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A B S T R A C T

This article presents a set of novel analytical derivations from generalised bond–slip models using first
principles, which can be used to predict experimental outcomes, including maximum load resistance, load-
slip response, and strain throughout the bonded length. The generalised bond–slip models are constructed in
a way that can be translated into various shapes, including linear, nonlinear and exponential forms, all of
which have been used in the literature to explain the bond–slip behaviour of epoxy-bonded FRP on concrete.
When the prerequisites for the derivations are satisfied, as demonstrated in this paper, a comprehensive
validation of a bond–slip model is possible. Furthermore, the transformability of the generalised bond–slip
models and the analytical nature of the derivations also allowed for the comparison of several bond–slip
models simultaneously.
. Introduction

The retrofitting of damaged civil engineering structures is the most
conomical, social and environmental solution compared to reconstruc-
ion [1]. The retrofitting of structures varies depending on the type
f defective structure, the retrofitting materials used, and the current
nderstanding of retrofitting techniques [2]. Of various retrofitting
aterials, fibre reinforced polymers (FRP) are widely used due to their
igh strength-to-weight ratio and resistance to corrosion [3]. FRPs have
een used in several ways: epoxy-bonded external FRP sheets [3], near-
urface mounted FRP bars [4] and post-tensioned FRP straps [5]. Of
hese, an epoxy-bonded FRP sheet is preferred as it is less intrusive and
etrofitting of the structures may be carried out while the structure is
n service [1].

To understand the effectiveness and interaction of FRP, various
ypes of experimental investigations, such as single and double shear-
ap tests, have been carried out [6–9]. In addition, numerous strength-
ased models [10,11] and bond–slip models [12–14] have been pro-
osed to demonstrate the behaviour observed during the experimental
ond tests.

Strength-based models are based on the mechanical and geometrical
roperties of the test samples, which directly offer bond (load) resis-
ance. Therefore, they are often preferred in the design environment.
owever, the interface behaviour between the epoxy-bonded FRP and
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E-mail address: l.augusthusnelson@salford.ac.uk (L. Augusthus Nelson).

concrete may not be achievable through strength-based models. In con-
trast, bond–slip models, which are essential in constitutive modelling,
were developed using the interface bond and material properties of
FRP, concrete and epoxy glue [15–17].

In the early stage of development of bond–slip models, the main
outputs of the experimental tests were the maximum bond (load) resis-
tance and the load-slip curves [11]. Using these outputs, the interfacial
bond properties for a given shape were back-calculated because these
cannot be directly obtained from the experimental results. Therefore,
the validations of the bond–slip models were achieved by developing
empirical mathematical formulae or by incorporating the bond–slip
models within the finite element analysis.

Later, an approximate strain profile along the FRP using elec-
tronic resistance strain gauge measurements at discrete locations was
established. A continuous strain profile along the FRP was recently
developed using image processing techniques such as digital image
correlation (DIC) [18,19]. For several samples tested, upper and lower
bounds of strain profiles were generated. A range of interfacial bond
stress vs slip profiles (within the upper and lower bounds of stress)
was developed using the range of the strain profile, as shown in
Fig. 1. Approximate best-fit lines were considered to generate the
mathematical equations for the ascending and descending curves of the
bond–slip models. Therefore, the number of possible bond–slip models
depends on the method used for the best fit and the shape considered
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by the researchers. For illustration purposes, Fig. 1 shows two different
possible bond–slip models. The possible best-fit bond–slip models were
extended due to variability in material properties, workmanship dur-
ing the installation of the FRP, environmental conditions, and nature
and repeatability of the loading conditions. Thus, numerous bond–slip
models have been established in the literature at present.

To calibrate a chosen bond–slip model, researchers often used semi-
empirical mathematical formulae or finite element analysis. The main
drawback of the semi-empirical mathematical formulae was that it
was calibrated for a specific set of experimental test results, and the
model needed to be recalibrated when a new set of experimental
results became available. Furthermore, even though finite element (FE)
analysis provides better visualisation of output, creating and debugging
the models requires a good understanding of the software package used.
In addition, the modelling of the test samples in the FE package take
a substantial amount of time as the variation in test samples should be
considered individually.

For these reasons, theoretical derivations to predict the behaviour
of the test samples were derived from bond–slip models. Wu et al. [20]
used a single mathematical bond–slip formula (which represents as-
cending and descending curves) to derive analytical solutions. How-
ever, most of the proposed bond–slip models in the literature have
two separate mathematical functions (each defining the ascending and
descending curves of the bond–slip models separately), and thus the
analytical solutions of Wu et al. could not be extended. Hence, Au-
gusthus Nelson et al. [21] derived analytical solutions for a bond–slip
model with nonlinearly ascending (possible to converge to linear form)
and linear descending curves. However, another most common form
of the bond–slip model is the non-linearly ascending and exponentially
descending curves, which have been the focus of this current work.

Post-processing of the experimental findings conducted by Mazzotti
et al. [22] reveals that certain test specimens exhibit an exponen-
tially softening (descending) bond–slip curve. In a related context, Lu
et al. [23] have contributed significantly to the discourse by introduc-
ing three distinct bond–slip models, each designed to emphasise the
pivotal role of bond–slip curve configuration. It was observed that two
of these models exhibit exponential softening characteristics in their
bond–slip curves, while the third features a bi-linear model encom-
passing both ascending and descending curves. Furthermore, Lu et al.
have explored predictive capabilities using semi-empirical derivations
of these three bond–slip models concerning experimental attributes,
demonstrating that differences in the softening curves can result in vari-
ances in the projected load-bearing capacity and deformation response.
It is noteworthy that Lu et al. also showed that bond–slip models char-
acterised by exponential softening patterns yield superior predictions
when compared to alternative models. It should also be noted that
the studies suggested that the predictions of the effective bond length
change significantly between the shape of the bond–slip model [23,24].
At the same time, it has little impact on the maximum load resistance.
These observations could not be confirmed as experimental predictions
using various shapes of bond–slip models are unified (due to the use
of empirical constants) [25,26]. Hence, the primary objective of this
paper is to develop theoretical derivations for predicting experimental
characteristics without the reliance on empirical constants, in order
to facilitate the concurrent comparison of multiple bond–slip models.
Specifically, this study focuses on the theoretical formulation for fore-
casting experimental attributes using the non-linearly ascending and
exponentially descending bond–slip model. Another motivation for the
current work is to demonstrate that these unique theoretical derivations
(solutions) can be used to establish the complete interaction behaviour
(such as bond resistance, load–deformation curves, stress and strain
profiles along the FRP and concrete) for most of the bond–slip models
2

available in the literature.
Fig. 1. Range of bond stresses and slip at the interface with possible bond–slip models.

2. Generalised bond–slip models and their theoretical derivation

In the literature, when it comes to epoxy-bonded FRP on a concrete
surface, most bond–slip models have two separate curves (a mathe-
matical equation defines each curve): ascending and descending. The
shapes of the ascending and descending curves vary between linear,
curvilinear, and exponential. Recently, Augusthus Nelson et al. [21]
derived a complete and comprehensive analytical solutions for a gen-
eralised bond–slip model with ascending non-linear power curve and
descending linear curve (see Fig. 2(a)), given as:

𝜏 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜏𝑚𝑎𝑥
(

𝑠
𝑠1

)𝛼
0 ≤ 𝑠 ≤ 𝑠1

𝜏𝑚𝑎𝑥
(

𝑠2−𝑠
𝑠2−𝑠1

)

𝑠1 ≤ 𝑠 ≤ 𝑠2

0 𝑠2 ≤ 𝑠

(1)

where 𝑠1 and 𝑠2 are the slip values that demonstrate each region
of behaviour, 𝜏𝑚𝑎𝑥 is the maximum bond stress, and 𝛼 is a constant
that defines the nonlinear ascending curve of the bond–slip model
(Fig. 2(a)).

The main advantage of this generalised bond–slip model is that it
can be transformed into various bond–slip models proposed by [23,27–
31], hence, the analytical solutions derived by Augusthus Nelson et al.
too can be easily transformed for any of these models proposed in
the literature. This approach allows the validation of any of these
models to be performed without time-consuming finite element meth-
ods or any unnecessary semi-empirical solutions. It should be noted
that the transformability of the solutions derived by Augusthus Nelson
et al. [21] is limited to a bond–slip model with a linear descending
curve. However, few other bond–slip models in the literature have
an exponentially descending curve [16,23,32,33] (see Fig. 2(b)). To
expand this analytical approach, the focus of this current work is to
derive analytical solutions for a bond–slip model with an ascending
power curve and a descending exponential curve (see Fig. 2(b)), can
be given as:

𝜏 =

⎧

⎪

⎨

⎪

⎩

𝜏𝑚𝑎𝑥
(

𝑠
𝑠1

)𝛼
0 ≤ 𝑠 ≤ 𝑠1

𝜏𝑚𝑎𝑥𝑒−𝛽(𝑠−𝑠1) 𝑠1 ≤ 𝑠
(2)

where 𝑠1 is the slip corresponding to the maximum bond stress 𝜏𝑚𝑎𝑥,
and 𝛼 and 𝛽 are the constants that define the nonlinear ascending and
descending curves of the bond stress–slip model (Fig. 2(b)).

In both cases, the mathematical function of the ascending curve
is the same. Hence, mathematical derivations for the ascending curve
are briefly summarised here (comprehensive derivations can be found
in Augusthus Nelson et al. [21]). However, complete derivations for
the descending exponential curve are presented in this paper. Also,
here onwards, the analytical model presented in Augusthus Nelson
et al. [21] is referred to as Generalised Bond–slip Model 1. The model
presented in this paper is referred to as Generalised Bond–slip Model
2.
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Fig. 2. Generalised Bond–slip Models (a) Generalised Bond–slip Model 1: nonlinearly ascending and linearly descending curves (mathematical formulae are in Eq. (1)), and (b)
Generalised Bond–slip Model 2: nonlinearly ascending and exponentially descending curves (mathematical formulae are in Eq. (2)).
Fig. 3. (a) Double-lap shear test sample with dimensions, (b) idealisation to single lap shear and shearing between FRP and concrete, and (c) differential segment of bonded joint.
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.1. Governing equation

The resultant slip between FRP and the concrete substrate along the
RP is defined as [12,20,34]:

= 𝑢𝑓 − 𝑢𝑐 (3)

Second order derivation can be given as:

d2𝑠
d𝑥2

=
d2𝑢𝑓
d𝑥2

−
d2𝑢𝑐
d𝑥2

(4)

where 𝑠 is the slip; 𝑢𝑓 and 𝑢𝑐 are the displacement of the FRP and the
oncrete, respectively. The governing equation was initially derived for
double-lap shear test sample (Fig. 3(a)), which is then idealised for

ingle shear (Fig. 3(b)). The differential segment was then considered
o develop equilibrium conditions, as seen in Fig. 3(c). The equilibrium
onditions give:

𝑏𝑐 𝑡𝑐
d𝜎𝑐
d𝑥

+ 𝜏𝑏𝑓 = 0

𝑏𝑓 𝑡𝑓
d𝜎𝑓
d𝑥

− 𝜏𝑏𝑓 = 0
(5)

However,

d𝜎𝑐
d𝑥

= 𝐸𝑐
d2𝑢𝑐
d𝑥2

d𝜎𝑓
d𝑥

= 𝐸𝑓
d2𝑢𝑓
d𝑥2

(6)

It should be noted that the current derivation considers the concrete
to be elastic and does not consider the rupture of concrete or the FRP.
Therefore, the derivations presented by the equilibrium and compati-
bility conditions only apply to the bond failure between concrete and
FRP (in the epoxy glue). Experimental results in the literature support
the slip between concrete and FRP, for which concrete is in an elastic
condition. Thus, Yuan et al. [12] and Wu et al. [20,34] have used
the equilibrium and compatibility conditions, as shown in Eq. (7). By
3

combining Eqs. (5) and (6), equilibrium conditions give:
d2𝑢𝑐
d𝑥2

+
𝑏𝑓

𝐸𝑐 𝑡𝑐𝑏𝑐
𝜏 = 0

d2𝑢𝑓
d𝑥2

−
𝑏𝑓

𝐸𝑓 𝑡𝑓 𝑏𝑓
𝜏 = 0

(7)

Equating Eqs. (7) and Eq. (4) results in:
d2𝑠
d𝑥2

= 𝐾𝜏 (8)

where

𝐾 =
𝐸𝑐 𝑡𝑐𝑏𝑐 + 𝐸𝑓 𝑡𝑓 𝑏𝑓
𝐸𝑓 𝑡𝑓𝐸𝑐 𝑡𝑐𝑏𝑐

(9)

The extended version of the derivation is presented in Augusthus
Nelson et al. [21]. It is also shown that the 𝐾 of the single-lap shear
test can deduced to:

𝐾 = 1
𝐸𝑓 𝑡𝑓

(10)

where 𝜎𝑐 , 𝐸𝑐 , 𝑡𝑐 and 𝜖𝑐 are axial stress, Young’s modulus of elasticity,
the thickness of half the concrete prism and the strain of concrete,
respectively. Moreover, 𝜎𝑓 , 𝐸𝑓 , 𝑡𝑓 , and 𝜖𝑓 are the axial stress, Young’s

odulus of elasticity, and the deformation throughout the thickness of
he FRP reinforcement, respectively. The governing equation, Eq. (8),
s general and can be used for any bond–slip relationship, which can
e applied for each segment representing a particular bond–slip (𝜏 − 𝑠)
elation.

However, at least two boundary conditions are needed to solve a
econd-order differential equation. The following boundary conditions
an be established based on the stress and strain experienced by the
RP and concrete, as depicted in Fig. 3(b).

𝑢𝑓 = 0 at 𝑥 = 0

𝜎𝑓 = 𝐸𝑓
d𝑢𝑓
d𝑥

= 0 at 𝑥 = 𝐿

𝜎𝑐 = 𝐸𝑐
d𝑢𝑐
d𝑥

= 0 at 𝑥 = 0

= 𝐸
d𝑢𝑓 = 𝜎 at 𝑥 = 𝐿

(11)
𝑐 𝑐 d𝑥 𝑐
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Fig. 4. Transformation of origin corresponds to bond stress and slip, and model
representation against reality.

These boundary conditions, however, are not directly applicable
to Eq. (8). Therefore, boundary conditions that correspond to bond
stress and slip need to be established to solve the governing Eq. (8). The
generalised bond–slip models presented by Eqs. (1) and (2) are for the
bond stress and slip, in which bond stress is zero and where there is no
slip. Therefore, the origin of 𝑥 is taken where there is no slip (as shown
n Fig. 4), which forms the first boundary condition. Additionally, it is
ypothesised that the rate of change in the slip at the origin is zero,
hich forms the second boundary condition. Therefore, both boundary

onditions can be given as follows:

𝑠 = 0 at 𝑥 = 0
d𝑠
d𝑥

= 0 at 𝑥 = 0
(12)

It should be observed that the origin of 𝑥(= 0) shifts towards to
unloaded bond end (where there is axial stress on the concrete) with
increasing applied load, as illustrated in Fig. 5. This is maintained
for the remainder of the derivation. In addition, the ascending curve
area and the primary zone convey the same notion: similar to the
secondary zone and area with descending curves. These were used
interchangeably to improve readability.

2.2. Primary zone (ascending bond–slip region)

For both Generalised Models (Eqs. (1) and (2)), the ascending curves
have the same mathematical expressions. In addition, the primary zone
is activated when the slip between FRP and concrete occurs (𝑠 ≤ 𝑠1) as
shown in Fig. 5(b). The bond stress in the primary zone is defined as:

𝜏𝑝 = 𝜏𝑚𝑎𝑥

(

𝑠
𝑠1

)𝛼
(13)

Therefore the governing Eq. (8) for the primary zone can be given
s:
d2𝑠
d𝑥2

= 𝐾𝜏𝑚𝑎𝑥

(

𝑠
𝑠1

)𝛼
(14)

This second order differential equation can be solved using the
boundary conditions presented in Eqs. (12). The complete mathemati-
cal derivation of the primary zone was presented in Augusthus Nelson
et al. [21]. Here, a summary of the derivations is presented to provide
context. The slip along the bonded length 𝑥 can be given as:

𝑠 =

(

𝐾𝜌1 (1 − 𝛼)
2
)

1
1−𝛼

𝑥
2

1−𝛼 (15)
4

2 (1 + 𝛼)
here 𝐾 is the constant for an experimental setup, 𝜌1 =
𝜏𝑚𝑎𝑥
𝑠𝛼1

and 𝛼 has a

positive value (according to most existing bond–slip models, 0 ≤ 𝛼 ≤ 1).
he length of the primary zone along the FRP (𝑙1) can be given as:

1 =

(

2 (1 + 𝛼)
𝐾𝜌1 (1 − 𝛼)

2

)
1
2

𝑠
1−𝛼
2

1 (16)

Furthermore, the bond stress along the FRP reinforcement at a
distance 𝑥 can be given as:

𝜏𝑝 = 𝜌1

(

𝐾𝜌1 (1 − 𝛼)
2

2 (1 + 𝛼)

)
𝛼

1−𝛼

𝑥
2𝛼
1−𝛼 (17)

The maximum load resistance of the primary zone can be given as:

𝑝,𝑚𝑎𝑥 = 𝑏𝑓 𝜌1

(

𝐾𝜌1 (1 − 𝛼)
2

2 (1 + 𝛼)

)
𝛼

1−𝛼 𝑙
1+𝛼
1−𝛼
1
1+𝛼
1−𝛼

(18)

The FRP strain distribution along the length in the primary zone can
be given as:

𝜖𝑓 = 1
𝐸𝑓 𝑡𝑓 ∫

𝑥

0
𝜏𝑝𝑑𝑥 =

𝐹𝑝
𝑡𝑓 𝑏𝑓𝐸𝑓

(19)

Based on the bond–slip model considered for this derivation, the
ond stress and strain distributions along with the reinforcement and
oad-slip curve can be obtained if the parameters 𝑠1 and 𝛼 are known

for double or single shear tests.

2.3. Primary (ascending) and secondary (descending) zones

The secondary zone is activated when the slip between the FRP
and concrete exceeds 𝑠1, as shown in Fig. 5(c). The primary zone
emains and moves along towards the unloaded end (See Fig. 5(d)).
he maximum primary zone length from Eq. (15) can be given as:

1 =

(

2 (1 + 𝛼)
𝐾𝜌1 (1 − 𝛼)

2

)
1
2

𝑠
1−𝛼
2

1 (20)

At the end of primary zone (boundary between the primary zone
and the secondary zone), the first-order differentiation of Eq. (15) can
be given as:

( d𝑠
d𝑥

)

𝑙1
=
(

2𝐾𝜌1
1 + 𝛼

)
1
2
𝑠
1+𝛼
2

1 (21)

As illustrated in Fig. 5, the origin for the slip moves towards the
unloaded end. However, to derive and obtain the solutions for this
second-order non-linear differential equation, bond length corresponds
to the secondary zone (descending curve) is denoted as 𝑥𝑥 as shown in
Fig. 5(d). The bond length is then revised to acquire the affected length
from the primary zone origin after the solution has been found. The
stress–slip bond model for the secondary zone can be given by (Eq. (2)):

𝜏𝑠 = 𝜏𝑚𝑎𝑥𝑒
−𝛽(𝑠−𝑠1) (22)

Substituting Eq. (22) into Eq. (8) gives:

d2𝑠
d𝑥𝑥2

= 𝐾𝜏𝑚𝑎𝑥𝑒
−𝛽(𝑠−𝑠1) (23)

By integrating both sides of the equation, the following can be given
as:
1
𝛽
𝑒𝛽(𝑠−𝑠1) d𝑠

d𝑥𝑥
= 𝐾𝜏𝑚𝑎𝑥𝑥𝑥 + 𝐶1 (24)

and,

1 𝑒𝛽(𝑠−𝑠1) = 𝐾𝜏𝑚𝑎𝑥
𝑥𝑥2 + 𝐶1𝑥𝑥 + 𝐶2 (25)
𝛽2 2
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Fig. 5. Bond stress and slip development along the bonded length are illustrated at various stages: (a) Bond–slip model (𝑠∗ is 𝑠2 for Generalised Model 1 and 𝑠𝛾 for Generalised
odel 2 (See Fig. 6)); (b) partial development of the ascending curve; (c) full development of the ascending curve; (d) fully developed ascending curve and partial development

f the descending curve; (e) fully developed ascending and descending curves; (f) with increasing applied load, fully developed ascending and descending curves move towards
he unloaded end.
here, 𝐶1 and 𝐶2 are constants. It should be noted that the local dis-
ance along the FRP for the secondary zone is denoted by 𝑥𝑥 compared
o the global distance 𝑥. Therefore, 𝑥 = 𝑙1 for 𝑥𝑥 = 0.

Eqs. (24) and (25) for the secondary zone are required to comply
ith the equilibrium and compatibility conditions. Therefore, 𝑠 and d𝑠

d𝑥
(Eqs. (20) and (21)) at the end of the primary zone can be used as
boundary conditions in Eqs. (24) and (25), which leads to:

𝐶1 =
1
𝛽

(

2𝐾𝜌1
(1 + 𝛼)

)
1
2
𝑠
1+𝛼
2

1 (26)

and,

𝐶2 =
1
𝛽2

(27)

Constants 𝐶1 and 𝐶2 depend on the characteristic of the proposed
bond–slip model. Therefore, the bond stress in the secondary zone can
5

be given as:

𝜏𝑠 =
𝜏𝑚𝑎𝑥

𝛽2𝐾𝜏𝑚𝑎𝑥
𝑥𝑥2
2 + 𝛽2𝐶1𝑥𝑥 + 1

(28)

The descending exponential curve reaches zero stress at the infinite
length of the FRP. According to this mathematical model, the tail part
of the exponential curve does not contribute significantly to the load
carrying capacity. Therefore, to obtain the effective bond length and
load-carrying capacity of the system, a ratio between cut-off stress (𝜏𝛾 )
and maximum bond stress (𝜏𝑚𝑎𝑥) can be considered as (see Fig. 6):

𝛾 =
𝜏𝛾
𝜏𝑚𝑎𝑥

≤ 1 (29)

Therefore, Eq. (22) at the cutoff point with the corresponding slip
𝑠𝛾 , where the bond considered failed, can be given as:
𝜏𝛾 = 𝛾 = 𝑒−𝛽(𝑠𝛾−𝑠1) (30)

𝜏𝑚𝑎𝑥
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Fig. 6. Generalised bond–slip Model 2 with the limiting stress and corresponding slip.

Eq. (25) at the end of the secondary zone (𝑙2), can be given as:

1
𝛽2
𝑒𝛽(𝑠𝛾−𝑠1) = 𝐾𝜏𝑚𝑎𝑥

𝑙22
2

+ 𝐶1𝑙2 + 𝐶2 (31)

𝐶1, 𝐶2 and 𝑒𝛽(𝑠𝛾−𝑠1) can be replaced using Eqs. (26), (27) and (30),
respectively.

1
𝛽2𝛾

= 𝐾𝜏𝑚𝑎𝑥
𝑙22
2

+ 1
𝛽

(

2𝐾𝜌1
(1 + 𝛼)

)
1
2
𝑠
1+𝛼
2

1 𝑙2 +
1
𝛽2

(32)

It can be reduced to a quadratic equation:

𝛽2𝛾𝐾𝜏𝑚𝑎𝑥
2

𝑙22 + 𝛽𝛾
(

2𝐾𝜌1
(1 + 𝛼)

)
1
2
𝑠
1+𝛼
2

1 𝑙2 + (𝛾 − 1) = 0 (33)

where 𝑙2 is the unknown. The length of the secondary zone (𝑙2) must
be positive and real. Therefore, the discriminant must be greater than
or equal to zero, which can be given as:

2𝐾𝛽2𝛾𝜏𝑚𝑎𝑥

(

𝛾𝑠1 + (1 − 𝛾)(1 + 𝛼)
(1 + 𝛼)

)

≥ 0 (34)

In this equation, 1 − 𝛾 is positive as 0 ≤ 𝛾 ≤ 1 and rest of the
arameters are positive. Therefore, solutions of Eq. (33) will be real
umbers. However, 𝑙2 is distance measurement and cannot be negative.
herefore, the length associated with the fully developed secondary
one can be given as:

2 =
(

2
𝛽2𝛾𝐾𝜏𝑚𝑎𝑥(1 + 𝛼)

)
1
2
(

(

𝛾𝑠1 + (1 + 𝛼)(1 − 𝛾)
)
1
2 − (𝛾𝑠1)

1
2

)

(35)

Hence, the effective length can be given using Eqs. (20) and (35)
s:

𝑒 = 𝑙1 + 𝑙2 =

(

2 (1 + 𝛼)
𝐾𝜌1 (1 − 𝛼)

2

)
1
2

𝑠
1−𝛼
2

1 +
(

2
𝛽2𝛾𝐾𝜏𝑚𝑎𝑥(1 + 𝛼)

)
1
2

×
(

(

𝛾𝑠1 + (1 + 𝛼)(1 − 𝛾)
)
1
2 − (𝛾𝑠1)

1
2

)

(36)

The secondary zone force can be obtained by integrating the stress
function with respect to 𝑥𝑥 with the width of the FRP sheet, which can
be given as (rearranged from Eq. (25)):

𝐹𝑠 = 𝑏𝑓 ∫

𝑥𝑥

0
𝜏𝑠𝑑𝑥𝑥 = 𝑏𝑓 𝜏𝑚𝑎𝑥 ∫

𝑥𝑥

0

1

𝛽2𝐾𝜏𝑚𝑎𝑥
𝑥𝑥2
2 + 𝛽2𝐶1𝑥𝑥 + 1

𝑑𝑥𝑥 (37)

Eq. (37) can be re-arranged to:

𝐹𝑠 =
2𝑏𝑓
𝛽2𝐾 ∫

𝑥𝑥

0

1
𝑥𝑥2 + 2𝐶1

𝐾𝜏𝑚𝑎𝑥
𝑥𝑥 + 2

𝛽2𝐾𝜏𝑚𝑎𝑥

𝑑𝑥𝑥 (38)

𝐹𝑠 =
2𝑏𝑓
𝛽2𝐾 ∫

𝑥𝑥

0

1
𝑥𝑥2 + 𝑃𝑥𝑥 +𝑄

𝑑𝑥𝑥 (39)

where, 𝑃 = 2𝐶1
𝐾𝜏𝑚𝑎𝑥

and 𝑄 = 2
𝛽2𝐾𝜏𝑚𝑎𝑥

, which are constant for specific

bond–slip model. The integration of the inverse quadratic equation can
6

be rearranged as:

𝐹𝑠 =
2𝑏𝑓
𝛽2𝐾

1
√

4𝑄−𝑃 2

4

∫

𝑥𝑥

0

1
√

4𝑄−𝑃2
4

⎛

⎜

⎜

⎝

𝑥𝑥+ 𝑃
2

√

4𝑄−𝑃2
4

⎞

⎟

⎟

⎠

2

+ 1

𝑑𝑥𝑥 (40)

The integration part has ∫ 1
𝑢2+1𝑑𝑢 = arctan(𝑢)+𝐶 format. Hence, the

force due to the secondary zone can be given as:

𝐹𝑠 =
4𝑏𝑓

𝛽2𝐾
√

4𝑄 − 𝑃 2

⎛

⎜

⎜

⎜

⎝

arctan

⎛

⎜

⎜

⎜

⎝

𝑥𝑥 + 𝑃
2

√

4𝑄−𝑝2
4

⎞

⎟

⎟

⎟

⎠

+ 𝐶

⎞

⎟

⎟

⎟

⎠

|

|

|

𝑥𝑥

0
(41)

By applying the limiting values, the force due to the secondary zone
an be given as:

𝑠 =
4𝑏𝑓

𝛽2𝐾
√

4𝑄 − 𝑃 2

⎛

⎜

⎜

⎜

⎝

arctan

⎛

⎜

⎜

⎜

⎝

𝑥𝑥 + 𝑃
2

√

4𝑄−𝑝2
4

⎞

⎟

⎟

⎟

⎠

− arctan

⎛

⎜

⎜

⎜

⎝

𝑃
2

√

4𝑄−𝑝2
4

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

(42)

For the fully developed secondary zone (𝑥𝑥 = 𝑙2) (Eq. (35)), the
maximum force can be given as:

𝐹𝑠,𝑚𝑎𝑥 =
4𝑏𝑓

𝛽2𝐾
√

4𝑄 − 𝑃 2

⎛

⎜

⎜

⎜

⎝

arctan

⎛

⎜

⎜

⎜

⎝

𝑙2 +
𝑃
2

√

4𝑄−𝑝2
4

⎞

⎟

⎟

⎟

⎠

− arctan

⎛

⎜

⎜

⎜

⎝

𝑃
2

√

4𝑄−𝑝2
4

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

(43)

The maximum debonding load can be obtained by adding Eqs. (18)
and (43):

𝐹𝑚𝑎𝑥 = 𝐹𝑝,𝑚𝑎𝑥 + 𝐹𝑠,𝑚𝑎𝑥 (44)

The FRP strain in the secondary zone can be obtained as:

𝜖𝑓 = 1
𝐸𝑓 𝑡𝑓 ∫

𝑙1

0
𝜏𝑝𝑑𝑥 +

1
𝐸𝑓 𝑡𝑓 ∫

𝑥

𝑙1
𝜏𝑠𝑑𝑥 =

𝐹𝑝,𝑚𝑎𝑥
𝑡𝑓 𝑏𝑓𝐸𝑓

+
𝐹𝑠

𝑡𝑓 𝑏𝑓𝐸𝑓
(45)

Therefore, the maximum FRP strain can be obtained as:

𝜖𝑓,𝑚𝑎𝑥 =
𝐹𝑝,𝑚𝑎𝑥
𝑡𝑓 𝑏𝑓𝐸𝑓

+
𝐹𝑠,𝑚𝑎𝑥
𝑡𝑓 𝑏𝑓𝐸𝑓

=
𝐹𝑚𝑎𝑥
𝑡𝑓 𝑏𝑓𝐸𝑓

(46)

3. Summary of theoretical derivations and transform-ability

The theoretical derivations presented by Augusthus Nelson et al.
[21] and in the present work can be used to elaborate the complete
stress–strain relationship, the load–deformation relationship, the maxi-
mum bond (load) resistance, and the effective length of the bonded FRP
of a test sample. However, in this section, the effective bond length
and the ultimate bond resistance (load resistance capacity) are sum-
marised in Table 1. The effective length of the bond and the ultimate
resistance to the bond depend on the geometry of the test samples
and the experimental setup (which are given by the parameter 𝐾) and
the bond–slip parameters (interfacial bond properties). As shown in
Table 1, the formulae are derived from first principles using Generalised
Bond–slip Models.

One of the main benefits is that the Generalised Bond–slip Models
can be transformed into various shapes. These can be achieved by
altering shape constants (𝛼 and 𝛽) or by separating ascending and
descending curves. Based on these principles, eight different bond–slip
models can be deduced from these two Generalised Models, as shown in
Fig. 7. The same deduction can be implemented to simplify the ultimate
load resistance and effective length for all those eight deduced models.
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Fig. 7. The both Generalised Bond–slip Models are transformed into various possible shape of bond–slip models.
Table 1
Summary of the Generalised Bond–slip Models and derivations: effective bond length (𝑙𝑒 = 𝑙1 + 𝑙2) and maximum bond resistance (𝐹𝑚𝑎𝑥 = 𝐹𝑝,𝑚𝑎𝑥 + 𝐹𝑠,𝑚𝑎𝑥); 𝐾 value is the same for
both Generalised Bond–slip Models, however this depends on the experimental set-up (double lap shear tests or single lap shear tests; 𝜖𝑓 is the strain with respected to distance
along the bonded length; 𝑥 and 𝑥𝑥 are the distance along the FRP for ascending and descending zones, respectively (See Fig. 3).

Augusthus Nelson et al. (2020) Present work

Generalised
bond–slip models

𝜏 =

⎧

⎪

⎨

⎪

⎩

𝜏𝑚𝑎𝑥
(

𝑠
𝑠1

)𝛼
0 ≤ 𝑠 ≤ 𝑠1

𝜏𝑚𝑎𝑥
(

𝑠2−𝑠
𝑠2−𝑠1

)

𝑠1 ≤ 𝑠 ≤ 𝑠2
𝜏 =

⎧

⎪

⎨

⎪

⎩

𝜏𝑚𝑎𝑥
(

𝑠
𝑠1

)𝛼
0 ≤ 𝑠 ≤ 𝑠1

𝜏𝑚𝑎𝑥𝑒−𝛽(𝑠−𝑠1 ) 𝑠1 ≤ 𝑠

Primary zone 𝑙1 =
(

2(1+𝛼)
𝐾𝜌1 (1−𝛼)

2

)
1
2 𝑠

1−𝛼
2

1

𝐹𝑝,𝑚𝑎𝑥 = 𝑏𝑓 𝜌1
(

𝐾𝜌1 (1−𝛼)
2

2(1+𝛼)

)
𝛼

1−𝛼 𝑙
1+𝛼
1−𝛼
1
1+𝛼
1−𝛼

𝜖𝑓 = 𝜌1
𝑡𝑓𝐸𝑓

(

𝐾𝜌1 (1−𝛼)
2

2(1+𝛼)

)
𝛼

1−𝛼 𝑥
1+𝛼
1−𝛼
1+𝛼
1−𝛼

𝑙1 =
(

2(1+𝛼)
𝐾𝜌1 (1−𝛼)

2

)
1
2 𝑠

1−𝛼
2

1

𝐹𝑝,𝑚𝑎𝑥 = 𝑏𝑓 𝜌1
(

𝐾𝜌1 (1−𝛼)
2

2(1+𝛼)

)
𝛼

1−𝛼 𝑙
1+𝛼
1−𝛼
1
1+𝛼
1−𝛼

𝜖𝑓 = 𝜌1
𝑡𝑓𝐸𝑓

(

𝐾𝜌1 (1−𝛼)
2

2(1+𝛼)

)
𝛼

1−𝛼 𝑥
1+𝛼
1−𝛼
1+𝛼
1−𝛼

Secondary zone 𝑙2 =
1

√

𝐾𝜌3
tan−1

(

−𝐵2

𝐵1

)

𝐹𝑠,𝑚𝑎𝑥 = 𝑏𝑓
√

𝜌3
𝐾

(

𝐵1 cos
(

𝑙2
√

𝐾𝜌3
)

− 𝐵1 − 𝐵2 sin
(

𝑙2
√

𝐾𝜌3
))

𝜖𝑓 =

(

𝐹𝑝,𝑚𝑎𝑥+𝑏𝑓
√

𝜌3
𝐾

(

𝐵1 cos
(

𝑥𝑥
√

𝐾𝜌3
)

−𝐵1−𝐵2 sin
(

𝑥𝑥
√

𝐾𝜌3
))

)

𝑡𝑓 𝑏𝑓𝐸𝑓

𝑙2 =
(

2
𝛽2𝛾𝐾𝜏𝑚𝑎𝑥 (1+𝛼)

)
1
2

(

(

𝛾𝑠1 + (1 + 𝛼)(1 − 𝛾)
)

1
2 − (𝛾𝑠1)

1
2

)

𝐹𝑠,𝑚𝑎𝑥 = 4𝑏𝑓
𝛽2𝐾

√

𝑃 2−4𝑄
𝑙𝑛

(

𝑙2 (𝑃+
√

𝑃 2−4𝑄)+2𝑄
𝑙2 (𝑃−

√

𝑃 2−4𝑄)+2𝑄

)

1
2

𝜖𝑓 =

⎛

⎜

⎜

⎜

⎝

𝐹𝑝,𝑚𝑎𝑥+
4𝑏𝑓

𝛽2𝐾
√

𝑃 2−4𝑄
𝑙𝑛

(

𝑥𝑥(𝑃+
√

𝑃 2−4𝑄)+2𝑄

𝑥𝑥(𝑃−
√

𝑃 2−4𝑄)+2𝑄

)
1
2
⎞

⎟

⎟

⎟

⎠

𝑡𝑓 𝑏𝑓𝐸𝑓

Constants 𝜌1 =
𝜏𝑚𝑎𝑥
𝑠𝛼1

; 𝜌3 =
𝜏𝑚𝑎𝑥
𝑠2−𝑠1

;

𝐵1 =
(

2𝜌1
𝜌3 (1+𝛼)

)
1
2 𝑠

1+𝛼
2

1 ; 𝐵2 = 𝑠1 − 𝑠2

𝜌1 =
𝜏𝑚𝑎𝑥
𝑠𝛼1

; 𝛾 = 𝜏𝛾
𝜏𝑚𝑎𝑥

; 𝑃 = 2
𝛽𝐾𝜏𝑚𝑎𝑥

(

2𝐾𝜌1
(1+𝛼)

)
1
2 𝑠

1+𝛼
2

1 ;

𝑄 = 2
𝛽2𝐾𝜏𝑚𝑎𝑥
4. Existing bond–slip models and parameters

4.1. Existing bond–slip models for epoxy bonded FRP to concrete

Most of the ascending and descending curves of the bond–slip
models are represented by two separate mathematical functions, which
7

are summarised in Appendix A.1. In few cases, a single mathematical
equation was used to represent the ascending and descending curves, as
illustrated in Appendix A.1. In the literature, the shapes of the ascend-
ing and descending curves varied from linear to exponential between
bond–slip models. In addition to shape functions, the properties of the
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Table 2
Summary of the shape and interfacial bond properties of existing bond–slip models and their dependability of the geometry and constitutive
material properties.

Bond–slip models Ascending curve Descending curve

Power function Linear Exponential

𝜏𝑚𝑎𝑥 𝑠1 𝛼 𝑠2 𝛾 𝛽

Neubauer and Rostasy [29] GC G 1
Monti et al. [30] GC GCA 1 G
Brosens and Van Gemert [27] GC GCA 1 GC
Ko et al. [31] C C 1 C
Lu et al. [23] bi-linear model GC GC 1 GC
Pan and Wu [16] GC GCA 1 – GCA
Lu et al. [23] simplified model GC GC 0.5 – GC
Dai and Ueda [38] GCAF GCAF 0.575 – GAF

G = Geometry of the test sample; C = Mechanical properties of concrete;
A = Mechanical properties of epoxy glue; F = Mechanical properties of FRP
(
m
t
A
c
e
a
e
p
(
l
s

(
e
t
a
t
a
a

w
a
c
i

interfacial bond between FRP and concrete (𝜏𝑚𝑎𝑥, 𝑠1 and 𝑠2) are es-
sential in developing the theoretical characteristics of bonded samples.
Therefore, in Appendix, interfacial bond properties are summarised
together with the shape functions of each bond–slip model.

A direct measurement of interfacial bond properties (𝜏𝑚𝑎𝑥, 𝑠1 and 𝑠2)
is not possible from experimental investigations. Instead, researchers
developed a strain profile of FRP along the bonded length and ap-
proximately converted the strain profile into a stress profile [35–37].
Using the stress and slip characteristics along the bonded length, an
approximate bond–slip model was selected using statistical curve-fitting
approaches [31]. For the selected bond–slip model, approximate inter-
facial bond properties with semi-empirical constants were then derived,
as shown in Appendix. The number of experimental results used to
validate those interfacial bond properties varied significantly and often
increased chronologically.

4.2. Shape and interfacial bond parameters

It is understood that the shape and the interfacial bond parameters
of a bond–slip model dictate theoretical predictions. To further improve
understanding of the composition, the shape parameters (𝛼, 𝛽 and 𝛾)
and the interfacial bond parameters (𝜏𝑚𝑎𝑥, 𝑠1 and 𝑠2) of the bond–slip
models with two separate mathematical functions for the ascending and
descending curves are compared and critiqued in Table 2. As illustrated
in Table 2, the shape of the ascending curve is defined as a constant
in all those bond–slip models. Furthermore, as illustrated, the linear
descending curve is also defined empirically. In contrast, exponentially
decreasing curves are defined using the material properties of its con-
stituent components (concrete, FRP, and epoxy glue) and the shape of
the test samples. Moreover, the geometry of the test sample (except Ko
et al.’s model) and material properties (concrete, FRP, and epoxy glue)
of the system are used to define the interfacial bond–slip parameters
of the models. It should be noted that the combination of material
properties varies between the models, which are outlined in Appendix.

As identified, the parameters of the interfacial bond are defined in
terms of the mechanical properties and geometries of concrete, FRP and
adhesives. Obtaining mechanical properties and geometries of concrete
and FPR is less controversial, and often standardised method of mea-
surements were used. Hence, the adhesive’s mechanical and physical
properties (often thicknesses of the adhesive layers) are no commonly
used in bond–slip models because of their complex nature, and obtain-
ing these properties is cumbersome. For example, measurement of the
thickness after application requires advanced optical distance measure-
ment equipment because the thickness of the adhesive changes between
samples as a result of the workmanship and the number of coatings
applied. Dai et al. [39] measured the adhesive thickness in failed
samples from bond–slip tests using a microscope. It was observed that
the adhesive’s thickness varies significantly between samples. There-
fore, the thicknesses of the adhesive layer(s) were not reported in
8

all of the experimental results found in the literature. Moreover, the i
Table 3
Properties of adhesives.

Types of adhesives Elastic modulus Poisson ratio Shear modulus
(GPa) (GPa)

CN-100 [39] 0.39 0.45 0.13
SX-325 [39] 1.0 0.38 0.36
FR-E3P [39] 2.41 0.38 0.87
Adhesive [16] 3.5 0.4 1.25

mechanical behaviour of adhesive is nonlinear during the application
of loading as the adhesive softens during the testing. Modelling such
a complex nonlinear system is computationally overwhelming. Hence,
the initial elastic and shear moduli of adhesives were used when and
where the adhesive properties were considered [32,40]. Moreover,
additional experimental tests of material are required to obtain elastic
and shear moduli, unless the manufacturers provide them. To show the
randomness of the properties of the adhesive, Table 3 summarises the
adhesives used in the experimental investigations by Pan and Wu [16]
and Dai et al. [39].

4.3. Comparisons of shape and interfacial bond parameters

As illustrated in Appendix, the mathematical expressions for the
interfacial bond parameters (𝜏𝑚𝑎𝑥, 𝑠1 and 𝑠2) and the shape parameters
𝛼, 𝛽 and 𝛾) vary between the bond–slip models. Furthermore, the
aterial properties (concrete, FRP, and adhesive) and combinations of

hese material properties are also different in mathematical expressions.
s described, each available model at the time of development was
alibrated using the part of the experimental results available in the lit-
rature. To illustrate the range of these parameters of interfacial bonds
nd understand the dependability of each component of the material,
xisting experimental results together with geometric and mechanical
roperties of the constitutive materials were collated from [6,8,41–50]
211 total test samples, 149 double-lap shear tests and 62 single shear-
ap tests — only samples that meet the conditions in the derivations are
elected for this validation).

The interfacial bond and shape parameters for each bond–slip model
using their model equations in column 4 Appendix) for all collated
xperimental samples are presented in Fig. 8. The bond–slip models
hat comply with the proposed Generalised Bond–slip Models 1 and 2
re used for this comparison. In addition, to make a direct comparison,
he interfacial bond and shape parameters are grouped and presented
ccording to the basic shape of the bond–slip models (Models A, D, G
nd H, as described in Fig. 7).

The plots along Fig. 8(b) are for the Neubauer and Rostasy model,
here there is no direct comparison. The set of graphs in Fig. 8(b)
re the bilinear bond–slip model and shows that 𝜏𝑚𝑎𝑥 is relatively
onsistent for all bond–slip models. Apparently, the deviation in 𝜏𝑚𝑎𝑥
s offset by changing 𝑠1 and 𝑠2. Fig. 8(c) is for the linearly ascend-

ng and exponentially descending bond–slip model, where there is no
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Fig. 8. Comparisons of shape and interfacial bond properties – outputs are grouped according to the shape of the models presented in Fig. 5 – (a) 1: Neubauer and Rostasy [29]
(b) 1: Monti et al. [30], 2: Brosens and Van Gemert [27], 3: Ko et al. [31] and 4: Lu et al. [23] - bi-linear model (c) 1: Pan and Wu [16] (d) 1: Lu et al. [23] - simplified model,
2: Dai and Ueda [39]. On each box, the central mark (red horizontal line) indicates the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles,
respectively. The whiskers extend to the most extreme data points not considered outliers, and the outliers are plotted individually using the ‘+’ symbol in red. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
direct comparison. However, 𝜏𝑚𝑎𝑥 is very similar to what is observed
n Fig. 8(b). In contrast, 𝑠1 is significantly smaller. Fig. 8(d) is for
onlinearly ascending and exponentially descending, where Lu et al.’s
implified model and Dai and Ueda’s model are compared. These are
ound to be significantly different.

.4. Comparison of interfacial fracture energy

Even though the bond–slip models are different (as described in the
ection above), the method of estimating the interfacial fracture energy
s the same. It is defined as the area under the bond–slip curves. As
oted above, the interfacial bond and shape parameters are varied in
ll of the models reported here. It is debatable whether the various
ond–slip parameters and shape variations matter or whether all of
he models ultimately produce results with similar maximum bond
esistance and effective bond length. Numerous works show that each
ond–slip or bond-strength model gives different predictions. Fig. 9
ompares the interfacial fracture energy of each model for all test
amples. The comparison indicates that the interfacial fracture energies
re very different, consistent with what is seen in Fig. 8. However,
he interfacial fracture energies are well within the range reported by
iscaia et al. [24].

. Validation of the theoretical derivations

The main aim of this paper is to show the use of derivations
n predicting the responses of single- and double-lap bond tests. In
ddition, the secondary aim of this section are not to introduce a new
et of interfacial bond and shape parameters; instead, the suitability
f the bond–slip and shape parameters of existing models and the
9

Fig. 9. Comparison of interfacial fracture energies all the existing bond–slip models
considered in this study. On each box, the central mark (red horizontal line) indicates
the median, and the bottom and top edges of the box indicate the 25th and 75th
percentiles, respectively. The whiskers extend to the most extreme data points not
considered outliers, and the outliers are plotted individually using the ‘+’ symbol in
red. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

assumptions made for those bond–slip parameters are investigated
using the derivations presented in this paper and Augusthus Nelson
et al. [21].
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5.1. Prediction of maximum load resistance

Any number of experimentally derived maximum load resistances
can be used as a single data point for the maximum resistance when
validating a proposed bond–slip model. Therefore, for the experimental
results collated from the literature (see Section 4.3), the theoretical
maximum load resistances for each bond–slip model with their interfa-
cial bond and shape parameters were calculated using the derivations
presented in this paper, and Augusthus Nelson et al. [21], summarised
in Table 1.

Most of the existing experimental investigations of single and double
lap shear tests report the properties of concrete and FRP with the
geometry of the test samples. However, the properties of the adhesives
are not reported in all of the experimental results. This is because
measuring the thickness and elastic–plastic properties of epoxy is cum-
bersome. Therefore, an epoxy thickness of 0.9 mm, an elastic modulus
of 2410 N/mm2 and a Poisson’s ratio of 0.4 are used in the prediction. In
addition, if the FRP length of the sample is greater than the theoretical
effective length, the maximum force resistance was calculated for the
entire effective length. However, when the FRP lengths are shorter
than the theoretical effective bond length, the primary and secondary
zones were considered separately, and the maximum load resistance
was calculated according to the length of the bonded FRP.

Furthermore, in theory, an infinite length is required to develop the
entire bond–slip model for the exponentially descending curves. This is
because the tail end of the exponential curve reaches zero bond stress at
infinity. Therefore, defining the cutoff point beyond where the bonded
stress can be negligible is necessary. In the derivations, the cutoff point
(𝛾) for the effective length or effective bond resistance is defined in
terms of fraction of maximum bond stress (𝜏𝑚𝑎𝑥) of the bond–slip model
(see Eq. (29)). For this validation, 𝛾 = 0.9 is used.

The theoretical predictions of the maximum load resistance of each
bond–slip model against the experimental load resistance are shown
in Fig. 10. The comparison shows that the accuracy of the predictions
improved from the single curve to the double curve bond–slip models.
Additionally, the accuracy improved further when the descending curve
changes from linear to exponential. However, interestingly, the bilinear
models of Lu et al. provide a slightly better fit than the other models,
as shown in Fig. 10.

5.2. Prediction of effective bond length

The effective length is defined as the extent of the FRP that must
be bonded to a substrate to realise the complete bond–slip model,
encompassing both its ascending and descending curves. As described
before, a cutoff point is required for the bond–slip models with an
exponentially descending curve. Therefore, as before, 𝛾 = 0.9 is used.
The predictions of effective bond lengths using the theoretical deriva-
tions for each bond–slip model are presented in Fig. 11. It should be
noted that quantifying the experimental effective bond length is not
straightforward, as it cannot be measured explicitly from experiment.
Image processing techniques have recently been used to quantify the
effective bond length. However, such advanced techniques were not
available in the early stages of the development of bond–slip models.
Therefore, experimental measurements of effective bond lengths were
not available in all of the experimental results reported in the literature.
As a result, a direct comparison of the experimental and theoretical
predictions cannot be reported here.

Researchers developed various empirical effective length models
using the material and geometric properties of the bonded system, the
interfacial fracture energy, or both. Again, theoretical predictions using
the derivations reported here and the empirical predictions for each
bond–slip model are not compared as this comparison is outside the
scope of this article.

Appendix shows that 𝛼, which defines the shape of the ascending
10

curve, varies between the bond–slip models. i.e., 𝛼 is 0.5 and 1 in Lu
Fig. 10. Comparison between experimental results and theoretical prediction using
parameters suggested by (a) Neubauer and Rostasy [29]; (b) Monti et al. [30]; (c)
Brosens and Van Gemert [27]; (d) Ko et al. [31]; (e) Lu et al. [23] - bi-linear model;
(f) Pan and Wu [16]; (g) Lu et al. [23] - simplified model; (h) Dai and Ueda [39].

et al.’s [23] and Pan and Wu’s [16] models, respectively. Additionally,
the derivation (Eq. (20)) demonstrates that when 𝛼 = 1, the denomina-
tor is zero, causing the effective length to reach infinity. Furthermore,
the sensitivity studies by Augusthus Nelson et al. [21] show that 𝛼 does
not make a significant difference in the maximum load predictions,
while the changes in effective length are observable. This study showed
that 𝛼 = 0.9 gives reasonable accuracy for the bond–slip models that use
𝛼 = 1. Quantifiable continuous strain profiles along the FRP, which are
difficult to measure during experimental investigations, are required to
validate that 𝛼 corresponds to the effective length. Therefore, 𝛼 = 0.9 is
used for this validation when 𝛼 = 1, while the models of Lu et al. [23]
and Dai and Udea [38] use 0.5 and 0.575, respectively.

The effective theoretical length is the bonded length required to
develop the entire bond–slip curve. The infinite bond length is required
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Fig. 11. Theoretical predictions of effective bond length using the parameters suggested by (a) Neubauer and Rostasy [29]; (b) Monti et al. [30]; (c) Brosens and Van Gemert [27];
(d) Ko et al. [31]; (e) Lu et al. [23] - bi-linear model; (f) Pan and Wu [16]; (g) Lu et al. [23] - simplified model; (h) Dai and Ueda [39].
Fig. 12. Double lap shear test.
11
to develop an entire bond–slip curve in the exponentially descending
bond–slip models. Therefore, various cut-off points concerning max-
imum load resistance and the effective length were studied [51,52].
Cornetti and Carpinteri’s [53] studies showed that the cutoff point of
the exponentially descending curve does not significantly influence the
maximum load resistance or the load–deflection response. However, the
effective length varied considerably with varying cutoff points. This
can be attributed to the changes in the cutoff point which do not
significantly alter the interfacial fracture energy. Therefore, the cut-
off point for exponential descending curves was calculated to form
the known interfacial fracture energy once the characteristics of the
ascending curve were established [16]. The load–deformation compar-
ison between the experimental output and the theoretical prediction
using an exponential descending curve with 10% cut-off point showed
acceptable agreement. Hence, 0.9 is used in this study.

As expected, effective length predictions are inconsistent, as shown
in Fig. 11. The linearly ascending bond–slip curve leads to an infinite

effective bond length. However, Lu et al.’s [23] and Dai and Udea’s [38]
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Table 4
Mechanical properties of concrete, FRP and epoxy glue.

Concrete
Cube strength, 𝑓𝑐𝑢 41.6 N/mm2

Tensile strength, 𝑓𝑡 4.2 N/mm2

Young’s elastic modulus, 𝐸𝑐 29,670 N/mm2

FRP Tensile strength, 𝑓𝑓 4,000 N/mm2

Young’s elastic modulus, 𝐸𝑓 240 × 103N/mm2

Epoxy glue
Poisson ratio, 𝑣𝑎 0.4
Young’s elastic modulus, 𝐸𝑎 2400 N/mm2

Thickness, 𝑡𝑎 0.9 mm

models use non-linear ascending curves and give finite effective bond
lengths. The same issue exists between the linearly and exponentially
descending curves, as the linearly descending curve gives finite effec-
tive bond length while the exponentially descending curve gives infinite
effective bond length. The calibration of these models is not feasible,
as the direct measurement of effective length from experimental inves-
tigations is not feasible. However, as shown in Fig. 11, the prediction
of effective bond length is possible for any combination of ascending
and descending curves using the analytical derivations presented here.

5.3. Load slip curve

To demonstrate the derivation presented in this article and Augusthu
Nelson et al. [21], double lap shear experimental samples tested by
Al-Allaf et al. are used in this section, as shown in Fig. 12. The bonded
length of the FRP (𝐿) is 100 mm, and the thickness (𝑡𝑓 ) and width
𝑏𝑓 ) of the FRP are 0.117 mm and 100 mm, respectively. The width
nd thickness of the concrete (half of the total width) are 200 mm and
5 mm, respectively. Table 4 lists the characteristics of concrete, FRP,
nd epoxy. It should be noted that the properties of epoxy are approx-
mate and depend on the manufacturer’s recommendations rather than
eing measured. A detailed test plan can be found elsewhere [8,50,54].

Fig. 13(a) and (b) compare the shapes (including interfacial bond
arameters) and interfacial fracture energies, respectively, for each of
he eight bond–slip models for the test sample of Al-Allaf et al. As
hown in Fig. 13(a), the bond–slip models differ widely. The model of
eubauer and Rostasy (specified by a single linear curve) differs sig-
ificantly from other bond–slip models, when compared. Furthermore,
he models developed by Monti et al. and Brosens and Van Gemert are
early identical. Both the bilinear (linearly ascending and descending)
nd simplified (nonlinearly ascending and exponentially descending)
odels of Lu et al. are comparable to Ko et al. which is solely dependent

n the compressive strength of concrete. In the literature, the interfacial
racture energy is used when developing the comparison. Therefore, the
nterfacial fracture energies of each bond–slip model are compared in
ig. 13(b). As observed, the fracture energies are widely different too.
he question arises of which bond–slip model is best for predicting the
ehaviour.

The theoretical load-slip predictions using these bond–slip mod-
ls for Al-Allaf et al. are plotted against the experimental results in
ig. 14. Neubauer and Rosstasy’s prediction is significantly different
rom experimental results. This behaviour is the same as that for Monti
t al. and the Brosens and Van Gemert models. Initial stiffness of Ko
t al.’s and Lu et al.’s bilinear models are marginally different from
xperimental results. However, this difference becomes greater as the
oad increased. The prediction of Pan and Wu is very similar to the
xperimental results. Lu et al.’s simplified and Dai and Udea’s models
re similar at the start of the load–deformation curve. However, the
heoretical load–deformation curves are terminated because the bonded
ength of the FRP was only 100 mm (the theoretical effective bond
ength is greater than 100 mm for both bond–slip models) for the test
ample of Al-Allaf et al.
12
Fig. 13. (a) Bond–slip curves and (b) interfacial fracture energies for Al-Allaf et al.’s
test samples.

5.4. Prediction of strain distribution

As shown, the mathematical derivations presented in Section 2 in
this paper and Augusthus Nelson et al. [21] allow the construction of a
complete strain profile along the bonded length of FRP, demonstrated
in Fig. 15. All eight different bond–slip models, as before, have been
used with the experimental setup of Al-Allaf et al. (see Fig. 12 and
Table 4).

Fig. 15(a) shows the strain profile along the FRP for the fully
developed ascending curve of Neubauer and Rostasy’s bond–slip model,
which is defined using a single linearly ascending curve (the inset
shows the bond–slip model for the experimental sample of Al-Allaf
et al.). In Fig. 15(b), the solid line on the left illustrates the strain
profile for the fully developed ascending curve of Monti et al.’s bond–
slip model, which corresponds to the stage described in Fig. 5(c). As
mentioned, the ascending curve shifts towards the unloaded end when
the load increases, thus allowing the descending curves to develop.
The curve in the middle (with solid and hidden lines) represents the
strain profile for the fully developed ascending curves (solid line) and
partially developed descending curves (hidden line), which corresponds
to the stage described in Fig. 5(d). With increasing applied load, both
the ascending and descending curves are fully developed, as shown
by the curve on the right, which corresponds to the stage described
in Fig. 5(e). According to bond–slip models, the fully developed strain
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Fig. 14. Load-slip comparisons between experimental results and theoretical prediction using parameters suggested by (a) Neubauer and Rostasy [29]; (b) Monti et al. [30]; (c)
rosens and Van Gemert [27]; (d) Ko et al. [31]; (e) Lu et al. [23] - bi-linear model; (f) Pan and Wu [16]; (g) Lu et al. [23] - simplified model; (h) Dai and Ueda [39].
rofile (curve on the right with solid and hidden lines) shifts towards
he unloaded end with increasing load. The strain profiles are the same
or all the bond–slip models (the corresponding bond–slip models are
rovided in the inset), as shown in the subfigures of Fig. 15. The strain
rofiles on the right (fully developed ascending and descending curves
f each bond–slip model) can also be used to establish the effective
ength of the bond.

. Conclusion

Various bond–slip models have been proposed in the literature for
RP-bonded concrete. In each model, different mathematical formula-
ions for shape and interfacial bond characteristics were developed. Out
f all the bond–slip models, a small number are defined by a single
athematical expression. The rest are defined using two mathematical

xpressions (each expression for ascending and descending part of the
13
bond–slip model). The most prevalent ascending curve of the bond–slip
model is linear or comprised of power functions, while the descending
curve is linear or exponential functions.

For accurate prediction, the bond–slip model must be validated
before being used in a structural retrofitting study. However, the bond–
slip model is an implicit characteristic. Therefore, three approaches
were considered to develop experimental outputs to validate the bond–
slip model: empirical mathematical expressions (empirical constants
were developed or calibrated from the curve fitting with the experi-
mental results), numerical or finite element analysis using computer
software packages, and closed-form analytical solutions.

Firstly, most mathematical expressions with empirical constants
were developed to predict the maximum load resistance and effective
bond length for a specific bond–slip model. However, only a few empir-
ical expressions that would allow for predicting the load–deformation
(or slip) response and strain distribution along the bonded FRP length
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Fig. 15. Theoretical predictions of strain in FRP along the bonded FRP length using the bond–slip parameters suggested by (a) Neubauer and Rostasy [29]; (b) Monti et al. [30];
(c) Brosens and Van Gemert [27]; (d) Ko et al. [31]; (e) Lu et al. [23] - bi-linear model; (f) Pan and Wu [16]; (g) Lu et al. [23] - simplified model; (h) Dai and Ueda [39].
The inset plots in each subplot shows the bond–slip model. The blue solid line represents the ascending portion of the bond–slip model, while the red hidden line represents the
descending portion of the bond–slip model.
were proposed. The main challenge of this approach is that a specific
mathematical expression only applies to a specific bond–slip model.
Furthermore, the empirical constant will vary depending on the number
of experimental results used to calibrate. Therefore, the suitability of
the approach is limited even though it provides a prediction.

The second approach was to validate the bond–slip models using
a numerical approach (i.e. finite element analysis). This approach
provides a powerful in-depth understanding of the test sample. How-
ever, the modelling of each sample should be performed one by one.
Therefore, validating the bond–slip with numerous experimental results
may be challenging.

Closed-form analytical solutions developed from first principles
avoid the validation of each test sample one by one and use empirical
14
constants to predict experimental outputs. It should also be noted
that the closed-form analytical solutions are limited to bond failure
between concrete and FRP, while FRP and concrete remain elastic.
Therefore, concrete fracture failure or FRP rupture should be modelled
as a material failure. This is beyond the scope of this paper. The earliest
closed-form analytical solutions are specific to the shape of the bond–
slip curve, and therefore, it does not apply to other shapes. Also, the
analytical solutions are only for specific experimental outputs.

The complete and comprehensive closed-form analytical solutions
presented in this paper and those of Augusthus Nelson et al. [21]
are for the generalised bond–slip models. The generalised bond–slip
models can be transformed into several bond–slip models, defined by
the combination of linear or power ascending curves and linear or
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exponential descending curves. In addition, the generalised bond–slip
model and thus derivations can be deduced to single curved bond–slip
models. Furthermore, unlike any bond–slip models previously proposed
in the literature, all of the typical outputs from experimental tests
(maximum load resistance, effective length prediction, complete con-
struction of load–deformation (slip) curves, and strain profile along
bonded FRP length) can be numerically driven using the derivations
presented in this paper and Augusthus Nelson et al. [21]. As discerned
from our observations, the prediction of load resistance capacity is
intrinsically governed by the interfacial fracture energy. Consequently,
in this context, it is pertinent to note that Lu et al.’s bi-linear model,
meticulously calibrated using an extensive dataset, as well as all the
exponentially descending bond–slip models, including the Pan and
Wu model, Lu et al.’s simplified model, and Dai and Udea model,
exhibited superior predictive performance. Notably, the exponentially
descending bond–slip models, in particular, exhibited a closer align-
ment with the experimental load-slip response when compared with
their linearly descending counterparts. Furthermore, congruent trends
with the experimental outcomes were observed when examining the
predictions of effective length and strain along the FRP. Therefore, to
gain a deeper understanding of these bond–slip models, considering
their characteristics and shapes, it becomes imperative to conduct a
sensitivity analysis of the pertinent bond parameters.
15
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Appendix. Existing bond–slip models and their interfacial bond
properties
See Table A.1.
Table A.1
A summary of the bond-slip models that have been studied and presented in the literature to demonstrate how FRP adheres to concrete.

Model Bond–slip Ascending Descending Bond–slip
Fig. 7 model (primary) (secondary) parameters

A Neubauer and 𝜏𝑚𝑎𝑥
𝑠
𝑠1

0 𝜏𝑚𝑎𝑥 = 1.8𝛽𝑤𝑓𝑡
Rostasy [29] 𝛼 = 1

𝑠1 = 0.202𝛽𝑤
𝑠2 = 𝑠1

𝛽𝑤 =
√

1.125(2−𝑏𝑓 ∕𝑏𝑐 )
1+𝑏𝑓 ∕400

D Monti et al. [30] 𝜏𝑚𝑎𝑥
𝑠
𝑠1

𝜏𝑚𝑎𝑥
𝑠2−𝑠
𝑠2−𝑠1

𝜏𝑚𝑎𝑥 = 1.8𝛽𝑤𝑓𝑡
𝛼 = 1
𝑠1 = 2.5𝜏𝑚𝑎𝑥

(

𝑡𝑎
𝐸𝑎

+ 50
𝐸𝑐

)

𝑠2 = 0.33𝛽𝑤

𝛽𝑤 =
√

1.5(2−𝑏𝑓 ∕𝑏𝑐 )
1+𝑏𝑓 ∕100

D Brosens and 𝜏𝑚𝑎𝑥
𝑠
𝑠1

𝜏𝑚𝑎𝑥
𝑠2−𝑠
𝑠2−𝑠1

𝜏𝑚𝑎𝑥 = 1.8𝛽𝑤𝑓𝑡
Van Gemert [27,28] 𝛼 = 1

𝑠1 = 2.5𝜏𝑚𝑎𝑥
(

𝑡𝑎
𝐸𝑎

+ 50
𝐸𝑐

)

𝑠2 =
2𝐺𝑓
𝜏𝑚𝑎𝑥

𝛽𝑤 =
√

1.5(2−𝑏𝑓 ∕𝑏𝑐 )
1+𝑏𝑓 ∕100

𝐺𝑓 = 0.3𝛽2𝑤𝑓𝑡
D Ko et al. [31] 𝜏𝑚𝑎𝑥

𝑠
𝑠1

𝜏𝑚𝑎𝑥
𝑠2−𝑠
𝑠2−𝑠1

𝜏𝑚𝑎𝑥 = 0.165𝑓𝑐
𝛼 = 1
𝑠1 = 0.122 − 0.001𝑓𝑐
𝑠2 = 0.302 − 0.002𝑓𝑐

D Lu et al. [23] 𝜏𝑚𝑎𝑥
𝑠
𝑠1

𝜏𝑚𝑎𝑥
𝑠2−𝑠
𝑠2−𝑠1

𝜏𝑚𝑎𝑥 = 1.5𝛽𝑤𝑓𝑡
bi-linear model 𝛼 = 1

𝑠1 = 0.0195𝛽𝑤𝑓𝑡
𝑠2 =

0.616𝛽2𝑤
√

𝑓𝑡
𝜏𝑚𝑎𝑥

𝛽𝑤 =
√

2−𝑏𝑓 ∕𝑏𝑐
1+𝑏𝑓 ∕𝑏𝑐

G Pan and Wu [16] 𝜏𝑚𝑎𝑥
𝑠
𝑠1

𝜏𝑚𝑎𝑥𝑒−𝛽(𝑠−𝑠1)
𝜏𝑚𝑎𝑥
𝐸𝑑

= 1.31𝑘2𝑤
(

𝑓𝑐
𝐸𝑑

)0.19

𝛼 = 1
𝑠1 =

𝜏𝑚𝑎𝑥
𝑘

𝛽 = 𝜏𝑚𝑎𝑥
𝐺𝑓

𝐺𝑓
𝐸𝑑𝑑

= 0.247𝑘2𝑤
(

𝑓𝑐
𝐸𝑑

)0.216

𝑘 = 𝐺𝑎
𝑡𝑎

𝑘𝑤 = 𝜆′ + (1 − 𝜆′) 𝑏𝑓
𝑏𝑐

𝜆′ = 1 + 0.222
(

𝑓𝑐
𝐸𝑑

)0.304

𝐸𝑑 = 1𝑀𝑃𝑎; 𝑑 = 1 m

(continued on next page)
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Table A.1 (continued).

H Lu et al. [23] 𝜏𝑚𝑎𝑥
(

𝑠
𝑠1

)
1
2 𝜏𝑚𝑎𝑥𝑒−𝛽(𝑠−𝑠1 ) 𝜏𝑚𝑎𝑥 = 1.5𝛽𝑤𝑓𝑡

simplified model 𝛼 = 1
2

𝑠1 = 0.0195𝛽𝑤𝑓𝑡
𝛽 = 1

𝐺𝑓
𝜏𝑚𝑎𝑥

− 2𝑠1
3

𝛽𝑤 =
√

2−𝑏𝑓 ∕𝑏𝑐
1+𝑏𝑓 ∕𝑏𝑐

𝐺𝑓 = 0.308𝛽2𝑤
√

𝑓𝑡

H Dai and Ueda [38] 𝜏𝑚𝑎𝑥
(

𝑠
𝑠1

)0.575
𝜏𝑚𝑎𝑥𝑒−𝛽(𝑠−𝑠1 ) 𝜏𝑚𝑎𝑥 = 1

2𝛽

(

−1.575𝜓𝐾𝑎 +
√

2.481𝜓2𝐾2
𝑎 + 6.3𝜓𝛽2𝐾𝑎𝐺𝑓

)

𝛼 = 0.575
𝑠1 =

𝜏𝑚𝑎𝑥
𝜓𝐾𝑎

𝛽 = 0.0035𝐾𝑎

(

𝐸𝑓 𝑡𝑓
1000

)0.34

𝜓 = 0.028
(

𝐸𝑓 𝑡𝑓
1000

)0.254

𝐺𝑓 = 7.554𝐾−0.449
𝑎 𝑓 0.343

𝑐
𝐾𝑎 =

𝐺𝑎
𝑡𝑎

Lu et al. [23] 𝜏𝑚𝑎𝑥
√

𝑠
𝑠1𝐴

+ 𝐵2 + 𝐵 𝜏𝑚𝑎𝑥𝑒−𝛽(𝑠−𝑠1 ) 𝜏𝑚𝑎𝑥 = 1.5𝛽𝑤𝑓𝑡
precise model 𝑠1 = 0.0195𝛽𝑤𝑓𝑡 +

𝜏𝑚𝑎𝑥 (𝐺𝑎 𝑡𝑐+𝐺𝑐 𝑡𝑎 )
𝐺𝑎𝐺𝑐

𝛽 = 𝜏𝑚𝑎𝑥
𝐺𝑓−𝐺𝑎𝑓

𝛽𝑤 =
√

2−𝑏𝑓 ∕𝑏𝑐
1+𝑏𝑓 ∕𝑏𝑐

𝐺𝑓 = 0.308𝛽2𝑤
√

𝑓𝑡

𝐺𝑎
𝑓 = 𝜏𝑚𝑎𝑥𝑠1

[

2𝐴
3

(

1+𝐵2𝐴
𝐴

)
3
2 − 𝐵 − 2

3
𝐵3𝐴

]

𝐴 = 0.0195𝛽𝑤𝑓𝑡
𝑠1

𝐵 = 1
0.039𝛽𝑤𝑓𝑡

𝜏𝑚𝑎𝑥 (𝐺𝑎 𝑡𝑐+𝐺𝑐 𝑡𝑎 )
𝐺𝑎𝐺𝑐

Baky et al. [33] 𝐸𝑜𝑠 + (𝜏𝑚𝑎𝑥 − 𝐸𝑜𝑠1)
(

𝑠
𝑠1

)3
𝜏𝑚𝑎𝑥𝑒−𝛽(𝑠−𝑠1 ) 𝜏𝑚𝑎𝑥 = 2𝑓𝑡

−𝜓+
√

𝜓2+4
𝛾 = 0.1
𝑠1 = 𝜏𝑚𝑎𝑥

(

0.35 𝑡𝑓
𝐺𝑓𝑓

+ 8.5 𝑡𝑎
𝐺𝑎

+ 3 𝑡−𝑐
𝐺𝑐

)

𝛽 = 0.9𝜏𝑚𝑎𝑥
𝐺𝑝𝑓

𝐺𝑝
𝑓 = 𝜏𝑚𝑎𝑥2

[

150
𝐺𝑐

− 0.405
(

𝑡𝑓
𝐺𝑓𝑓

+ 𝑡𝑎
4.25𝐺𝑎

)]

𝜆2 = 𝐺𝑎
𝐸𝑓 𝑡𝑓 𝑡𝑎

(

1 + 𝐸𝑓𝐴𝑓
𝐸𝑐𝐴𝑐

)

𝜓 = 𝐴𝑓
𝜆𝐴𝑐 𝑡𝑓

1
𝐸𝑜

= 𝑡𝑓
𝐺𝑓𝑓

+ 𝑡𝑎
𝐺𝑎

+ 𝑡−𝑐
𝐺𝑐

Nakaba et al. [55] 𝜏𝑚𝑎𝑥
𝑠
𝑠1

(

3∕
(

2 + (𝑠∕𝑠1)3
))+ 𝜏𝑚𝑎𝑥 = 3.5𝑓 0.19

𝑐

𝑠1 = 0.065

Savioa et al. [56] 𝜏𝑚𝑎𝑥
𝑠
𝑠1

(

2.86∕
(

1.86 + (𝑠∕𝑠1)2.86
))+ 𝜏𝑚𝑎𝑥 = 3.5𝑓 0.19

𝑐

𝑠1 = 0.051

Dai et al. [39] 2𝐵𝐺𝑓
(

𝑒−𝐵𝑠 − 𝑒−2𝐵𝑠
)+ 𝜏𝑚𝑎𝑥 = 0.5𝐵𝐺𝑓

𝑠1 = 0.693𝐵

𝐵 = 6.846(𝐸𝑓 𝑡𝑓 )0.108
(

𝐺𝑎
𝑡𝑎

)0.833

𝐺𝑓 = 0.446(𝐸𝑓 𝑡𝑓 )0.023
(

𝐺𝑎
𝑡𝑎

)−0.352
𝑓 0.236
𝑐

FRP Reinforcement: 𝑏𝑓 = width; 𝑡𝑓 = thickness; 𝐸𝑓 = elastic; 𝐺𝑓𝑓 = shear modulus.

Concrete: 𝑏𝑐 = width; 𝑡𝑐 = thickness; 𝐸𝑐 = elastic Young’s modulus; 𝑓𝑡 = tensile strength; 𝑓𝑐 = cylinder strength;
𝐺𝑐 = shear modulus; 𝑡−𝑐 = thin inter-facial layer (Baky et al’s model consider less than 𝑡𝑐 ).

Epoxy glue: 𝑡𝑎 = thickness; 𝐸𝑎 = elastic Young’s modulus; 𝐺𝑎 = shear modulus.

𝐺𝑓 = Fracture toughness (each model provides different formulae)
+ single curve
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