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Computation of non-Newtonian
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Abstract
Motivated by novel developments in smart non-Newtonian thermal duct systems, a theoretical study has been presented
in this article for electro-magneto-hydrodynamic (EMHD) buoyancy-driven flow of a fourth-grade viscoelastic fluid in a
vertical duct with quadratic convection. The viscosity of the fourth-grade fluid model is assumed to be temperature-
dependent, and the Reynolds exponential model is deployed. Viscous heating and Joule dissipation effects are included.
The duct comprises a pair of parallel electrically insulated vertical flat plates located a finite distance apart. Via suitable
scaling transformations, a nonlinear boundary value problem is derived for the momentum and heat transport. A homo-
topy perturbation method (HPM) solution is obtained coded in Mathematica symbolic software. There is a considerable
enhancement in wall skin friction with an increment in fourth-grade fluid parameter, Brinkman number, electrical field
parameter, thermal buoyancy parameter, and quadratic thermal convection parameter. However, skin friction is strongly
reduced with a rise in variable viscosity parameter, Hartmann (magnetic) number, and electromagnetic heat generation
to conduction ratio. Nusselt number magnitudes are elevated with increase in variable viscosity parameter, thermal
buoyancy parameter, and quadratic thermal convection parameter, whereas they are significantly suppressed with incre-
ment in fourth-grade fluid parameter, Brinkman number, and Hartmann magnetic number.

Keywords
Fourth-grade viscoelastic fluid, EMHD, quadratic convection, temperature-dependent viscosity, viscous and Joule heating,
homotopy perturbation solution

Date received: 26 May 2023; accepted: 6 October 2023

Handling Editor: Chenhui Liang

1College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao, Shandong, China
2Material Science Innovation and Modelling (MaSIM) Research Focus Area, North-West University, (Mafikeng Campus), Mmabatho, South Africa
3Multi-Physical Engineering Sciences Group, Mechanical Engineering Department, Corrosion/Coatings Lab, University of Salford, Manchester, UK
4Department of Mathematics and Statistics, International Islamic University, Islamabad, Pakistan
5Center for Modeling & Computer Simulation, Research Institute, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
6Department of Mechanical Engineering, Technology Faculty, Firat University, Elazig, Turkey

Corresponding author:

Muhammad Mubashir Bhatti, College of Mathematics and Systems Science, Shandong University of Science and Technology, No. 579, Qianwangang

Road, Building J-9, Room # J-414, Qingdao, Shandong 266590, China.

Emails: mmbhatti@sdust.edu.cn; mubashirme@yahoo.com

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License

(https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work

without further permission provided the original work is attributed as specified on the SAGE and Open Access pages

(https://us.sagepub.com/en-us/nam/open-access-at-sage).

https://doi.org/10.1177/16878132231210360
https://journals.sagepub.com/home/ade
http://crossmark.crossref.org/dialog/?doi=10.1177%2F16878132231210360&domain=pdf&date_stamp=2023-12-04


Introduction

Magnetohydrodynamics (MHD) has emerged as a
major discipline in 21st century engineering sciences,
tracing its roots to astrophysics.1 It involves the interac-
tion between magnetic fields and either viscous or invis-
cid electrically conducting fluids. In modern energy
systems a major application is the heat transfer and
flow control in nuclear ducts and other energy systems
(solar) where excessive temperatures can arise. MHD
ducts flows feature in lithium blankets,2 turbulence sup-
pression,3 magnetic sensors,4 ferromagnetic solar absor-
ber collectors,5 liquid metal flow couplers,6 coolant
deployment in sodium fast reactors (SFRs),7 and pres-
sure drop regulation.8 In mathematical models of
MHD duct flows frequently dimensionless parameters
arise which include the Hartmann number (ratio of
magnetic body force to viscous force), Stuart magnetic
interaction number (ratio of magnetic force to inertial
force), and magnetic Reynolds number (when induction
effects are significant). Electrohydrodynamics (EHD)9

is a sub-discipline of the more general continuum elec-
tromechanics and also known as electro-kinetics. It
focuses on the interaction between electrical fields and
electrically charged liquids. While in MHD usually
transverse magnetic fields are utilized to generate a per-
pendicular Lorentz electromagnetic body force, in
EHD the electrical field is often implemented along the
axis of the conduit or duct. Many exciting applications
for EHD duct flows (e.g. parallel plate geometries) have
emerged in recent decades including atomizers,10

corona-based duct flows,11 electrode gas pump chan-
nels,12 electrostatic precipitators,13 dielectric barriers
for electro-fluid injection,14 EHD heat exchangers,15

coolants for circuits,16 thermal enhancement,17 and
bio-inspired microfluidic pumping systems.18 As with
MHD, some popular electrohydrodynamic dimension-
less numbers arise in numerical and theoretical studies
of EHD duct flows and these include the electrical
Hartmann number and electrical Reynolds number.
The many studies communicated on either MHD duct
or EHD duct flows have demonstrated that generally
transverse magnetic field damps flows whereas axial
(longitudinal) electrical field accelerates flows. These
findings instigated interest in combining both electrical
and magnetic fields in the science of electro-
magnetohydrodynamics (EMHD) which emerged in
the late 1960s.19 The most comprehensive treatment of
the mechanics of EMHD flows was presented by
Eringen and Maugin20 who considered many types of
fluids including ferromagnetic, dielectric, electro-vis-
cous, ferroelectric, electro-strictive, electro-magneto-
rheological (EMR), and hybrid magnetic ionic liquids.
Subsequently many researchers have investigated the
combined effects of magnetic and electrical fields (both
static and alternating) in viscous duct flows. Jian and

Chang21 developed theoretical solutions for EMHD
incompressible viscous flow in a horizontal a slit micro-
channel duct under a lateral uniform electrical field and
a spatially non-uniform vertical magnetic field. They
deployed the variation of parameter method (VPM),
Gaussian quadrature and Chebyshev spectral colloca-
tion techniques, and obtained good correlation with
experiments. They found that axial flow deceleration is
induced with increasing magnetic field decay factor
whereas strong acceleration is generated with larger
electrical field strength parameter. Chakraborty and
Paul22 computed the EMHD transport in a microchan-
nel, showing that at relatively weak magnetic field
intensities, significant enhancement in volumetric flow
rate is produced. They also noted that excessive electri-
cal field can ramp up the Joule heating and induce wall
degradation. Umavathi and Bég23 investigated the
thermo-solutal EMHD nanofluid convection in a verti-
cal duct for nuclear cooling applications. They showed
that the polarity of the electric circuit strongly modifies
the velocity distribution and interaction with magnetic
field. For negative electrical field, the flow is directed
downwards whereas for positive electrical field it is
upwards. For the case of a short circuit (vanishing elec-
trical field), a linear velocity distribution is computed.
They also found that skin friction is depleted at the left
duct wall with increasing Hartmann number and nano-
particle solid volume fraction but enhanced with those
these parameters at the right wall. They also examined
the relative performance of copper, titanium oxide, and
silver nanoparticles and noted that silver nanoparticles
generate the highest Nusselt number, whereas titanium
oxide nanoparticles produce the lowest. Nusselt num-
bers were also shown to be suppressed with electrical
field but enhanced with magnetic field.

The above studies ignored non-Newtonian effects.
However, many studies have identified that in for
example nuclear slurry duct flows and solar direct
absorber tubes, the presence of particles suspended
may lead to rheological behavior. This has further
motivated researchers to explore the use of different
non-Newtonian formulations to better characterize the
nonlinear shear-stress-strain behavior of such fluids.
Soundalgekar and Aranake24 used the Stokeian polar
(couple stress) rheological model to study heat transfer
in vertical duct flows. Muzychka and Edge25 developed
an elegant model for power-law liquids based on the
Rabinowitsch-Mooney formulation and computed
volumetric flow rates in a variety of ducts including cir-
cular and elliptic tubes, parallel channels, rectangular
ducts, isosceles triangular ducts, circular annular, and
polygonal ducts. Other relevant studies include
Chaudhuri et al.26 (on forced convection heat transfer
in third-grade viscoelastic fluids in ducts) and
Rajagopal and Na27 (third grade fluids with thermal
buoyancy effects in ducts). All these studies confirmed
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the significant deviation in heat and momentum char-
acteristics due to non-Newtonian behavior. A more
sophisticated viscoelastic model of the differential type
is the fourth-grade model. This is superior to the second
grade and third grade Reiner-Rivlin models. In addi-
tion to predicting normal stress differences, the fourth-
grade model can also accommodate the shear thinning
or thickening characteristics of actual industrial slurries
since it does not assume shear viscosity to be a con-
stant). Several investigations have implemented this
model in thermal duct flows. Kazemi et al.28 studied
the hydromagnetic flow of a fourth-grade viscoelastic
fluid in a duct with forced convection. They showed
that there is a decrement in average velocity and the
bulk temperature inside the duct with an increase in
non-Newtonian parameter. Fatima et al.29 presented
perturbation solutions for two-phase ionic fourth-grade
flow in a convergent/divergent duct containing spheri-
cally homogeneous metallic particles under an axial
electrical field. Nadeem and Ali30 conducted a second
law thermodynamic analysis of fourth-grade viscoelas-
tic flow with heat transfer in a vertical pipe using a
homotopy method. Further investigations include Sajid
et al.31, Salawu et al.32 (on thermal stability of magne-
tized fourth-grade fluids), and Khan et al. (on bio-
inspired pumping of chemically reacting fourth-grade
fluids with species diffusion). These studies generally
showed that with increasing viscoelastic material para-
meter associated with the fourth-grade model, decelera-
tion is induced in the flow.

In nuclear and other energy duct applications, com-
plex thermophysical phenomena arise. These include
thermal dispersion, stratification, radiative heat trans-
fer, and convective heating at the boundaries. Another
interesting characteristic is quadratic convection (non-
linear convection or non-Boussinesq convection) which is
associated with nonlinear density temperature differ-
ences in the buoyancy force term in natural convection.
This generalizes the conventional Boussinesq approxi-
mation and provides more sophistication in thermal
modeling of such systems. Temperature gradients can
be significantly modified with quadratic effects and
therefore considering the nonlinear variation of density
with temperature is preferable to the simpler approach
of a linear variation of density with temperature. A
number of articles have addressed quadratic convection
in multi-physical flows. Kunnegowda et al.33 used
homotopy perturbation method to compute the MHD
viscoplastic micro-duct transport with an exponential
space dependent heat source and quadratic convection
effects. Triveni and Mahanthesh34 simulated the nano-
fluid flow in an annular duct with quadratic convection
and quadratic thermal radiation. Kumar and Sood35

studied the non-Boussinesq mixed convection stagna-
tion point flow on a contracting surface to a porous
medium permeated with a magnetic field. They showed

that increasing quadratic convection parameter strongly
modifies the transport and both accelerates the bound-
ary layer and encourages thermal diffusion. Okoya
et al.36 computed the natural convection flow from a
moving wall with variable thermal conductivity and
quadratic non-Boussinesq effects. Al-Kouz et al.37 eval-
uated quadratic convection and thermal radiation influ-
ences on second order viscoelastic boundary layer flow
with a bvp5c finite difference algorithm in MATLAB.
They showed that flow is accelerated with stronger
quadratic convection and a cooling effect is induced.
Further studies include Sabu et al.38 (on inclined plate
MHD nanofluids), Bhatti et al.39 (on viscolastic
Maxwell radiative-convection flow from a stretching
wall with thermal relaxation effects), and Mahanthesh
et al.40 (on dusty nanofluid convection from a vertical
wall).

In the present work we theoretically study the
fourth-grade EMHD natural convection flow in a verti-
cal parallel plate duct with temperature-dependent visc-
osity and quadratic convection. Previous studies have
considered alternative simpler rheological models
including the Williamson model,41 Phan-Thien-Tanner
(PPT) model,42 couple stress model,43 and second order
Reiner-Rivlin model.44,45 Furthermore, we incorporate
the effects of viscous dissipation and Joule heating
(Ohmic dissipation)46,47 and the Reynolds exponential
temperature-dependent viscosity model48–52 all of
which can exert marked modifications in nuclear duct
electro-magneto-hydrodynamic flows. The novelty of
the present work is therefore the collective consideration
of fourth-grade viscoelasticity, viscous heating, exponen-
tial viscosity, and Joule dissipation, which have not been
considered hitherto anywhere in the scientific literature,
despite immediate applications in nuclear duct electro-
magnetic flow control. Fourth-grade fluids are materi-
als with exceptional flow characteristics that fall
between regular liquids and solids. These materials
exhibit a complicated rheological behavior known as
non-Newtonian flow, in which the viscosity (resistance
to flow) varies with shear rate, temperature, and
pressure. Fourth-grade fluid flow has applications in
numerous scientific disciplines, including physics,
chemistry, engineering, and material science.
Understanding fourth-grade fluid is essential for com-
prehending the behavior of complex fluids such as
emulsions, foams, and suspensions. Scientists can
design sophisticated materials with the desired proper-
ties for a variety of applications, including drug deliv-
ery systems, cosmetics, and paint formulations, by
studying the flow properties of these substances.
Viscoelastic fourth-grade rheology is also applicable to
geology and the study of geological formations. It
explains phenomena such as lava flow, mudslides, and
glacier movement. By comprehending non-Newtonian
dynamics, scientists can predict and manage such
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natural occurrences more precisely. Fourth-grade fluid
flow is crucial in a variety of other industries, including
food processing, polymer manufacturing, and hydro-
carbon extraction. Understanding the flow behavior of
non-Newtonian substances is crucial for optimizing
manufacturing processes, regulating product quality,
and increasing productivity. In particular the modern
thrust in electromagnetic smart polymer-based con-
ducting materials in high-risk industries including
nuclear reactor technology has mobilized great interest
in electro-magneto-fluid dynamics of viscoelastic
fourth-grade liquids. This provides a strong justifica-
tion for the current study. The normalized nonlinear
ordinary differential conservation equations and
boundary conditions are solved with a homotopy per-
turbation technique. Detailed solutions for axial velo-
city, temperature, skin friction, and Nusselt number are
presented graphically and in tables for the effects of
key electromagnetic, thermal, and dissipation para-
meters. Detailed interpretation is included. The simula-
tions as noted earlier are pertinent to providing a
deeper understanding of laminar transport phenomena
in nuclear and solar ducts deploying advanced func-
tional rheological working liquids.

Mathematical model for EMHD non-
Newtonian quadratic dissipative duct flow

The regime under investigation is visualized in Figure 1.
An electromagnetic fourth-grade fluid flows under nat-
ural convection between the vertical parallel electrically
insulated plates which are located a finite distance 2d
apart. A Cartesian coordinate system (x0, Y 0) is used.
The walls of the duct are located at x0= d and x0= � d

and are sustained at constant but non-similar tempera-
tures u2 and u1, where u1.u2. The fourth-grade fluid
is electrically conducting and incompressible. An axial
electric field (E) and a transverse magnetic field (B

*

) are
imposed which are mutually orthogonal. Maxwell dis-
placement, Hall current, and magnetic induction effects
are ignored.

Under these assumptions, the mass conservation
(continuity) equation takes the form:

r � ~U = 0, ð1Þ

The momentum equation using Ohm’s law is defined
as:

r ~U � r~U +
∂~U

∂t0

 !
= �r � p0+rt0+ J

*

3 B
*

+ g

r�bð Þ0 u� umð Þ+ r�bð Þ1 u� umð Þ2
h i

,

ð2Þ

Here the stress tensor is designated by t0, pressure is
denoted by p0, g is gravity, linear and nonlinear thermal
expansion coefficients are designated by �b0, �b1, u is the
temperature, um = u1 + u2ð Þ=2½ � is the mean tempera-
ture, density is designated by r, time is t0, and magnetic
field is designated by B

*

. The current density vector is
designated by J

*

and it is expressed as:

J
*

=s ~U 3 B
*

+E
*

Þ,
�

ð3Þ

Here electrical conductivity is designated by s, and

electrical field strength is denoted by E
*

.
The constitutive equation for fourth-grade Reiner-

Rivlin differential viscoelastic fluid is expressed
following53 as:

t0=
X4

i= 1

Si,

S1 =m Tð Þ�h1,

S2 =a1�h2 +a2�h2
1,

S3 =b1�h3 +b2 �h1�h2 + �h2�h1ð Þ+b3 trace�h2ð Þ�h1,

S4 = g1�h4 + g2 �h3�h1 + �h1�h3ð Þ+g3�h2
2 + g4 �h2�h2

1 + �h2
1�h2

� �
+ g5 tr�h2ð Þ�h2 +g6 tr�h2ð Þ�h2

1 + g7tr�h3 + g8tr�h2�h1½ ��h1,

9>>>>>>>>>>>>=
>>>>>>>>>>>>;
ð4Þ

Here aj,bj, gj, j= 1, 2, 3, :::, 8 indicate the material con-
stants, and the kinematical tensors �h1, �h2, �h3 are
expressed as:

�h1 =X+Xt, X= grad~U ,

�hn =
d�hn�1

dt0
+Xt�hn�1 + �hn�1X, n= 2, 3, . . .

9=
; ð5Þ

Figure 1. Physical model for EMHD fourth-grade fluid flow in a
vertical parallel duct.
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The energy equation considering the effects of Joule
heating and viscous dissipation is specified as:

rcp

� � du

dt0
= kgrad u+ t0 : grad ~U +

J
*

�J
*

s
, ð6Þ

Here thermal conductivity of the fluid is designated by
k, cp designates the specific heat, and the symbols ‘‘�’’
and ‘‘:’’ represents the single and double dot vector
products.

For the proposed problem, we seek the velocity field
and the temperature field in the following form:

~U = 0,V x0ð Þ, 0½ �, u= u x0ð Þ: ð7Þ

The general vector equations may be reduced to the
following component form:

∂p0

∂x0
= 2a1 +a2ð Þ d

dx0
dV

dx0

� �2

+ 4 g3 + g4 + g5 +
g6

2

� � d

dx0
dV

dx0

� �4

,

ð8Þ

∂p0

∂y0
=

d

dx0
m uð ÞdV

dx0

� 	
+6 b2+b3ð Þd

2V

dx02
dV

dx0

� �2

�sB2V+sEB

+ r�bð Þ0 u�umð Þ+ r�bð Þ1 u�umð Þ2
h i

g,

9>>=
>>;
ð9Þ

∂p0

∂z0
= 0 ð10Þ

In equation (9), the viscoelastic fluid viscosity depends
on temperature and the Reynolds exponential model is
used which is defined as:

m uð Þ=m0exp ��h u� umð Þ

 �

, ð11Þ

Here m0 indicates the dynamic viscosity, and �h repre-
sents the strength dependency between u and m uð Þ.

The modified pressure is stated as follows:

�p= p0 � 2a1 +a2ð Þ dV

dx0

� �2

� 4 g3 + g4 + g5 +
g6

2

� � dV

dx0

� �4

:

ð12Þ

In view of equation (12), equations (8–10) can be
reduced to the following form as:

∂�p

∂x0
= 0, ð13Þ

∂�p

∂y0
=

d

dx0
m uð ÞdV

dx0

� 	
+6 b2+b3ð Þ d

2V

dX 02
dV

dX 0

� �2

�sB2V+sEB

+ r�bð Þ0 u�umð Þ+ r�bð Þ1 u�umð Þ2
h i

g,

9>>=
>>;

ð14Þ

∂�p

∂z0
= 0: ð15Þ

The preceding equation indicates that the pressure gra-
dient ∂p̂=∂y0 is constant. We obtain:

d

dx0
m uð ÞdV

dx0

� 	
+6 b2+b3ð Þd

2V

dx02
dV

dx0

� �2

�sB2V+sEB

+ rbð Þ0 u�umð Þ+ rbð Þ1 u�umð Þ2
h i

g=
∂�p

∂y0
,

9>>>=
>>>;
ð16Þ

The following are the velocity boundary conditions at
the duct walls:

V 6 dð Þ= 0, ð17Þ

The energy equation including viscous dissipation and
Joule heating is defined as:

k
d2u

dx02
+m uð Þ dV

dx02

� �2

+ 2 b2 +b3ð Þ dV

dx0

� �4

+s B2V 2 � 2BEV +E2
� �

= 0:

ð18Þ

The relevant thermal boundary conditions prescribed at
the duct walls are as follows:

u �dð Þ= u1, u + dð Þ= u2, ð19Þ

The next step is to transform the above equations into
dimensionless form using the scaling variables listed
below:

v=
V

v0

, x=
x0

d
, T =

u� um

u1 � u2

, ð20Þ

Here v0 indicates the reference velocity. Using equation
(20), the dimensionless form of equations (16) and (19)
emerge as:

d

dx
exp �eT½ � dv

dx

� �
+ 6x

dv

dx

� �2
d2v

dx2
� g2v

+h+ lr T + lcT 2
� �

=Op,

ð21Þ

d2T

dx2
+dexp �eT½ � dv

dx

� �2

+2dx
dv

dx

� �4

+dg2v2�z1v+z2=0:

ð22Þ

The boundary conditions (17) and (19) now assume the
dimensionless form:

v �1ð Þ= 0, v + 1ð Þ= 0,

T �1ð Þ= 0:5, T + 1ð Þ= � 0:5,

)
ð23Þ

And

Zhang et al. 5



x=
v2

0 b2 +b3ð Þ
m0d2

,Re=
v0d

y
,Gr=

gd3 r�bð Þ0 u1� u2ð Þ
ym0

,

e=�h u1� u2ð Þ,h=
sBEd2

m0v0

,lc =
r�bð Þ0 u1� u2ð Þ

rbð Þ1
,

g=Bd

ffiffiffiffiffiffi
s

m0

r
,lr =

Gr

Re
,Op=

d2

v0m0

∂�p

∂y0
d=

m0v2
0

k u1� u2ð Þ ,

z1=
2BEd2v0s

u1� u2ð Þk ,z2=
d2E2s

u1� u2ð Þk ,y=
m0

r
:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;
ð24Þ

Here g is Hartmann number, Re is Reynolds number,
Gr is the thermal Grashof number, e indicates the vari-
able viscosity parameter, Op is the dimensionless pres-
sure gradient, h is electrical field strength parameter, lc

quadratic thermal convection parameter, x is fourth-
grade fluid parameter, lr is thermal buoyancy para-
meter, d is Brinkman number (which indicates the ratio
of heat created by viscous dissipation to heat trans-
ferred by molecular conduction), z1 is a parameter
relating the effects of heat generation owing to the
interaction of magnetic and electric fields on heat con-
duction, z2 is ratio of Joule heating to heat conduction,
and n is kinematic viscosity of the fourth-grade fluid.

On the left plate x0= � d, the skin friction
coefficient and Nusselt number are expressed in
dimensionless format following Rajagopal and Na27:

S;exp �eT½ � dv

dx






x=�1

+ 2g
dv

dx

� �3






x=�1

,

h;� dT

dx






x=�1

:

9>>>>=
>>>>;

ð25Þ

Perturbation solutions using HPM

The transformed ordinary differential equations for
momentum and energy, that is, equations (21) and (22)
are nonlinear and coupled, rendering exact solutions
intractable. As a result, we utilize the homotopy pertur-
bation method (HPM) for determining series solutions.
This method was introduced as a special case of the
homotopy analysis method (HAM) and is very adaptive
and yields excellent accuracy and stability for nonlinear
differential equation systems. It has been utilized in a
wide spectrum of complex engineering science prob-
lems, including structural vibration,54 peristaltic pump-
ing,55,56 and more recently, electromagnetic duct flows
containing porous media.44 The perturbation formula-
tion for the present problem is as follows:

h u,zð Þ= 1�zð Þ L0 uð Þ�L0 �v0ð Þ½ �+z L0 uð Þ�eY
d2u

dx2
�e

dY
dx

du

dx

�

+6x
du

dx

� �2
d2u

dx2
�g2u+h+lr Y+lcY

2
� �

�Op

#
,

ð26Þ

h Y,zð Þ= 1�zð Þ L0 Yð Þ�L0
�T0ð Þ½ �+z

L0 Yð Þ+d 1�eYð Þ du

dx

� �2

+2dx
du

dx

� �4

+ dg2u2�z1u+z2

� �" #
,

ð27Þ

Where z is the embedding parameter. The linear opera-
tor L0 is selected and the following tentative guesses,
u0,Y0 are made:

L0 =
d2

dx2

�
, Linear operator

�v0 =
1

4
x2 � 1
� �

,Y0 = � x

2

�
, Initial guess

ð28Þ

Let us now propose the series expansions for equations
(26) and (27), that is,

u= u0 + zu1 + z2u2 + . . . ,

u= u0 + zu1 + z2u2 + . . . :

(
ð29Þ

By inserting equation (29) into equations (26) and (27),
we acquire a set of linear differential equations at every
level. After the accomplishment of this stage, we will
utilize the symbolic software Mathematica to determine
the linear differential equation solutions for each order.

Zeroth other system z0 and solutions

By substituting equation (29) into equations (26) and
(27), we get the zeroth order system as follows:

L0 u0ð Þ � L0 �v0ð Þ= 0,

u0 6 1ð Þ= 0,

)
ð30Þ

L0 Y0ð Þ � L0
�T 0ð Þ= 0,

�T0 �1ð Þ= 0:5, �T 0 + 1ð Þ= � 0:5,

)
ð31Þ

The zeroth order solution is found to be:

u0 =
x2 � 1

4
,

Y0 = � x

2
,

9>=
>; ð32Þ

First order system z1 and solutions

The first order system is obtained in the following form:

L0 u1ð Þ+L0 �v0ð Þ�eY0

d2u0

dx2
�e

dY0

dx

du0

dx
+6x

du0

dx

� �2
d2u0

dx2

�g2u0+h+lr Y0+lcY
2
0

� �
�Op,

u1 61ð Þ=0,

9>>>=
>>>;
ð33Þ
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L0 Y1ð Þ+ L0
�T 0ð Þ+ d 1� eY0ð Þ du0

dx

� �2

+ 2dx
du0

dx

� �4

+ dg2u0
2 � z1u0 + z2

� �
,

Y1 6 1ð Þ= 0,

9>>>=
>>>;

ð34Þ

The solution of the first order system is obtained as:

u1 =
x2 � 1

48
Ha2 �5+ x2

� �
� lclr + 4x �e+ lrð Þ



� x2 lclr + 3xð Þ � 3 4+ 8h+x � 8Op

� ��
,

ð35Þ

Y1 =
1� x2

480
g2 11� 4x2 + x4
� �

d� 10 �5+ x2
� �

z1



+ 240z2 + 2d 1+ x2

� �
5+ xð Þ+ x4x

� ��
,

ð36Þ

Second order system z2 and solutions

The second order system is obtained as:

L0 u2ð Þ � eY1

d2u0

dx2
� eY0

d2u1

dx2
� e

dY1

dx

du0

dx
� e

dY0

dx

du1

dx

+ 6x 2
d�v0

dx

d2�v0

dx2

d�v1

dx
+

d2�v1

dx2

d�v0

dx

� �2
" #

�g2u1 + lr Y1 + 2lcY0Y1ð Þ,
u2 6 1ð Þ= 0,

9>>>>>>>>>=
>>>>>>>>>;

ð37Þ

L0 Y1ð Þ+d 2
du1

dx
+8x

du1

dx

du0

dx

� �2

�eY1�2eY0

du1

dx

" #

du0

dx
+2dg2u1u0�z1u1,

Y1 61ð Þ=0,

9>>>>>>=
>>>>>>;
ð38Þ

The solution of the second order system is obtained as:

u2 = u2, 1 + u2, 2x1 + u2, 3x2 + u2, 4x3 + u2, 5x4 + u2, 6x5

+ u2, 7x6 + u2, 8x7 + u2, 9x8 + u2, 10x9,

ð39Þ

Y2 =Y2, 1 +Y2, 2x1 +Y2, 3x2 +Y2, 4x3 +Y2, 5x4

+Y2, 6x5 +Y2, 7x6 +Y2, 8x7 +Y2, 9x8 +Y2, 10x9:

ð40Þ

The constants u2, n,Y2, n; n= 1, 2, . . . 10, derived in the
preceding calculations can be found in the Appendix.
We may deduce the final form of the outcomes employ-
ing the HPM condition as:

v= lim
z!1

u= u0 + zu1 + z2u2 + . . . : ð41Þ

u= lim
z!1

u0 + zu1 + z2u2 + . . . : ð42Þ

Results and discussion

In this section, we present detailed graphical and tabu-
lar solutions for velocity, temperature, skin friction,
and the Nusselt number in the duct, for the influence of
all key control parameters. All computations are exe-
cuted in Mathematica and shown in Table 1 and
Figures 2 to 15. As one particular case of our investiga-
tion, Table 2 displays the numerical comparison with
previously published data. It is noticed that the current
findings are precisely consistent with Abbasi et al.57.

Skin friction and Nusselt number

Table 2 shows skin friction coefficient and Nusselt
number for all the emerging parameters.

A significant enhancement in skin friction accompa-
nies an elevation in fourth-grade fluid parameter x,
Brinkman number d, electric field parameter h, thermal
buoyancy parameter lr, and quadratic thermal convec-
tion parameter lc. However, skin friction is strongly
reduced with a rise in variable viscosity parameter e,
Hartmann (magnetic) number g, and electromagnetic
heat generation to conduction ratio, z1. Nusselt num-
ber magnitudes are elevated with increase in variable
viscosity parameter e, electromagnetic heat generation
to conduction ratio, z1 thermal buoyancy parameter lr,
and quadratic thermal convection parameter lc,
whereas they are significantly suppressed with incre-
ment in fourth-grade fluid parameter x, Brinkman
number d, and Hartmann magnetic number g: A more
complex response is computed for increment in electric
field parameter h2 initially the Nusselt number is

Table 1. Comparison of the velocity profile with previously
published results by fixing the remaining parameters as
e= g = h= lr =lc = 0, x = 0:5,Op = 1.

x Present results Abbasi et al.57

0 20.395353044732200 20.395353045
0.1 20.390278044901173 20.390377559
0.2 20.375724400825540 20.375724401
0.3 20.352088141541283 20.352088141
0.4 20.320513599352345 20.320336095
0.5 20.281320880996496 20.281320881
0.6 20.235797999318292 20.235797999
0.7 20.184408971096291 20.184408971
0.8 20.127691231510506 20.127691231
0.9 20.066095053134708 26.61E-02
1 0 0
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boosted from h=0 (vanishing electrical field) to
h=1, but a subsequent increase to h=1.5 actually
decreases heat transfer to the wall of the duct.

The results In Table 2 are further visualized in
Figures 2 and 3. Figure 2 shows the variation in the
skin friction profile. It is noticed here that increment in
the variable viscosity parameter e and the Hartmann
magnetic field produce a consistent decrement in skin
friction profile. Clearly a boost in exponential viscosity
will enhance overall viscosity of the fourth-grade fluid
and this will inhibit shearing along the wall, manifest-
ing in a lower skin friction. A stronger magnetic field
will also oppose momentum transfer and will decelerate
the flow reducing the skin friction at the wall but simul-
taneously enhancing the momentum boundary layer

thickness. The fourth-grade material parameter has a
different influence on skin friction since it is related to
stress relaxation and retardation, not merely viscosity.
An increase in this parameter causes a gradual increase
in skin friction implying a thinner momentum bound-
ary layer. An increment followed by a weak increase is
observed in skin friction with Brinkman number due to
kinetic energy dissipation (internal friction). Increasing
thermal buoyancy parameter strongly elevates the skin
friction due to the intensity of natural convection cur-
rents which assist momentum development. This assists
the flow and manifests in an elevation in velocity which
implies faster shearing of the fluid against the duct
walls and produces the associated hike in skin friction.
Similarly increasing electrical field strength parameter

Figure 2. Coefficient of skin friction for multiple values of variable viscosity parameter e, fourth-grade fluid parameter x, Brinkman
number d, electric field strength parameter h, Hartmann number g, thermal buoyancy parameter lr, and quadratic thermal
convection parameter lc.

Figure 3. Nusselt number for multiple values of variable viscosity parameter e, fourth-grade fluid parameter x, Brinkman number d,
electric field strength parameter h, Hartmann number g, thermal buoyancy parameter lr, and quadratic thermal convection
parameter lc.

Figure 5. Influence of electric field strength parameter h on
velocity distribution.

Figure 4. Influence of fourth-grade material parameter x on
velocity distribution.
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Figure 7. Influence of thermal buoyancy (natural) convection
parameter lr on velocity distribution.

Figure 6. Influence of variable viscosity parameter e on
velocity distribution.

Figure 8. Effect of quadratic thermal convection parameter lc

on velocity distribution.

Figure 9. Influence of Hartmann (magnetic) number g on
velocity distribution.

Figure 10. Effect of fourth-grade material fluid parameter x

on temperature distribution.

Figure 11. Influence of Brinkman number d on temperature
distribution.

Figure 12. Influence of electromagnetic heat generation to
conduction ratio z1 on temperature distribution.

Figure 13. Influence of variable viscosity parameter e on
temperature distribution.

Zhang et al. 9



and quadratic convection both enhance skin friction
and produce thinner momentum boundary layers.
Clearly the stronger electrical field intensity assists axial
momentum development and is the primary reason for
deploying such an orientation of the electrical field.
The nonlinear effect of quadratic convection therefore
avoids the under-prediction in skin friction associated
with the classical Boussinesq (linear) model.

Figure 3 shows that Nusselt number is elevated with
variable viscosity parameter but is suppressed with
fourth-grade material parameter. A significant decre-
ment in Nusselt number is also associated with greater
Brinkman number since temperatures are elevated in
the boundary layer and the net effect is to draw heat
away from the wall, leading to a cooling there. A thin-
ner thermal boundary layer thickness will result with
higher Brinkman numbers associated with stronger vis-
cous dissipation. Hartmann number elevation also
induces a strong downturn in Nusselt number since the
electromagnetic fluid is heated with higher magnetic
field. Increasing the magnetic field in the fluid flow
amplifies Lorentz force that dominates over the viscous
force. This results in a net transfer of heat away from
the wall into the core region of the duct and decreases
Nusselt number. A similar though less prominent
increment in Nusselt number accompanies an increase
in thermal buoyancy and quadratic convection

Figure 14. Effect of thermal buoyancy parameter lr on
temperature distribution.

Figure 15. Effect of quadratic thermal convection parameter
lc on temperature distribution.

Table 2. HPM results for the effects of key parameters on skin friction and Nusselt number.

Parameters Values Coefficient of skin friction Nusselt number

e 0 0.363579642 0.058035341
0.4 0.346855352 0.064830629
0.6 0.327962242 0.073336828

x 0 0.335917849 0.070981940
0.5 0.343657214 0.066632321
1 0.348663956 0.063809635

d 0.3 0.345738770 0.070702503
0.5 0.346855352 0.064830629
0.7 0.347993394 0.058866085

h 1 0.346855352 0.064830629
1.5 0.776411238 0.110749135
2 1.240973934 0.096432223

g 0 0.363702482 0.069451489
0.5 0.346855352 0.064830629
1 0.306876751 0.053988768

lr 0.5 0.176197991 0.040934872
1 0.346855352 0.064830629
2 0.685748678 0.082449520

lc 0 0.285794633 0.057846555
0.5 0.346855352 0.064830629
1 0.407345992 0.070554752

z1 0 0.362327892 0.025694391
0.5 0.346855352 0.064830629
1 0.333674090 0.099221419
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parameters. Again, the initial increase in Nusselt num-
ber is computed with a rise in electrical field strength
parameter but subsequent increase in this parameter
produces the opposite trend which is associated with
the presence of Joule dissipation in the flow.

Velocity distribution

Figures 4 to 9 show the impact of all key parameters on
velocity profiles. The velocity profile in Figure 4 exhi-
bits a strong depletion with larger values of the fourth-
grade fluid parameter. In practical terms, an increase in
x increases the stress relaxation relative to retardation
in a fourth-grade which counteracts momentum diffu-
sion and decelerates the flow. This will increase hydro-
dynamic boundary layer thickness at the duct walls.
Furthermore, when x = 0, the classical case of a
Newtonian viscous fluid is retrieved. Figure 5 indicates
the velocity profile is significantly enhanced with
greater electric field intensity (h). When an electric field
is introduced into a working fluid containing charged
particles, the particles are attracted to the electrodes,
causing the fluid to be induced in the same direction as
the applied electric field. This technique is most often
seen in microfluidic devices when a strong electric field
is present in relatively small channels. However, it can
also be used in larger nuclear reactor ducts to regulate
momentum distribution. Strong acceleration is there-
fore produced with axial electrical field. Figure 6
depicts the effect of the varying viscosity parameter e
on the velocity profile. It is evident that the velocity
increases in the left half space but then decreases in the
right half space with increment in viscosity parameter.
The peak velocity arises consistently near the centerline
of the duct. Asymmetrical parabolic profiles span the
duct width. Figure 7 depicts the effect of the thermal
buoyancy convection parameter lr on the velocity pro-
file. With increasing values of this parameter, the flow
is accelerated across the channel width, that is, velocity
profile is greatly enhanced owing to the enhanced con-
tribution of thermal buoyancy relative to viscous forces.
For lr =0 forced convection is present, and velocities
are minimized. For lr =1 both thermal buoyancy and
viscous force contribute equally. When lr . 1, thermal
buoyancy dominates the regime and significant momen-
tum flux escalation is produced. It is also noteworthy
that as viscosity varies with temperature and shear rate,
the fluid becomes less dense in the presence of heat and
this induces a boost to momentum resulting in a hike in
velocity. Figure 8 demonstrates that acceleration is also
produced in the axial flow with increasing quadratic
convection parameter lc. The nonlinear temperature
dependence of the non-Boussinesq buoyancy term
directly contributes to the elevation in velocity. Figure 9
depicts the impact of the Hartmann number g on the
velocity field. As can be observed, the velocity profile

decreases consistently owing to the significant retarding
influence of the magnetic field. When a magnetic field is
applied to a working fluid, it experiences a Lorentz
force, which is a drag force that opposes fluid motion.
Strong flow deceleration is therefore induced with
higher Hartmann number across the entire span of the
duct. Clearly the non-magnetic scenario (g =0), that is,
vanishing magnetic field produces the maximum velo-
city. For g =both Lorentz magnetic drag force and vis-
cous hydrodynamic force contribute equally. For g . 1
the Lorentz magnetic drag force dominates the viscous
force leading to strong flow deceleration. Symmetric
parabolic topologies are computed across the duct. The
excellent flow regulation properties of transverse mag-
netic field are thereby confirmed.

Temperature distribution

Figures 10 to 15 depict the evolution of the temperature
profiles with key parameters. Figure 10 demonstrates
that the temperature is boosted with elevation in
fourth-grade fluid x parameter rises. However, we can
see that the implications are insignificant closer to the
channel’s walls, with only a minor increase in the mid-
dle of the channel. The heating of the fluid is associated
with stress relaxation and retardation effects. Thermal
diffusion is encouraged with these phenomena. Figure
11 illustrates that enhancing the Brinkman number d

causes the temperature profile to strongly increase, in
particular, near the left wall as dissipation enhances the
conversion of kinetic energy to heat via internal fric-
tion. As a result, the fourth-grade fluid also decelerates.
The case of vanishing Brinkman number, d=0 clearly
corresponds to the minimal temperature and confirms
that non-inclusion of viscous heating leads to an under-
prediction in temperature in the bulk fluid. For this case
the fourth order derivative term, 2dg dv

dx

� �4
in equation

(22) disappears. Figure 12 demonstrates the fact that
the electromagnetic heat generation relative to thermal
conduction parameter z1 strongly suppresses tempera-
ture profile. Clearly when this parameter vanishes z1

! 0, and thermal conduction dominates over the elec-
trical and magnetic field heating contribution and max-
imum temperatures are computed. Figure 13 shows
that the variable viscosity parameter produces a oppo-
site behavior in temperature, closer to the duct center-
line. The exponential viscosity variation exerts a much
less dramatic effect on temperature than the fourth-
grade material parameter. Figure 14 shows that there is
a slight decrement in temperatures across the width of
the duct with increment in thermal buoyancy (natural
convection) parameter, lr. As with the other tempera-
ture profiles, the weak temperature is always computed
at the left hotter duct wall and decays monotonically to
the right cooler wall. Thermal buoyancy therefore pri-
marily influences the momentum field, and indeed
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features only in that equation. Via coupling with the
energy (heat) equation there is an indirect effect on the
temperature distribution. The temperature, however, is
not as markedly influenced as the velocity field.
Similarly in Figure 15 there is a relatively weak decrease
in temperature across the duct width with greater val-
ues of quadratic convection parameter lr. Again, the
minor decrement is associated with the coupling effect
between the momentum and energy equations (21) and
(22), specifically via the term, lr T + lcT 2ð Þ in equation
(21). Generally smooth profiles are computed for both
temperature and velocity distributions testifying to the
excellent numerical stability of HPM.

Concluding remarks

A new theoretical study has been presented for fourth-
grade viscoelastic EMHD natural convection flow in a
vertical parallel plate duct with non-Boussinesq quad-
ratic convection. The effects of viscous dissipation and
Joule heating (Ohmic dissipation) and Reynolds expo-
nential temperature-dependent viscosity model have
been included, all of which arise in nuclear and solar
hybrid duct transport phenomena. The normalized
nonlinear ordinary differential boundary value problem
has been solved with a homotopy perturbation method
(HPM) up to second order approximation which
achieves exceptional accuracy and stability in terms of
power series solutions. Detailed solutions for axial
velocity, temperature, skin friction, and Nusselt num-
ber have been depicted graphically and in tables for the
effects of key electromagnetic, thermal, and dissipation
parameters. The key findings of the current analysis
may be summarized as follows:

(i) There is a considerable enhancement in wall
skin friction with an increment in fourth-grade
fluid parameter x, Brinkman number d, electri-
cal field parameter h, thermal buoyancy para-
meter lr, and quadratic thermal convection
parameter lc. However, skin friction is
strongly reduced with a rise in variable viscos-
ity parameter e, Hartmann (magnetic) number
g, and electromagnetic heat generation to con-
duction ratio, z1.

(ii) Nusselt number magnitudes are elevated with
increase in variable viscosity parameter e and
electromagnetic heat generation to conduction
ratio, z1, thermal buoyancy parameter lr, and
quadratic thermal convection parameter lc,
whereas they are significantly suppressed with
increment in fourth-grade fluid parameter x,
Brinkman number d, and Hartmann magnetic
number g. The latter parameters therefore
achieve better thermal control at the duct walls

which is critical in regulating high tempera-
tures (‘‘thermal management’’) in real nuclear
reactor duct transport.

(iii) A variable response in Nusselt number is com-
puted for increment in electric field parameter
h; initially the Nusselt number is boosted from
h=0 (vanishing electrical field) to h=1, but
a subsequent increase to h=1.5 actually
decreases heat transfer to the wall of the duct.

(iv) Increasing fourth-grade viscoelastic parameter
x elevates the viscosity and damps the axial
velocity strongly as does higher magnetic
Hartmann number.

(v) A minor increase in temperature is induced
with greater viscoelastic parameter x, while a
minor decrement is noticed for thermal buoy-
ancy parameter lr and quadratic thermal
convection parameter lc.

(vi) A marked boost in temperature is generated
with increasing Brinkman number d whereas a
very minor reduction is produced with a large
increment in variable viscosity parameter.

(vii) Increasing electrical strength parameter h

produces significant flow acceleration.
(viii) In the left half space of the duct an increase in

variable viscosity parameter e produces signifi-
cant axial flow acceleration whereas in the
right half space weak deceleration is produced.

(ix) Consistent acceleration, that is, higher veloci-
ties are associated with an increment in ther-
mal buoyancy parameter lr (ratio of thermal
Grashof number and Reynolds number).

(x) A weaker but distinct increase in axial velocity
is also observed with higher values of quadra-
tic thermal convection parameter lc.

(xi) The greatest elevation in skin friction number
is produced with high electrical field strength
parameter whereas the largest Nusselt num-
ber at the wall corresponds to low Brinkman
number.

The current study has probed deeper into emerging
smart electromagnetic liquids for nuclear and other
energy systems duct transport phenomena. Attention
has, however, been confined to steady state flows.
Future work may consider time-dependent effects and
additionally the use of other non-Newtonian micro-
structural models such as the polar and micropolar
family of formulations. Furthermore, alternating
electrical and magnetic fields may also be addressed
to reflect further industrial scenarios.
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4. Dahmani A, Muñoz-Cámara J, Laouedj S, et al. Heat

transfer enhancement of ferrofuid fow in a solar absorber

tube under non-uniform magnetic field created by a peri-

odic current-carrying wire. Sustain Energy Technol Assess

2022; 52: 101996.
5. Ikeda T, Aoyama G, Gotou T, et al. Development of

analytical method for DC electromagnetic flow coupler

including end effects. J Nucl Sci Tech 1987; 24: 988–998.
6. Murakami T and Araseki H. Characteristic evaluation of

electromagnetic flow couplers using a liquid metal MHD

analysis code. Nucl Eng Des 2005; 235: 1503–1515.
7. Kim HR, Cha JE, Kim JM, et al. DC magnetic field

effect on a liquid sodium channel flow. Nucl Eng Des

2008; 238: 280–284.
8. Miyzaki K, Inoue S, Yamaoka N, et al. Magneto-hydro-

dynamic pressure drop of lithium flow in rectangular

ducts. Fus Technol 1986; 10: 830–836.
9. Castellanos A. Electrohydrodynamics. New York, NY:

Springer, 1998.
10. Kourmatzis A and Shrimpton JS. Electrohydrodynamic

inter-electrode flow and liquid jet characteristics in charge

injection atomizers. Exp Fluid 2014; 55: 1688.
11. Dau VT, Dinh TX, Biu TT, et al. Corona based airflow

using parallel discharge electrodes. Exp Therm Fluid Sci

2016; 79: 52–53.
12. Chang JS, Tsubone H, Chung YN, et al. Mechanism of

electrohydrodynamically induced flow in a wire-non-

parallel plate electrode type gas pump. J Electrost 2009;

67: 335–339.
13. Zhao L and Adamiak K. Numerical simulation of the elec-

trohydrodynamic flow in a single wire-plate electrostatic

precipitator. IEEE Trans Ind Appl 2008; 44: 683–691.

14. Tanski M, Kocik M and Mizeraczyk J. Electrohydrody-

namic gas pump with both insulated electrodes driven by

dielectric barrier discharge. IEEE Trans Dielectr Electr

Insul 2011; 18: 1429–1432.
15. Gazaryan AV and Chirkov VA. Numerical estimation of

the performance of a flow-type electrohydrodynamic heat

exchanger with the streamlined electrode configuration. J

Electrostat 2019; 97: 31–36.
16. Tanski M, Kocik M, Barbucha R, et al. A system for

cooling electronic elements with an EHD coolant flow. J

Phys Conf Ser 2014; 494: 12010.
17. Kasayapanand N and Kiatsiriroat T. EHD enhanced

heat transfer in wavy channel. Int Commun Heat Mass

Transfer 2005; 32: 809–821.
18. Narla VK, Tripathi D, Bhandari DS, et al. Electrokinetic

insect-bioinspired membrane pumping in a high aspect

ratio bio-microfluidic system. Microfluid Nanofluid 2022;

26: 85.
19. Carstoiu J. Fundamental equations of electromagnetody-

namics of fluids: various consequences. Proc Natl Acad

Sci USA 1968; 59: 326–331.
20. Eringen AC and Maugin GA. Electrodynamics of conti-

nua. New York, NY: Springer, 1990.

21. Jian Y and Chang L. Electromagnetohydrodynamic

(EMHD) micropumps under a spatially non-uniform

magnetic field. AIP Adv 2015; 5: 057121.
22. Chakraborty S and Paul D. Microchannel flow control

through a combined electromagnetohydrodynamic trans-

port. J Phys D Appl Phys 2006; 39: 5364.
23. Umavathi JC and Bég OA. Double diffusive convection

in a dissipative electrically conducting nanofluid under

orthogonal electrical and magnetic field: a numerical

study. Nanosci Technol 2021; 12: 59–90.
24. Soundalgekar VM and Aranakey RN. Effects of couple

stresses in MHD channel flow. Nucl Eng Des 1977; 44:

301–308.
25. Muzychka YS and Edge J. Laminar non-Newtonian fluid

flow in noncircular ducts and microchannels. ASME J

Fluids Eng 2008; 130: 111201.
26. Chaudhuri S, Sinha S, Chakraborty P, et al. Thermal

characteristics of forced convection in combined pressure

and shear-driven flow of a non-Newtonian third-grade

fluid through parallel plates. Heat Transfer 2021; 50:

6737–6756.
27. Rajagopal KR and Na TY. Natural convection flow of a

non-Newtonian fluid between two vertical flat plates.

Acta Mech 1985; 54: 239–246.
28. Kazemi MA, Javanmard M, Taheri MH, et al. Heat

transfer investigation of the fourth-grade non-Newtonian

MHD fluid flow in a plane duct considering the viscous

dissipation, Joule heating and forced convection on the

walls. SN Appl Sci 2020; 2: 1752.
29. Fatima N, Nazeer M, Lashin MMA, et al. Developments

of electro-osmotic two-phase flows of fourth-grade fluid

through convergent and divergent channels. Mathematics

2023; 11: 1832.
30. Nadeem S and Ali M. Analytical solutions for pipe flow

of a fourth-grade fluid with Reynold and Vogel’s models

of viscosities. Commun Nonlinear Sci Numer Simul 2009;

14: 2073–2090.

Zhang et al. 13

https://orcid.org/0000-0002-3219-7579
https://orcid.org/0000-0002-3219-7579


31. Sajid M, Hayat T and Asghar S. On the analytic solution
of the steady flow of a fourth-grade fluid. Phys Lett A

2006; 355: 18–26.
32. Salawu S, Fatunmbi E and Ayanshola A. On the diffu-

sion reaction of fourth-grade hydromagnetic fluid flow

and thermal criticality in a plane Couette medium.
Results Eng 2020; 8: 100169.

33. Kunnegowda T, Mahanthesh B, Lorenzini G, et al. Sig-
nifcance of induced magnetic field and exponential space
dependent heat source on quadratic convective flow of

Casson fluid in a micro-channel via HPM. Math Model

Eng Probl 2019; 6: 369–384.
34. Triveni K and Mahanthesh B. Optimization and sensitiv-

ity analysis of heat transport of hybrid nanoliquid in an
annulus with quadratic Boussinesq approximation and

quadratic thermal radiation. Eur Phys J Plus 2020; 135:
459–522.

35. Kumar R and Sood S. Effect of quadratic density varia-

tion on mixed convection stagnation point heat transfer
and MHD fluid flow in porous medium towards a

permeable shrinking sheet. J Porous Media 2016; 19:
1083–1097.

36. Okoya SS, Hassan AR and Salawu SO. On free convec-

tion flow of a moving vertical permeable plate with quad-
ratic Boussinesq approximation and variable thermal

conductivity. Heat Transf Res 2021; 52: 55–66.
37. Al-Kouz W, Mahanthesh B, Alqarni MS, et al. A study

of quadratic thermal radiation and quadratic convection

on viscoelastic material flow with two different heat
source modulations. Int Comm Heat Mass Transfer 2021;

126: 105364.
38. Sabu AS, Mackolil J, Mahanthesh B, et al. Nanoparticle

aggregation kinematics on the quadratic convective mag-

netohydrodynamic flow of nanomaterial past an inclined
flat plate with sensitivity analysis. Proc Inst Mech Eng

Part E J Process Mech Eng 2022; 236: 1056–1066.
39. Bhatti MM, Shahid A, Sarris IE, et al. Spectral relaxation

computation of Maxwell fluid flow from a stretching sur-

face with quadratic convection and non-Fourier heat flux
using Lie symmetry transformations. Int J Mod Phys B

2023; 37: 2350082.
40. Mahanthesh B, Mackolil J, Radhika M, et al. Signifi-

cance of quadratic thermal radiation and quadratic con-

vection on boundary layer two-phase flow of a dusty
nano-liquid past a vertical plate. Int Commun Heat Mass

Transf 2021; 120: 105029.
41. Fasheng L, Bhatti MM, Bég OA, et al. Numerical study

of natural convection dissipative electro-magnetic non-

Newtonian flow through a non-Darcy channel. ZAMM

2022; 102: e202100608.
42. Escandón J, Santiago F, Bautista O, et al. Hydrody-

namics and thermal analysis of a mixed
electromagnetohydrodynamic-pressure driven flow for

Phan–Thien–Tanner fluids in a microchannel. Int J

Therm Sci 2014; 86: 246–257.
43. Siva T, Jangili S, Kumbhakar B, et al. Unsteady electro-

magnetohydrodynamic flow of couple stress fluid
through a microchannel: a theoretical analysis. Eur J

Mech B Fluids 2022; 95: 83–93.

44. Bhatti MM, Bég OA, Ellahi R, et al. Natural convection

non-Newtonian EMHD dissipative flow through a micro-

channel containing a non-Darcy porous medium: homo-

topy perturbation method study. Qual Theory Dyn Syst

2022; 21: 97.
45. Gangadhar K, Rupa Lavanya M and Chamkha AJ.

EMHD flow of second-grade fluid through a heated

permeable disk with space dependent heat source. Proc

Inst Mech Eng Part E J Process Mech Eng 2023:

095440892311592. DOI: 10.1177/09544089231159203.
46. Chakraborty R, Dey R and Chakraborty S. Thermal

characteristics of electromagneto-hydrodynamic flows in

narrow channels with viscous dissipation and Joule heat-

ing under constant wall heat flux. Int J Heat Mass Trans-

fer 2020; 67: 1151–1162.
47. Huang M and Lai FC. Effect of Joule heating on EHD-

enhanced natural convection. AIAA J Thermophys Heat

Transfer 2006; 20: 939–945.
48. Kalpana G, Madhura KR and Kudenatti RB. Impact of

temperature-dependant viscosity and thermal conductiv-

ity on MHD boundary layer flow of two-phase dusty

fluid through permeable medium. Eng Sci Technol Int J

2019; 22: 416–427.
49. Ahmad A. Flow control of non-Newtonian fluid using

Riga plate: Reiner-Phillipoff and Powell-Eyring viscosity

models. J Appl Fluid Mech 2019; 12: 127–133.
50. Hussain A, Akbar S, Sarwar L, et al. Effect of time

dependent viscosity and radiation efficacy on a non-New-

tonian fluid flow. Heliyon 2019; 5: e01203.
51. Akbar NS, Tripathi D, Khan Z, et al. A numerical study

of magnetohydrodynamic transport of nanofluids from a

vertical stretching sheet with exponential temperature-

dependent viscosity and buoyancy effects. Chem Phys

Lett 2016; 661: 20–30.

52. Prakash J, Siva EP, Tripathi D, et al. Peristaltic pumping

of magnetic nanofluids with thermal radiation and

temperature-dependent viscosity effects: modelling a

solar magneto-biomimetic nanopump. Renew Energy

2019; 133: 1308–1326.
53. Sobamowo M and Akinshilo A. Analysis of flow, heat

transfer and entropy generation in a pipe conveying

fourth-grade fluid with temperature dependent viscosities

and internal heat generation. J Mol Liq 2017; 241:

188–198.
54. Rashidi MM, Shooshtari A and Bég OA. Homotopy per-

turbation study of nonlinear vibration of von Karman

rectangular plates. Comput Struct 2012; 106/107: 46–55.
55. Alarabi T, Elsayed AF and Bég OA. Homotopy pertur-

bation method for heat transfer in peristaltic flow of vis-

coelastic fluid in an eccentric cylinder with variable

viscosity effects. Life Sci J 2014; 11: 197–206.
56. Tripathi D and Bég OA. A numerical study of oscillating

peristaltic flow of generalized Maxwell viscoelastic fluids

through a porous medium. Transp Porous Media 2012;

95: 337–348.
57. Abbasi M, Ahmadian CA, Ppetroudi IR, et al. Analysis

of a fourth-grade fluid flow in a channel by application of

VIM and HAM. Indian J Sci Res 2014; 1: 389–395.

14 Advances in Mechanical Engineering



Appendix

HPM power series expansions
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