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Abstract 

A comparison is made between the three principal methods for analysis of neutron and X-ray 

diffraction data from noble gas fluids by direct Fourier transform.  All three methods (standard Fourier 

transform, Lorch modification and Soper-Barney modification) are used to analyse four different sets 

of diffraction data from noble gas fluids.  The results are compared to the findings of a full-scale real 

space structure determination, namely Empirical Potential Structure Refinement.  Conclusions are 

drawn on the relative merits of the three Fourier transform methods, what information can be reliably 

obtained using each method, and which method is most suitable for analysis of different kinds of 

diffraction data.  The mathematical validity of the Lorch method is critically analysed. 

 

Introduction 

I. Analysis of fluid diffraction data via Fourier transform: The 𝑄𝑚𝑎𝑥 cutoff problem 

On a fundamental level, the interpretation of diffraction data from fluids, network glasses and 

amorphous solids is simple. The coherent scattering intensity 𝐼𝑐𝑜ℎ(𝑄)  (of X-rays or neutrons) is 

predicted by the Debye scattering equation, given below for a fluid composed of spherically symmetric 

identical particles: 

𝐼𝑐𝑜ℎ(𝑄) = ∑ [∑
𝑓(𝑄)2 sin(𝑄𝑟𝑚𝑛)

𝑄𝑟𝑚𝑛

𝑁

𝑛=1

]

𝑁

𝑚=1

 

(1) 

Here 𝑓(𝑄)  is the atomic form factor (X-rays) or scattering length (neutrons) (tabulated data are 

available for this [1]) and 𝑁 is the number of particles in the beam.  The parameter 𝑟𝑚𝑛 refers to the 

distance between particles 𝑚  and 𝑛 .  The structure factor 𝑆(𝑄)  is obtained from the coherent 

scattering intensity 𝐼𝑐𝑜ℎ(𝑄) according to equation 2 [2][3]: 
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𝑆(𝑄) =
𝐼𝑐𝑜ℎ(𝑄)

𝑁𝑓(𝑄)2
 

(2) 

If the coherent scattering intensity 𝐼𝑐𝑜ℎ(𝑄) is defined according to the Debye scattering equation, 

then the definition of 𝑆(𝑄) according to equation 1 will result in 𝑙𝑖𝑚
𝑄→∞

𝑆(𝑄) = 1. 

In reality 𝐼𝑐𝑜ℎ(𝑄), as defined by the Debye scattering equation, cannot be obtained.  Instead the 

experimentally measured scattering data undergoes a series of corrections to calculate the raw 

coherent scattering intensity from the sample 𝐼𝑟𝑎𝑤(𝑄)  as reliably as possible.  The remaining 

normalization to obtain 𝑆(𝑄) is performed using equation 3 through division by 𝑁′𝑓(𝑄)2, where 𝑁′ 

is an arbitrary scaling parameter to ensure that ensuring that 𝑙𝑖𝑚
𝑄→∞

𝑆(𝑄) = 1.  The normalization via 

𝑁′  accounts for several effects including the fact that 𝐼𝑟𝑎𝑤(𝑄)  (unlike 𝐼𝑐𝑜ℎ(𝑄) ) depends on the 

incident beam intensity. 

𝑆(𝑄) =
𝐼𝑟𝑎𝑤(𝑄)

𝑁′𝑓(𝑄)2
 

(3) 

All further analysis utilizes this definition of 𝑆(𝑄).  

The radial distribution function 𝑔(𝑟)  enables parameters such as the co-ordination number (CN) 

describing sample properties in real space to be obtained.  The 𝑔(𝑟) function can be derived by a 

Fourier transform (FT) of the structure factor 𝑆(𝑄)  provided by the diffraction data.  For a fluid 

composed of spherically symmetric identical particles the FT relationship given below in equation 4 

[2][3] is exactly correct.  The parameter 𝑔0 is an arbitrary constant which is eliminated in any case 

when 𝑔(𝑟) is normalized (as outlined in the supplementary information). 

4𝜋𝑟2[𝑔(𝑟) − 𝑔0] =
2

𝜋
∫ 𝑄𝑟[𝑆(𝑄) − 1] sin(𝑄𝑟) 𝑑𝑄
∞

0

 

(4) 

By definition, 𝑔(𝑟) represents the probability of finding particles separated by a particular distance.  

Therefore 𝑔(𝑟) has certain mathematical properties which most arbitrary functions do not. Notably, 

only functions which can be derived from an ensemble of point positions in space are possible 𝑔(𝑟) 

functions.     

For fluids there are further physical constraints:  In the absence of long range order one must have 

𝑔(𝑟) = 1 at long range, furthermore 𝑔(𝑟) and its derivatives must be continuous.   From equation 4, 

these constraints also apply to 𝑆(𝑄).   

We can therefore identify four distinct constraints on any meaningful 𝑆(𝑄): 

1. The associated 𝑔(𝑟) must correspond to an ensemble of points in space. 

2. For atoms with finite size, 𝑔(𝑟)  must be positive everywhere and go to zero for 𝑟 

approximately equal to the atomic diameter. 

3. 𝑆(𝑄) must be continuous. 

4. Derivatives of 𝑆(𝑄) must be continuous.    



In fact, constraints 3 and 4 are consequences of constraint 1, but we list them separately because 

methods exist to resolve them.  Only a very small fraction of possible functions satisfy these necessary 

constraints, and there is no reason to suppose that 𝑆(𝑄) derived from real data via equation 3 will do 

so. 

One problem is that real diffraction data cover a range in 𝑄 only from a finite minimum value of 𝑄, 

𝑄𝑚𝑖𝑛, up to some finite value, 𝑄𝑚𝑎𝑥.  In this work we will focus primarily on solutions to the problems 

caused by 𝑄𝑚𝑎𝑥 < ∞.  We will however return to a discussion of the potential problems caused by 

𝑄𝑚𝑖𝑛 > 0 in the conclusions.  The 𝑄𝑚𝑎𝑥  problem is particularly severe for X-ray diffraction, where 

destructive interference between X-rays scattered from different parts of the same atom prevents 

scattering at large 𝑄. This phenomenon is represented mathematically using the parameter known as 

the atomic form factor 𝑓(𝑄). Even for neutron diffraction, the range in 𝑄  covered by the data is 

limited by its relation to the scattering angle (which cannot exceed 180°), and by the reduction in 

𝐼𝑐𝑜ℎ(𝑄) at large 𝑄 that takes place independently of the effect of changes to 𝑓(𝑄), via the 1/𝑄 factor 

in the Debye scattering equation (equation 1).  This phenomenon, in both X-ray and neutron 

diffraction experiments, is known as the 𝑄𝑚𝑎𝑥-cutoff problem.  This problem leads to all four types of 

unphysicalities described above. 

In the absence of data, Equation 4 can only be applied to experimental data if some theoretical 

assumption is made about 𝑆(𝑄 > 𝑄𝑚𝑎𝑥).  The simplest theory is to take[𝑆(𝑄 > 𝑄𝑚𝑎𝑥) − 1] = 0 

(equivalently, integrate only to 𝑄𝑚𝑎𝑥).  This “absence of evidence is evidence of absence” theory is so 

widely used that it is often not even recognised as an assumption.  It almost certainly violates all the 

physical constraints described above: most obviously it introduces a discontinuity in S(Q). 

Mathematically, this sharp cutoff at 𝑄𝑚𝑎𝑥 means that the FT generates a “𝑔(𝑟)” which is a convolution 

of the true 𝑔(𝑟) data with the FT of a step function 𝑓𝑆(𝑄): this latter is a sinc function which produces 

spurious oscillations at a frequency determined by 𝑄𝑚𝑎𝑥 .  These manifest as peaks in 𝑔(𝑟)  at 

unfeasibly small 𝑟, and in extreme cases, even negative 𝑔(𝑟) (both leading to 𝑔(𝑟) violating condition 

2 above). 

We can write the FT of data up to 𝑄𝑚𝑎𝑥 as: 

4𝜋𝑟2[𝑔(𝑟) − 𝑔0] =
2

𝜋
∫ 𝑄𝑟[𝑆(𝑄) − 1] sin(𝑄𝑟) 𝑓𝑆(𝑄)𝑑𝑄
∞

0

=
2

𝜋
∫ 𝑄𝑟[𝑆(𝑄) − 1] sin(𝑄𝑟) 𝑓𝑆(𝑄)𝑑𝑄
𝑄𝑚𝑎𝑥

0

 

(5) 

Where 𝑓𝑆(𝑄) is the step function (See figure 1 later), which means that beyond 𝑄𝑚𝑎𝑥, the integrand 

is zero and can be ignored.  We note that if the data are extensive enough that [𝑆(𝑄 > 𝑄𝑚𝑎𝑥) − 1] =

0, this also gives a zero integrand above 𝑄𝑚𝑎𝑥 and the step function is unnecessary. 

This discussion may appear unnecessarily pedantic, but its purpose is to introduce the concept of 

𝑓𝑆(𝑄).  While the step function preserves the integrity of the data up to 𝑄𝑚𝑎𝑥, any function that is 

equal to zero above 𝑄𝑚𝑎𝑥 makes it possible to perform a complete FT in spite of the missing data.  As 

described, the step function (sinc convolution) may produce nonsensical results which is typically  

undesirable.   A different function, which modifies the data but does not introduce a discontinuity, 

may produce a 𝑔(𝑟) which is less obviously wrong. 

 



II. Solution to the 𝑄𝑚𝑎𝑥 cutoff problem by the Lorch modification function 

In 1969, Lorch proposed a solution [4] to the discontinuity arising from the 𝑄𝑚𝑎𝑥  cutoff problem, 

beginning from equation 4. Where we use 𝑆(𝑄), Lorch used the notation 𝑖(𝑄).  Lorch’s method is 

essentially to make a compromise. Instead of seeking to determine the exact value of 𝑔(𝑟) for all 𝑟, 

we will obtain the integrated value of 𝑔(𝑟) over a range of values about some central value 𝑟0 : 

(𝑟0 − ∆) ≤ 𝑟 ≤ (𝑟0 + ∆)  (Lorch used ∆ 2⁄  instead). In this case, both sides of equation 4 are 

integrated with respect to 𝑟 within these limits and Lorch obtained an equation which is reproduced 

below using our notation as equation 6. 

4𝜋𝑟0
2[𝑔(𝑟0) − 𝑔0] =

2

𝜋
∫ 𝑄𝑟0[𝑆(𝑄) − 1] sin(𝑄𝑟0) [

sin(𝑄∆)

𝑄∆
]𝑑𝑄

𝑄𝑚𝑎𝑥

0

 

𝑓𝐿(𝑄∆) =
sin(𝑄∆)

𝑄∆
 

(6) 

The result of this compromise is an expression on the right hand side identical to equation 5 except 

that the integrand is now multiplied by a modification function 𝑓𝐿(𝑄∆), the sinc function.    𝑄𝑚𝑎𝑥 =

𝜋 ∆⁄   is usually chosen as this makes 𝑄𝑚𝑎𝑥∆ correspond to the first zero in the sinc function.  In this 

case constraint 3 as listed above will be satisfied: We now integrate [𝑆(𝑄) − 1]𝑓𝐿 which is continuous 

at 𝑄𝑚𝑎𝑥 instead of [𝑆(𝑄) − 1]𝑓𝑆, which is not.  Beyond 𝑄𝑚𝑎𝑥, the integrand of the FT must be zero: 

this can be achieved by some assumption on the data: [𝑆(𝑄 > 𝑄𝑚𝑎𝑥) − 1] = 0 , or by setting 

𝑓𝐿(𝑄 > 𝑄𝑚𝑎𝑥) = 0.  These yield identical results: to maintain compatibility with the step function 

approach, we adopt the second interpretation throughout. 

Equation 6 has been used as a standard method to address the 𝑄𝑚𝑎𝑥-cutoff discontinuity problem for 

the 50 years since Lorch’s paper was published; it has 571 citations to date, 125 of which are from the 

last 5 years. The method has been used in many papers fundamental to our understanding of fluids, 

network glasses and amorphous solids. 

However, in 2011 [5] it was shown that, if the integral is performed as instructed in Lorch’s original 

paper one in fact obtains the equation reproduced below in our notation as equation 7.  Here, the 

application of a cutoff at some finite value of 𝑄 cannot be justified for the second integral, which is 

not necessarily small compared to the first integral.  

4𝜋𝑟0
2[𝑔(𝑟0) − 𝑔0]

=
2

𝜋
∫ 𝑄𝑟0[𝑆(𝑄) − 1] sin(𝑄𝑟0) [

sin(𝑄∆)

𝑄∆
]𝑑𝑄

𝑄𝑚𝑎𝑥

0

+
2

𝜋
∫ [𝑆(𝑄) − 1] [

sin(𝑄∆) cos(𝑄𝑟0)

𝑄∆
− cos(𝑄𝑟0) cos(𝑄∆)] 𝑑𝑄

∞

0

 

(7) 

Over the decades, Lorch’s method has been very successful at removing unphysical oscillations in 𝑔(𝑟) 

functions but this does not prove that the method is producing 𝑔(𝑟) functions which are correct. This 

naturally raises the question: can Lorch’s result (equation 6) be recovered through the use of 

reasonable approximations? Let us examine the problem carefully.  

To begin, we integrate equation 3 exactly as described within the specified limits (equation 8).  The 

left hand side gives us the integrated value of 𝑔(𝑟)  straightforwardly but, in order to continue 



referring to the non-integrated value of 𝑔(𝑟) (as is done in ref. [4] and in equations 6 and 7) it is 

necessary to make additional assumptions. We assume that ∆≪ 𝑟0  and that 𝑔(𝑟)  does not vary 

significantly over the region covered by the integral over 𝑟. Equation 9 below specifies the exact, and 

approximate, relationships between 𝑔(𝑟) and its integrated equivalent which we shall label 𝐺(𝑟0, ∆). 

∫ 4𝜋𝑟0
2[𝑔(𝑟) − 𝑔0]𝑑𝑟

𝑟0+∆

𝑟0−∆

=
2

𝜋
∬ 𝑄𝑟[𝑆(𝑄) − 1] sin(𝑄𝑟) 𝑑𝑄𝑑𝑟

𝑟=𝑟0+∆,𝑄=∞

𝑟=𝑟0−∆,𝑄=0

 

(8) 

𝐺(𝑟0, ∆) = ∫ 4𝜋𝑟0
2[𝑔(𝑟) − 𝑔0]𝑑𝑟

𝑟0+∆

𝑟0−∆

 

𝐺(𝑟0, ∆) ≈ 2∆ × 4𝜋𝑟0
2[𝑔(𝑟0) − 𝑔0] 

(9) 

The right hand side of equation 8 is a standard integral of the form ∫𝑥 sin𝑥 𝑑𝑥 . Application of 

trigonometric identities cos(𝐴 + 𝐵) = cos𝐴 cos𝐵 − sin𝐴 sin𝐵  etc. results in equation 7, in 

agreement with ref. [5]. 

Nevertheless, we will now see that the Lorch function is recoverable. If we implement the condition 

that ∆≪ 𝑟0 on the right hand side of equation 8 also, then the variation of the 𝑟 term within the 

integrand is negligible over the range of the integral so we can replace it with 𝑟0 and simply integrate 

sin(𝑄𝑟) with respect to 𝑟. In this case, again by making use of standard trigonometric identities, 

equation 4 is recovered, i.e. the Lorch function is mathematically valid under this condition. 

It is not correct to also set sin(𝑄𝑟) → sin(𝑄𝑟0) in equation 8, as it would necessitate the far more 

stringent condition on ∆ that ∆→ 0. This is because we would require the variation in the value of 𝑄𝑟 

over the course of 𝑟0 − ∆≤ 𝑟 ≤ 𝑟0 + ∆ to cause negligible change to the value of sin(𝑄𝑟) even in the 

high 𝑄 limit. 

 

III. Other solutions to the discontinuity at 𝑄𝑚𝑎𝑥 cutoff problem 

Since the work of Lorch, several other solutions have been proposed to the 𝑄𝑚𝑎𝑥 cutoff problem.  The 

most notable one is the modification function proposed by Soper and Barney [5].  Similarly to the 

Lorch function, this function involves accepting an averaged value of 𝑔(𝑟) over a range ±∆.  This 

function (equation 10) takes values in the low 𝑄  and high 𝑄  limits identical to the sinc function 

proposed by Lorch (equation 6) and is inserted into the FT equation in an analogous manner (equation 

11). 

𝑓𝑆𝐵(𝑄∆) =
3

(𝑄∆)3
(sin(𝑄∆) − 𝑄∆ cos(𝑄∆)) 

(10) 

4𝜋𝑟0
2[𝑔(𝑟0) − 𝑔0] =

2

𝜋
∫ 𝑄𝑟0[𝑆(𝑄) − 1] sin(𝑄𝑟0) 𝑓𝑆𝐵(𝑄∆)𝑑𝑄
𝑄𝑚𝑎𝑥

0

 

(11) 



Figure 1 shows the Lorch and Soper-Barney modification functions.  Compared to the Lorch function, 

the Soper-Barney function has a wider central maximum1 but then attenuates the data at higher 𝑄 far 

more than the Lorch function.  If ∆ is set analogously to the procedure used above with the Lorch 

function then the wider central maximum causes a given value of 𝑄𝑚𝑎𝑥 to result in a larger value for 

∆.  Setting 𝑓𝑆𝐵(𝑄𝑚𝑎𝑥) = 0 is essential to eliminate the discontinuity in 𝑆(𝑄).  This results in ∆=

4.49(1) 𝑄𝑚𝑎𝑥⁄ , compared to ∆= 𝜋 𝑄𝑚𝑎𝑥⁄  for the Lorch method.  In some cases the Soper-Barney 

function has been implemented with the width ∆ being r-dependent, though we will not pursue that 

here. 

 

Figure 1.  Modification functions which permit the application of equation 4 in the absence of data for 

𝑄 > 𝑄𝑚𝑎𝑥,  plotted as a function of 𝑄/𝑄𝑚𝑎𝑥.  The black line indicates a step function 𝑓𝑆 which is 

discontinuous at 𝑄𝑚𝑎𝑥, a method referred to as “direct FT”.  The blue line is the Lorch function 𝑓𝐿, and 

the red line is the Soper-Barney function 𝑓𝑆𝐵 .   These are discontinuous in the first derivative. All 

functions continue to infinity with a value of zero. 

An alternative to the use of a modification function is to perform the FT (equation 5 or equivalent) to 

obtain 𝑔(𝑟), then perform the inverse FT to return to 𝑆(𝑄), followed by an iterative process to 

transform back and forth seeking physically reasonable behaviour (in particular, ensuring that 

𝑔(𝑟) = 0 within the atomic radius).  This approach was pioneered first by Kaplow et al. [6], then 

outlined in more detail by Eggert et al. [2].  The adjustable fitting parameters in this process are 𝑔0 

(representing the density) and two scaling factors specific to their method for background 

subtraction. 

Unfortunately, to perform this analysis it was necessary to smooth the original 𝑆(𝑄) data using a 

cubic-spline smoothing routine in which the amount of smoothing applied varied as a function of Q.  

In addition, the optimum values of the density and scaling factors varied substantially according to 

 

1 To second order in 𝑄∆, 𝑓𝐿 = 1 −
(𝑄∆)2

3!
 And 𝑓𝑆𝐵 = 1 −

(𝑄∆)2

10
 



the value chosen for 𝑄𝑚𝑎𝑥, not converging to a stable value (let alone the correct value for the 

density) within the range of 𝑄𝑚𝑎𝑥 studied (6 – 10 Å-1).  Due to these difficulties (in particular, the 

need for 𝑄-dependent smoothing) we have not pursued the iterative approach in the present work.  

Iterative approaches are however available in the software packages Amorpheus [7] and 

LiquidDiffract [8]. 

IV. A Bayesian View on the modification functions 

The Lorch method tackled the discontinuity problems (3 and 4 above) by modifying the measured 

𝑆(𝑄) by a function which goes to zero at 𝑄𝑚𝑎𝑥.  This has the cost that the data has to be adulterated 

to allieviate the problems of the discontinuity. 

Another way to write the exact same transformation is:  

4𝜋𝑟2[𝑔(𝑟) − 𝑔0]

=
2

𝜋
∫[𝑄𝑟[𝑆(𝑄) − 1] sin(𝑄𝑟)𝑓𝐵(𝑄 𝑄𝑚𝑎𝑥⁄ )

∞

0

+ 𝑄𝑟[𝑆𝑝(𝑄) − 1] sin(𝑄𝑟)[1 − 𝑓𝐵(𝑄 𝑄𝑚𝑎𝑥⁄ )]] 𝑑𝑄 

(12) 

With 𝑆𝑝(𝑄) = 1.   The second term is introduced to connect the modification approach to a Bayesian 

framework.   In the Bayesian approach to data, one starts with a prior assumption [𝑆𝑝(𝑄) − 1] for the 

data, and this is modified by the data.  As well as the prior, an essential ingredient for the Bayesian 

method is the “strength” of the prior. 

Taking 𝑓𝐵 as the step function and the prior as “zero signal”, we can read this equation as placing full 

weight on the data where it exists, up to 𝑄𝑚𝑎𝑥, then full weight on the prior beyond 𝑄𝑚𝑎𝑥.    The Lorch 

and Soper-Barney modification can be seen as placing some weight on the prior at all Q.  e.g. at 𝑄 =

𝑄𝑚𝑎𝑥 2⁄ , these methods determine 𝑔(𝑟) by placing approximately equal weight to the prior as the 

real data. 

Of course, there is no requirement for the prior to be chosen as zero, one might e.g. choose the results 

of a simulation, or a previous experiment.  Whatever prior is chosen, where one has full confidence in 

the data one can set 𝑓𝐵 = 1 and the prior will be ignored, if one has no confidence in the data, e.g. 

because it does not exist,  the non-zero prior means that the second term can provide non-zero 

contribution to the FT from 𝑄 > 𝑄𝑚𝑎𝑥. 

There are several approaches to the use of the prior: it can be used to combine theory and experiment 

with weights determined by the researcher, or it can be deployed in the spirit of Lorch/Soper-Barney 

to remove the discontinuity.   

In this second case, one might choose 𝑓𝐵 to be the step function, and the prior to be a function which 

matches the data at 𝑄𝑚𝑎𝑥  and decays gracefully to zero (the form of the prior at 𝑄 < 𝑄𝑚𝑎𝑥  is 

irrelevant, because it will be multiplied by zero).  Such an approach retains the advantages of Lorch 

and Soper-Barney in addressing the 𝑄𝑚𝑎𝑥 cutoff problem, but does not compromise the integrity of 

the measured data. 

 

 

 



V. The effect of noise in the 𝑺(𝑸) data 

Even if data are available up to extremely high 𝑄, encompassing all oscillations in 𝑆(𝑄), there 

remains the problem of noise.  From the Debye scattering equation (equation 1), we expect that the 

physically significant oscillations in 𝑆(𝑄) will decay in amplitude upon 𝑄 increase.  However, the 

noise amplitude in real experimental data does not decay on 𝑄 increase.  In equation 4, 𝑆(𝑄) is 

multiplied by 𝑄 in order to construct a valid FT to invert.  The effect of this at high 𝑄 is simply to 

amplify noise.  As we see throughout this work, it is common practice to smooth 𝑆(𝑄) data so this 

problem can be avoided – including implementation of 𝑄-dependent smoothing.  This, however, 

raises a separate set of uncertainties: How can one be certain that features of physical significance 

have not also been lost in the smoothing process? 

 

VI. Binning requirements for numerical integration to obtain 𝑔(𝑟) 

Regardless of whether we employ the standard FT method, Lorch modification function or Soper-

Barney modification function, 𝑔(𝑟0) is obtained by a numerical integration to 𝑄 = 𝑄𝑚𝑎𝑥 of a function 

including sin(𝑄𝑟0).  We therefore require the 𝑆(𝑄) data to be binned at sufficiently fine resolution in 

𝑄  such that a single cycle in the sin(𝑄𝑟0)  function covers a large number of 𝑄 -values in the 

experimental data.  Thus if the binning interval is 𝛿𝑄 we require: 

𝑟0𝛿𝑄 ≪ 𝜋 

(13) 

Thus we can see that the finite binning interval in the 𝑆(𝑄) data can cause the numerical integration 

procedure to fail when used at large 𝑟0. 

 

VII. Calculation of co-ordination number (CN). 

The co-ordination number (CN) can be obtained from diffraction data via 𝑔(𝑟) using equation 14 

below. 

CN = 4𝜋𝜌 ∫ 𝑟2𝑔(𝑟)𝑑𝑟

𝑟𝑚𝑎𝑥

0

 

(14) 

Here, 𝑟𝑚𝑎𝑥 is the radius of the minimum following the first and highest peak in 𝑔(𝑟).  However, as 

shown in equation 14, this method can only be used if the density 𝜌 is known reasonably accurately. 

 

Methods 

We analysed four different sets of neutron / X-ray diffraction 𝑆(𝑄)  data (described later).  The 

numerical integrations to perform the FT and CN calculations were performed using our Octave code, 

which is available (with documentation) in the supplementary information.  When using the Lorch and 

Soper-Barney modification functions 𝑔(𝑟)  was obtained from 𝐺(𝑟, ∆)  via the approximate 

relationship in equation 9.  In all cases 𝑔(𝑟) was calculated for 1000 values of 𝑟, up to a maximum of 

20 Å.  Equations 5, 6 and 11 fail if we attempt to calculate 𝑔(𝑟 = 0) so the minimum value of 𝑟 was 



therefore 0.02 Å.  Normalization was performed automatically by the code, simply by addition / 

subtraction to ensure 𝑔(0.02Å) = 0 then division by 𝑔(20Å) to ensure 𝑔(𝑟) = 1 in the high 𝑟 limit.  

In cases where ripples in 𝑔(𝑟) in the low 𝑟  region caused 𝑔(0.02Å) > 𝑔(20Å) normalization and 

calculation of the CN were not attempted. 

The CN was obtained by numerical integration of the first peak in 𝑔(𝑟).  The integration limits for the 

calculation of the CN were obtained automatically by the code by locating the maximum value of 𝑔(𝑟), 

then the adjacent minimum values and integrating between these limits.  This was chosen instead of 

integrating from 𝑟 = 0 to reduce the effect of unphysical ripples in 𝑔(𝑟) at low 𝑟. 

In all cases (see introduction part IV) the finite binning in the 𝑆(𝑄) data could cause the 𝑔(𝑟) obtained 

at large 𝑟 to be unreliable.  When FT has been performed using the Lorch or Soper-Barney modification 

function, 𝑔(𝑟) may be unreliable at low 𝑟 (we require 𝑟 ≫ ∆).  Allowing ourselves a factor of 10 in 

these criteria we obtain the conditions given in equation 15 below, which are marked on all graphs of 

𝑔(𝑟) where they are within the range covered in the plot. 

𝑟𝑚𝑎𝑥 =
𝜋

10𝛿𝑄
 

𝑟𝑚𝑖𝑛 =
10𝜋

𝑄𝑚𝑎𝑥
 

(15) 

The data sets were as follows: 

- Dataset A is a neutron 𝑆(𝑄) from liquid Ar at 85 K, ambient pressure (a density of 2.13 x 1028 at./m3) 

from ref. [9].  The data are collected to 12 Å-1, covering all features in 𝑆(𝑄).  The binning is 𝛿𝑄 =

0.0294 Å-1, leading to 𝑟𝑚𝑎𝑥 = 10.7(1) Å.  The data were smoothed by the authors of ref. [9] using a 

method communicated to them via private communication, and not described in ref. [9]. 

- Dataset B is a set of synchrotron X-ray diffraction 𝑆(𝑄) data from fluid Ar at 300 K covering eight 

pressures from 46 MPa to 830 MPa (densities from 9.89 x 1027 at./m3 to 2.59 x 1028 at./m3).  The 

binning is 𝛿𝑄 = 2.1 × 10−3  Å-1, leading to 𝑟𝑚𝑎𝑥 = 149.6(1)  Å.  Since these data have not been 

published previously we outline here how 𝑆(𝑄) was obtained from the raw data.  The raw coherent 

scattering intensity 𝐼𝑟𝑎𝑤(𝑄)  was obtained from the experimental data by subtraction of the 

background signal from either the empty DAC or the DAC containing solid Ar following masking of the 

solid Ar Bragg peaks.  The structure factor 𝑆(𝑄)  was obtained by obtaining 𝐼𝑟𝑎𝑤(𝑄) 𝑓(𝑄)2⁄  and 

normalising (i.e. accounting for the factor of 𝑁′ in equation 3) to ensure appropriate behaviour in the 

high-𝑄 limit.  We have three comments to make on this process: 

1. The 𝑓(𝑄)  values are obtained from tabulated data in the International Tables for 

Crystallography [1].  To obtain 𝑓(𝑄)  at the exact values of Q corresponding to our 

experimental data it is necessary to find an empirical equation that fits the tabulated data, or 

to do a linear interpolation between the datapoints.  We used a linear interpolation.  The 

easier alternative of fitting an empirical equation has some pitfalls.  The tabulated 𝑓(𝑄) data 

in the literature are far more closely spaced at low 𝑄, so it would be easy to overfit to these 

data at the expense of a good fit to the more sparse data at high 𝑄.  In addition, since 𝑓(𝑄) →

0 at high 𝑄, a small error in 𝑓(𝑄) in absolute terms will be large as a proportion of 𝑓(𝑄) and 

lead to noise in 𝐼𝑟𝑎𝑤(𝑄) being amplified by an arbitrary amount. 

2. Since the signal-to-noise ratio becomes very poor due to the decreasing 𝑓(𝑄) by the second 

peak in 𝐼𝑟𝑎𝑤(𝑄)  it is challenging to accurately normalise 𝑆(𝑄)  in the high Q limit.  We 



normalized by measuring the peak scattering intensity from the second peak in 𝐼𝑟𝑎𝑤(𝑄) and 

the minimum scattering intensity from the trough following this peak and normalizing to make 

the average of these values equal to 1.  Clearly, this normalization choice is arbitrary, however 

in the absence of S(Q) data encompassing all oscillations in S(Q) there is no possible 

normalization method that does not involve some arbitrary choice. 

3. At the lowest values of Q at which data are present, 𝐼𝑟𝑎𝑤(𝑄) < 0 in most cases, due to 

difficulties with the background subtraction procedure.  A small constant (1 – 5% of the peak 

value of 𝑆(𝑄)) was therefore added to set 𝑆(𝑄) ≥ 0 for all 𝑄. 

Further information on dataset B, including figures, and experimental details, are given in the 

supplementary information. 

- Dataset C is a set of neutron diffraction 𝑆(𝑄)  data from supercritical fluid Kr [10] covering 17 

pressures up to 20 MPa and densities up to 6.2 x 1027 at/m3 at 300 K.  The data are collected to 𝑄 = 4 

Å-1.  We have analysed selected data from this set using Empirical Potential Structure Refinement 

(EPSR) [12][13] and published this elsewhere [11].  The binning is 𝛿𝑄 = 0.05 Å-1, leading to 𝑟𝑚𝑎𝑥 =

6.3(1) Å.  The data were smoothed by visual observation by the original authors prior to presentation 

in tabulated form in ref. [7]. 

- Dataset D is a set of neutron diffraction 𝑆(𝑄) data from supercritical fluid Kr [11] collected up to 

significantly higher pressure and density at 310 K (7 pressures ranging from 40 MPa up to 200 MPa, 

1.62 x 1028 at./m3).  We have published an EPSR analysis of all these data elsewhere [11].  The binning 

is 𝛿𝑄 = 0.05 Å-1, leading to 𝑟𝑚𝑎𝑥 = 6.3(1) Å.  In contrast to dataset C, these data have not been 

smoothed. 

In each case the pressures have been measured experimentally and the densities calculated from the 

pressures using the relevant fundamental equation of state via NIST REFPROP [14] (ref. [15] for Ar and 

ref. [16] for Kr).  In the case of dataset C, the densities given in the source (ref. [10]) were calculated 

from the experimentally measured pressures using an earlier equation of state [17].  We have 

calculated the measured pressures from the densities using ref. [17] then recalculated the densities 

using the fundamental EOS [16].  This has resulted in a change of ca. 10% in the higher calculated 

densities. 

The pressure-temperature phase diagrams of Ar (from ref. [18]) and Kr (compiled for this work using 

the methodology presented in ref. [18]) are given in the supplementary information, with the P,T 

points marked at which the datasets in the present study were collected. 

 

Results 

I. Dataset A 

To begin, we performed a standard FT of the entirety of dataset A.  Figure 2 shows the 𝑔(𝑟) obtained 

from this FT, with the original 𝑆(𝑄) shown in the inset.  The FT result is in agreement with the 𝑔(𝑟) 

shown in ref. [9] (the source of dataset A).  The 𝑔(𝑟) obtained is also in agreement with that obtained 

using real space structure determination implemented in the Dissolve package [19] (see 

supplementary information), and leads to a CN of 11.9.  This is clearly a reasonable value for dataset 

A, however it is worth noting that even with this very good quality data there are unphysical 

oscillations present in 𝑔(𝑟) for 𝑟 < 3 Å, where 𝑔(𝑟) = 0 is expected.  On one level this does not 

matter (we do not need a FT to tell us that atoms are not allowed to overlap) but it does introduce an 

error in the normalization of 𝑔(𝑟), and hence CN calculation. 



 

Figure 2.  Normalized 𝑔(𝑟) for liquid Argon at 85 K (dataset A) obtained by direct FT (i.e. assuming that 

[𝑆(𝑄 > 𝑄𝑚𝑎𝑥) − 1] = 0) of the full neutron 𝑆(𝑄) (inset). 

Attempting the standard FT using cutoffs at successively lower 𝑄  leads to the ripples at 𝑟 < 3  Å 

becoming larger, until at a 𝑄 cutoff of 8 Å−1 the obtained 𝑔(𝑟) is no longer physically realistic, due to 

the low-r ripples preventing accurate normalization.  Figure 3 shows the 𝑔(𝑟) obtained with the 

standard FT, Lorch and Soper-Barney modifications with Dataset A at 8 Å−1 Q-cutoff.  The Lorch and 

Soper-Barney modification functions both give reasonable results at cutoffs for which the standard FT 

fails.  The functions give very similar results, the only significant difference being that the principal 

maximum in 𝑔(𝑟) is slightly wider for the Soper-Barney modification function due to the 8 Å−1 Q-

cutoff resulting in a slightly larger value for ∆. 



 

Figure 3.  Normalized 𝑔(𝑟) for liquid Argon at 85 K (dataset A) obtained from the neutron 𝑆(𝑄) 

truncated at 8 Å-1. FT with abrupt truncation Lorch and Soper-Barney modification are shown.  The 

standard FT 𝑔(𝑟) is ÷ 10 for clarity. 

Our final investigation with this dataset is to study how low the 𝑄𝑚𝑎𝑥 cutoff can be made with each 

modification function whilst still obtaining a physically reasonable 𝑔(𝑟).  Using both the Lorch and 

Soper-Barney modification functions, even a cutoff as low as 3 Å-1 does not result in ripples at low r as 

bad as those shown for the standard FT in figure 3.  A more rigorous test is whether the CN calculated 

remains reasonable.  Figure 4 shows the CNs calculated using all three methods for 𝑄𝑚𝑎𝑥 cutoffs all 

the way from 3 Å-1 to 12 Å-1.  At 12 Å-1 (as previously discussed) all ripples in 𝑆(𝑄) are included in the 

data and the pure FT gives a 𝑔(𝑟) in agreement with that resulting from EPSR analysis of the data.  

This leads to a CN of 11.9 - as would be expected for a liquid near the triple point.  So it is reasonable 

to take this as the correct value.  At 12 Å-1 cutoff both modification functions produce a CN slightly 

larger than the maximum physically realistic value of 12, however as the cutoff is reduced to 5 Å-1 the 

𝑔(𝑟)  at least remains stable at this value around 2.5% too large when the FT is done with a 

modification function.  In contrast the CN oscillates wildly when the FT is performed using the standard 

method. 



 

Figure 4.  CN of liquid Ar at 85 K (dataset A) obtained by standard FT of the neutron diffraction data, 

and FT utilizing the Lorch and Soper-Barney modification functions for a variety of 𝑄𝑚𝑎𝑥 cutoffs.  The 

𝑔(𝑟) functions produced by the standard FT for 4 Å-1 and 5 Å-1 cutoff could not be normalized so 

calculation of the CN was not attempted. 

 

II. Dataset B 

Remaining with fluid Ar, dataset B is a set of synchrotron X-ray data (Unlike datasets A, C and D which 

are all neutron data) collected at 9 pressures up to 830 MPa.  Due to the rapid decrease in scattering 

intensity upon 𝑄  increase (caused primarily by the decrease in the atomic form factor 𝑓(𝑄)), the 

signal-to-noise ratio beyond the first peak in 𝐼𝑟𝑎𝑤(𝑄) is very poor.  Only the highest pressure S(Q) 

produced a g(r) that could be normalized using the method outlined earlier.  Even in this case, to 

achieve a g(r) that could be normalized it was necessary to adopt the Lorch or Soper-Barney 

modification function and to use a 𝑄𝑚𝑎𝑥 cutoff that only included the first peak in S(Q). 

Figure 5 (a) shows the normalized 𝑆(𝑄) functions at 830 MPa and 444 MPa, illustrating the difficulties 

caused by the need to normalize on the basis of noisy data at high 𝑄.  The first peak in 𝑆(𝑄) is more 

intense at the lower pressure. 

To obtain any reasonable 𝑔(𝑟) function it was necessary to use the 𝑆(𝑄) data only up to a 𝑄𝑚𝑎𝑥 at 

the minimum after the first peak in 𝑆(𝑄) (i.e. ca. 2.5 – 3 Å-1).  For this reason, analysis could only be 

performed using the Lorch and Soper-Barney modification functions.  Even with this methodology, 

only the highest pressure yielded a 𝑔(𝑟) that could be normalized.  The obtained CN varied massively 

depending on which modification function was used: 25.4 with the Lorch modification function and 



19.7 with the Soper-Barney modification function.  Both of these are far larger than is physically 

realistic. 

Figure 5 (b) shows the normalized g(r) obtained using FT with the Soper-Barney modification function 

at 830 MPa.  Although the normalization procedure is mathematically valid, it is clear that due to the 

size of the ripple at low r and the existence of negative g(r) in some regions the resulting function is 

not physically realistic. 

 

 

Figure 5.  (a) Normalized 𝑆(𝑄) from dataset B at 830 MPa and 444 MPa.  (b) 𝑔(𝑟) functions at 830 

MPa produced from FT of the 𝑆(𝑄) with Lorch modification (cutoff of 2.66 Å-1) and from EPSR using 

𝐼𝑟𝑎𝑤(𝑄). 



We have also performed a full EPSR refinement of the datasets at 830 MPa and 444 MPa, with 

densities of 43049 Mol./m3 and 37341 Mol./m3. Due to the aforementioned issues with the 

normalization of the 𝑆(𝑄), we have decided to entirely bypass this and provide to EPSR directly the 

𝐼𝑟𝑎𝑤(𝑄) as measured. In principle, any lack of correction applied to the 𝐼𝑟𝑎𝑤(𝑄) should come out of 

EPSR as a meaningful trend in the residuals. We employed a 5000 Ar atom simulation box and used 

the OPLS-Noble Gases forcefield as the reference potential (the same potential parameters as 

included in Dissolve). Once the box equilibrated, empirical potential (EP) refinement was allowed until 

a fit that was deemed satisfactory was achieved. At this point, the EP was frozen and prevented from 

further changing, and the structure was sampled over 5000 accumulations.  We achieved an excellent 

quality of fit to the data, yielding a physically reasonable 𝑔(𝑟) and an associated CN of 11.42(15) at 

444 MPa. This is below 12, not exceeding the maximum justifiable coordination and is what we would 

expect on the liquid-like side of the Frenkel line. As expected, the residuals from the fitting process 

show a clear functional 𝑄-dependence, highlighting the lack of appropriate corrections that should 

have been performed to obtain 𝑆(𝑄) from 𝐼𝑟𝑎𝑤(𝑄). An example 𝑔(𝑟) resulting from the EPSR is 

shown in figure 5 (b) and an example S(Q) (with residuals) is shown in figure 6. 

 

 

Figure 6. The experimental 𝐼𝑟𝑎𝑤(𝑄) data and the fitted 𝑆(𝑄) from EPSR at 444 MPa, demonstrating 

the excellent quality of fit achieved by EPSR when given the measured 𝐼𝑟𝑎𝑤(𝑄) , and residuals 

highlighting the lack of corrections. 

III. Dataset C 

Datasets C and D are both from fluid Kr.  Dataset C is collected to a relatively low value of 𝑄 (4 Å-1), at 

which significant oscillations in 𝑆(𝑄) are still present.  It is therefore not surprising that the standard 

FT produces a physically unrealistic result, compared to performing the transform using the Lorch 



method (figure 7 shows the transforms for the highest density point in this dataset, and the 𝑆(𝑄) 

data).  The standard FT produces massive oscillations in the low 𝑟 limit, and also smaller oscillations in 

the high 𝑟 limit which are not physically realistic given the gas-like density (less than half the density 

of the Frenkel line in Kr at 300 K).  Due to the fact that the 𝑆(𝑄) data extend only to 4 Å-1, combined 

with the wide binning interval, the low and high-r regions in which 𝑔(𝑟) may be unreliable due to 

binning and 𝑄-cutoff issues respectively overlap for these data. 

Figure 8 shows the CNs obtained by Fourier transform of Dataset C at densities from 2.8 – 6.1 x 1027 

at/m3.  This corresponds to pressures up to ca. 20 MPa, not reaching the liquid-like side of the Widom 

lines, let alone the Frenkel line.  We would therefore expect the CN to vary in a smooth and monotonic 

manner throughout.  This is the case when the Lorch or Soper-Barney modification functions are 

employed.  Data are also available in ref. [10] at four lower densities, however none of the FT 

procedures utilized here produced physically realistic 𝑔(𝑟) functions in these cases.  The standard FT 

resulted in a 𝑔(𝑟) that could not be normalized, whilst the Lorch and Soper-Barney modification 

functions produced a 𝑔(𝑟)  with no clear minimum following the first peak.  This resulted in 

subsequent peaks also being included in the integration to obtain the CN and an unrealistically high 

value being obtained. 

 

Figure 7. Normalized 𝑔(𝑟) obtained from direct FT and FT with Lorch modification of neutron 𝑆(𝑄) 

from supercritical fluid Kr at 300 K (6.10 x 1027 at/m3 density) [10].  Inset: 𝑆(𝑄) data from ref. [10]. 



 

Figure 8.  CNs obtained by Fourier transform (present work) and EPSR (ref. [11]) of dataset C (neutron 

diffraction data from Kr at 300 K to 4 Å-1 from ref. [10]). 

We have published an analysis of selected neutron diffraction data from ref. [7] elsewhere [11].  The 

CNs obtained from EPSR are in reasonable agreement with those obtained by direct FT via both Lorch 

and Soper-Barney modification functions (figure 8).  It is hard to discern the extent to which 

quantitative agreement exists between the 𝑔(𝑟) functions produced by modified FT and EPSR due to 

the ±∆ broadening in 𝑟 caused by the modification process (figure 7). 

 

IV. Dataset D 

Finally, we present our analysis of dataset D.  The large amount of noise in this data prevents 

meaningful results being obtained by direct Fourier transform, despite the large 𝑄𝑚𝑎𝑥  (20 Å-1).  

Beginning with a high density datapoint (176 MPa (1.57 x 1028 at./m3) we can see that above 6 Å-1 the 

data are just noise (figure 9 inset shows the S(Q) data to 15 Å-1).  In figure 9 we show 𝑔(𝑟) functions 

obtained with the Soper-Barney modification function for two cutoffs (6 Å-1 and 15 Å-1).  The data for 

15 Å-1 are ruined by ripples resulting from Fourier transforming noise, whilst the data for 6 Å-1 exhibit 

a principal peak in 𝑔(𝑟) that is somewhat larger than the ripples and leads to a CN of 12.4 (our EPSR 

analysis of this data published previously indicated a CN of 11.7).  The highest density datapoint (200 

MPa) can be analysed in a similar manner (CN of 12.5) but for the next lowest pressure (148 MPa) the 

Fourier transform produces a 𝑔(𝑟) that cannot be normalized. 



 

Figure 9.  𝑔(𝑟) functions for fluid Kr at 310 K, 176 MPa obtained by FT with Soper modification function 

with different cutoffs as indicated.  Inset: 𝑆(𝑄) data for Kr at 310 K, 176 MPa. 

 

Conclusions 

The results and analysis presented here throw light on some important, but hitherto neglected, 

aspects of the analysis of fluid X-ray and neutron diffraction data by FT from reciprocal space to real 

space.  In the analysis of X-ray data, and even (to some extent) neutron data, various arbitrary choices 

are unavoidably made in the analysis.  It is therefore difficult to judge the reliability or otherwise of 

𝑔(𝑟) functions generated by FT of diffraction data without knowledge of the details of these arbitrary 

choices: In particular, the methodology used to normalise 𝑆(𝑄) and 𝑔(𝑟), and the methodology used 

to obtain 𝑓(𝑄) at the required Q-values from the tabulated data in the literature.  In addition, it is 

essential to know the resolution in the binning of the experimental data as this determines the validity 

of the resulting 𝑔(𝑟) function at high 𝑟. 

Moving beyond these issues, the analysis of diffraction data by direct FT, or by FT using a modification 

function, is always subject to some extent to the 𝑄𝑚𝑎𝑥-cutoff problem.  We find many cases where 

the Lorch and Soper-Barney modification functions can produce a non-pathological 𝑔(𝑟) whilst direct 

FT cannot and despite concerns raised in recent years, the Lorch modification function is a 

mathematically rigorous method to analyse fluid diffraction data. 

However, mathematical rigor is no guarantee of physical correctness.  We have identified four ways 

in which the 𝑄𝑚𝑎𝑥 -cutoff problem can produce physically unreasonable 𝑔(𝑟)  functions when 

diffraction data from disordered materials are analysed by FT, but only one of these (the continuity of 



𝑆(𝑄) at 𝑄𝑚𝑎𝑥) is addressed by the Lorch and Soper-Barney modification functions.   Neither method 

attempts to address the issue of missing data beyond 𝑄𝑚𝑎𝑥 , the discontinuity in slope of 𝑆(𝑄).  

Neither method guarantees that the 𝑔(𝑟) corresponds to any possible arrangement of atoms in space, 

certainly not the correct one. Neither method guarantees positive 𝑔(𝑟), nor zero 𝑔(𝑟) at unphysically 

small distances.  We found that the 𝑔(𝑟) functions produced by these methods are highly sensitive to 

choice of 𝑄𝑚𝑎𝑥, and strong evidence that the results have not converged for typical values of 𝑄𝑚𝑎𝑥. 

The fundamental problem with purely data-driven Fourier methods is that they necessarily require 

some theoretical assumption about the missing data above 𝑄𝑚𝑎𝑥.  All the methods used here assume 

that [𝑆(𝑄 > 𝑄𝑚𝑎𝑥) − 1] = 0, and seek only to address the discontinuity. These mathematical tricks 

remove some pathological errors in 𝑔(𝑟), but the sensitivity to 𝑄𝑚𝑎𝑥 gives little confidence that the 

non-pathological 𝑔(𝑟) are accurate.     

The mathematical elegance of these models should not disguise the fact that they serve to suppress 

the high-𝑄 data.  It can be argued that measurement of [𝑆(𝑄) − 1] may be less reliable at high-𝑄, 

however the solution to unreliable data is to downweight its importance in analysis, not to pretend 

that it is smaller than measured, or even zero, which is what the Lorch and Soper-Barney methods do.  

Indeed, by “modifying” the data away from the experiment in a way designed to avoid pathologies, 

rather than based on physics, an inaccuracy (broadening) in 𝑔(𝑟) is caused.  

The problem of missing or unreliable data can be approached with Bayesian-type methods.  These 

provide a framework to combine experimental and theoretical results with appropriate 𝑄-dependent 

weights.  They also indicate a way to remove the 𝑄𝑚𝑎𝑥 discontinuities without modifying the data.  

Nevertheless, direct FT methods can address only two of the four constraints on 𝑔(𝑟) which must be 

satisfied.    To our knowledge, there is no method to determine whether a given function “𝑔(𝑟)” or 

“𝑆(𝑄)” can correspond to any 3D ensemble of atomic arrangements. Therefore, assuming one wishes 

the data analysis to produce a 𝑔(𝑟) which respects the atomic theory of matter, one needs to use a 

method beginning from real-space configurations.    EPSR [12][13] is an example of this approach.  It 

exploits the fact that for any given interatomic potential, 𝑉(𝑟), both 𝑔(𝑟) and 𝑆(𝑄) are uniquely 

defined, and respect the atomic theory of matter.  So EPSR seeks to find a 𝑉(𝑟) consistent with 𝑆(𝑄), 

and a 𝑔(𝑟)  which automatically satisfies all four unphysicality issues. EPSR has elements of the 

Bayesian approach, with the prior being a potential which is modified by the data to produce a best 

fit to the measured 𝑆(𝑄) from functions constrained to be physically reasonable. 

Comparison to EPSR results for all 4 datasets has shown that EPSR can provide physically realistic 

results even for very poor quality data for which analysis by FT fails. It appears that, historically, 𝑆(𝑄) 

data have often been smoothed to allow analysis by FT.  Results presented here indicate that EPSR 

can provide physically realistic results with the unsmoothed data.  Therefore, if smoothing of the 𝑆(𝑄) 

data is necessary to allow analysis by FT then EPSR should be attempted instead. 

Finally, whilst the Lorch and Soper-Barney modification functions make some progress towards 

addressing the 𝑄𝑚𝑎𝑥-cutoff problem, neither address the other cutoff problem: The fact that real 

𝑆(𝑄)  data do not extend to 𝑄 = 0 .  In any real diffraction experiment, 𝐼𝑟𝑎𝑤(𝑄)  data cannot be 

collected at 𝑄 ≈ 0  as there is no way to distinguish between X-rays / neutrons that have been 

transmitted without interacting with the sample, and those scattered at low 𝑄.  Whilst lim
𝑄→0

𝑆(𝑄) ≠ 0, 

the contribution to the value of [𝑔(𝑟) − 𝑔0] from low-𝑄 scattering in equation 4 (and modified FT 

functions derived from it) does vanish due to the presence of the sin(𝑄𝑟) term in the integral so the 

substitution of the zero lower limit in the integral with a small but finite minimum value of 𝑄 should 



be acceptable.  However, it is worth noting that analysis methods beginning from real-space 

configurations and predicting 𝑆(𝑄) in the 𝑄-range for which data exists also avoid this potential pitfall. 

In future the work presented here can be extended to cover other fluids comprised of spherically 

symmetric particles such as metallic fluids and CH4, and molecular fluids for which different partial 

𝑆(𝑄) data are obtained by isotopic substitution in neutron diffraction. 

 

Supplementary material 

Supplementary material is provided, consisting of: 𝑔(𝑟) function obtained by performing EPSR on 

dataset A, full description of the experimental methods and analysis to obtain 𝑆(𝑄) for dataset B, the 

Octave / Matlab code used, and documentation for this code. 

 

Acknowledgements 

We would like to acknowledge the provision of beamtime at Diamond Light Source I15 (CY28469-1) 

and ISIS Pulsed Neutron Source SANDALS instrument (2010332), and acknowledge Prof. Daniel 

Errandonea for allowing the Ar X-ray experiment to be performed at beamtime CY28469-1.  GJA and 

CP acknowledge funding from the ERC under the Hecate grant. For the purpose of open access, the 

authors have applied a Creative Commons Attribution (CC BY) licence to any Author Accepted 

Manuscript version arising from this submission. 

 

Author declarations 

The authors have no conflicts of interest to declare. 

Author contributions: JEP designed the study, performed experiments, wrote code, performed data 

analysis by FT, and wrote the manuscript. CGP designed the study, performed experiments, performed 

data analysis by EPSR and contributed to the manuscript. BM wrote code and performed data analysis 

by FT.  MAK performed data analysis and prepared figures.  GJA designed the study, contributed to 

the manuscript and prepared figures.  CWM prepared figures and SA performed experiments.  All 

authors approved the final version of the manuscript. 

 

Data availability statement 

The data that support the findings of the study are available from the corresponding author upon 

reasonable request. 

 

References 

[1] A. J. C. Wilson and E. Price, International Tables for Crystallography (Kluwer, 

Dordrecht/International Union of Crystallography), Vol. C (1999). 

[2] J.H. Eggert, G. Weck, P. Loubeyre and M. Mezouar, Phys. Rev. B 65, 174105 (2002). 

[3] B.E. Warren, X-ray diffraction (Dover publications, 1990). 



[4] E. Lorch. J. Phys. C (solid state physics) 2, 229 (1969). 

[5] A.K. Soper and E.R. Barney, J. Appl. Cryst. 44, 714 (2011). 

[6] R. Kaplow, S.L. Strong and B.L. Averbach, Phys. Rev. 138, 1336 (1965). 

[7] S. Boccato et al., High Press. Res. 42, 69 (2022). 

[8] B.J. Heinen and J.W.E. Drewitt, Phys. Chem. Minerals 49, 9 (2022). 

[9] J.L. Yarnell, M.J. Katz, R.G. Wenzel and S.H. Koenig, Phys. Rev. A 7, 2130 (1973). 

[10] A. Teitsma and P.A. Egelstaff, Phys. Rev. A 21, 367 (1980). 

[11] C.G. Pruteanu, J.S. Loveday, G.J. Ackland and J.E. Proctor, J. Phys. Chem. Lett. 13, 8284 (2022). 

[12] A.K. Soper, Chem. Phys. 202, 295 (1996). 

[13] A.K. Soper, Mol. Sim. 38, 1171 (2012). 

[14] Lemmon, E.; Bell, I. H.; Huber, M.; McLinden, M. NIST Standard Reference Database 23: 

Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version10.0, Standard 

Reference Data Program, National Institute of Standards and Technology: Gaithersburg, 2018. 

[15] Ch. Tegeler, R. Span and W. Wagner, J. Phys. Chem. Ref. Data 28, 779 (1999). 

[16] E.W. Lemmon and R. Span, J. Chem. Eng. Data 51, 785 (2006). 

[17] N.J. Trappeniers, T. Wassenaar and G.J. Wolkers, Physica (Utrecht) 32, 1503 (1966). 

[18] J.E. Proctor, The Liquid and Supercritical Fluid States of Matter (CRC Press, 2020). 

[19] T. Youngs, Mol. Phys. 117, 3464 (2019). 

  



A comparison of different Fourier transform procedures for analysis 

of diffraction data from noble gas fluids 

Supplementary information 
 

J.E. Proctor1, C.G. Pruteanu2, B. Moss1, M.A. Kuzovnikov2, G.J. Ackland2, C.W. Monk1 and S. Anzellini3 

1. Materials and Physics Research Group, School of Science, Engineering and Environment, 

University of Salford, Manchester M5 4WT, UK 

2. SUPA, School of Physics & Astronomy and Centre for Science at Extreme Conditions, the University 

of Edinburgh, Edinburgh EH9 3FD, UK 

3. Diamond Light Source Ltd., Harwell Science and Innovation Campus, Diamond House, Didcot OX11 

0DE, UK 

 

1. Dataset A real-space structure determination 

We performed real-space structure determination on Dataset A using the Dissolve software package 

[19], producing a 𝑔(𝑟) in agreement with that obtained from standard FT of the dataset for the full 

range in 𝑄-values.  The simulation employed a 5000 atom simulation box and the OPLS-Noble Gases 

forcefield potential.  It was not necessary in this case to refine the potential.  The structure was 

sampled over 5000 accumulations.  Figure S1 shows both 𝑔(𝑟) functions. 

 

Figure S1.  The 𝑔(𝑟) functions for Dataset A obtained via standard Fourier transform using the full 

range of 𝑄-values for 𝑆(𝑄), and via real-space structure determination using the Dissolve package. 

  



2. Dataset B experimental methods 

Pressure was applied using a custom-constructed piston-cylinder diamond anvil cell (DAC) equipped 

with 600 μm diameter culets and a 2𝜃 = 20° opening on the cylinder (downstream) side.  This 

opening corresponds to 𝑄 = 5.15 Å-1.  Data collected at higher 𝑄 than this were not utilized in our 

analysis, therefore it was not necessary to collect / compute a transmission function for the DAC 

seats as was done in ref. [2].  An indented stainless steel gasket was utilized, in which a hole was 

prepared using a custom-constructed spark eroder device.  Argon (BOC zero grade, 99.999%) was 

loaded cryogenically by placing the DAC in a small chamber into which Argon was pumped after 

purging the chamber of air.  The chamber was placed in a bath of liquid nitrogen in order to 

condense the Argon, and the screws were turned to close the DAC whilst it was completely 

immersed in liquid Argon. 

Synchrotron X-ray diffraction data were collected at Diamond Light Source beamline I15 using a 29.3 

keV X-ray beam.  The beam was focussed to 9 μm x 6 μm (FWHM) and a Pilatus CdTe 2M detector was 

used.  The sample-to-detector distance (approx. 424 mm) and beam energy were calibrated using a 

CeO2 standard.  Typical data acquisition time was 30 s.  Azimuthal integration was performed using 

Dioptas v0.5.5 software.  Detector artefacts, Bragg peaks from diamond anvils and shadows from 

beamstop and other auxiliary equipment were manually masked, and all detector images were 

processed with the same mask to enable a subtraction of individual patterns.  “The X-ray beam was 

aligned to the centre of the sample chamber before collecting each pattern”. 

Pressure was measured using the Ruby photoluminescence method.  Due to the need to collect many 

closely spaced datapoints, pressure was measured before and after each X-ray diffraction pattern was 

collected and data were rejected if the change in pressure during data collection exceeded 30 MPa. 

The experiment on I15 in which these data were collected was setup at short notice following an 

altnernate experiment being aborte for technical reasons.  As a result, the I15 beamline was not setup 

with the optimum X-ray wavelength, geometry and detector for this experiment. 

 

3. Dataset B normalization 

In pressure points comprising dataset B 𝐼𝑟𝑎𝑤(𝑄), the raw coherent scattering intensity from the 

sample, was obtained from the total raw scattering intensity by subtraction of a background 

originating from either the empty DAC or the DAC containing Ar in the solid state.  Figure S2 below 

shows examples of both these calculations. 



 

 

Figure S2.  Examples of background subtraction on dataset B to obtain 𝐼𝑟𝑎𝑤(𝑄) by subtraction of the 

background signal from Ar confined in the DAC in the solid state (upper) and from the empty DAC 

(lower). 

Dataset B was normalized according to equation 3, reproduced below: 

𝑆(𝑄) =
𝐼𝑟𝑎𝑤(𝑄)

𝑁′𝑓(𝑄)2
 

The parameter 𝑁′ is a fitting parameter to ensure that 𝑆(𝑄) → 1 in the high 𝑄 limit, whilst 𝑓(𝑄) is 

the atomic form factor.  The most commonly used set of values are those given in the International 

Tables for Crystallography [1].  We used the linear interpolations between the values given in the 



International Tables for Crystallography shown in figure S3.  In practice, performing background 

subtraction that produced reasonable outcomes at all 𝑄 without obtaining negative 𝐼𝑟𝑎𝑤(𝑄) for some 

low values of 𝑄 was challenging.  The data were therefore shifted by a small constant (less than 5% of 

the peak value) to ensure that the lowest value of 𝑆(𝑄) was at least zero. 

Figure S4 shows, for example data at 830 MPa, the stages in the normalization process beginning with 

𝐼𝑟𝑎𝑤(𝑄).  Firstly, 𝐼𝑟𝑎𝑤(𝑄) is divided by 𝑓(𝑄)2, after which it is normalized to 1 in the high-Q limit.  

Since the value of with 𝐼𝑟𝑎𝑤(𝑄) is still oscillating at 𝑄 = 5 Å-1, this was done by normalizing such that 

the average value of the second peak (at 𝑄 ≈ 4 Å-1), and the trough following it, was 1. 

 

 

Figure S3. Tabulated f(Q) data from the Intl. Tables for Crystallography [1] (points) and our 

interpolation (line). 



 

Figure S4.  Stages in the normalization process to obtain 𝑆(𝑄) from 𝐼𝑟𝑎𝑤(𝑄) at 830 MPa.  The division 

by 100 applied to 𝐼𝑟𝑎𝑤(𝑄) and (𝐼𝑟𝑎𝑤(𝑄)/𝑓(𝑄)
2) was performed solely to enable presentation on this 

figure alongside 𝑓(𝑄) and 𝑆(𝑄), and was not part of the normalization process.  The arrows indicate 

the points selected in the last stage of the normalization process: Ensuring that the average value of 

S(Q) between these points is 1. 

 

4. Phase diagrams 

Figure S5 (below) shows the phase diagrams of  fluid Ar (from ref. [18]) and Kr (compiled for this work 

using the methodology presented in ref. [18]), with the P,T points marked at which the different 

datasets in the present work were collected. 



 

 

Figure S5. (a) Phase diagram of Ar (from ref. [18] with the P,T points for datasets A and B added) and 

panel (b) Phase diagram of Kr (compiled using the methodology of ref. [18] with the P,T points for 

datasets C and D added). 

 

5. Code documentation 

The Fourier transform (FT) results described in the text were obtained using our own code as 

documented below.  We used Octave (an open-source version of Matlab) throughout.  There are three 

separate scripts, one for the standard Fourier transform and one for each modification function.  The 

code calculates a FT using the full range of the input data (all 𝑄 values) and a FT using Q values only 

up to a certain lower cutoff.  The scripts for the modification functions are based closely on the script 

for the standard Fourier transform so we will document this first.  All three scripts are available to 

download with this supplementary information. 



 

5.1 Standard Fourier transform 

The 𝑆(𝑄) input data should be provided in tab separated variable format where the first column is 

filled with the 𝑄-values (in Å-1) and the second column with the 𝑆(𝑄) values.  All text such as column 

headings must be deleted from the input data file by the user prior to running the script.  The data 

should be stored in the same directory as the script, in which case to load the data it is simply 

necessary to write the file name including extension in line 4 and the file name without the extension 

in line 5. 

The following additional data need to be entered by the user: 

• Line 6, the number density of particles p in at./m3. 

• Line 7 Qmax, the row number in the 𝑆(𝑄) input data file at which to stop for the FT using the 

cutoff at lower Q. 

• Line 9 n, the number of (equally spaced) values of r at which to calculate 𝑔(𝑟). 

• Line 10, r_max, the maximum value of r (in metres) to which to calculate 𝑔(𝑟).  

The remaining variables are as follows: 

Name Purpose 

Q_values 
Array of 𝑄 values (read from file in Å-1, converted immediately to m-1 when array 
is filled). 

S_Q_values Array of normalized 𝑆(𝑄) values read from file. 

r_values 

The array of n values of r (in metres) for which 𝑔(𝑟) is to be calculated, starting 
at r_spacing (since equation 4 in the main text fails at 𝑟 = 0) and ending at 
r_max. 

r_spacing the spacing between r values. 

Q_values_cutoff Equivalent of Q_values but containing data only up to Q_values(Qmax). 

S_Q_values_cutoff Equivalent of S_Q_values but containing data only up to S_Q_values(Qmax). 

raw_g_r Array of all (unnormalized) [𝑔(𝑟) − 𝑔0] values for the FT of the full dataset. 

raw_g_r_cutoff Equivalent to raw_g_r but for the FT of the data up to Q_values(Qmax). 

norm_g_r Normalized g(r) for full FT. 

norm_g_r_cutoff Ditto but for cutoff FT (same number of r values in both cases). 

Q_value Value of Q at the cutoff point. 

CN Calculated co-ordination number (CN) with full range 𝑔(𝑟). 

CN_cutoff 
Calculated co-ordination number (CN) with 𝑔(𝑟) obtained with 𝑆(𝑄) cutoff at 
lower Q-value. 

 

Table S1.  Names of principal non-user-defined variables in the code for the standard Fourier 

transform. 

The code obtains the normalized 𝑔(𝑟) and the co-ordination number (CN) for the full set of 𝑆(𝑄) data 

and the data cutoff at the lower value of 𝑄  in the following steps.  Firstly, the equation below 

(equation 4 from the main text rearranged and with upper and lower limits inserted in the integral) is 

used to calculate [𝑔(𝑟) − 𝑔0]. 

𝑔(𝑟) − 𝑔0 =
1

2𝜋2𝑟2
∫ 𝑄𝑟[𝑆(𝑄) − 1]𝑠𝑖𝑛(𝑄𝑟)𝑑𝑄
𝑄𝑚𝑎𝑥

𝑄𝑚𝑖𝑛

 



This is performed for each value of 𝑟 using the trapz numerical integration function.  The parameter 

𝑄𝑚𝑖𝑛 is simply the minimum value of 𝑄 for which 𝑆(𝑄) experimental data is provided. 

The same procedure is used to normalize the 𝑔(𝑟) functions for both the full and reduced range in 𝑄-

values.  A constant is added to the value of 𝑔(𝑟) at all 𝑟 to ensure that 𝑔(𝑟𝑚𝑖𝑛) = 0 (essentially just 

removing the arbitrary constant 𝑔0).  Then the 𝑔(𝑟) data at all 𝑟 are divided by 𝑔(𝑟𝑚𝑎𝑥).  Clearly, this 

procedure will not work if the ripples in 𝑔(𝑟) at low 𝑟 result in 𝑔(𝑟𝑚𝑎𝑥) < 𝑔(𝑟𝑚𝑖𝑛) so first the code 

checks for this and displays an error message if this is the case.  Clearly it would be possible to contrive 

other, more complex, procedures for normalizing 𝑔(𝑟)  in this case but we suggest that if this is 

required then the data are not worth the effort. 

The final calculation performed is the further integration to obtain the CN for both normalized g(r) 

functions using the equation below: 

CN = 4𝜋𝜌 ∫ 𝑟2𝑔(𝑟)𝑑𝑟

𝑟2

𝑟1

 

Mathematically, the CN calculation consists of integrating 𝑟2𝑔(𝑟) from the minimum before the first 

peak (𝑟1) to the minimum after the first peak (𝑟2).  The code locates the highest peak in 𝑔(𝑟), then 

locates the minima on each side and integrating using the trapz numerical integration function.  In 

contrast to the theoretical definition of the CN (an integration starting from 𝑟 = 0, equation 14 in the 

main text) the finite lower limit on 𝑟 has to be included when analysing 𝑔(𝑟) originating from FT of 

real experimental data to avoid including the area of unphysical ripples at very low 𝑟 in the calculation. 

If the unphysical ripples in 𝑔(𝑟) caused by the FT process cause the first physically meaningful peak to 

not be the highest peak, then the procedure will fail.  It is the responsibility of the user to check this by 

viewing the graphs of the relevant functions produced by the code. 

The CNs calculated from both 𝑔(𝑟) functions are outputted in variables that the user can read in the 

Octave workspace, and the following outputs are saved to file: 

• The raw [𝑔(𝑟) − 𝑔0] and normalized 𝑔(𝑟) functions obtained with the full 𝑆(𝑄) dataset. 

• The normalized g(r) function obtained with the 𝑆(𝑄) dataset over a reduced range in 𝑄. 

The following figures are created: 

• Figure 1.  The 𝑆(𝑄) that was provided, over the full range in 𝑄. 

• Figure 2.  The raw [𝑔(𝑟) − 𝑔0] functions obtained from the FT of the full 𝑆(𝑄) dataset and the 

dataset over a reduced range in 𝑄. 

• Figure 3.  The normalized 𝑔(𝑟) functions obtained from the FT of the full 𝑆(𝑄) dataset and 

the dataset over a reduced range in 𝑄. 

 

5.2 Fourier transform with Lorch modification function 

In this case, when the Fourier transform is performed to obtain [𝑔(𝑟0) − 𝑔0] equation 6 from the main 

text is utilized, but with a finite lower limit 𝑄𝑚𝑖𝑛 similarly to the direct FT described above.  𝑄𝑚𝑎𝑥 is 

the maximum value of Q for which S(Q) data are provided for the FT process, and ∆ is obtained from 

𝑄𝑚𝑎𝑥 using ∆= 𝜋 𝑄𝑚𝑎𝑥⁄  as justified in the main text. 

 



5.3 Fourier transform with Soper-Barney modification function 

In this case, when the Fourier transform is performed to obtain [𝑔(𝑟0) − 𝑔0] equation 11 from the 

main text is utilized, but with a finite lower limit 𝑄𝑚𝑖𝑛 similarly to the direct FT described above.  𝑄𝑚𝑎𝑥 

is the maximum value of 𝑄 for which 𝑆(𝑄) data are provided for the FT process, and ∆ is obtained 

from 𝑄𝑚𝑎𝑥 using ∆= 4.49 𝑄𝑚𝑎𝑥⁄  as justified in the main text. 

 

6. Code 

It should be possible to copy and paste this code directly into Octave or Matlab.  Each code is a 

separate self-contained script.  The code is also available on request in Octave (.m) format. 

 

6.1 Standard Fourier transform 

## STEP 1: LOAD S(Q) DATA ## 

 

clear variables 

load Ar_335977.txt; 

data_file = Ar_335977; 

p = 1.75132E+27; #number density of particles 

Qmax = 50; #Q cutoff variables 

 

Q_values = data_file(:,1)*10^10; #Q 

S_Q_values = data_file(:,2); #S(Q) 

n = 1000; #number of points to be calculated 

r_max = 20*10^-10; 

r_spacing = r_max/n; 

r_values = r_spacing:r_spacing:r_max; #array of r values 

 

Q_value = Q_values(Qmax)*10^-10; #Just for readout, the actual value of Q cutoff in A^-1 

Q_values_cutoff = []; 

S_Q_values_cutoff = []; 

 

for i = 1:Qmax #input values into Q for cutoff integral 

  Q_values_cutoff = [Q_values_cutoff;Q_values(i)]; 

  S_Q_values_cutoff = [S_Q_values_cutoff;S_Q_values(i)]; 

end 

 

## STEP 2: FINDING G(R) - G0 ## 

raw_g_r = []; #g(r) - g0 with full range 

raw_g_r_cutoff = []; #g(r) - g0 with cut-off 

 

for i = 1:length(r_values) #we integrate for all values of r 

  #the full-range integral 

  F = Q_values.*(S_Q_values-1).*sin(Q_values*r_values(i)); 

  g = trapz(Q_values,F)*2/pi; #integrate 

  gr = g/(4*pi*r_values(i)); #the integral gives 4*pi*r*[g(r) - g0], so divide by 4*pi*r 

  raw_g_r = [raw_g_r;gr]; 

  #the cut-off integral 



  F = Q_values_cutoff.*(S_Q_values_cutoff-1).*sin(Q_values_cutoff*r_values(i)); 

  g = trapz(Q_values_cutoff,F)*2/pi; #integrate 

  gr = g/(4*pi*r_values(i)); #the integral gives 4*pi*r*[g(r) - g0], so divide by 4*pi*r 

  raw_g_r_cutoff = [raw_g_r_cutoff;gr]; 

end 

 

## STEP 3: NORMALIZATION ## 

 

norm_g_r = []; #normalized g(r) for full range 

norm_g_r_cutoff = []; #normalized g(r) for cut-off 

 

if (raw_g_r(1) > raw_g_r(length(r_values))) 

  disp('Full range g(r) data cannot be normalized'); 

end 

 

if (raw_g_r_cutoff(1) > raw_g_r_cutoff(length(r_values))) 

  disp('Qmax cutoff g(r) data cannot be normalized'); 

end 

 

for i = 1:length(r_values) 

  norm_g_r = [norm_g_r;(raw_g_r(i) - raw_g_r(1))]; 

  norm_g_r_cutoff = [norm_g_r_cutoff;(raw_g_r_cutoff(i) - raw_g_r_cutoff(1))]; 

end 

 

for i = 1:length(r_values) 

  norm_g_r(i) = norm_g_r(i) / norm_g_r(length(r_values)); 

  norm_g_r_cutoff(i) = norm_g_r_cutoff(i) / norm_g_r_cutoff(length(r_values)); 

end 

 

## STEP 4: CO-ORDINATION NUMBER ## 

 

#CN: full range 

int_table = []; 

Max_Peak = 0; 

max_peak_pos = 1; #Position of first Cshell max 

coord_max = 1; #Upper limit for CN integration 

coord_min = 1; #Lower limit for CN integration 

func = norm_g_r; 

 

for i = 2:length(r_values) #locate tallest peak 

  if (func(i) > Max_Peak) 

    Max_Peak = func(i); 

    max_peak_pos = i; 

  end 

end 

 

#see where minimum is after tallest peak 

Lowest = func(max_peak_pos); 

 

for i = (max_peak_pos+1):length(r_values) 

  if (Lowest > func(i)) #i.e. gradient is negative 



    Lowest = func(i); 

    coord_max = i; 

  else 

    break 

  end 

end 

 

#See where minimum is before tallest peak 

for i = 2:(max_peak_pos-1) 

    if (func(i-1) > func(i)) #So it sets coord_min if there is a negative gradient 

      coord_min = i; 

    endif 

end 

 

for i = coord_min:coord_max #Num should be at the point of the lowest peak 

  int_table = [int_table, (r_values(i)^2).*norm_g_r(i)]; #get sets of data points for CN integral 

end 

 

area = trapz(r_values(coord_min:coord_max),int_table); #integrate 

CN = 4*pi*p*area; 

 

#CN: cutoff range 

int_table = []; 

Max_Peak = 0; 

max_peak_pos = 1; #Position of first Cshell max 

coord_max = 1; #Upper limit for CN integration 

coord_min = 1; #Lower limit for CN integration 

func = norm_g_r_cutoff; 

 

for i = 2:length(r_values) #locate tallest peak 

  if (func(i) > Max_Peak) 

    Max_Peak = func(i); 

    max_peak_pos = i; 

  end 

end 

 

#see where minimum is after tallest peak 

Lowest = func(max_peak_pos); 

 

for i = (max_peak_pos+1):length(r_values) 

  if (Lowest > func(i)) #i.e. gradient is negative 

    Lowest = func(i); 

    coord_max = i; 

  else 

    break 

  end 

end 

 

#See where minimum is before tallest peak 

for i = 2:(max_peak_pos-1) 

    if (func(i-1) > func(i)) #So it sets coord_min if there is a negative gradient 



      coord_min = i; 

    endif 

end 

 

for i = coord_min:coord_max #Num should be at the point of the lowest peak 

  int_table = [int_table, (r_values(i)^2).*norm_g_r_cutoff(i)]; #get sets of data points for CN integral 

end 

 

area = trapz(r_values(coord_min:coord_max),int_table); #integrate 

CN_cutoff = 4*pi*p*area; 

 

## EXPORTING AND GRAPHS ## 

#Make a descending list of r values so we can save them in a text document 

r_list = []; 

 

for i = 1:length(r_values) 

  r_list = [r_list;r_values(i)*10^10]; 

end 

 

RDFdata = [r_list norm_g_r]; 

RDFdata2 = [r_list raw_g_r]; 

CutOffdata = [r_list norm_g_r_cutoff]; 

save Std_norm_RDF.txt RDFdata; 

save Std_raw_RDF.txt RDFdata2; 

save Std_norm_cutoff_RDF.txt CutOffdata; 

 

figure(1) 

plot(Q_values,S_Q_values) 

xlabel('Q') 

ylabel('S(Q)') 

title('Structure Factor') 

grid on 

box on 

 

figure(2) 

plot(r_values,raw_g_r,'r',r_values,raw_g_r_cutoff,'b') 

legend('Max Q','Q Cutoff') 

xlabel('r') 

ylabel('G(r) - G0') 

title('Radial Distribution Function: Fourier transform') 

grid on 

box on 

 

figure(3) 

plot(r_values,norm_g_r,'r',r_values,norm_g_r_cutoff,'b') 

legend('Max Q','Q Cutoff') 

xlabel('r') 

ylabel('g(r)') 

title('Normalised g(r)') 

grid on 

box on 



 

6.2 Fourier transform with Lorch modification 

## STEP 1: LOAD S(Q) DATA ## 

 

clear variables 

load Ar_335953.txt; 

data_file = Ar_335953; 

p = 2.5924E28; #number density of particles 

Qmax = 870; #Q cutoff variables 

 

Q_values = data_file(:,1)*10^10; #Q 

S_Q_values = data_file(:,2); #S(Q) 

n = 1000; #number of points to be calculated 

r_max = 20*10^-10; 

r_spacing = r_max/n; 

r_values = r_spacing:r_spacing:r_max; #array of r values 

 

Q_value = Q_values(Qmax)*10^-10; #Just for readout, the actual value of Q cutoff in A^-1 

Q_values_cutoff = []; 

S_Q_values_cutoff = []; 

 

delta = pi/Q_values(length(Q_values)); 

cutoff_delta = pi/Q_values(Qmax); 

 

for i = 1:Qmax #input values into Q for cutoff integral 

  Q_values_cutoff = [Q_values_cutoff;Q_values(i)]; 

  S_Q_values_cutoff = [S_Q_values_cutoff;S_Q_values(i)]; 

end 

 

## STEP 2: FINDING G(R) - G0 ## 

raw_g_r = []; #g(r) - g0 with full range 

raw_g_r_cutoff = []; #g(r) - g0 with cut-off 

 

for i = 1:length(r_values) #we integrate for all values of r 

  #the full-range integral 

  F = Q_values.*(S_Q_values-

1).*sin(Q_values.*r_values(i)).*(sin(Q_values.*delta)./(Q_values.*delta)); 

  g = trapz(Q_values,F)*2/pi; #integrate 

  gr = g/(4*pi*r_values(i)); #the integral gives 4*pi*r*[g(r) - g0], so divide by 4*pi*r 

  raw_g_r = [raw_g_r;gr]; 

  #the cut-off integral 

  F = Q_values_cutoff.*(S_Q_values_cutoff-

1).*sin(Q_values_cutoff.*r_values(i)).*(sin(Q_values_cutoff.*cutoff_delta)./(Q_values_cutoff.*cutoff

_delta)); 

  g = trapz(Q_values_cutoff,F)*2/pi; #integrate 

  gr = g/(4*pi*r_values(i)); #the integral gives 4*pi*r*[g(r) - g0], so divide by 4*pi*r 

  raw_g_r_cutoff = [raw_g_r_cutoff;gr]; 

end 

 



## STEP 3: NORMALIZATION ## 

 

norm_g_r = []; #normalized g(r) for full range 

norm_g_r_cutoff = []; #normalized g(r) for cut-off 

 

if (raw_g_r(1) > raw_g_r(length(r_values))) 

  disp('Full range g(r) data cannot be normalized'); 

end 

 

if (raw_g_r_cutoff(1) > raw_g_r_cutoff(length(r_values))) 

  disp('Qmax cutoff g(r) data cannot be normalized'); 

end 

 

for i = 1:length(r_values) 

  norm_g_r = [norm_g_r;(raw_g_r(i) - raw_g_r(1))]; 

  norm_g_r_cutoff = [norm_g_r_cutoff;(raw_g_r_cutoff(i) - raw_g_r_cutoff(1))]; 

end 

 

for i = 1:length(r_values) 

  norm_g_r(i) = norm_g_r(i) / norm_g_r(length(r_values)); 

  norm_g_r_cutoff(i) = norm_g_r_cutoff(i) / norm_g_r_cutoff(length(r_values)); 

end 

 

## STEP 4: CO-ORDINATION NUMBER ## 

#CN: full range 

int_table = []; 

Max_Peak = 0; 

max_peak_pos = 1; #Position of first Cshell max 

coord_max = 1; #Upper limit for CN integration 

coord_min = 1; #Lower limit for CN integration 

func = norm_g_r; 

 

for i = 2:length(r_values) #locate tallest peak 

  if (func(i) > Max_Peak) 

    Max_Peak = func(i); 

    max_peak_pos = i; 

  end 

end 

 

#see where minimum is after tallest peak 

Lowest = func(max_peak_pos); 

 

for i = (max_peak_pos+1):length(r_values) 

  if (Lowest > func(i)) #i.e. gradient is negative 

    Lowest = func(i); 

    coord_max = i; 

  else 

    break 

  end 

end 

 



#See where minimum is before tallest peak 

for i = 2:(max_peak_pos-1) 

    if (func(i-1) > func(i)) #So it sets coord_min if there is a negative gradient 

      coord_min = i; 

    endif 

end 

 

for i = coord_min:coord_max #Num should be at the point of the lowest peak 

  int_table = [int_table, (r_values(i)^2).*norm_g_r(i)]; #get sets of data points for CN integral 

end 

 

area = trapz(r_values(coord_min:coord_max),int_table); #integrate 

CN = 4*pi*p*area; 

 

#CN: cutoff range 

int_table = []; 

Max_Peak = 0; 

max_peak_pos = 1; #Position of first Cshell max 

coord_max = 1; #Upper limit for CN integration 

coord_min = 1; #Lower limit for CN integration 

func = norm_g_r_cutoff; 

 

for i = 2:length(r_values) #locate tallest peak 

  if (func(i) > Max_Peak) 

    Max_Peak = func(i); 

    max_peak_pos = i; 

  end 

end 

 

#see where minimum is after tallest peak 

Lowest = func(max_peak_pos); 

 

for i = (max_peak_pos+1):length(r_values) 

  if (Lowest > func(i)) #i.e. gradient is negative 

    Lowest = func(i); 

    coord_max = i; 

  else 

    break 

  end 

end 

 

#See where minimum is before tallest peak 

for i = 2:(max_peak_pos-1) 

    if (func(i-1) > func(i)) #So it sets coord_min if there is a negative gradient 

      coord_min = i; 

    endif 

end 

 

for i = coord_min:coord_max #Num should be at the point of the lowest peak 

  int_table = [int_table, (r_values(i)^2).*norm_g_r_cutoff(i)]; #get sets of data points for CN integral 

end 



 

area = trapz(r_values(coord_min:coord_max),int_table); #integrate 

CN_cutoff = 4*pi*p*area; 

 

## EXPORTING AND GRAPHS ## 

#Make a descending list of r values so we can save them in a text document 

r_list = []; 

 

for i = 1:length(r_values) 

  r_list = [r_list;r_values(i)*10^10]; 

end 

 

RDFdata = [r_list norm_g_r]; 

RDFdata2 = [r_list raw_g_r]; 

CutOffdata = [r_list norm_g_r_cutoff]; 

save Lorch_norm_RDF.txt RDFdata; 

save Lorch_raw_RDF.txt RDFdata2; 

save Lorch_norm_cutoff_RDF.txt CutOffdata; 

 

figure(1) 

plot(Q_values,S_Q_values) 

xlabel('Q') 

ylabel('S(Q)') 

title('Structure Factor') 

grid on 

box on 

 

figure(2) 

plot(r_values,raw_g_r,'r',r_values,raw_g_r_cutoff,'b') 

legend('Max Q','Q Cutoff') 

xlabel('r') 

ylabel('G(r) - G0') 

title('Radial Distribution Function: Fourier transform') 

grid on 

box on 

 

figure(3) 

plot(r_values,norm_g_r,'r',r_values,norm_g_r_cutoff,'b') 

legend('Max Q','Q Cutoff') 

xlabel('r') 

ylabel('g(r)') 

title('Normalised g(r)') 

grid on 

box on 

 

6.3 Fourier transform with Soper-Barney modification 

## STEP 1: LOAD S(Q) DATA ## 

 

clear variables 



load Ar_335953.txt; 

data_file = Ar_335953; 

p = 2.5924E28; #number density of particles 

Qmax = 870; #Q cutoff variables 

 

Q_values = data_file(:,1)*10^10; #Q 

S_Q_values = data_file(:,2); #S(Q) 

n = 1000; #number of points to be calculated 

r_max = 20*10^-10; 

r_spacing = r_max/n; 

r_values = r_spacing:r_spacing:r_max; #array of r values 

 

Q_value = Q_values(Qmax)*10^-10; #Just for readout, the actual value of Q cutoff in A^-1 

Q_values_cutoff = []; 

S_Q_values_cutoff = []; 

 

delta = 4.49./Q_values(length(Q_values)); 

cutoff_delta = 4.49./Q_values(Qmax); 

 

for i = 1:Qmax #input values into Q for cutoff integral 

  Q_values_cutoff = [Q_values_cutoff;Q_values(i)]; 

  S_Q_values_cutoff = [S_Q_values_cutoff;S_Q_values(i)]; 

end 

 

## STEP 2: FINDING G(R) - G0 ## 

raw_g_r = []; #g(r) - g0 with full range 

raw_g_r_cutoff = []; #g(r) - g0 with cut-off 

 

for i = 1:length(r_values) #we integrate for all values of r 

  #the full-range integral 

  F = Q_values.*(S_Q_values-

1).*sin(Q_values.*r_values(i)).*(3./((Q_values.*delta).^3)).*(sin(Q_values.*delta)-

(Q_values.*delta).*cos(Q_values.*delta)); 

  g = trapz(Q_values,F)*2/pi; #integrate 

  gr = g/(4*pi*r_values(i)); #the integral gives 4*pi*r*[g(r) - g0], so divide by 4*pi*r 

  raw_g_r = [raw_g_r;gr]; 

  #the cut-off integral 

  F = Q_values_cutoff.*(S_Q_values_cutoff-

1).*sin(Q_values_cutoff.*r_values(i)).*(3./((Q_values_cutoff.*cutoff_delta).^3)).*(sin(Q_values_cuto

ff.*cutoff_delta)-(Q_values_cutoff.*cutoff_delta).*cos(Q_values_cutoff.*cutoff_delta)); 

  g = trapz(Q_values_cutoff,F)*2/pi; #integrate 

  gr = g/(4*pi*r_values(i)); #the integral gives 4*pi*r*[g(r) - g0], so divide by 4*pi*r 

  raw_g_r_cutoff = [raw_g_r_cutoff;gr]; 

end 

 

## STEP 3: NORMALIZATION ## 

 

norm_g_r = []; #normalized g(r) for full range 

norm_g_r_cutoff = []; #normalized g(r) for cut-off 

 

if (raw_g_r(1) > raw_g_r(length(r_values))) 



  disp('Full range g(r) data cannot be normalized'); 

end 

 

if (raw_g_r_cutoff(1) > raw_g_r_cutoff(length(r_values))) 

  disp('Qmax cutoff g(r) data cannot be normalized'); 

end 

 

for i = 1:length(r_values) 

  norm_g_r = [norm_g_r;(raw_g_r(i) - raw_g_r(1))]; 

  norm_g_r_cutoff = [norm_g_r_cutoff;(raw_g_r_cutoff(i) - raw_g_r_cutoff(1))]; 

end 

 

for i = 1:length(r_values) 

  norm_g_r(i) = norm_g_r(i) / norm_g_r(length(r_values)); 

  norm_g_r_cutoff(i) = norm_g_r_cutoff(i) / norm_g_r_cutoff(length(r_values)); 

end 

 

## STEP 4: CO-ORDINATION NUMBER ## 

 

#CN: full range 

int_table = []; 

Max_Peak = 0; 

max_peak_pos = 1; #Position of first Cshell max 

coord_max = 1; #Upper limit for CN integration 

coord_min = 1; #Lower limit for CN integration 

func = norm_g_r; 

 

for i = 2:length(r_values) #locate tallest peak 

  if (func(i) > Max_Peak) 

    Max_Peak = func(i); 

    max_peak_pos = i; 

  end 

end 

 

#see where minimum is after tallest peak 

Lowest = func(max_peak_pos); 

 

for i = (max_peak_pos+1):length(r_values) 

  if (Lowest > func(i)) #i.e. gradient is negative 

    Lowest = func(i); 

    coord_max = i; 

  else 

    break 

  end 

end 

 

#See where minimum is before tallest peak 

for i = 2:(max_peak_pos-1) 

    if (func(i-1) > func(i)) #So it sets coord_min if there is a negative gradient 

      coord_min = i; 

    endif 



end 

 

for i = coord_min:coord_max #Num should be at the point of the lowest peak 

  int_table = [int_table, (r_values(i)^2).*norm_g_r(i)]; #get sets of data points for CN integral 

end 

 

area = trapz(r_values(coord_min:coord_max),int_table); #integrate 

CN = 4*pi*p*area; 

 

#CN: cutoff range 

int_table = []; 

Max_Peak = 0; 

max_peak_pos = 1; #Position of first Cshell max 

coord_max = 1; #Upper limit for CN integration 

coord_min = 1; #Lower limit for CN integration 

func = norm_g_r_cutoff; 

 

for i = 2:length(r_values) #locate tallest peak 

  if (func(i) > Max_Peak) 

    Max_Peak = func(i); 

    max_peak_pos = i; 

  end 

end 

 

#see where minimum is after tallest peak 

Lowest = func(max_peak_pos); 

 

for i = (max_peak_pos+1):length(r_values) 

  if (Lowest > func(i)) #i.e. gradient is negative 

    Lowest = func(i); 

    coord_max = i; 

  else 

    break 

  end 

end 

 

#See where minimum is before tallest peak 

for i = 2:(max_peak_pos-1) 

    if (func(i-1) > func(i)) #So it sets coord_min if there is a negative gradient 

      coord_min = i; 

    endif 

end 

 

for i = coord_min:coord_max #Num should be at the point of the lowest peak 

  int_table = [int_table, (r_values(i)^2).*norm_g_r_cutoff(i)]; #get sets of data points for CN integral 

end 

 

area = trapz(r_values(coord_min:coord_max),int_table); #integrate 

CN_cutoff = 4*pi*p*area; 

 

## EXPORTING AND GRAPHS ## 



#Make a descending list of r values so we can save them in a text document 

r_list = []; 

 

for i = 1:length(r_values) 

  r_list = [r_list;r_values(i)*10^10]; 

end 

 

RDFdata = [r_list norm_g_r]; 

RDFdata2 = [r_list raw_g_r]; 

CutOffdata = [r_list norm_g_r_cutoff]; 

save Soper_norm_RDF.txt RDFdata; 

save Soper_raw_RDF.txt RDFdata2; 

save Soper_norm_cutoff_RDF.txt CutOffdata; 

 

figure(1) 

plot(Q_values,S_Q_values) 

xlabel('Q') 

ylabel('S(Q)') 

title('Structure Factor') 

grid on 

box on 

 

figure(2) 

plot(r_values,raw_g_r,'r',r_values,raw_g_r_cutoff,'b') 

legend('Max Q','Q Cutoff') 

xlabel('r') 

ylabel('G(r) - G0') 

title('Radial Distribution Function: Fourier transform') 

grid on 

box on 

 

figure(3) 

plot(r_values,norm_g_r,'r',r_values,norm_g_r_cutoff,'b') 

legend('Max Q','Q Cutoff') 

xlabel('r') 

ylabel('g(r)') 

title('Normalised g(r)') 

grid on 

box on 

 


