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Electric micromobility has the potential to transform the urban transportation system by offering increased 
personal mobility, whilst reducing congestion and air pollution. Standing electric scooters (e-scooters) are 
considered as the most popular mode of electric micromobility on our streets today and have seen a significant 
rise in numbers in recent years, both as part of the shared-use paradigm and through private ownership. However, 
safety concerns have proved a barrier to public acceptance, with one key safety concern being that e-scooters emit 
very low noise levels, resulting in a higher perceived level of risk by pedestrians. The issue of electric vehicle 
audibility is well studied within the context of electric cars and regulations are now in place that stipulate 
minimum sound levels for electric vehicles (EVs). To achieve these minimum sound levels, Acoustic Vehicle 
Alerting Systems (AVAS) are used, which provide increased audibility for pedestrians at low speeds. Currently, 
there are no regulations for micromobility AVAS and research into this topic is limited. In this paper, we consider 
the development of an e-scooter AVAS by investigating auditory detection rates of e-scooter alert sounds as a 
function of alert sound level, environmental noise level and distance. A listening experiment was conducted 
whereby participants were required to identify AVAS signals within a simplified environmental noise spectrum, 
presented in a randomised yes-no procedure, for a range of e-scooter AVAS conditions and environmental noise 
levels. Psychometric functions were subsequently derived, resulting in an understanding of auditory detection 
probabilities as a function of AVAS level, environmental noise level and distance. The presented results are an 
important step in the understanding of e-scooter safety measures and help establish minimum sound levels for 
e-scooter AVAS going forward.
1. Introduction

Due to technical advancements and the need for society to move to-

wards low emission transportation, the electric micromobility sector has 
witnessed a rise in popularity in recent years [1]. Electric micromobility 
has the potential to offer substantial benefits, such as a decrease in air 
pollution and enhanced personal mobility. Electric scooters (e-scooters) 
and electric bikes (e-bikes) are examples of micromobility modes that 
might significantly reduce traffic congestion, create an environmentally 
friendly transportation system, provide affordable personal transporta-

tion, and improve accessibility [2]. Another advantage of electric mi-

cromobility is that electric drivetrains typically generate reduced noise 
levels in comparison to internal combustion engine vehicles (ICEVs) 
[3], thereby offering the potential of reduced noise pollution in urban 
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environments. As a consequence, e-scooter usage figures have seen a 
significant increase in Europe in recent years, with a rise from 360,000 
in 2021 to 520,000 shared e-scooters in 2022 [4,5].

Despite the potential benefits of a transportation ecosystem that in-

cludes electric micromobility, there are still challenges to address. A 
study conducted by the UK Department for Transport revealed that 
53% of respondents cited safety concerns as a drawback of e-scooters 
[6] and a comprehensive study on perceptions of an e-scooter trial in 
Greater Manchester revealed that 45% of respondents had felt unsafe 
when walking as a result of an e-scooter rider [7]. Moreover, according 
to UK Government national statistics on e-scooter-related traffic colli-

sions, there has been a significant increase in casualties, with 1,359 
reported in 2021 compared to 484 in 2020 [8]. These statistics are 
based on the UK Government’s definition of an ‘e-scooter’, which dif-
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ferentiates them from other two-wheeled electric vehicles by specifying 
a top speed limit of 12.5 mph (20 km/h), a maximum weight of 35 
kg, and the requirement to accommodate one standing person without 
seating [9].

Due to the aforementioned lower noise levels of electric drivetrains 
compared to ICEVs, the uptake of electric micromobility modes and 
electric vehicles (EVs) has raised safety concerns for pedestrian safety, 
especially for individuals who are blind or partially sighted. A range of 
research has been conducted on this topic for over ten years, focusing on 
EVs [3,10–13], with recent attention given to micromobility [14]. One 
study highlighted that the risk of road traffic near-misses and accidents 
involving pedestrians was around 25% more likely when comparing 
EVs with no alert sounds to ICEVs due to their inherently lower noise 
levels [15]. Similarly, in the context of electric micromobility, Walton 
et al. [14] showed that without additional alert sounds, e-scooters are 
typically inaudible in typical urban soundscapes.

To address these safety concerns relating to audibility, Acoustic Ve-

hicle Alerting Systems (AVAS) are used. The development of AVAS for 
EVs followed from early research addressing the safety of blind pedes-

trians and quieter vehicles [11,12]. Several standards now exist that 
specify the minimum sound requirements for quiet-running vehicles 
[16–18], such as UNECE Regulation 138. According to this regulation, 
AVAS sound levels must meet minimum requirements in one-third oc-

tave bands ranging from 160 Hz to 5 kHz. Compliance requires meeting 
the minimum levels in at least two bands, with one band below or at 
1600 Hz. The required AVAS operation speed typically extends up to 20 
km/h, as above this speed the dominance of rolling and aerodynamic 
noise leads to a negligible difference in noise levels between EVs and 
ICEVs [3]. Additionally, AVAS must vary proportionally with speed, in-

creasing by an average of at least 0.8% per 1 km/h within the range of 
5 km/h to 20 km/h [16].

Whilst current AVAS regulations for quiet running vehicles specify 
minimum levels within one-third octave frequency bands, there is still 
scope for a wide range of AVAS sounds to be designed. It is desirable 
that AVAS sounds i) be sufficiently detectable for pedestrians above 
typical soundscapes, ii) should not cause undue noise pollution and an-

noyance within the environment, iii) should ideally not detract from 
the overall product experience, iv) should reflect the operational state 
of the vehicle, including speed, location and acceleration, and, v) align 
with product branding of the vehicle manufacturer / operator.

Balancing detectability and acceptability is of key interest when de-

signing AVAS sounds, and indeed a range of previous studies have inves-

tigated detectability and annoyance of specific AVAS sound characteris-

tics [14,19–24]. Parizet et al. [19] sought to create alerting sounds that 
were easily audible, whilst limiting annoyance, as part of the eVADER 
project (electric Vehicle alarm for Detection and Emergency Response). 
Numerous parameters were used to create the sounds, such as the num-

ber of harmonics, the amplitude modulation (AM), and the frequency 
modulation (FM), and the efficiency of each was assessed using a de-

tection task in a simulated pass-by scenario. It was discovered that the 
alert sounds with the fewest harmonics, without FM, and with promi-

nent and erratic AM had the quickest reaction times. High degrees of 
detectability were found to be connected with high levels of unpleasant-

ness in an extension of this study [20] that looked at how the efficiency 
of each alert sound was related to its perceived unpleasantness. In ad-

dition to taking the masking effect of background noise into account, 
Lee et al. [22] also addressed the trade-off between detectability and 
acceptance for AVAS sounds. Amplitude modulated signals, as in [19], 
offered the best results in terms of annoyance and detectability.

Walton et al. [14] explored the performance of AVAS characteris-

tics in the context of e-scooter detection and annoyance. Simulations of 
e-scooter passes were presented over a three-dimensional loudspeaker 
array and reaction times and annoyance ratings were gathered. By plot-

ting detection distance versus annoyance, stimuli could be evaluated 
within a perceptual space so as to optimise detectability and annoyance. 
2

Whilst detectability and annoyance were seen to be highly correlated, 
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a cluster of stimuli offered good detectability with relatively low an-

noyance ratings. These sounds were characterised by sine tones with 
components of 400, 600 and 800 Hz, and with amplitude modulation. 
Furthermore, an impulsive 1 kHz tone at a rate of 7 Hz was also seen 
to be effective. This suggests that modulated or impulsive tones with 
frequency content in the 800 Hz - 1 kHz range, and with sine type char-

acteristics, may provide optimal micromobility AVAS sounds.

Whilst identifying appropriate sound characteristics is crucial for 
optimising AVAS detectability and annoyance, so is identifying appro-

priate emission levels. Hsieh et al. [25] investigated auditory thresholds 
for low-, medium-, and high-frequency AVAS sounds for EVs, by means 
of a “yes-no” forced choice auditory detection experiment. Here, the 
low- mid- and high- frequency AVAS sounds were in the ranges 160 -
1250 Hz, 315 - 2500 Hz, and 630 - 5000 Hz respectively. The indepen-

dent variables of AVAS sound, AVAS level, environmental noise level 
and distance were investigated and detection probabilities were subse-

quently calculated by means of logistic regression analysis. Out of the 
AVAS sounds tested, the high frequency sound offered increased de-

tectability and the detection rate of a 51 dBA AVAS sound (15.3%) was 
significantly higher than that of a 46 dBA sound (6.7%) for the high 
frequency condition, when averaged across the other variables. It was 
reported, however, that rates of detection were less than 20% for all 
experimental conditions.

In the case of electric micromobility, it could be argued that speci-

fying an appropriate AVAS emission level is even more important than 
for EVs, as there is no structure to provide sound insulation between 
AVAS loudspeaker and vehicle user. So as to increase acceptability for 
micromobility users, it is paramount to specify the lowest AVAS sound 
necessary to sufficiently alert pedestrians in a given context. To achieve 
this, an understanding of detection probability is required, for a range of 
AVAS sounds, AVAS levels, environmental noise levels and pedestrian 
distance. The objective of this paper is to investigate the detectability 
of a series of e-scooter alerting sounds as a function of these variables. 
Whilst previous research has focused on detection probabilities for EV 
AVAS sounds spanning low, medium and high frequency characteristics, 
the present paper focuses on micromobility AVAS sounds (including as-

sociated baseline noise profiles) spanning continuous, impulsive and 
mixed characteristics (i.e. a combination of both continuous and impul-

sive characteristics). To achieve this, a listening experiment has been 
conducted whereby participants were required to identify AVAS signals 
within a simplified environmental noise spectrum, presented in a ran-

domised yes-no procedure, for a range of e-scooter AVAS conditions, 
environmental noise levels and distances. Psychometric functions were 
subsequently derived, resulting in an understanding of auditory detec-

tion probabilities as a function of AVAS level, environmental noise level 
and distance.

2. Methods

The listening experiment presented in this paper was conducted as 
a laboratory-based study within a dedicated listening room at The Uni-

versity of Salford. Participants were required to listen to stimuli over 
headphones, which consisted of target signals (AVAS sounds) in the 
presence of masking environmental noise. After each stimuli presenta-

tion, participants were required to make a binary yes-no response on 
whether they heard the target signal within the noise. The independent 
variables studied were AVAStype, AVASlevel, environmental noise level 
(Environment) and distance from e-scooter (Distance), as further intro-

duced in the following sections.

2.1. Ethical approval

Prior to conducting the subjective experiment, the following proce-

dure and design was approved by the Ethics Committee of the Univer-
sity of Salford, UK. Informed consent was obtained from all participants 
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Fig. 1. Normalized road traffic noise spectrum as reported in BS EN 1793-3 
[29].

involved in the study and all methods were carried out in accordance 
with relevant guidelines and regulations.

2.2. Experimental design

The listening experiment utilised a “yes-no” method, which is a pop-

ular paradigm in auditory signal detection experiments [26,27]. Within 
the “yes-no” procedure, each trial corresponds to a single target signal 
within the presence of background noise. After each signal presenta-

tion, participants are required to respond by selecting either yes or no, 
depending upon if they detected the target signal.

The user interface was implemented with the HULTI-GEN listen-

ing test interface generator [28], which uses the Cycling ’74 MAX/MSP 
software package. Each participant completed a total of 108 yes-no rat-

ings, split into 3 stimuli groups of 36, which included combinations of 
the variables AVASlevel, Environment and Distance for each AVAStype. 
There was an optional short break between each stimuli group. Upon 
selecting Play, a 5 second sample of environmental noise commenced 
playback, with a target AVAS signal present for the final 3 seconds of 
each sample, including a 10 ms fade-in and fade-out. Participants were 
then asked “Was there an alert sound present?”, with Yes and No buttons 
available.

The independent variables studied were AVAStype (Scont, Smix, Simp), 
AVASlevel (56, 58, 60, 62, 64, 66 dB 𝐿AFmax at 2 m), Environment (50, 
55, 60 dB 𝐿Aeq) and Distance between e-scooter and pedestrian (5, 
10 m). Each stimuli group of 36 trials consisted of a single AVAStype

with all combinations of other variables. The order of stimuli groups 
was balanced across participants and all stimuli within each group was 
randomised. A short training section was presented prior to the main 
experiment, whereby participants completed a small number of detec-

tion tasks for each AVAStype, so that participants were familiar with the 
procedure and with each sound.

2.3. Environmental noise

A simplified environmental noise spectrum was used as a masker 
during the experiment, as based on the normalised traffic noise spec-

trum as specified in the standard BS EN 1793-3 [29]. By using a sim-

plified urban noise spectrum, more robust and consistent detectability 
threshold data can be achieved, in comparison to using audio record-

ings of urban soundscapes, which are typically more time-varying in 
nature. The synthesised road traffic noise spectrum was implemented 
via filtered pink noise to achieve the spectrum presented in Fig. 1. This 
spectrum was then calibrated to overall broadband levels of 50 dB, 55 
dB, and 60 dB 𝐿Aeq, which represent a range of typical urban noise 
3

levels.
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Table 1

Sound quality metrics of fluctuation strength and impulsiveness 
for the AVAS sounds used within the experiment.

AVAS Fluctuation Strength (vacil) Impulsiveness (IU)

Continuous 0.07 0.35

Impulsive 1.76 1.13

Mixed 0.06 0.32

2.4. Stimuli

2.4.1. AVAS sound design

Previous research has highlighted a range of considerations for 
AVAS sound design, including accounting for human frequency sen-

sitivity [30] which peaks between 1 kHz and 5 kHz, accommodating 
individuals with high frequency hearing loss by including components 
lower than 1 kHz [30], and avoiding components lower than 200 Hz 
so as to limit unwanted noise propagation over long distances and 
intrusion through typical building envelopes [31]. AVAS sounds with 
prominent amplitude modulation and a small number of harmonics 
have been shown to optimise detectability and annoyance [19]. With 
regards to temporal characteristics, both impulsive and continuous type 
AVAS sounds have been shown to offer good detectability performance 
[14].

In this study, 3 AVAS sounds (AVAStype) were tested with the spe-

cific objective of comparing detectability performance of impulsive and 
continuous type AVAS sounds. In terms of perception, impulsive sounds 
are characterised by a series of short, repeated impulses with a rapid 
attack and delay, whereas continuous sounds refer to those which are 
perceived as a chord and have no perceivable attack. The three AVAS 
sounds were generated using software synthesizers within a digital au-

dio workstation and are based around the key considerations for AVAS 
design as discussed above. Further details are outlined below and spec-

trograms are presented in Fig. 2:

• Scont - Continuous AVAS sound based around frequency compo-

nents of 478 Hz, 728 Hz, 956 Hz and 1433 Hz, and an amplitude 
modulation rate of 4.9 Hz.

• Simp - Impulsive AVAS sound based around frequency components 
of 478 Hz, 716 Hz, 957 Hz and 1434 Hz, and an impulse rate of 
4.9 Hz.

• Smix - Combined continuous and impulsive AVAS sound using Scont

and an impulsive element, with the same frequency components as 
above, and an impulse rate of 1.15 Hz.

2.4.2. Sound quality metrics

To objectively quantify the differences between the AVAS sounds, 
the Sound Quality Metrics (SQMs) of fluctuation strength (vacil) and 
impulsiveness (IU) were calculated using HEAD Acoustics ArtemiS Suite 
12.5 software, as based on the hearing model given by Sottek [32]. 
Fluctuation strength quantifies subjective perception of amplitude mod-

ulation of a sound up to approximately 25 Hz, with peak values cor-

responding to modulation at 4 Hz. Impulsiveness is a measure of the 
perception of rapid and large signal level fluctuations, with values in-

creasing up to an impulse rate of approximately 10 Hz. As well as being 
related to impulse rate, impulsiveness is related to impulse exagger-

ation, impulse width and impulse function slope. Prior to the SQM 
calculations, the AVAS sounds were processed with the auralisation 
procedure at a pedestrian to e-scooter distance of 5 m (refer to the fol-

lowing section) and therefore also included the baseline e-scooter noise 
profile.

As presented in Table 1, the fluctuation strength and impulsiveness 
values for AVAS sound Simp are notably higher than for Smix and Scont, 

as expected due to the nature of the sound. The SQM values for Scont and 
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Fig. 2. Spectrograms for AVAS stimuli Scont (a), Simp (b) and Smix (c). Colour represents relative amplitude in decibels, y-axis represents frequency (Hz), and x-axis 
represents time (s). The spectrograms were computed with the Librosa STFT Python package, with a window size of 1024, a hop length of 512 and a raised cosine 
window (‘hann’).
Smix are similar and this is likely due to the low impulse rate related to 
Smix (1.15 Hz), which is below the peak frequencies for both fluctuation 
strength and impulsiveness.

2.4.3. E-scooter AVAS auralisation

In order to accurately present the e-scooter AVAS sounds, an au-

ralisation procedure was implemented in the software Unity which 
accounted for AVAS loudspeaker acoustical directivity, ground reflec-

tions, air absorption, and spatial hearing through binaural reproduction.

An overview of the calibration process for the e-scooter auralisation 
is as follows. Firstly, an e-scooter baseline audio recording (without 
AVAS) was calibrated to a level of 52 dB 𝐿AFmax at 2 m distance to 
the side of the listening position, as based on baseline measurements 
outlined in [14]. This audio recording included contributions from tyre-

road interaction noise, electric motor noise and aerodynamic noise. Fol-

lowing this, additional alert sounds of each AVAStype (Scont, Smix, Simp) 
were calibrated to each AVASlevel (56, 58, 60, 62, 64, 66 dB 𝐿AFmax), all 
at 2 m distance from the listener’s position. This corresponds to the cal-

ibration distance typically used for AVAS measurements, as specified in 
UNECE Regulation 138 [16]. Each stimulus calibrated at 2 m distance 
from the listener was then moved to the two Distance levels (5 and 10 
m) behind the listening position, see Fig. 3. The stated AVASlevel levels 
therefore correspond to the 2 m calibration distance and not the final 
5 m and 10 m auralisation distances. This approach is beneficial as it 
enables distance to be modelled in the logistic regression as a separate 
variable, with calibration levels referencing current standard protocols. 
It should further be noted that 56 dB (𝐿AFmax) was chosen as the mini-

mum AVASlevel as this corresponds to the minimum AVAS requirements 
specified in UNECE Regulation 138 for quiet running vehicles [16].

No additional auralisation processes were applied to the AVAS 
sounds as no movements during playback were simulated, i.e. the AVAS 
sounds were kept at the corresponding distances for the duration of 
the signal. This enabled the calculation of probability of detection dis-

tributions with respect to distance and ensured responses were based 
upon auditory thresholds instead of reaction times. Including e-scooter 
movements, and therefore reaction times, within a detection task was 
previously presented [14].

2.5. Apparatus

Audio was presented with Sennheiser HD 650 open-back head-

phones, with an RME ADI-2 digital to analogue converter and head-
4

phone amplifier. Calibration of reproduced audio levels was undertaken 
Fig. 3. Visual representation of e-scooter auralisation within Unity. The pre-

sented scene here corresponds to the 10 m distance scenario.

using a B&K Type 4128-C Head and Torso Simulator, a Norsonic 336 mi-

crophone amplifier, a BSWA 308 sound level meter (class 1), and a B&K 
4230 sound level calibrator.

2.6. Participants

A total of 27 participants took part in the listening experiment, 
which included 15 individuals aged between 18 and 24, 8 individuals 
aged between 25 and 34, 3 individuals aged between 35 and 44, and 
1 individual aged between 45 and 54. The group consisted of 22 males 
and 5 females. All participants were fluent in English and self reported 
normal hearing. Participants were recruited from a listening experiment 
participant database and included individuals who were both internal 
and external to the university. Participants received a small monetary 
compensation for their participation.

2.7. Statistical analysis

To analyse the data, a Generalized Linear Model (GLM) was con-

ducted using the statistical software SPSS (IBM), with a Binary Logistic 
response function. The advantage of a GLM approach compared to a 
typical Binary Logistic Regression, is that a GLM is suited to repeated 

measures data (i.e. multiple data points from the same participants), 
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Table 2

Type III model effects calculated with the Wald 
Chi-square test.

Variable Wald Chi-Square df Sig.

AVASlevel 367.76 1 .000

Environment 502.73 1 .000

Distance 474.81 1 .000

AVAStype 111.29 2 .000

whereas Binary Logistic Regression requires independence of observa-

tions.

In logistic regression, the logit function is defined as [33]:

𝑙𝑜𝑔𝑖𝑡(𝑝) = 𝑙𝑜𝑔

(
𝑝

1 − 𝑝

)
(1)

where 𝑝 refers to the probability of an event occurring. When expressed 
as a function of independent variables, this equation reads:

𝑙𝑜𝑔𝑖𝑡(𝑝) = 𝑎+ 𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏3𝑥3 + ... (2)

where 𝑎 is the constant (intercept) and 𝑏 is the coefficient of the predic-

tor variables. The probability, 𝑝, can then be expressed as:

𝑝 = 𝑒(𝑎+𝑏1𝑥1+𝑏2𝑥2+𝑏3𝑥3+...)

1 + 𝑒(𝑎+𝑏1𝑥1+𝑏2𝑥2+𝑏3𝑥3+...)
. (3)

These equations are subsequently used within the analysis to de-

velop the probability of detection equations.

3. Results and discussion

3.1. Descriptive statistics

A total of 108 variable combinations were evaluated across the in-

dependent variables AVAStype (Scont, Smix, Simp), AVASlevel (56, 58, 60, 
62, 64, 66 dB 𝐿AFmax), Environment (50, 55, 60 dB 𝐿Aeq) and Distance 
(5, 10 m). The dependent variable was a dichotomous response (yes / 
no) for each variable combination. When evaluating the counts of ‘yes’ 
and ‘no’ responses across all conditions, it is seen that 38.4% of re-

sponses correspond to negative responses (1120 data points), whilst the 
remaining 61.6% of responses (1796 data points) correspond to pos-

itive responses. This suggests an appropriate range of variables was 
used for evaluating detection thresholds. To compare responses across 
participants, the relative ratio of yes/no responses was calculated for 
each participant and compared to the sample as a whole. No partici-

pants were identified as outliers (greater than 1.5 times the interquartile 
range above the upper quartile), based on an upper adjacent of 79.6%, 
a Q3 of 71.1%, a median of 64.8%, a Q1 of 51.4% and a lower adjacent 
of 36.1%. As such, all participants were included within the subsequent 
analysis.

3.2. Logistic regression

Table 2 presents Wald Chi-squared test results for the covariates 
AVASlevel, Environment and Distance, as well as the factor AVAStype. 
These results represent how significant the independent variables are in 
the generation of the Generalized Linear Model. The results highlight 
that all independent variables significantly influence the dependent re-

sponse variable on a 𝑝 < .05 level.

To gain insight into the differences between the levels of the variable 
AVAStype, analyses are conducted for the stimuli Scont, Smix and Simp

separately. Table 3 shows the model parameter estimates and associated 
Wald Chi-square test values for each level of AVAStype. As with the 
results in Table 2, all independent variables contribute significantly to 
the model for each of the AVAS sounds.

In the context of the parameter estimates presented in Table 3, the 
5

probability of detection for the three AVAS types can be expressed as a 
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Table 3

Parameter estimates and Type III model effects associated with each level 
of the variable AVAStype.

AVAStype Variable B Wald Chi-Square df Sig.

Scont

AVAS Level .175 44.11 1 <.001

Environment -.351 162.86 1 .000

Distance -.516 147.31 1 .000

Intercept 12.910 36.08 1 <.001

Smix

AVAS Level .468 156.99 1 .000

Environment -.443 182.14 1 .000

Distance -.680 178.29 1 .000

Intercept 1.584 .612 1 .434

Simp

AVAS Level .647 150.32 1 .000

Environment -.551 155.36 1 .000

Distance -.831 142.92 1 .000

Intercept -.401 .030 1 .863

function of the independent variables AVASlevel, Environment and Dis-

tance with the following equations:

𝑝[𝑆𝑐𝑜𝑛𝑡] =
𝑒(12.91+0.175𝐴𝐿−0.351𝐸−0.516𝐷)

1 + 𝑒(12.91+0.175𝐴𝐿−0.351𝐸−0.516𝐷) (4)

𝑝[𝑆𝑚𝑖𝑥] =
𝑒(1.584+0.468𝐴𝐿−0.443𝐸−0.680𝐷)

1 + 𝑒(1.584+0.468𝐴𝐿−0.443𝐸−0.680𝐷) (5)

𝑝[𝑆𝑖𝑚𝑝] =
𝑒(−0.401+0.647𝐴𝐿−0.551𝐸−0.831𝐷)

1 + 𝑒(−0.401+0.647𝐴𝐿−0.551𝐸−0.831𝐷) (6)

where 𝐴𝐿 is AVASlevel in dB, 𝐸 is environmental noise level in dB 
and 𝐷 is distance in meters. Probability of detection curves can sub-

sequently be generated using these equations, by plotting probability 
across a range of values, as discussed in the following sections.

3.2.1. Analysis with respect to AVASlevel

Fig. 4 presents probability of detection curves with respect to 
AVASlevel, for two scenarios (i.e. discrete distance and environmental 
noise levels). Both of these scenarios use a detection distance of 10 m, 
which can be considered a suitable ‘risk threshold’ for e-scooters, as 
based on the minimum stopping distances required for e-scooters on 
UK roads [34], in addition to knowledge of braking response times for 
e-scooters [35]. In signal detection theory, the absolute threshold, or the 
lowest level of stimulus that is perceptible, is often defined at a 50% 
probability of detection level [36]. As such, we can compare the prob-

ability of detection curves by considering the 50% detectability level 
across conditions. It is seen that in a 55 dB 𝐿Aeq environment, the 50% 
detectability threshold corresponds to an AVASlevel of 60 dB (𝐿AFmax at 
2 m) for Simp, 63 dB (𝐿AFmax at 2 m) for Smix and 66 dB (𝐿AFmax at 2 m) 
for Scont. In a 60 dB 𝐿Aeq environment, the detection thresholds corre-

spond to an AVASlevel of 65 dB (𝐿AFmax at 2 m) for Simp, 68 dB (𝐿AFmax
at 2 m) for Smix and 76 dB (𝐿AFmax at 2 m) for Scont. These results 
highlight that an impulsive type AVAS sound can lead to an improved 
detectability in comparison to a continuous type AVAS sound, with a 
greater difference in detectability for louder environmental noise con-

ditions. When averaging across AVAStype, an AVASlevel of 62 dB (𝐿AFmax
at 2 m) corresponds to the detection threshold in a 55 dB 𝐿Aeq environ-

ment, whereas an AVASlevel of 68 dB (𝐿AFmax at 2 m) corresponds to the 
detection threshold in a 60 dB 𝐿Aeq environment.

3.2.2. Analysis with respect to distance

Fig. 5 presents probability of detection curves with respect to Dis-

tance, for two scenarios. In the first, an AVASlevel of 56 dB 𝐿AFmax
is used within a 55 dB 𝐿Aeq environment. This corresponds to the 
minimum AVAS requirements specified in UNECE Regulation 138 for 
quiet running vehicles [16]. In this case, the 50% threshold is achieved 
when at a distance of 5 m to 6.6 m from the listener, dependent upon 
AVAStype. When at 10 m distance, the probability of detection is less 

than 20% for all AVAS types. In the case of a 62 dB 𝐿AFmax AVASlevel, 
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Fig. 4. Probability of detection distributions with respect to AVASlevel, where D is variable Distance and E is variable Environment.

Fig. 5. Probability of detection distributions with respect to Distance, where AL is variable AVAS and E is variable Environment.
the 50% threshold increases to approximately 10 m, as previously dis-

cussed. When at 5 m distance, the probability of detection increases to 
over 90% for all AVAS types.

3.2.3. Analysis with respect to environment

Fig. 6 presents probability of detection curves with respect to En-

vironment, for two scenarios. At 10 m distance and an AVASlevel of 
62 dB 𝐿AFmax (as based on results from Section 3.2.1), probability of 
detection is seen to trend from approximately 1 in a 45 dB 𝐿Aeq envi-

ronment, to approximately 0 in a 65 dB 𝐿Aeq environment. In a 55 dB 
𝐿Aeq environment, the detection probabilities correspond to those pre-

sented in Fig. 4. When a distance of 5 m is used in conjunction with 
a 62 dB 𝐿AFmax AVASlevel, the probability curves are shifted to higher 
environmental noise levels by approximately 6 dB. This is expected con-

sidering acoustic propagation theory, which states that for a doubling 
of distance, the sound pressure of a source reduces by 6 dB.

3.3. Linear regression analysis

In addition to the GLM analysis with a Binary Logistic response func-

tion as detailed above, a supplementary linear regression analysis was 
conducted. The previous sections identified that the impulsive AVAS 
sound is typically more detectable than the mixed and continuous type 
AVAS sounds. The aim of this section is to quantify this difference across 
6

the presented conditions.
level

To achieve this, the mean detection rate for each AVASlevel and En-

vironment combination (averaged across participants) was compared to 
the prominence of each condition, see Fig. 7. Here, prominence refers to 
the difference between the AVAS level and environmental noise level 
and is calculated by subtracting the environmental noise level in dB 
𝐿Aeq from the AVASlevel in dB 𝐿AFmax. The data shown is for the 10 
m Distance condition and responses of 0% and 100% detection rate 
are excluded to allow for fitting with linear models. Linear regression 
relations were subsequently derived for each AVAStype. To allow for 
a more meaningful comparison, the same regression slope was used 
across groups and this was calculated as the mean of the three individ-

ual slopes. A similar approach has been taken for the comparison of the 
annoyance of unmanned aerial vehicles and road traffic vehicles [37].

By comparing the slopes in Fig. 7, it can be concluded that the 
impulsive sound Simp has an improved detectability of 2.94 dB when 
compared to Scont and an improved detectability of 2.50 dB when com-

pared to Smix. In other words, for equal detectability, AVAS sound Scont

would need to be 2.94 dB louder than Simp for a given prominence. 
The difference between Smix and Scont is seen to be much smaller at 
0.44 dB. These results align with the sound quality metrics presented 
in Section 2.4.2 where it was seen that the fluctuation strength and im-

pulsiveness values for Simp were much greater than those of Smix and 
Scont, which were more similar. This data indicates that the sound qual-

ity metrics of fluctuation strength and impulsiveness could be used to 
predict detectability performance of AVAS sounds, which complements 

existing research on the topic showing that sound quality metrics can 
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Fig. 6. Probability of detection distributions with respect to Environment, where D is variable Distance and AL is variable AVAS .
Fig. 7. Linear regression results when considering mean detection rate versus 
prominence. Equal slopes are used across AVAStype groups to compare offset. 
Prominence refers to difference between AVASlevel and the environmental noise 
level. Response data is for 10 m distance condition and each data point is aver-

aged data across all participants.

be useful for predicting subjective annoyance for AVAS sounds [14]. 
However, further work is needed to explore this relationship in more 
detail.

4. Summary and conclusions

By means of a detection threshold listening experiment and subse-

quent binary logistic regression analysis, an understanding of how e-

scooter AVAS detectability relates to AVAS characteristics, AVAS level, 
environmental noise level and detection distance has been gained. All of 
the studied independent variables were seen to significantly contribute 
to the Generalized Linear Model with a Binary Logistic response func-

tion and equations for the probability of detection for each AVASlevel

were subsequently developed.

When comparing AVAS sounds with impulsive, continuous and 
mixed characteristics, it was observed that impulsive components can 
aid in detectability, with a detectability improvement of approximately 
3 dB when comparing an impulsive AVAS sound and a continuous AVAS 
sound of similar frequency components. This is consistent with gen-

eral understanding of auditory perception, with an example being the 
‘Rating Penalty’ which is applied to environmental noise impact assess-

ments [38], which penalises impulsive sounds due to their increased 
noticeability and annoyance. Indeed, the effectiveness of impulsive 
type sounds for detectability is observed in auditory alerts and alarms 
throughout the built-environment and product design. A consideration 
of impulsive type AVAS sounds is the potential for increased annoyance 
7

for pedestrians and users, as discussed in [14], and therefore a trade off 
level

between detectability and annoyance may need to be made depending 
upon the context of use.

By obtaining response data for different values of AVASlevel, proba-

bility of detection could be plotted against AVASlevel for different envi-

ronments. When analysing insights regarding AVAS emission level, it is 
important to also consider the environmental noise level, as the masking 
effect of the environmental noise influences detectability of the AVAS 
sound. Whilst urban environments have a range of environmental noise 
levels, a typical average level could be considered to be 55 dB 𝐿Aeq, as 
based on the EU threshold for excess exposure defined in the Environ-

mental Noise Directive, which indicates an annual average level during 
the day, evening and night [39]. For a 55 dB 𝐿Aeq environment, a 56 dB 
(𝐿AFmax at 2 m) AVAS sound has a 50% chance of detectability when 
within a distance of 5-7 m of a pedestrian. When considering this in re-

lation to the minimum stopping distances required for e-scooters on UK 
roads of 7.5 m [34], this detectability performance is seen to be insuffi-

cient for e-scooters, especially when considering braking response times 
[35]. The minimum AVAS levels of 56 dB 𝐿AFmax specified in UNECE 
Regulation 138 [16] are therefore unsuitable for e-scooter AVAS im-

plementations, if a timely detection is desired. When averaging across 
AVAStype, an AVASlevel of 62 dB (𝐿AFmax at 2 m) corresponds to a 10 m 
detection distance in a 55 dB 𝐿Aeq environment, suggesting that such 
an AVAS level may be more appropriate for micromobility.

So as to optimise detectability and annoyance in a wide range of en-

vironments, adaptive AVAS systems should be sought, which adjust the 
AVAS emission level with respect to the environmental noise level. The 
equations developed in this paper could help determine the relationship 
between these two variables, as based on a target probability of detec-

tion. The differences in AVAS emission level necessary for an equivalent 
detectability vary significantly across typical urban soundscapes. For 
example, in a 45 dB 𝐿Aeq environment, an absolute threshold at 10 m 
is achieved with an AVAS level of 52 dB 𝐿AFmax, whereas in a 65 dB 
𝐿Aeq environment, a 73 dB 𝐿AFmax AVAS sound would be necessary. 
This large disparity between required levels highlights the difficulties 
in designing an AVAS which does not adapt to the environmental noise 
conditions. Further work should therefore focus on designing adaptive 
AVAS for micromobility, as benefits could be achieved for both pedes-

trian safety and limiting noise pollution.

To conclude, the results in this paper represent an important step 
in the understanding of e-scooter safety measures and are a useful ref-

erence for micromobility AVAS guidelines going forward. Through the 
psychometric functions developed here, relationships between proba-

bility of detection and AVAS characteristics, AVAS level, environmental 
noise level and perception distance have been investigated. The re-

gression equations presented provide valuable and actionable insights 

into AVAS perception, which can be utilised by other researchers, in-
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dustry and policy makers. Ultimately, this research contributes to the 
wider deployment of micromobility in a safe manner, which could help 
solve some of the transportation issues our urban areas are facing to-

day. Going forward, this study could be extended to further investigate 
the influence of AVAS frequency content, modulation rate and ratio 
between continuous and impulsive AVAS components to gain a more 
holistic understanding of acoustic alerts for micromobility and quiet 
running transportation as a whole.
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