAug-
ment [15], Time Stretching and Pitch Shifting [16], Noise Injection [17], Reverberation [18],
and Time and Frequency Masking [19], have shown limited effectiveness, particularly in
modifying high-level semantic attributes in augmented data, such as introducing new
environmental sounds or domain-specific characteristic, because these methods often lack
diversity and generality along with vital semantic dimensions. In this regard, one popular
alternative approach is the use of Generative models, particularly Generative Adversarial
Networks (GANs) [20], which have been widely employed for generating synthesized data
in computer vision tasks [21,22]. Synthetic data generated from GANs has demonstrated
benefits in representation learning and training classifiers in various applications [20,23–27].
Another option in the case of having limited real data is utilizing diffusion models [28].
Although diffusion-based data augmentations have primarily focused on image modality,
there is an opportunity to extend their application to audio data. Motivated by this research
gap, in this study, we propose a novel diffusion-based data augmentation method for
enhancing the generality and diversity of audio datasets in the context of anomaly sound
detection. This method leverages textual prompts from ChatGPT [29], which is a Large
Language Model (LLM) developed by OpenAI, as input to AudioLDM [30], which is a
text-to-audio diffusion model and produces high-quality audio samples.

The major challenge in anomaly sound detection is choosing a proper method to
improve the performance of this task; earlier works in this field focused on the supervised
detection of anomalies [1]. However, a significant problem with supervised anomaly
detection is the assumption that all possible anomalous sounds are accessible during the
training phase. which may not be feasible in many practical applications. In response
to this, unsupervised approaches have been widely explored and in the DCASE 2020
task 2 challenge [2–31] they have showcased promising results [9,32]. Researchers used
the Hidden Markov Model (HMM) [33], Gaussian Mixture Model (GMM) [34], Non-
negative Matrix Factorization (NMF) [35], and deep learning-based approaches, such as
autoencoders and Generative models [36], to model and analyze normal sounds. By training
these models to compress and reconstruct normal sounds, the underlying properties of
normal sounds were learned effectively in the latent space, and when an abnormal sample
was introduced into these models, the resulting large reconstruction errors indicated
its deviation from the learned normal sound distribution. Consequently, unsupervised
deep learning-based methods have demonstrated their effectiveness in improving the
performance of sound anomaly detection by obtaining better latent space features of
normal sounds. Among these methods, self-supervised techniques have emerged as one of
the most efficient approaches [37,38].

In recent years, self-supervised learning has gained significant attention for its effec-
tiveness in representation learning. This learning method can be divided into Contrastive
and Generative learning. Contrastive learning’s objective is to unveil distinctive audio
features by comparing positive and negative samples in a high-dimensional space, and
Generative self-supervised learning focuses on learning audio representation through the
reconstruction of audio signals. Several kinds of research have been proposed to lever-
age the SSL method of learning for audio representation learning and anomalous sound
detection. Examples include AADCL [2], which uses Contrastive learning to learn au-
dio representation; STgram-MFN [39], a spectral-temporal fusion-based self-supervised
method; Glow Aff [8] a flow-based self-supervised method; GMADE [3], which uses an
ensemble of Group Masked Autoencoders for Density Estimation; CAV-MAE [40], a Con-
trastive Audio-Visual Masked Autoencoder; and CLP-SCF [37], a Contrastive learning
method with self-supervised classification-based fine-tuning.
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Contrastive learning trains the encoder to be invariant to semantics-preserving data
variations, while masked autoencoders (MAEs) [41] focus on learning spatial statistical cor-
relations. Furthermore, MAE methods treat each sample independently in the loss function,
whereas Contrastive methods explicitly consider the relationships between all samples in
a batch by adjusting embedding distances. Given these differences, we posit that these
two approaches are complementary [42], which leads to extracting different discriminative
features from a given input. On the other hand, the generalization capability of Contrastive
learning is influenced by four crucial factors [13]. The first one is positive sample alignment,
which indicates to how well similar audio samples are grouped together in the learned
representation space. The second factor is class center divergence, which measures the
separation between different classes of audio samples to facilitate better discrimination. The
third factor is related to feature collapse prevention, which is essential for learning informa-
tive vectors without redundancies. These first three factors mainly pertain to the properties
of the learned audio representations. The fourth factor that impacts the generalization
capability is the quality of augmented data [13] used during training. Data augmenta-
tion techniques play a vital role in creating diverse and representative augmented data,
enhancing the model’s ability to generalize to unseen samples. To meet the requirement
for factor one, we suggest a combined method, aiming to leverage the strengths of both
Contrastive learning and masked autoencoders to enhance the model’s representational
power. To address factor number three, we introduce Variance—Covariance Regulariza-
tion [43], which is a regularization term added to the Contrastive and MAE loss functions.
Additionally, in order to improve factor number four, we incorporate a diffusion-based
data augmentation technique.

Consequently, our contributions to this research are as follows:

(1) In response to the issue of not having a robust dataset for various real-world noises,
we propose a novel diffusion-based data augmentation method. Our approach incor-
porates textual prompts from ChatGPT as input to AudioLDM. The use of diffusion-
based data augmentation allows us to add noise or artifacts with limited knowledge
of any target domain solely through text prompts.

(2) To improve the generalization of Contrastive learning, specifically to prevent feature
collapse and learn informative representation, we propose a novel learning framework
that combines Contrastive learning and masked autoencoders (MAEs) with Variance—
Covariance Regularization. Contrastive learning and MAEs complement each other,
extracting different discriminative features from the input data. By simultaneously
leveraging these two approaches, we enhance the model’s representational power
and better discriminate between normal and anomalous sounds.

The rest of the content of this paper is structured as follows: In Section 2, we introduce
our proposed learning framework and its components. Further, the validation of our
method through experimental results on Dcase 2020 challenge datasets [31,44] is presented
in Section 3, and Finally, the conclusion and the scope for further research are outlined in
Section 4.

2. Materials and Methods

In this section, the proposed Regularized Contrastive Masked AutoEncoder (RC_MAE)
model (as shown in Figure 1) for machinery anomaly detection using diffusion-based data
augmentation is presented in detail. The required material is discussed, and the proposed
method is fully explained.
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2.1. Data Augmentation Method

Diffusion models have proven to be highly effective in producing realistic output
based on text queries (prompts) [45]. In our study, we employed AudioLDM, which is built
upon a latent diffusion architecture to generate synthetic audio. We leveraged ChatGPT
using prior knowledge about the target domain for generating prompts. Each prompt can
consist of multiple words; for instance, “add sharp and metallic screeching sound created
by metal-cutting saws”. During the model pretraining phase, both the original samples
and their augmented versions, using a randomly selected prompt from ChatGPT prompts,
were fed into the model for pre-training purposes. The workflow of the suggested model is
as follows:

To generate audio, instead of creating it from scratch, we integrated real audio into the
generation process of the diffusion model, which is a reverse process with S steps. Firstly,
we insert a real audio xre f

0 with noise ε ∼ N(0, 1) at timestep bSt0c, where t0 ∈ [0, 1] is a
hyperparameter controlling the insertion position of the audio. Then, the process of reverse
diffusion is applied by utilizing the spliced audio at timestep bSt0c, before we proceed
iteratively to apply Equation (1) until a sample is generated at timestep 0.

xbSt0 c
=

√
α̃bSt0 c

xre f
0 +

√
1− α̃bSt0 c

ε (1)

This conditioned generation process is guided by a prompt that includes the embed-
ding

→
wi for the prompt. We demonstrate this type of augmentation surpasses traditional

augmentation methods without diffusion and helps the improvement in few-shot audio
classification tasks. In this context, four key challenges associated with Generative augmen-
tation were identified [46,47], which are as follows: prompt ambiguity—certain prompts
possess multiple meanings, leading to the generation of incorrect samples; diversity—
ensuring the generation of audio samples with sufficient variation poses another challenge;
domain shifting—augmentation methods must demonstrate flexibility in adapting to new
distributions; and finally, fidelity—Generative methods must produce high-quality samples
that closely resemble real audio. In this study, we address these challenges by employing
clear and diverse prompts, generating high-quality samples.

2.2. Masked Autoencoder

The masked autoencoder (MAE) [41] is a straightforward yet powerful self-supervised
technique that can be applied to audio data [40]. In this approach, input data and their
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augmentation are represented as a = [a1, a2, . . . , a512] and aug = [aug1, aug2, . . . , aug512]
tokens. A portion of the input tokens are then masked, and only the unmasked tokens
are fed into a Transformer-based encoder–decoder model. The primary objective of the
MAE is to reconstruct the masked tokens while minimizing the Mean Square Error (MSE)
as defined as Loss of MAE in Equation (2),

LMAE =
1
n∑n

i=1 (

(
ai

mask − fθ

(
ai

mask
))2

# o f masked audio patches
) (2)

where n represents the mini-batch size, and ai
mask, fθ

(
ai

mask
)

refers to the original and
predicted masked patches, respectively. The loss calculation is performed only on the
masked portion of the input. Through minimizing this loss, the model learns a meaningful
representation of the input audio data. The MAE approach offers several advantages [48].
Firstly, it simplifies the training pipeline by using the original input as the prediction target.
Secondly, by only inputting the unmasked tokens to the encoder and employing a high
masking ratio, MAEs significantly reduce computational overhead. Lastly, MAEs have
demonstrated strong performance in audio representation learning [48].

2.3. Contrastive Learning

Contrastive learning helps the model extract relevant features by analyzing the sim-
ilarities and differences between data points. It uses the principle that similar instances
should be closer in the learned space, and dissimilar ones should be farther apart. By
contrasting positive and negative examples, the model learns to differentiate between
classes or categories to discover patterns and structure in the data, improving the model’s
performance. In this paper, we used the output of the audio and augmented audio, ca

i and
caug

i , for Contrastive learning; the contrastive loss Lc can be seen in Equation (3),

Lc = −
1
N ∑N

i=1 log

 exp( simi,ia
τ )

∑k 6=i exp
(

simi,k
τ

)
+ exp( simi,ia

τ )

 (3)

where simi,ia = ‖ca
i ‖

T‖caug
i ‖ and τ is the temperature.

2.4. Variance—Covariance Reqularization

Figure 1 depicts the whole proposed framework in this paper. As can be seen in this
figure, Variance—Covariance Regularization is applied to both branches of the architecture
separately, thereby preserving the information content of each embedding at a certain level
and preventing informational collapse [43] independently for the two branches. The Vari-
ance preservation term ensures that the embedding vectors do not collapse toward zero by
explicitly preventing shrinkage. It employs a hinge loss to maintain the standard deviation
of each embedding dimension above a specified threshold within a batch. Equation (4)
enforces differentiation between the embedding vectors of samples within the batch,

v(Z) =
1
d∑d

j=1 max
(

0, 1−
√

Var
(
zj
)
+ ε

)
(4)

where ε is a small scalar to prevent numerical instabilities. This criterion ensures that
the Variance within the current batch equals one along each dimension, thus avoiding a
collapse where all inputs are mapped onto the same vector.

The Covariance criterion avoids informational collapse by tackling redundancy among
the embedding variables [49]. It includes a term that minimizes the Covariances between
every pair of embedding variables within a batch toward zero. Equation (5) promotes
decorrelation among the variables within each embedding and avoids situations where the
variables vary together or are highly correlated, thus preventing informational collapse. This
regularization does not impose the constraint of weight sharing between the two branches.
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Additionally, integrating Variance preservation into other self-supervised joint-embedding
methods enhances training stability and improves downstream task performance [43].

C(Z) =
1

n− 1∑n
i=1 (zi − z)(zi − z)T , where z =

1
n∑n

i=1 zi (5)

c(Z) =
1
d∑i 6=j[C(Z)]2i,j (6)

The Covariance regularization term in Equation (6) can be defined as the summation
of squared off-diagonal coefficients in the Covariance matrix C(Z) and scaled by a factor
of 1/d where d is the dimension of vector. This regularization term helps to mitigate
excessive correlation among dimensions. The purpose of this term is to enforce the off-
diagonal coefficients of the Covariance matrix C(Z) to approach zero. Doing so aims to
reduce the correlation between different dimensions of the embeddings and prevent them
from encoding redundant information. Equation (7) is the average of the Variance and
Covariance terms as an overall VCR loss function.

LVCR =
1
2
(v(Z) + c(Z)) (7)

2.5. Proposed Model

In the suggested Regularized Contrastive Masked AutoEncoder (RC-MAE) model,
the loss function is computed by combining the contrastive loss (L con) multiplied by the
weight (λ con), the Variance—Covariance loss (L VCR ) multiplied by the weight (λ VCR),
and the reconstruction loss (L MAE) multiplied by the weight (λ MAE). Hence, the overall
loss, denoted as LRC−MAE, can be seen in Equation (8),

LRC−MAE = λConLCon + λVCRLVCR + λMAELMAE (8)

where λCon, λVCR, and λMAE are the hyperparameters of contrastive loss, Variance—
Covariance loss, and reconstruction loss. In the proposed method, due to the scale of
the gradient of (L con) being larger than (L MAE), we empirically find that performance is
robust when we set the mentioned hyperparameters to 0.3, 0.3, and 0.4, respectively.

2.5.1. Implementation Detail

Firstly, in the context of audio augmentation, AudioLDM [30] was employed, which
is a diffusion-based text-to-audio model. This model takes real audio as the initial input
and a text prompt as a condition to generate augmented audio. The process is illustrated
in Figure 2, where different text prompts are employed to generate different variations of
augmented audio. To make these textual prompts, we utilized ChatGPT [29], as outlined in
Table 1. The combination of AudioLDM and ChatGPT enables the generation of diverse
and customized augmented audio samples for enhanced audio data augmentation. In this
research, we empirically introduce a set of hyperparameters for text-to-audio diffusion
models that control the diversity of the generated audio. The specific values for these
hyperparameters can be found in Table 2.
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Table 1. Samples of retrieved prompts from ChatGPT.

ChatGPT Prompts: Different Factory Noises

“add sharp and metallic screeching sound created by metal-cutting saws in a fabrication
workshop as they cut through various metal materials”

“add rhythmic and pulsating buzzing sound produced by printing presses in a publishing house
as they rapidly print and collate pages of books and magazines”

“add continuous and powerful rumbling noise accompanied by the grinding and crushing of
rocks in a mining quarry as large crushers pulverize rocks into smaller fragments”

“add continuous and rhythmic clicking noise produced by injection molding machines in a plastic
manufacturing facility as they shape molten plastic into various products”

“add rhythmic and repetitive whirring noise accompanied by the sound of cutting tools in a
woodworking shop as they shape and carve wood materials”

“add continuous and powerful whirring noise accompanied by the sound of pneumatic tools in
an automobile assembly line as vehicle parts are fastened”

Table 2. AudioLDM hyperparameters.

Hyperparameter Name Value

The sampling step for DDIM (DDIM_STEPS) Random (10, 50)

The duration of the samples (DURATION) 10 s

Random seed (SEED) Random for each sample

Text prompt for audio generation (TEXT) add (noises) exist in (factory)

Guidance scale (GUIDANCE_SCALE) 2.5

With regard to the proposed model in this paper, when working with a pair of original
audio and diffusion-based augmented audio, they were initially pre-processed to a log-
scaled Mel spectrogram with a sampling frequency of 16,000 Hz, window size of 1024,
hop size of 512, and Mel-spaced frequency bins 128 in the range 50–8000 Hz. Then,
they were tokenized as a = [a1, a2, . . . , a512] and aug = [aug1, aug2, . . . , aug512]. The next
step involved masking a specific portion (50–75%) of the original and augmented audio
data, denoted as a and aug, respectively. In the subsequent step, we exclusively inputted
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the unmasked tokens, represented as aunmask, into an audio encoder, resulting in the
output a′unmask. The encoder and decoders are based on ViT [14], a model for image
classification that employs a Transformer-like architecture over patches of the image,
Ref [50] with a depth of 12 layers and 6 heads. The proposed method comprises two
branches. In the first and second branches, the outputs of the encoder fθ are mapped onto
the embeddings R512-dimensional space, through linear projection layers za = proj( fθ(a))
and zaug = proj( fθ(aug)), then a Variance—Covariance regularization calculated separately
on each za and zaug and NCE contrastive loss is also computed based on both za and zaug. In
the next step, the predicted a′unmask unmasked tokens are padded with masked tokens, while
preserving their original positions. This creates a transformed representation a′, which is
then fed to the decoder to generate the reconstructed audio (denoted as â); finally MAE
reconstruction loss is calculated for a and â. Therefore, the training objective is minimizing a
combinatorial loss (5) that comprises two different losses: (1) and (2), which are regularized
by (3). The optimization process helps the model to accurately reconstruct the input audio
by simultaneously making similar samples closer to each other and making dissimilar ones
farther from the similar ones. This approach ensures a diverse audio representation while
reducing correlations in the embedding space. In the pre-training phase, we empirically
used the Adam optimizer [18] with a learning rate of 0.0001 for model optimization. The
batch size and number of epochs were set to 128 and 400, respectively. The temperature
score τ in Equation (2) was empirically chosen as 0.05 based on [12]. Each model was
trained on 2 NVIDIA 3090Ti GPUs using distributed data-parallel training.

2.5.2. Fine-tuning Stage

During the pre-training phase, the proposed self-supervised model was trained on
audio data from various machines to learn audio representations; we did not utilize the
metadata associated with the audio files, such as label or machine type and ID, which can
provide valuable information about the machines’ states or properties.

To improve the learning of audio features from machines with different IDs, we
employed supervised Contrastive learning methods that leverage machine IDs as labels in
order to capture the relationship between audio signals and their corresponding machine
IDs. This approach improves the capability to identify sounds from different IDs and
strengthens the connection between sounds originating from the same ID. In this stage,
we randomly selected machine sound, ai, from a set of N input machine sounds to serve
as the anchor and create contrasts with the remaining (N − 1) machine sounds, and the
label for each sample was determined by the associated machine ID. In the next step we
derived individual sound embeddings, zj, using a pre-trained model. To effectively capture
the relationship among audio embeddings from the same ID and to differentiate audio
embeddings from different IDs, we sought to maximize the cosine similarity score for
embeddings from the same ID while minimizing the cosine similarity score for embeddings
from distinct IDs. The Supervised Contrastive Loss (SCL) [51], defined in Equation (9),
encapsulates this process,

LSCL = − 1
N ∑N

i=1
1
|P(i)| ∑

p∈P(i)
log

exp
(
zi·zp/τ

)
∑N

j 6=i exp
(
zi·zj/τ

) (9)

where the · symbol denotes the inner dor product, τ is the temperature parameter, Pi
denotes the samples that have the same machine ID, and |P(i)| is the cardinalty of Pi.
To further enhance the distinguishing ability of the learnt audio representation, we used
CrossEntorpy loss (CE), so the final combinatorial loss function is as Equation (10),

LSatge2 = λSCLLSCL + λCELCE (10)

where λSCL and λCE are the hyperparameters, which show the contribution of each
loss of supervised contrast loss (SCL) and CrossEntorpy loss (CE). The primary aim of
our proposed method is to detect anomalous sounds in the audio domain by accurately
predicting the type and ID of machine sounds. To accomplish this, we calculated an
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anomaly score, which is determined by taking the negative logarithm of the probability
of the current machine sound and its corresponding ID. This methodology relies on the
assumption that typical sounds are unlikely to be associated with an inappropriate ID.
During the inference stage, if the predicted ID deviates significantly from the actual ID, the
sound is classified as an anomaly.

3. Results
3.1. Dataset

During the initial pre-training phase, we used all audios in the DCASE 2020 Challenge
Task2 MIMII [31] and ToyADMOS [44] datasets which contain audio samples for detecting
malfunctioning industrial machinery; similar papers utilize these samples for assessing
performance [2,7,8,39,52,53]. To evaluate the effectiveness of our approach, we conducted
fine-tuning experiments using only the development training dataset. This dataset consists
of machine-generated sounds from various sources, including four machine types (Fan,
Pump, Slider, and Valve) derived from the MIMII dataset and two machine types (ToyCar
and ToyConveyor) obtained from the ToyADMOS dataset. Each machine type has seven
distinct variations, except for ToyConveyor, which has six variations. In total, we obtained
audio recordings from 41 unique machines, with an average duration of approximately 10 s.
For the fine-tuning phase, we combined the training data from the development dataset to
create a comprehensive training set, with the goal of effectively identifying and classifying
all machine IDs using our model. To assess the performance of our model, we utilized
the test data, which included both normal and anomaly sounds, from the DCASE 2020
Challenge Task2 development dataset.

3.2. Performance Evaluation

Regarding the evaluation metrics, we utilized those suggested in the DCASE challenge
(DCASE, 2020). These metrics include Area Under the ROC Curve (AUC) and partial AUC
(pAUC). The formulas for calculating AUC and pAUC are provided as Equations (11) and
(12), respectively,

AUC =
1

N−N+
∑N−

i=1 ∑N+

j=1 H
(

Aθ

(
x+j
)
− Aθ

(
x−i
))

(11)

pAUC =
1

bpN−c N+
∑bpN−c

i=1 ∑N+

j=1 H
(

Aθ

(
x+j
)
− Aθ

(
x−i
))

(12)

where H() returns 1 when x > 0 and 0 otherwisem and Aθ denotes the model output given
the parameters θ. x− and x+ are normal and anomalous samples. N− and N+ are the
number of normal and anomalous test samples, respectively. Based on this formula, the
anomaly score of the audio samples serves as the threshold for determining if a sample
is normal or anomalous, as opposed to relying on the decision results. The purpose of
utilizing pAUC, as explained in [2], is to enhance the True Positive Rate (TPR) while
maintaining a low False Positive Rate (FPR).

3.3. Performance Comparison

In this experimental study, we evaluate our proposed model using two distinct data
augmentation strategies. The first strategy, known as the “Baseline”, implements a stan-
dard data augmentation approach involving random Time and Frequency Masking with
parameters that depend on the dataset. The second strategy utilizes the audio diffusion
method, where the original audio serves as the real guidance, and different prompts are
employed to generate synthetic audio. As illustrated in Table 3, our findings shows that
the proposed data augmentation strategy outperforms the first one in terms of the average
pAUC metric. This highlights its superior effectiveness, achieved through the utilization of
diverse prompts that generate high-quality samples across various domains.
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Table 3. Comparing RC-MAE with and without Diffusion-Based Data Augmentation (DDA).

Methods RC-MAE without DDA (pAUC) RC-MAE with DDA (pAUC)

Valve 98.01 98.37

Fan 87.44 88.10

Pump 83.89 83.25

Slider 97.16 97.84

ToyCar 90.10 91.35

ToyConveyor 65.38 68.70

Average 86.99 87.93

A comparative analysis of our proposed RC_MAE method is presented in Table 4,
where it is evaluated against other state-of-the-art techniques, namely GMADE [7], Mo-
bileNetV2 [53], AADCL [2], STgram-MFN [39], Glow-Aff [8], and autoencoders. The results
demonstrate that our proposed RC_MAE method improves the average performance of
anomaly sound detection. Specifically, compared to the best performance achieved by other
methods in the literature, our method demonstrates a 2.03% improvement in average AUC
and 1.59% improvement in average pAUC. These findings highlight the effectiveness of our
method in enhancing abnormal sound detection performance. These results confirm that,
in general, the combination of Contrastive and Generative self-supervised learning proves
to be a powerful tool for anomaly detection. Another contributing factor to achieving this
improvement is the consideration of various generated real-world noises in audio, allowing
the model to better distinguish between noises and anomalies.

Table 4. Comparing RC-MAE with SOTA methods.

Methods
Valve Fan Pump Slider ToyCar ToyConveyor Average

AUC pAUC AUC pAUC AUC pAUC AUC pAUC AUC pAUC AUC pAUC AUC pAUC

AE Baseline
[52] 66.28 50.98 65.83 52.45 72.89 59.99 84.76 66.53 78.77 67.58 72.53 67.58 73.51 65.85

GMADE [7] 99.07 96.20 83.06 79.55 87.87 82.38 97.62 89.70 95.57 91.54 81.46 66.62 90.77 84.33

MobileNetV2
[53] 88.65 87.98 80.19 74.40 82.53 76.50 95.27 85.22 87.66 85.92 69.71 56.43 84.34 77.74

Glow_AFF [8] 91.40 75.00 74.90 65.30 83.40 73.80 94.60 82.80 92.20 84.10 71.50 59.00 85.20 73.90

STgram-MFN
[39] 99.64 98.44 94.04 88.97 91.94 81.75 99.55 97.61 94.44 87.68 74.57 63.30 92.36 86.34

AADCL [2] 68.62 55.03 85.27 68.93 86.75 70.85 77.74 61.62 88.79 75.95 71.26 57.40 79.74 64.96

Our Method 99.52 98.37 95.12 88.10 92.82 83.25 99.10 97.84 95.02 91.35 84.80 68.70 94.39 87.93

To illustrate the effect of the learned audio feature representation, Figures 3 and 4
display the t-distributed stochastic neighbour embedding (t-SNE) visualization of the latent
features from two distinct phases: pre-training and fine-tuning. Figure 3 illustrates how
the pre-training stage can proficiently distinguish various machine sounds in the absence
of supervision, solely aided by diffusion augmentation. The Figure 4 clearly demonstrates
that incorporating additional metadata during the fine-tuning process enhances the ability
to distinguish between different audio features of different machines. Furthermore, our
proposed method effectively minimizes the overlap between the latent features associated
with normal and anomalous machine IDs, as depicted in Figure 4. This figure confirmed that
anomalies and normal sounds were mapped to distinct clusters and were distinguishable in
the latent space. This result further demonstrates the effectiveness of the proposed method.
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4. Conclusions and Future Works

Predictive detection of machine anomalies is an important concern in many industries,
which can be performed by the analysis of machine sounds. In this paper, we introduce
a novel two-stage self-supervised anomalous sound detection method named the Regu-
larized Contrastive Masked Autoencoder (RC-MAE) model. In the first stage, we employ
a diffusion-based audio augmentation method called AudioLDM for pre-training. By
applying our proposed method to both the augmented and real sounds, we aim to achieve
a higher-quality audio representation from unlabeled data. To further enhance the model’s
performance, we then fine-tune the pre-trained model using supervised Contrastive learn-
ing. Our approach is pre-trained and fine-tuned using the MIMII and ToyADMOS2 datasets.
Specifically, we assessed the model’s performance on the MIMII test dataset. The obtained
results demonstrate that our model exhibits impressive average Area Under Curve (AUC)
and partial Area Under Curve (pAUC) values of 94.39% and 87.93%, respectively. We
perform qualitative analyses on different visualizations of the learned representations
generated by the RC-MAE encoder. Our observations revealed that fine-tuning the model
with metadata, such as machine type and machine ID, enhances the ability to distinguish
between normal and anomalous sounds. The t-SNE visualization of the learned represen-
tations encodes meaningful information associated with the underlying structures in the
pre-trained stage. In this study, the quantitative findings have demonstrated the efficacy of
RC-MAE, while the qualitative observations have indicated valuable insights within the
acquired representations. To the best of our knowledge, no studies have been conducted
with a mixture of Contrastive and Generative self-supervised learning methods; also, there
has been no prior research undertaken on diffusion-based data augmentation in the area of
anomalous sound detection.

Our research on this topic is ongoing. Our future work will aim to improve the model’s
ability to generalize different machine types and explore this ability with other datasets
and metadata. Furthermore, other types of self-supervised models and their incorporation,
and other data augmentation methods can be studied.
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