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A B S T R A C T   

Folate (vitamin B9) plays a central role in one-carbon metabolism in prokaryotes and eukaryotes. This pathway 
mediates the transfer of one-carbon units, playing a crucial role in nucleotide synthesis, methylation, and amino 
acid homeostasis. The folinic acid futile cycle adds a layer of intrigue to this pathway, due to its associations with 
metabolism, cell growth, and dormancy. It also introduces additional complexity to folate metabolism. A logical 
way to deal with such complexity is to examine it by using mathematical modelling. This work describes the 
construction and analysis of a model of folate metabolism, which includes the folinic acid futile cycle. This model 
was tested under three in silico growth conditions. Model simulations revealed: 1) the folate cycle behaved as a 
stable biochemical system in three growth states (slow, standard, and rapid); 2) the initial concentration of serine 
had the greatest impact on metabolite concentrations; 3) 5-formyltetrahydrofolate cyclo-ligase (5-FCL) activity 
had a significant impact on the levels of the 7 products that carry the one-carbon donated from folates, and the 
redox couple NADP/NADPH; this was particularly evident in the rapid growth state; 4) 5-FCL may be vital to the 
survival of the cells by maintaining low levels of homocysteine, as high levels can induce toxicity; and 5) the 
antifolate therapeutic trimethoprim had a greater impact on folate metabolism with higher nutrient availability. 
These results highlight the important role of 5-FCL in intracellular folate homeostasis and mass generation under 
different metabolic scenarios.   

1. Introduction 

Cell growth is a consequence of net biomass gain and a positive en-
ergy balance. Under a conducive genetic background, growth is fol-
lowed by cell multiplication. In microorganisms, biomass gain beyond 
an intrinsic threshold is followed by cell propagation (Wang and Levin, 
2009), via metabolic pathways which are similar across otherwise 
highly variable species, who inhabit equally diverse environments 
(Chubukov et al., 2014). Likewise, higher eukaryotes including those 
that make up complex organisms, have tailored metabolic programmes, 
to fulfil the needs of rapid cellular proliferation. For instance, a dramatic 
case of streamlined metabolism for proliferation has been observed in 
cancer cells (Lunt and Vander Heiden, 2011). In recent years one-carbon 
folate metabolism (OCFM), has been shown to provide a selective 
advantage for energy and biomass generation during rapid cell prolif-
eration (Amelio et al., 2014; Locasale, 2013; Yang et al., 2021)). OCFM 
belongs to a group of enzymatic reactions that condense and interchange 

a one-carbon unit at different oxidation states (i.e., from formate to 
methanol) between folates (Tibbetts and Appling, 2010). Folates then 
transfer this carbon to a crucial number of anabolic reactions for the 
biosynthesis of DNA precursors (purines and thymidylate), methionine 
(Met), and formylated methionyl-transfer RNA (fmtRNA) (Kordus and 
Baughn, 2019). 

Beyond these previously known fates of the folate one-carbon in-
termediates, unexpected links have been discovered between folate and 
other important molecules of cellular homoeostasis. For example, a 
genome-scale model of human cell metabolism found that a high 
metabolite flux through OCFM provided an alternative source of aden-
osine 5′-triphosphate (ATP) to rapid proliferating cells, when undergo-
ing glycolysis without the net production of ATP (Vazquez et al., 2011). 
Quantitative metabolic profiling in actively growing cells has also 
demonstrated that OCFM is a source of NADPH for biomass generation 
in rapid proliferating cells; in addition to the pathways classically known 
to fulfil this role (i.e., the pentose phosphate pathway) (Fan et al., 2014). 
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Prior to this finding, the gene expression levels of OCFM enzymes have 
been shown to correlate with high fluxes of ATP and reduced nicotin-
amide adenine dinucleotide phosphate (NADPH). Moreover, when 
specific cancer cell lines were treated with antifolates, it was found that 
ATP levels, AMP kinase activation, ribonucleotides levels, and the syn-
thesis of fatty acids were reduced significantly (Tedeschi et al., 2013). 
Other investigations have consolidated these metabolic findings. For 
example, two landmark studies showed that the overexpression of a 
number of OCFM enzymes drives the proliferation of cancer cells (Jain 
et al., 2012; Zhang et al., 2012). Furthermore, a number of poly-
morphisms and epigenetic changes to genes encoding for OCFM en-
zymes have been reported in a range of cancers (de Castro et al., 2020; 
Faria et al., 2020; Gustafsson Sheppard et al., 2015; A. E. Morgan et al., 
2018; Morgan et al., 2020; Nilsson et al., 2014; Petrone et al., 2021; 
Usman et al., 2023). Moreover, these mutations have been associated 
with patient response to chemotherapy (Phillips-Chavez et al., 2021) 
and prognosis (Luo et al., 2021). 

The enzyme 5-formyltetrahydrofolate cyclo-ligase (5-FCL, EC 
6.3.3.2) adds particular intrigue to this narrative. The lack of activity of 
this OCFM enzyme has been shown to reduce cell growth (Field et al., 
2007; Stover and Schirch, 1993). The activity of 5-FCL has also been 
described as a pathogenic factor necessary for antifolate drug resistance 
in Mycobacterium (Ogwang et al., 2011). Conversely, 5-FCL has also been 
shown to affect the capacity to slow down metabolism in microorgan-
isms that generate dormant cells (persisters), as part of a generic strategy 
that renders them tolerant to multiple stressors (J. Morgan et al., 2018). 
The overexpression of 5-FCL has been associated with bacterial dormant 
phenotypes in liquid cultures (Hansen et al., 2008) as well as in biofilms 
(Ren et al., 2004). Thus, this enzyme could be part a potential regulatory 
mechanism seemingly used for both rapid cell growth as well as cell 
dormancy. Intriguingly, 5-FCL catalyses a reaction that is part of a futile 
or substrate cycle. Folinic acid is not a substrate for folate biosynthesis, 
or usage, and is produced as part of this futile cycle only to be recycled 
back to the folate pool as 5,10-methenyltetrahydrofolate (meTHFGlu) 
by 5-FCL. Despite this, the bioengineering of bacterial strains which 
express this gene has been investigated as a means to upregulate the 
synthesis of the bioactive 5-methyltetrahydrofolate (MTHFGlu), which 
could be commercially exploited (Lu et al., 2021; Wang et al., 2022). 
However, futile or substrate cycles are understood to be a mechanism of 
heat dissipation, since the hydrolysis of ATP is usually involved. Sub-
strate cycles also have the capacity to correct or increase mass genera-
tion in a biochemical system with comparably small changes in total 
flux, a phenomenon denoted as sensitivity (Newsholme et al., 1983). 

Other paradigms based on multifaceted metabolic pathways such as 
aerobic glycolysis (the Warburg effect) and glutaminolysis have facili-
tated an improved understanding of the behaviour of cell proliferation in 
cancer (DeBerardinis et al., 2007, 2008; Locasale and Cantley, 2011; 
Warburg, 1956), normal rapid proliferative mammalian cells (Aït-Ali 
et al., 2015; De Bock et al., 2013), and microorganisms (Salcedo-Sora 
et al., 2014). Moreover, due to its inherent ability to represent complex 
biochemical systems, mathematical modelling has been able to improve 
our understanding of folate metabolism (Duncan et al., 2013; Luebeck 
et al., 2008; Mc Auley et al., 2018; Misselbeck et al., 2017, 2019; Mor-
rison and Allegra, 1989; Neuhouser et al., 2011; Nijhout et al., 2004, 
2006; Panetta et al., 2013; Reed et al., 2006; Salcedo-Sora and Mc Auley, 
2016; Thiaville et al., 2016). However, a model of OCFM that integrates 
recent biochemical information from cell proliferation studies, and in-
cludes folinic acid as a metabolite, while also considering the substrate 
availability, is lacking. This work uses mathematical modelling as a 
means of integrating this information into a cohesive network. This 
framework permitted the dynamics of this complex system to be quan-
titatively explored. Using this methodology, three different biochemical 
scenarios involving the folate cycle were examined. These deterministic 
simulations are underpinned by kinetic data, and have been assembled 
with the inclusion of folinic acid as a key metabolite, together with the 
reactions of the futile cycle that this metabolite is part of. Moreover, the 

model is capable of representing the kinetic behaviour of this substrate 
cycle, and how it mediates the production of biomass and redox 
equivalents to provide a selective advantage in cellular growth. The 
model is also an ideal theoretical framework for exploring the proposed 
involvement of folinic acid metabolism in both slow growth and quies-
cence/dormancy in microorganisms. In addition, it can also be used to 
investigate faster modes of growth driven by nutrient abundance. 

2. Methods 

2.1. Network diagram 

A network diagram of the model was developed using the systems 
biology graphical notation (SBGN) process descriptions (PD) language in 
the open-source software VANTED V2.8.7 (Fig. 1) (Junker et al., 2006). 
The process diagram includes the folate cycle and the production and 
salvage of folinic acid (5-formyltetrahydrofolate, ffTHFGlu). Specif-
ically, the folate intermediates carry a one-carbon unit at either of three 
levels of oxidation: formate (10-Formyltetrahydrofolate (fTHFGlu), 
ffTHFGlu, meTHFGlu), formaldehyde (5,10-Methylenetetrahydrofolate, 
myTHFGlu), or methanol (MTHFGlu). Anabolic products from the re-
actions fed by MTHFGlu and myTHFGlu produce methionine (Met) and 
thymidine monophosphate (dTMP) in reactions R8 and R10, respec-
tively. fTHFGlu serves the reactions that generate 1-(5′-phosphor-
ibosyl)-5-formamido-4-imidazolecarboxamide (FAICAR), 5′-phosphor 
ibosyl-n-formylglycinamide (FGAR), and the mitochondrial or bacterial 
fmtRNA, in reactions R22, R20, and R15. Importantly, fTHFGlu can also 
generate NADPH and carbon dioxide (CO2) when fully oxidised (R17). 
Similarly, the one-carbon unit can be released as formate using this free 
energy to condense a molecule of ATP (R14). Conversely, meTHFGlu, 
which is not a direct substrate of any of these anabolic reactions nor a 
precursor of reductive or energy equivalents, has previously been 
included in the folate cycle only as an intermediate in the reversible 
oxidation of myTHFGlu to fTHFGlu (R12 and R13). In this mathematical 
model the published experimental data (Anguera et al., 2003; Huang 
and Schirch, 1995; Stover and Schirch, 1990; Tolley et al., 2012) is taken 
into account, and the model includes meTHFGlu as the precursor for a 
futile or substrate cycle (R18 and R19). 

2.2. Model assembly and parameterisation 

Once the SBGN-PD diagram was constructed, the network was trans-
lated into a series of reactions and assembled in the open-source model-
ling and simulation software tool COPASI version 4.39.272 (Hoops et al., 
2006). The model consists of 39 species across 23 reactions. Model species 
and reactions are defined in Tables S1 and S2 (supplementary file S1) 
respectively. Within the model, 20 of the 39 species were fixed. These 
were limited to co-reactants and sink species. Specifically, these species 
were: adenosine 5′-diphosphate (ADP), 1-(5′-phosphoribosyl)-5-amino-4 
-imidazolecarboxamide (AICAR), ATP, CO2, deoxyuridine 5′-phosphate 
(dUMP), formyl, 5′-phosphoribosylglycinamide (GAR), L-Glutamate 
(Glu), Glycine (Gly), L-homocysteine (Hcy), nicotinamide adenine dinu-
cleotide (NAD), reduced nicotinamide adenine dinucleotide (NADH), 
ammonia (NH3), phosphate (Pi), L-serine (Ser), sink_dTMP, sink_FAICAR, 
sink_FGAR, sink_fmtRNA, and Sink_Met. Reaction parameter values are 
outlined in Table S3 (supplementary file S1). A list of ordinary differential 
equations (ODEs) can be found in supplementary file S2. The components 
of the model are informed by some of the existing kinetic models of folate 
metabolism (Nijhout et al., 2004; Salcedo-Sora and Mc Auley, 2016), and 
relevant reviews of microbial folate metabolism (de Crécy-Lagard, 2014; 
Salcedo-Sora and Ward, 2013). Moreover, a number of microbial meta-
bolic representations as archived within the KEGG database (Kyoto 
encyclopaedia of genes and genomes http://www.genome.jp/kegg/) 
were considered (Kanehisa and Goto, 2000) based on the comparative 
genomics from the hundreds of microbial genomes sequenced to date 
(Koonin and Wolf, 2008). 
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A time course analysis was conducted using the deterministic 
(LSODA) method. As outlined in Fig. 2, when simulated the species 
concentrations converged to equilibrium values (240 min). The equi-
librium point of the model was asymptotically stable at a resolution of 1 
× 10− 9. Following construction and analysis, the model was converted 
to Systems Biology Markup Language (SBML), an interchangeable file 
format. This model was deposited in BioModels (Malik-Sheriff et al., 
2020) and assigned the identifier MODEL2308150001. 

3. Results 

3.1. Examination of the folate cycle under three different initial sets of 
metabolite concentrations 

Accumulating evidence indicates that OCFM is involved in pheno-
types associated with slow metabolism (e.g., persisters to antibiotics) as 
well as in rapid cell growth (Fan et al., 2014; Field et al., 2007; Gus-
tafsson Sheppard et al., 2015; Hansen et al., 2008; Jain et al., 2012; 

Fig. 1. SBGN-PD network diagram of the folate cycle, including the folinic acid futile cycle. The species and reactions are outlined in Tables S1 and S2 of 
supplementary file S1. Arrows represent flux, rounded arrows represent catalysis and T-shaped arrows represent inhibition. The mathematical symbol for an empty 
set represents a biochemical source or sink. The folinic acid futile cycle is represented by reactions 18 and 19, highlighted in yellow. Abbreviations are as follows: 
AICAR: 1-(5′-Phosphoribosyl)-5-amino-4-imidazolecarboxamide; DHF: Dihydrofolate; DLp: Dihydrolipoylprotein ([H Protein]-dihydrolipoyllysine), dTMP: Deoxy-
thymidine 5′-phosphate; dUMP: Deoxyuridine 5′-phosphate; FAICAR: 1-(5′-Phosphoribosyl)-5-formamido-4-imidazolecarboxamide; ffTHFGLU: 5-formyltetrahydrofo-
late; FGAR: 5′-Phosphoribosyl-N-formylglycinamide; fmtRNA: N-Formylmethionyl-tRNA; fTHFGLU: 10-Formyltetrahydrofolate; GAR: 5′-Phosphoribosylglycinamide; 
Glu: L-Glutamate; Gly: Glycine; Hcy: L-Homocysteine; Lp: Lipoylprotein ([H Protein]-lipoyllysine); Met: L-Methionine; METHFGLU: 5,10-Methenyltetrahydrofolate; 
MTHFGLU: 5-Methyltetrahydrofolate; mtRNA: L-Methionyl-tRNA; myTHFGLU: 5,10-Methylenetetrahydrofolate; SAmDLp: S-Aminomethyldihydrolipoylprotein (H- 
Protein-S-aminomethyldihydrolipoyllysine); Ser: L-Serine; THF: Tetrahydrofolate; THFGLU: THF-polyglutamate(n). 

Fig. 2. Time course analysis. Time course analysis of A) the eight folate metabolites (DHF, ffTHFGlu, fTHFGlu, meTHFGlu, MTHFGlu, myTHFGlu, THF, THFGlu) 
and B) the seven products (DLp, SAmDLp, dTMP, FAICAR, FGAR, fmtRNA, and Met) that carry the one-carbon donated from folates, plus the reductive equivalents 
NADP and NADPH, over 240 min. 
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Nilsson et al., 2014; Ogwang et al., 2011; Ren et al., 2004; Stover and 
Schirch, 1993; Tedeschi et al., 2013; Vazquez et al., 2011; Yang et al., 
2021; Zhang et al., 2012; Zhu and Thompson, 2019). It was therefore 
deemed biologically cogent to investigate the impact of differing initial 
metabolite availability on cell growth. Specifically, three states were 
investigated. Each state is characterised by distinct initial concentra-
tions (at t = 0 min) of substrates for energy, anabolic reactions and 
reductive equivalents: AICAR, ATP, dihydrofolate (DHF), dUMP, GAR, 
Glu, Gly, Hcy, L-methionyl-tRNA (mtRNA), nicotinamide adenine 
dinucleotide phosphate (NADP), and Ser. The standard state retains the 
standard set of known experimental initial values for these species 
(Bennett et al., 2009), while the slow and rapid states are simulated by 
increasing or decreasing the initial values of these metabolites by two 
orders of magnitude (Table 1). The scales of these different initial con-
centrations reflect the range of experimentally observed metabolite 
concentrations that can affect cell growth rate proportionally to nutrient 
availability (Boer et al., 2010; Tepper et al., 2013). Specifically, the 
model captures a range of metabolites expected at different growing 
phases in a bacterial cell such as the concentrations previously measured 
for central carbon metabolism in E. coli. Those have been shown to 
expand three orders of magnitude and above (Yamamotoya et al., 2012). 
The lowest scale (×10− 2) in particular captures the realistic level of 
nutrients encountered by bacteria in natural environments where scar-
city is the norm. Hence, the evolution of survival mechanisms for low 
nutrient availability, such as the stringent response (Barik, 2023). Pre-
vious models of the one-carbon folate metabolism built quantitatively 
different metabolite levels with similar ranges for a virtual eukaryotic 
cell population. Those levels were based on distributions of folate and 
homocysteine in the plasma and tissues as found in the National Health 
and Nutrition Examination Survey (NHANES) data (Duncan et al., 
2013). 

Results were analysed at 240 min as this was the time it took for the 
standard model to reach equilibrium. Interestingly, it was noted that 
while the slow model converges to equilibrium at t = 240 min (4 h), the 
rapid model converged at t = 25 min, the approximate doubling time of 
E. coli. Under slow growth conditions the model reached equilibrium at 
approximately t = 800 min (13 h). 

Summation of the species concentration was used as a proxy indi-
cator for total mass. Total mass is represented by 15 folate metabolites 
(folate mass) and NADP/NADPH, which were not fixed in the model. 
The folate mass represents the eight metabolites (DHF, ffTHFGlu, 
fTHFGlu, meTHFGlu, MTHFGlu, myTHFGlu, tetrahydrofolate (THF), 
THF-polyglutamate(n) (THFGlu)) that originated from folic acid, which 
share the pterin and para-aminobenzoate rings as DHF or THF (Salce-
do-Sora and Ward, 2013) plus the seven products (Dihydrolipoylprotein 
([H Protein]-dihydrolipoyllysine (DLp), S-aminomethyldihydrolipoy 
lprotein (H-protein-s-aminomethyldihydrolipoyllysine) (SAmDLp), dTM 
P, FAICAR, FGAR, fmtRNA, and Met) that carry the one-carbon unit 
donated from folates. When the 11 substrates were adjusted, the initial 

total mass of the 15 folate metabolites in the slow, standard and rapid 
states were 478.67, 480.77 and 691.35. At 240 min, total mass was 
calculated as 174.09, 486.22 and 1077.00 in the slow, standard and 
rapid states, respectively. There was little change up to 1000 min 
(169.31, 486.58 and 1084.68). Importantly, when breaking down the 
composition of the total folate mass, the eight folate metabolites be-
tween the three states (25.44, 25.47 and 28.14) were similar at 240 min. 
Conversely, a significant difference was observed with the seven prod-
ucts which carry one-carbon donated from folates (28.63, 338.65 and 
718.85) and NADP/NADPH (120.02, 122.10 and 333.00) across the 
three growth states. Interestingly, the ratio of the redox couple 
NADP/NADPH was significantly affected by this simulation. In the 
standard state, NADP/NADPH were in a ratio of ~2:1 at 240 min. In the 
rapid model this ratio was adjusted to ~1:6, and in the slow state this 
was ~585:1. It is important to note that disruption to redox homeostasis 
can result in oxidative or reductive stress which can be detrimental to 
cell functioning (Xiao et al., 2018). 

3.2. Parameter scan of initial metabolite concentrations 

To examine the impact of variations to the initial concentration of 
these 11 metabolites independently, a parameter scan was conducted. In 
each instance, three values for each metabolite (AICAR, ATP, DHF, 
dUMP, GAR, Glu, Gly, Hcy, mtRNA, NADP, and Ser) were examined. 
These are the standard value, and values two orders of magnitude 
greater and less than this value (Table 1). Species concentrations were 
recorded at 240 min (Table S4, supplementary file S1). In most cases, 
species directly related to the scanned metabolite were affected most 
dramatically by changes in the initial concentration. For example, when 
the standard value for AICAR was retained, FAICAR was 22.67 μmol/L 
after 240 min. A two orders of magnitude increase or decrease in this 
species resulted in FAICAR rising to 34.81 μmol/L or lowering to 0.62 
μmol/L (R22). Likewise, when mtRNA, GAR, and NADP were investi-
gated, fmtRNA, FGAR, and NADPH were the species most significantly 
affected respectively (R15, R20, and R1/7/12/17). Interestingly, the 
initial concentration of serine had the greatest impact on metabolite 
concentrations (R3). Specifically, the product THFGlu decreased from 
22.37 μmol/min to 1.03 μmol/min, while myTHFGlu rose from 0.2 
μmol/min to 0.96 μmol/min when the initial concentration of serine was 
2 orders of magnitude lower and higher than the standard value. 
Downstream metabolites such as THF, MTHFGlu, meTHFGlu and 
ffTHFGlu were also affected by this change in the initial concentration of 
serine. 

In human melanoma it has been shown that serine synthesis is 
upregulated, with a significant proportion converted to glycine (Kit, 
1955). Furthermore, glycine has been shown to increase the rate of 
growth (0.67 vs 0.78 h− 1) and cell yield (0.57 vs. 0.78 g dry weight per g 
substrate) in E. coli (Han et al., 2002). When the impact of elevated 
glycine was investigated, a small increase in myTHFGlyu and MTHFGlu 
was observed. This contrasts with the finding from the mathematical 
model of Misselbeck et al. (2019) who reported that elevated intracel-
lular glycine resulted in serine synthesis, and thus myTHFGly and 
MTHFGlu depletion (Misselbeck et al., 2019). In this simulation, 
SAmDLp, DLp, and lipoylprotein ([H Protein]-lipoyllysine) (Lp) were 
the three most affected metabolites when glycine was perturbed, 
although when the total of these 3 metabolites were investigated, no 
change was observed. In addition to myTHFGly and MTHFGlu, other key 
folate metabolites/products such as THF, NADPH, methionine were 
elevated. 

3.3. Global analysis of initial metabolite concentrations 

Next, a global analysis was conducted to gain further insight into the 
relationship between initial metabolite concentrations and folate mass. 
A global parameter scan can determine the impact of variations in a 
number of parameters or species simultaneously; which may represent 

Table 1 
Initial metabolite values for the slow, standard and rapid state simula-
tions. Metabolite concentrations are in μmol/L.  

Metabolite Growth State 

Slow Standard Rapid 

AICAR 1.35 135 13,500 
ATP 96 9600 960,000 
DHF 0.00027 0.027 2.7 
dUMP 0.1 10 1000 
GAR 5.64 564 56,400 
Glu 9600 960,000 96,000,000 
Gly 4.3 430 43,000 
Hcy 3.7 370 37,000 
mtRNA 0.001003 1.003 100.3 
NADP 0.021 2.1 210 
Ser 0.68 68 6800  
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real-world conditions more accurately. In this case, 500 random samples 
were taken using a uniform distribution over a range of two orders of 
magnitude higher and lower than the standard initial value of each of 
the adjusted 11 metabolites. A uniform distribution was chosen due to a 
lack of priori data (Marino et al., 2008). Although many initial concen-
trations were derived from experimental work which used E. coli, several 
concentrations were derived from alternative models. Specifically, 
AICAR and GAR were derived from murine leukaemia cells (Sant et al., 
1992), Gly was gained from Plasmodium falciparum (Teng et al., 2009), 
and DHF and mtRNA were derived from mathematical models. 

Therefore, it was deemed prudent to use the uniform distribution be-
tween a large range of initial concentrations (Marino et al., 2008), which 
reflected the range of experimentally observed metabolite concentra-
tions (Boer et al., 2010; Tepper et al., 2013). 

Eight metabolites were analysed (DHF, ffTHFGlu, fTHFGlu, 
meTHFGlu, MTHFGlu, myTHFGlu, THF, THFGlu) after 240 min, with 
results depicted relative to serine. Serine was chosen as the metabolite of 
interest as it provoked the greatest changes in folate metabolites. In each 
case, the concentration of the folate metabolite appeared to increase up 
to approximately 500 μmol/L of serine. After this, serine had little 

Fig. 3. Global parameter scan of AICAR, ATP, DHF, dUMP, GAR, Glu, Gly, Hcy, mtRNA, NADP, and Ser, and the impact on the eight metabolites that 
originate from folic acid. The eight metabolites are A) THF, B) THFGlu, C) DHF, D) myTHFGlu, E) meTHFGlu, F) MTHFGlu, G) fTHFGlu, and H) ffTHFGlu. Initial 
concentrations were scanned between values 2 orders of magnitude greater than and less than the initial values. Random samples were taken using a uniform 
distribution at 240 min (n = 500). 
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impact on the concentration of the metabolite (Fig. 3). THF did not in-
crease beyond 1.82 μmol/L. THFGlu and DHF did not increase beyond 
19.98 μmol/L and 0.28 μmol/L, although most values laid between 2 
and 4 μmol/L and 0.08–0.1 μmol/L respectively. The global analysis 
determined that when all of the initial concentrations of these species 
were altered, greatest variation was observed with NADPH after 240 
min (Fig. S1, supplementary file S1). Values ranged from 0.41 to 280.02 
μmol/L, with equal distribution. Similarly, NADP exhibited a spread 
between values of 0.24 and 279.41 μmol/L. However in this case, most 
values were between 48 and 52 μmol/L when serine was >500 μmol/L. 
Met also exhibited a diverse range of concentrations, although at serine 
values > 500 μmol/L most values were situated between 300 and 350 
μmol/L. 

3.4. Parameter scan of 5-FCL 

5,10-Methenyltetrahydrofolate (meTHFGlu) can be oxidised to 5- 
formyl-THFGlu (ffTHFGlu, folinic acid) as part of a hydrolysis reaction 
(reaction R18). However, 5-formyl-THFGlu (ffTHFGlu), is not a sub-
strate for any anabolic reactions of the folate cycle. On the contrary, 
ffTHFGlu is only known to be converted back to meTHFGlu in an ATP- 
driven reaction catalysed by 5-formyltetrahydrofolate cyclo-ligase (5- 
FCL, EC 6.3.3.2, also named methenyltetrahydrofolate synthetase) 
(Huang and Schirch, 1995). Therefore, these two reactions are part of a 
futile cycle within the folate cycle. Experimental data suggest that 
5-FCL, in addition to OCFM, are involved in dormancy and rapid cell 
growth (Fan et al., 2014; Field et al., 2007; Gustafsson Sheppard et al., 
2015; Hansen et al., 2008; Jain et al., 2012; Nilsson et al., 2014; Ogwang 
et al., 2011; Stover and Schirch, 1990, 1993; Tedeschi et al., 2013; 
Vazquez et al., 2011; Zhang et al., 2012). Thus, it was relevant to 
investigate the role this enzyme has on metabolites across the three 
growth states. To do this, the Vmax for reaction 19 (Vmax19) was scanned 
between the values of 0 and 40 μmol/min with an interval size of 2 
(standard value = 20 μmol/min). Results at 240 min are presented in 
Fig. 4. As Vmax19 increased, ffTHFGlu decreased and meTHFGlu 
increased in all three growth states. This is logical as Vmax19 represents 
the maximum velocity of the enzyme 5-FCL, which catalyses the con-
version of ffTHFGlu to meTHFGlu. This is also in line with the findings 
from an extended hybrid-stochastic model of OCFM which determined 
that a 50% reduction in this enzyme resulted in an increase in ffTHFGlu 
and a decrease in meTHFGlu (Misselbeck et al., 2019). 

This model was able to shed light on OFCM in E. coli by evaluating 
the role of 5-FCL in different growth states. Specifically, it was deter-
mined that the increase in meTHFGlu observed with greater 5-FCL ac-
tivity, was more pronounced in the rapid state. Furthermore, simulation 
of a 5-FCL knockout resulted in the accumulation of ffTHFGlu, partic-
ularly in the rapid model. Specifically, ffTHFGlu was 10.17 μmol/L, 
21.03 μmol/L and 24.77 μmol/L in the slow, standard and rapid states 
respectively when Vmax19 was 0 μmol/min. Similarly, the 5-FCL 
knockout simulation resulted in reduced levels of meTHFGlu which 

were more pronounced in the slow model (slow: 0.0062 μmol/L, stan-
dard: 0.038 μmol/L, and rapid: 0.042 μmol/L). Likewise, THF, THFGlu, 
myTHFGlu, MTHFGlu, and fTHFGlu were reduced when a 5-FCL 
knockout was simulated. Surprisingly, DHF was elevated in the 
knockout model under standard growth conditions, although they were 
reduced in both the slow and rapid states. Conversely, Misselbeck et al. 
(2019) demonstrated that DHF was unchanged when 5-FCL activity was 
decreased to 50%, but reduced to 0 μM in the knockout simulation. 

An increase in Vmax19 was associated with an increase in myTHFGlu, 
DHF, THF, and MTHFGlu, which slowed with advancing maximum ve-
locity. Similarly, it has been demonstrated experimentally that over-
expression of the fau gene encoding for 5-FCL resulted in a significant 
decrease in ffTHFGlu and a 32% increase in MTHFGlu in Lactococcus 
lactis (Lu et al., 2021). Simulations indicated that in a slow growth state, 
the increase in myTHFGlu, THF, MTHFGlu, and DHF was less pro-
nounced when compared to the standard and rapid growth states. 
Despite these changes in folate species, total folate mass remained 
relatively constant at Vmax19 values between 0 and 40 μmol/min in all 
three model states (25.44, 25.47 and 28.14 in the slow, standard and 
rapid states respectively) indicating that homeostasis in overall folate 
was maintained in a variety of growth conditions despite changes in 
5-FCL activity. However, there was a significant difference observed in 
the seven products that carry the one-carbon donated from folates and 
the redox couple NADP/NADPH. For instance, in the slow state, total 
mass of these metabolites increased from 134.04 at a Vmax19 value of 0 
μmol/min, to 150.35 at a Vmax19 value of 40 μmol/min. A more profound 
increase was observed in the standard (183.24–474.72) and rapid states 
(512.67–1096.45). 

3.5. Simulation of trimethoprim treatment 

The antifolate trimethoprim is a potent inhibitor of bacterial dihy-
drofolate reductase (DHFR), the enzyme responsible for the conversion 
of DHF to THF (R1) (Wróbel et al., 2020). Importantly, 61–78% of E. coli 
isolates have been shown to be susceptible to trimethoprim (Duployez 
et al., 2018; Kawalec et al., 2023; Rosello et al., 2017; Somorin et al., 
2022). Interestingly, experimental evidence on the impact of nutrient 
availability on antibiotic susceptibility/cell survival is conflicting 
(Ortiz-Severín et al., 2021; Thorfinnsdottir et al., 2023). To simulate 
trimethoprim treatment in the model, a parameter scan of the Vmax of R1 
was conducted. The standard value of 38.33 μmol/min was deemed to 
represent 100% enzyme function. In total 11 values were scanned. This 
represented 10% increments in enzyme function from 0 to 100%. For 
instance, a value of 3.83 μmol/min represented 10% function, or 90% 
inhibition in enzyme activity, while a value of 19.17 μmol/min repre-
sented a 50% decline in activity. The simulated trimethoprim treatment 
had a greater impact on folate metabolism with more nutrient avail-
ability after 240 min (Fig. 5). Significantly, many of the species were 
relatively unresponsive at lower levels of DHFR inhibition. A 5.59% 
reduction in total mass after 90% DHFR inhibition and a 42.5% 

Fig. 4. Impact of perturbations to the maximum velocity (Vmax) of the enzyme 5-FCL (R19, Vmax19) on folate metabolites under A) slow, B) standard, and C) rapid 
growth states. 
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reduction following DHFR knockout was observed in the rapid growth 
state after 240 min. Total DHFR inhibition led to a rise in DHF from 0.1 
μmol/L (100% activity) to 17.69 μmol/L, and a subsequent decline in 
THFGlu, from 3.37 μmol/min to 0.41 μmol/min. Interestingly, the 
greatest impact was observed in the 7 products that carry the one-carbon 
unit donated from folates, with methionine, FGAR, FAICAR and dTMP 
associated with a 4.7-, 3.7-, 2.0, and 9.6-fold reduction respectively. 
Similar, although smaller, changes were observed in the standard model. 
Specifically, 90% enzyme inhibition resulted in a 1.78% reduction in 
total mass; 100% inhibition resulted in a 31.75% reduction. Total in-
hibition resulted in DHF rising from 0.03 μmol/min to 10.80 μmol/min, 
and THFGlu reducing from 4.00 μmol/min to 1.34 μmol/min. There was 
limited change in overall mass (− 0.0015%) with complete inhibition of 
DHFR in the slow model (Fig. S2, supplementary file S1). 

3.6. Sensitivity analysis 

To better understand the sensitivity of species to reaction parame-
ters, a sensitivity analysis was conducted in COPASI (supplementary file 

S3). When analysing Vmax19 in the scaled sensitivities array, the most 
sensitive species were fmtRNA (5930.32) and mtRNA (5929.75). The 
unscaled sensitivities array indicated that methionine (1.65) was most 
sensitive to perturbations in Vmax19, followed by FGAR (− 0.57), FAICAR 
(0.39), and NADP (− 0.33). 

3.7. Metabolic control analysis 

A metabolic control analysis was conducted (supplementary file S4) 
to investigate the control that enzymes exert on the flux of reactions. The 
unscaled flux control coefficient indicated that perturbations in 5-FCL, 
the enzyme that catalyses reaction 19, had the greatest, and equal, 
impact on the flux of reactions 22 and 23 (10.63). Next, the flux of re-
action 3 was affected most greatly (5.76). This was followed by the flux 
of reactions 12 and 13 (4.67). Next, the flux of R20 and 21 were most 
greatly affected (− 1.56), and following this, reactions 7, 8, and 9 (0.65). 
It is interesting that these sequential reactions have equal flux control 
coefficients. This may indicate that in this system, the first reaction (e.g., 
R22, R20, R7) may be rate limiting in this part of the model. These 

Fig. 5. Impact of Trimethoprim treatment on folate metabolism. Effect of DHFR inhibition on the eight folate metabolites (DHF, ffTHFGlu, fTHFGlu, meTHFGlu, 
MTHFGlu, myTHFGlu, THF, THFGlu) (A and B), the seven products (DLp, SAmDLp, dTMP, FAICAR, FGAR, fmtRNA, and Met) that carry the one-carbon donated from 
folates (C and D), and the reductive equivalents NADP and NADPH (E and F), over 240 min in the standard (A, C and E) and rapid growth states (B, D and F). 

A.E. Morgan et al.                                                                                                                                                                                                                              



BioSystems 235 (2024) 105088

8

findings may also indicate that 5-FCL plays a role in maintaining low 
levels of homocysteine (Hcy). Methionine synthase (MS) catalyses 
MTHFGlu and Hcy to THFGlu and Met. The positive value of the flux 
control coefficient indicates that lowering the enzymatic activity of 5- 
FCL may lead to reduced flux of this reaction, thus leading to an accu-
mulation of Hcy. This may be vital to the survival of the cells as high 
levels of Hcy can induce toxicity (Hasan et al., 2019; Tuite et al., 2005). 

To further understand the metabolic control of the model, the con-
centration control coefficients were analysed. This analysis indicates the 
impact of perturbed enzymes on model species. The unscaled concen-
tration coefficient analysis revealed that Met was most greatly affected 
(44.69) by perturbations in the enzyme controlling reaction 19. This was 
followed by FGAR (− 15.56). However, in this case, the concentration 
control coefficient was negative, indicating that as the activity of 5-FCL 
increases, FGAR declines. The scaled concentration coefficient analysis 
indicated that ffTHFFlu was most greatly affected (− 0.63). This is ex-
pected as 5-FCL catalyses the conversion of ffTHFFlu to meTHFGlu. This 
is followed by FAICAR (0.35). This is also expected as ffTHFGlu inhibits 
AICARFT, the enzyme responsible for the conversion of fTHFGlu and 
AICAR to THFGlu and FAICAR. Therefore, increased 5-FCL should lower 
the concentration of ffTHFGlu, thus causing a reduction in AICARFT 
inhibition. Third, fourth, and fifth were myTHFGlu (0.226), THFGlu 
(− 0.219) and MTHGlu (0.217). Sixth was met (0.216). This supports the 
findings from the flux control analysis, where it was shown that 5-FCL 
exerts force over R8 where Hcy is converted to methionine. 

Methylenetetrahydrofolate reductase (MTHFR) catalyses the 
reduction of myTHFGlu to MTHFGlu (Leclerc et al., 2013). In humans, 
deficiency of this enzyme has been associated with hyper-homo 
cysteinaemia, which has been linked with cardiovascular disease, 
thrombosis, cognitive impairment and complications of pregnancy, 
amongst other conditions (Moll and Varga, 2015). The effect of the key 
enzyme MTHFR (R7) on reaction flux and species levels was also 
investigated. The flux analysis indicated that reaction 17 was most 
affected (2.37), followed by R20 and R21 (− 2.21). Next, R12 and R13 
were impacted (− 1.91). Following this, R3 (− 1.17). This indicates that 
as MTHFR activity increases, flux from THFGlu and Ser to myTHFGlu 
and Gly declines. This is in line with the findings from a hybrid sto-
chastic model of OCFM (Misselbeck et al., 2017) and hybrid stochastic 
model of OCFM (Misselbeck et al., 2019). Misselbeck et al. (2017) 
suggested that decreased MTHFR activity reduced MTHFGlu. This was 
observed in this work through analysis of the concentration control 
coefficients. It was revealed that MTHFR (R7) exerted control over 
MTHFGlu, with an unscaled concentration coefficient of 2.45 and a 
scaled concentration coefficient of 0.48. 

4. Discussion 

Folate metabolism is a densely interconnected network of metabolic 
pathways that include the de novo synthesis of THFGlu in prokaryotes 
and plants. From this hub metabolite, several usage pathways evolved in 
both prokaryotes and eukaryotes. These include: conversion of serine 
and glycine, the cyclic methylation of homocysteine to methionine, 
production of N-formylmethionyl-tRNA and the de novo synthesis of 
purine/dTMP (Kordus and Baughn, 2019). Experimental work has 
continued to substantiate a case for folate metabolism as a driving fource 
of cell mass and proliferation, through the biosynthesis of chemical 
energy and reductive equivalents in the form of ATP and NADPH, 
respectively (Fan et al., 2014; Gustafsson Sheppard et al., 2015; Jain 
et al., 2012; Nilsson et al., 2014; Tedeschi et al., 2013; Vazquez et al., 
2011; Zhang et al., 2012). Principally, the enzyme that salvages 
ffTHFGlu (folinic acid), 5-FCL, has specifically been shown to affect cell 
growth phenotypes (i.e. dormancy versus rapid cell proliferation) (Field 
et al., 2007; Hansen et al., 2008; Ogwang et al., 2011; Ren et al., 2004; 
Salcedo-Sora and Mc Auley, 2016; Stover and Schirch, 1993). Folinic 
acid is generated enzymatically only to be converted back to meTHFGlu 
(Field et al., 2007; Salcedo et al., 2005; Stover and Schirch, 1993). These 

two reactions are referred to as a futile or substrate cycle. However, this 
aspect of OCFM remains to be widely acknowledged. Enzymatic futile 
cycles represent a recurring control motif in biological molecular net-
works, appearing in a wide variety of processes from energy metabolism 
to signal transduction. 

There can be significant variation in the folate biosynthesis pathways 
among different bacterial species. This variation can affect their ability 
to synthesize folate and influence their survival and growth in different 
environments. Here, mathematical modelling was used to investigate 
the behaviour of the folate cycle and the folinic acid futile cycle. 
Different initial substrate concentrations were selected as proxies for 
different modes of cell growth and proliferation. This mathematical 
model (supplementary file S5) and the results generated have furthered 
our understanding of the mechanisms whereby folate metabolism 
modulates cell mass and proliferation. In this work, a complex metabolic 
network was assembled; this consisted of coupled ODEs, informed by 
Michaelis-Menten kinetics derived from the extensive experimental 
literature in this area (Nijhout et al., 2004; Salcedo-Sora and Mc Auley, 
2016). Also, where there is experimental support, negative feedback 
loops were included within the reactions. The folinic acid futile cycle 
contains the parameters which have been derived from three decades of 
experimental work in this area (Anguera et al., 2003; Bennett et al., 
2009; Huang and Schirch, 1995; Stover and Schirch, 1990). The only 
assumptions inherent to this model are the different initial concentra-
tions for the substrates of the anabolic reactions (i.e., AICAR, DHF, 
dUMP, GAR, Glu, Gly, Hcy, mtRNA, Ser) as well as for NADP and ATP. 
The standard initial conditions comprise initial metabolite concentra-
tions as reported for the majority of these entities in a prokaryotic model 
fed with glucose (Bennett et al., 2009). The rapid and slow initial states 
represented metabolite concentrations two orders of magnitude above 
and below the standard initial conditions. This reflected the range of 
nutrient availability that can affect cell growth rate (Boer et al., 2010; 
Tepper et al., 2013). 

Output from the mathematical model is in close alignment with the 
experimental data which shows that gene knock-out (KO) mutants of 5- 
FCL in bacteria are affected in their capacity to develop the antibiotic 
persister phenotype (dormancy or slow growth) (Hansen et al., 2008; J. 
Morgan et al., 2018). For example, in a 5-FCL KO strain of E. coli, only 
~13% of the persisters to antibiotics were generated compared to the 
isogenic control. Similarly, the same 5-FCL mutants are able to prolif-
erate only up to 75% of the control (J. Morgan et al., 2018). This model 
suggests that this may be due to the interplay between one-carbon folate 
metabolism and NADPH production. The latter is part of the 
known interplay between folate metabolism and the oxidative 
pentose-phosphate pathway (Chen et al., 2019). 

The model also demonstrated the impact antifolate antimicrobials 
can have on the folate metabolism pathway and cell growth. Metabolic 
models continue to support antibiotic research and drug repurposing, 
particularly in combinatorial antibacterials, where folate biosynthesis 
inhibition sensitises the cell to other forms of toxicity (Chen et al., 2022). 
Similarly, in our previous mathematical model, the inhibition of the 
bifunctional enzyme dihydrofolate synthase-folylpolyglutamate syn-
thase (DHFS-FPGS) showed a highly synergistic effect with inhibitors of 
dihydrofolate reductase (DHFR) – of which there are several clinically 
deployed (Salcedo-Sora and Mc Auley, 2016). The latter example of 
synergistic cell toxicity mediated by folate biosynthesis inhibition was 
corroborated by the experimental findings from a group of DHFS-FPGS 
inhibitors tested against intracellular pathogens (Wang et al., 2010). The 
model presented here offers a new critical potential target in 5-FCL. 
Inhibitors of this enzyme could have the capacity of severely impair-
ing cell multiplication. 5-FCL is shown here to connect the folinic acid 
futile cycle, mediating cell mass generation, with folate cell mass 
biosynthesis and NADP/NADPH homeostasis. 

Many previous models have not included the folinic acid cycle which 
is a futile cycle in biochemical terms. The model has shown how the 
folate biosynthesis and usage pathways in a model E. coli cell behaves in 
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the presence of this futile cycle. This more complete model should 
inform research fields such as those of antifolate discovery, antibiotic 
resistance, and synergistic antibacterial research (Chen et al., 2022). 

5. Conclusion 

A theoretical framework is presented for the biochemical folate 
biosynthesis and usage pathways including the folinic acid futile cycle. 
The relevance of this new model was tested with different parameters 
that aimed at representing relevant growth phenotypes. The inclusion of 
the folinic acid futile cycle within the model highlighted the important 
roles this cycle seems to play in modulating flux and mass generation 
under proliferation during different metabolic scenarios. These findings 
have important implications for antibiotic research and antifolate 
chemotherapy (i.e., cancer research). 
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Wróbel, A., Arciszewska, K., Maliszewski, D., Drozdowska, D., 2020. Trimethoprim and 
other nonclassical antifolates an excellent template for searching modifications of 
dihydrofolate reductase enzyme inhibitors. J. Antibiot. 73, 5–27. https://doi.org/ 
10.1038/s41429-019-0240-6. 

Xiao, W., Wang, R.-S., Handy, D.E., Loscalzo, J., 2018. NAD(H) and NADP(H) redox 
couples and cellular energy metabolism. Antioxidants Redox Signal. 28, 251–272. 
https://doi.org/10.1089/ars.2017.7216. 

Yamamotoya, T., Dose, H., Tian, Z., Fauré, A., Toya, Y., Honma, M., Igarashi, K., 
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