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ARTICLE INFO ABSTRACT
Keywords: Most of the deployable polyhedral mechanisms (DPMs) are multi-loop overconstrained mecha-
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control. Yet, constraint reduction for these multi-loop overconstrained mechanisms is extremely
challenging in kinematics. In this paper, by introducing the Hamiltonian path to investigate the
3D topological graphs of a group of Sarrus-inspired DPMs, we propose a systematic method for
constraint reduction of multi-loop overconstrained DPMs. We demonstrate that through the
removal of redundant joints with the assistant of tetrahedral Hamiltonian path, one equivalent
simplest topological graph of tetrahedral mechanism is identified as a reduction basic unit.
Subsequently, one simplest form of Sarrus-inspired cubic mechanism is obtained by investigating
two Hamiltonian paths of its dual octahedron and sequentially arranging basic units. Further-
more, a total of nineteen simplest forms of Sarrus-inspired dodecahedral mechanisms are iden-
tified from seventeen Hamiltonian paths of its dual icosahedron. The overconstraints in each
simplest Sarrus-inspired DPM are greatly reduced while preserving the original one-degree-of-
freedom (DOF) motion behavior. The method proposed in this paper not only lays the ground-
work for further research in wider deployable polyhedrons, but also inspires the reduction of
other multi-loop overconstrained mechanisms, with potential applications in the fields of
manufacturing, architecture and space exploration.

1. Introduction

Deployable polyhedral mechanisms (DPMs) have witnessed flourishing growth in recent years because of their potential appli-
cations in robotics, space exploration, structure engineering and so on [1,2]. Most of the DPMs are multi-loop overconstrained
mechanisms [3], which are always adopted to construct large deployable structures due to their high stiffness and structural stability
[4]. DPMs usually contain large numbers of links and joints, and their clearance and input force will affect the deployment dynamics
[5], during which the desired deployment motion should generally be smooth, stable, and controllable [6]. Nevertheless, there is little
work on the dynamics of DPMs in addition to the velocity and kinetic energy analysis of Fulleroid reported by Wohlhart [7], and
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Fulleroid-like DPMs proposed by Xiu [8]. Furthermore, the applications of these mechanisms have encountered barriers in assembly,
operation and control due to the large numbers of overconstraints embedded in most of the DPMs. To ensure the motion of the
overconstrained mechanisms, the strict overconstrained geometric conditions of links and joints must be satisfied [9]. However, due to
the harsh working environment of those deployable structures and the errors in fabrication and assembly, the overconstraints bring
additional internal loads that can render those mechanisms immobile and reduce the reliability in the operation of the deployable
structure, which cannot be completely overcome simply by improving the manufacturing accuracy [10-12]. Therefore, it is important
to reduce or even eliminate the redundant constraints of the original overconstrained mechanisms by designing a less-overconstrained

(a)

Fig. 1. Sarrus-inspired deployable dodecahedral mechanisms, their equivalent mechanisms with prismatic joints, and the corresponding three-
dimensional topological graphs. (a) Tetrahedral mechanism with tetrahedral symmetry, (b) cubic mechanism with octahedral symmetry, and (c)
dodecahedral mechanism with icosahedral symmetry.
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or non-overconstrained form while keeping their equivalent kinematic behaviors [13,14].

Several constraint-reduction strategies for single-loop and multi-loop mechanisms have been developed. To reduce the degrees of
overconstraint in a Bennett linkage, a RRRS linkage with kinematic equivalence was reported in [15,16] by using a spherical joint to
replace a revolute joint, yet overconstraints still exist in this linkage. Further, Yang et al. [17] proposed a truss method based on
Maxwell’s rule [18] to obtain a non-overconstrained form of Bennett linkage as RSSR linkage, as well as that of Myard linkage as the
RRSRR linkage. Yet, there are few works reported on how to reduce the degrees of overconstraint of multi-loop mechanisms while
reserving their motion behavior. Based on joint removal with kinematic equivalence, Brown et al. proposed some reduction methods to
reduce the redundant constraints of zero-thickness origami-based mechanisms, such as connected one-DOF sections and end-to-end
chains [19]. Similar reduction approaches have been applied in the Miura-ori-based deployable array [20]. In addition, the
hinge-removing technique [21] was presented for thick-panel origami [22-25] based on construction of Waldron hybrid 6R linkage
from two Bennett linkages, which facilitates the engineering application of the thick-panel origami pattern.

Based on three types of one-DOF Sarrus-inspired DPMs developed in our previous work [1], the objective of this paper is to
investigate constraint reduction of the proposed multi-loop DPMs. As illustrated in Fig. 1, the tetrahedral, cubic and dodecahedral
mechanisms have been constructed in [1], as well as their equivalent mechanisms with prismatic joints and the corresponding
three-dimensional topological graphs. By introducing the Hamiltonian path [26] to 3D topological graph and removing redundant
constraints, as given in Sections 2 to 4, the simplest constraint forms of these multiloop DPMs are developed to reduce the degrees of
overconstraint, respectively, while preserving the original motion behavior including the mobility.

2. Hamiltonian-path based constraint reduction of a deployable tetrahedral mechanism

This section presents the overconstraint reduction of a deployable tetrahedral mechanism by introducing the Hamiltonian path to
its 3D topological graph. The procedures of reduction for the tetrahedral mechanism are presented and degrees of overconstraint are
analysed to evaluate the reduction results.

2.1. Overconstraint of mechanisms

Based on Griibler-Kutzbach formula [27], the mechanism mobility can be determined by
8
M=dn—g—1)+> f, m
i=1

where M is the expected mobility, d is the mobility coefficient and obtained from the motion screw system, n is the number of rigid links
and g is the number of kinematic joints, f; is the degrees of freedom of ith kinematic joints.

Taking the proposed one-DOF deployable tetrahedral mechanism in Fig. 1(a) with 28 links and 36 revolute joints as an example, its
expected mobility M = 6(28 — 36 — 1) + 36 = — 18, hence it is a highly overconstrained mechanism. Thus, the original degrees of
overconstraint ¢ [1] in this mechanism can be derived as

c=m-M=1-(-18)=19 (&)
in which m stands for the actual mobility of the mechanism.

Meanwhile, referring to the equivalent strategy reported in our previous work [1], the equivalent tetrahedral mechanism with six
prismatic joints is shown in Fig. 1(a), whose equivalent degrees of overconstraint c, is

ce=m—-M=1—(-3)=4. 3)

However, overconstraints still exist. To reduce or even eliminate the overconstraints in multiloop mechanisms and find the effective
constraint space for polyhedral platforms, we investigate the reduction process as follows by utilizing the topology operation.

(a) (b) (©) (d)

e
S

C =SB C =B C =B C =B

Fig. 2. Only one Hamiltonian path in a tetrahedron.
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2.2. Hamiltonian path of a tetrahedral topology graph

It should be pointed out that the essential premise of reduction is that each platform requires at least two equivalent prismatic joints
to maintain the close-loop mechanism, i.e., each vertex is related to at least two edges in the topological graph, then the original
kinematic properties including mobility and radial motion should be preserved among polyhedral platforms. It is mathematically
interesting to find that the Hamiltonian path (or Hamiltonian cycle) [26] matches the premise of the reduction process. There are two
significant characteristics of the Hamiltonian path: first, it is a close-loop path with a sequence of edges that visits all the vertices of a
graph; second, each vertex between two edges is only accessed exactly once along the path. For demonstration purpose, the generation
process of Hamiltonian path in a tetrahedron is taken as an example, see Fig. 2. First, starting from vertex A, any edge among AB, AC
and AD is identical due to tetrahedral symmetry, here edge AB in Fig. 2(a) is selected. Subsequently, edges BD and BC are also identical
in tetrahedral symmetry, so edge BD is selected in Fig. 2(b). Next, edge DC can only be selected to connect vertex C instead of edge DA,
see Fig. 2(c). Finally, the close-loop path is obtained in Fig. 2(d) by connecting the initial vertex A through the edge CA. Note that, due
to the tetrahedral symmetry, there is only one Hamiltonian path in a tetrahedron.

2.3. Hamiltonian-path based reduction of the tetrahedral mechanism

The obtained Hamiltonian path, also given in Fig. 3(a), can split the tetrahedron into two half shells, as shown in Fig. 3(b) and (e).
On the one hand, the half shell in Fig. 3(b) is an assembly of two one-DOF triangular units ADC and ADB connected by one common
edge AD. The constraint matrix in this two-loop equivalent mechanism can be directly derived as

S S 0S5 0
M. =1 =S Sz 0 Spe |’ @
in which the detailed calculation of equivalent motion screws Sg; can be found in [1].

The actual mobility of this two-loop mechanism shown in Fig. 3(b)ism =n, — rank(M ) =5 — 4 =1, and the kinematic behavior
of its mapped Sarrus-inspired mechanism is unchanged, in which the detailed analysis can be found in Appendix A. Hence, the edge BC
is redundant for its mechanism topology and can be removed without affecting the motion behavior of the polyhedral platforms.

Yet, the degrees of overconstraint of this two-loop equivalent mechanism is ¢, = m— M = 1— (— 3) = 2, in which further
reduction can be explored. Here are five edges AB, BD, DC, CA and AD reserved in Fig. 3(b), then we can only remove edge AD under
the mentioned reduction premise due to each vertex should be involved with at least two edges. Thus, a skew quadrilateral (non-planar
quadrilateral) ABDC is obtained in Fig. 3(c) (highlighted in blue). The constraint matrix of this single-loop equivalent mechanism with

(b) (© (d)

A
_>
D
B C T
c,=0,c=7
() A

Hamiltonian Path
c,=4,c=19

) 44:::::::::::>x
B C

¢,=2,c=13 ¢, =0, =7

C

Fig. 3. Reduction process of equivalent tetrahedral mechanism. (a) The only one 3D Hamiltonian path (illustrated in red line); (b) one half shell
split by Hamiltonian path, and (c) the simplest topological graph and (d) its corresponding simplest equivalent mechanism; (e) the other half shell
and (f) its simplest topological graph and, (g) equivalent mechanism, which are congruent with (b)-(d) respectively. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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four equivalent prismatic joints P, P3, Pg and Ps in Fig. 3(d) is

"

M. =[St S35 Sw Sis] 5)

The mobility of this single-loop mechanism is m = n, — rank(M ¢;) = 4 — 3 = 1 with its degrees of overconstraintc, =m — M =1
— 1 =0, in which its unchanged kinematics is revealed and proved in Appendix A. Therefore, we can regard a skew quadrilateral as
the simplest topological graph, i.e., the single-loop mechanism in Fig. 3(d) can be obtained as the simplest constraint form with four
equivalent prismatic joints.

On the other hand, the other half shell in Fig. 3(e) is also a one-DOF assembly of two triangular units ABC and BCD connected by
edge BC, which is congruent with the one in Fig. 3(b) due to the symmetry. Thus, the same reduction process can be carried out to
obtain the simplest topological graph in Fig. 3(f) and the simplest equivalent mechanism in Fig. 3(g), which are identical to Figs. 3(c)
and 3(d), respectively.

Ultimately, by mapping the proposed simplest equivalent mechanism in Figs. 3(d) or 3(g) back to the original Sarrus-inspired
mechanism, Fig. 4(a) shows the simplified tetrahedral mechanism integrated by four Sarrus linkages, in which the one-DOF syn-
chronized radial motion is preserved, whose prototype is shown in Fig. 4(b). Nevertheless, the actual overconstraints of this simplified
Sarrus-inspired mechanism are c =m — M =1 — (—6) = 7 due to the four involved overconstrained Sarrus linkages. Compared with
the original mechanism in Fig. 1(a), the actual overconstraints are greatly reduced from 19 to 7. Furthermore, if we remove arbitrary
one of eight limbs among four platforms, i.e., remove two links with three revolute joints in a Sarrus linkage, the mobility of this
tetrahedral mechanism will become two, hence the simplified tetrahedral mechanism in Fig. 4 can be regarded as the simplest
constraint form.

Furthermore, the skew quadrilateral topological graph in Fig. 3(c) will be taken as the basic unit with ¢, = 0 to conduct the
constraint reduction in complex Hamiltonian paths for other polyhedral mechanisms.

3. Constraint reduction of other deployable polyhedral mechanisms
In this section, the constraint reduction processes of deployable cubic and dodecahedral mechanisms are presented by using the

obtained skew quadrilateral as the basic unit, in which the original one-DOF radial motion is preserved in each case. As an extension of
reduction method, the reduction of a quadrangular prism mechanism is subsequentially demonstrated.

Lo

(b)

Fig. 4. Motion sequence of the simplest tetrahedral mechanism. (a) CAD model and (b) prototype.
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3.1. Constraint reduction of the deployable cubic mechanism

Inspired by the characteristic of the Hamiltonian path that matches the premise of reduction process, the similar topology operation
can be carried out to demonstrate the reduction of the deployable cubic mechanism given in Fig. 1(b), in which the original and
equivalent overconstraints are c, = 10 and ¢ = 43, respectively. Note that, the 3D topological graph of the equivalent cubic mechanism
in Fig. 1(b) with a basis of dual octahedron that possesses totally two distinct Hamiltonian paths [28]. First, Hamiltonian path 1 of a
double-Z shape in an octahedron is shown in Fig. 5(a) in red lines, it splits this octahedron into two congruent half shells due to the
octahedral symmetry, see Fig. 5(b) and 5(d). Taking Fig. 5(b) as an example, this half shell is an assembly of four one-DOF triangular
units FBC, BCA, CAD and ADE with equivalent kinematics, the mobility in its corresponding mechanism can be calculated as one with
ce =4 and ¢ = 25, which proves that the edges DF, EF and EB are redundant. Subsequently, we can arrange the proposed skew
quadrilateral basic unit in this half shell generated from path 1 to conduct the further reduction. As shown in Fig. 5(c), starting from
vertex F with a smaller included edge angle, we can arrange a quadrilateral FBAC (highlighted in blue), thus the next quadrilateral
ACDE can be readily arranged in the rest space. Compared with the reduction result in Fig. 5(b), we can regard that edges BC and AD
are removed, it results in a two-loop one-DOF mechanism constructed by seven equivalent prismatic joints with c, = 0. Meanwhile,
due to the octahedral symmetry, the identical reduction result based on the other half shell in Fig. 5(d) can also be obtained, see Fig. 5
(e).

According to the topological graph in Fig. 5(c) from path 1, the corresponding equivalent prismatic joints S; and the constraint
graph are given in Fig. 6, in which the detailed calculation about equivalent motion screws can be found in [1]. Its constraint matrix

M, can be derived as

! S/] 0 Sf} S/7 ng 0 0

Ma=l 50 8. 0 0 0 Sy Sl ©

where the rank of this matrix is 6, and mobility of the cubic mechanism in Fig. 6 can be verified asm =n, — rank(M/ez) =7 -6 =1,
and the equivalent kinematics can also be prevealed based on similar matrix method given in Appendix A.
Yet, the actual overconstraints ¢ = 13 still exist in the corresponding Sarrus-inspired mechanism due to the related seven Sarrus

(b) A (c) A
E E
cw“"lla —>C
(a) A y
F

c,=4,c=25 c,=0,c=13

47

F
¢, =10, =43 E E
—C

ce=4,c—25 ce=0,c—13

Fig. 5. Reduction process of equivalent cubic mechanism using Hamiltonian path 1. (a) Hamiltonian path 1 in the 3D topological graph, (b) one half
shell split by path 1, (c) the simplest topological graph, (d) the other half shell, and (e) its simplest topological graph.
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& & i &)

Fig. 6. Constraint graphs of the simplest cubic mechanism derived from path 1.

linkages. Further, if we remove the common edge AC in Fig. 5(c), i.e., Sf; in Fig. 6, the single-loop equivalent mechanism with six
prismatic joints will occur, then its mobilities will become two, which is contrary to the reduction premise. Thus, the topological graph
in Fig. 5(c) or Fig. 5(e) can be identified as the one-DOF simplest constraint path derived from path 1.

On the other hand, Hamiltonian path 2 of a three-fold zigzag shape is given in Fig. 7(a), which also splits this octahedron into two
congruent half shells due to the symmetry, see Fig. 7(b) and 7(d). For the topological graph in Fig. 7(b), three external triangular units
are connected to the central one, respectively, also leading to a one-DOF four-loop mechanism with c, = 4 and ¢ = 25. Next, due to its
three-fold symmetry, we can select any one of vertices D, E and F at the beginning to arrange the skew quadrilateral basic unit. For
example, a quadrilateral FBAC is generated in Fig. 7(c), yet two resulting triangular units ACD and ABE as illustrated in grey cannot be

b © A
E E
C —>C
@ s
Path 2 % F

B c,=4,c=25 c,=2,c=19

(d) A (e) A
N
F
¢, =10, c=43 E E
C —C
F F

c,=4,c=25 c,=2,c=19

Fig. 7. Reduction process of equivalent cubic mechanism using Hamiltonian path 2. (a) Hamiltonian path 2 in the 3D topological graph, (b) one half
shell split by path 2, (c) the simplified topological graph, (d) the other half shell, and (e) its simplified topological graph.
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merged into a quadrilateral anyway, which also applies to the identical reduction result in Fig. 7(e). No matter which arrangement for
this case, there are always two triangles that cannot be merged.
Referring to the topological graph in Fig. 7(c) from path 2, the corresponding constraint graph is given in Fig. 8 and its constraint

matrix M ¢, is

S¢ 0 0 Sy 0 Sy 0 0
Mo=|-S S» 0 0 0 0 Sy Sul, %)
0 —Sp S5 0 S5 0 0 0

where the rank of this matrix is 7, and mobility of the cubic mechanism in Fig. 8 ism = n, — rank(M¢3) =8 — 7 = 1. As a result, the
topological graph in Fig. 7(c) has mobility one with c.=2 and ¢ = 19, due to the connection of one skew quadrilateral unit and two
triangular units.

However, if edge AB (or AC) is further removed, the mobility will become two. Thus, the constraint path in Fig. 7(c) or Fig. 7(e) can
be regarded as the simplified constraint path derived from path 2. Yet, compared with the constraint path in Fig. 5(c), this constraint
path cannot be treated as the simplest one of this cubic mechanism due to its eight associated equivalent prismatic joints among all six
platforms. Hence, the only one simplest topological graph of the cubic mechanism can be identified in Fig. 5(c) or 5(e).

According to the simplest topological graph in Fig. 5(c), the simplest one-DOF deployable cubic mechanism is obtained with the
original motion behavior of its platforms unchanged, whose motion sequences are given in Fig. 9. Compared with original cubic
mechanism in Fig. 1(b), the actual overconstraints in this simplest Sarrus-inspired cubic mechanism are greatly reduced from 43 to 13.

In this section, the one-DOF simplest topological graph of the cubic mechanism is identified as two one-DOF skew quadrilaterals
connected by one common edge, the reduction method inspired by Hamiltonian path can be readily applied to the complex
dodecahedral mechanism in next section.

3.2. Constraint reduction of the deployable dodecahedral mechanism

As given in Fig. 1(c), the original 3D topological graph of the deployable dodecahedral mechanism is related to its dual icosahedron
with ¢, = 28 and ¢ = 115. There are totally 17 distinct Hamiltonian paths on an icosahedron [29], which presents a different challenge
to find all simplest constraint forms for this mechanism. Nevertheless, the proposed reduction method by arranging the skew quad-
rilateral basic units can still be conducted for dodecahedral mechanisms.

Taking an arbitrary Hamiltonian path as an example, as shown in Fig. 10(a) in red lines, which connects all twelve vertices without
any symmetry. Next, two distinct half shells split by path 1 are generated in Figs. 10(b) and 10(d), respectively, each of which consists
of ten one-DOF triangular units connected in sequence and can be regarded as a one-DOF assembly. It is intuitive that we only need to
repeat the quadrilateral arrangements as illustrated from Figs. 5(b) to (c) to explore the simplest constraint path. Starting from vertex A
in Fig. 10(b), one-DOF skew quadrilaterals ADIC, CILH, CHGB, BGKF and FKJE can be sequentially arranged inside the Hamiltonian
path, leading to a one-DOF assembly of these five basic units as shown in Fig. 10(c). Here, the redundant edges CD, IH, BH, FG and EK
are removed alternately, and two adjacent basic units share one common edge, i.e., edges CI, CH, BG and FK, respectively. Similarly, as
shown in Fig. 10(d), starting from vertex C, if we further arrange five skew quadrilaterals CBFA, AFED, DEJI, IJKL and LKGH in the
other half shell, another different simplest constraint path is obtained in Fig. 10(e).

Referring to the first example of the simplest dodecahedral mechanism represented by Fig. 10(c), its mobility can be analyzed and
verified with a total of 16 associated equivalent kinematic pairs. Based on the corresponding constraint graph in Fig. 11(a), its related

constraint matrix M.z is

M/d = [M'u M/IZL ®

73 7

y—
—
—

) @

=
1%
&

©

Fig. 8. Constraint graphs of the simplified cubic mechanism derived from path 2.
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é & o

Fig. 9. Motion sequence of the simplest cubic mechanism.

(b)

= AN
¢, =28, c=115 ; AV

G

L
c,=10, c=61 c,=0,c=31

Fig. 10. Reduction process of equivalent dodecahedral mechanism. (a) Hamiltonian path 1 in the 3D topological graph, (b) one half shell split by
this path, (c) its simplest constraint path with the removal of redundant edges CD, IH, BH, FG and EK, (d) the other half shell split by this path, and
(e) its simplest constraint path with the removal of redundant edges AB, AE, DJ, JL and LG.
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Fig. 11. Constraint graphs of the simplest dodecahedra mechanisms.

with
(S, S5 0 0 o0 0 0 Sps
/ 0 0 0 0 0 0 Su —Sus
My=[0 0 0 S; 0 Sp -Su 0
0 0 S 0 0 —Sy; 0 0
L0 0 0 0 Sy O 0 0
(S5 0 0 0 0 0 0 0
0 0 0 0 0 0 Sp S
Mp,=|0 0 0 S, 0 0 0 0
0 0 Sxn 0 0 Sps 0 0
L 0 Sflx —szo 0 sz4 0 0 0

The rank of this constraint matrix M’eg is 15, thus the mobility of this dodecahedral mechanism can be derived as m = n, —
rank(Mg) = 16— 15 = 1.

Then, using the same approach, the constraint graph derived from another different path in Fig. 10(e) is shown in Fig. 11(b), the
corresponding constraint matrix M is

M= [M”n Mnlz] 9

with

10
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-sz 0 Sf5 Sf6 Sﬂ 0 0 0
, 0 Sf3 —st 0 0 ng Sfl() 0
M 11 = 0 0 0 0 0 —ng 0 Sf|6 5
0 0 0 0 0 0 0 0
L0 0 0 o 0 o0 o0 0
0 0 0 0 0 0 o0 0
0 0 0o o0 o0 0 0 0
Mpup=|Sis 0 S» 0 0 0 0 0
0 0 _Sf23 S_f24 0 0 szs sto
L 0 Sf21 0 0 szs Sf27 0 _Sf30

The rank of this constraint matrix M”eg is 15 and the mobility of this simplest dodecahedral mechanism is alsom =n, — rank(Mﬁeg)
=16-15 =1.

Referring to the above mobility analysis, the equivalent mechanism obtained in Fig. 10(c) has mobility of one with equivalent
overconstraint c. = 0, as well as the case in Fig. 10(e), hence both can be regarded as simplest constraint paths among the twelve
polyhedral platforms. Duo to the two distinct simplest constraint forms are derived from one common Hamiltonian path 1 in Fig. 10(a),
they have identical outer contour lines so that they can be called complementary simplest paths.

Ultimately, by mapping the simplest topological graphs in Fig. 10(c) and 10(e) to the original Sarrus-inspired mechanism, two
simplest dodecahedral mechanisms that preserve original one-DOF radial motion are generated in Fig. 12, in which kinematic
equivalence can also be proven based on the matrix method as given in Appendix A. Compared with the original dodecahedral
mechanism in Fig. 1(c), the degrees of overconstraint in these simplest mechanisms are greatly reduced from 115 to 31.

In addition to the above Hamiltonian path 1 as given in Fig. 10(a), some other distinct Hamiltonian paths on a dual icosahedron can
also be utilized to identify the simplest dodecahedral mechanisms, which is organized and listed as follows.

SSe
Sqe

Fig. 12. Motion sequence of the simplest dodecahedral mechanisms obtained from (a) one half shell and (b) the other one.

11
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Table 3
Reduction results of dodecahedral mechanism using paths 11 to 14.

Hamiltonian paths One simplest path and the other non-simplest path

=]

Path 12

N\

Path 13

First, similar as the path 1 in Fig. 10(a) which can generate two complementary paths as illustrated in Fig. 10(c) and (e), Table 1
lists five Hamiltonian paths (including path 1) and each one can generate two complementary simplest paths, in which five skew
quadrilaterals are still arranged in sequence by sharing four common edges. Next, each Hamiltonian path in Table 2 generates two
congruent simplest paths, also as the arrangement of five quadrilaterals, due to its Cy-symmetry, in which the details of symmetry for
each Hamiltonian path can be found in Appendix B [29]. Differently, for two half shells separated from each Hamiltonian path listed in
Table 3, one shell can be derived into an effective simplest constraint path as illustrated in blue, the other shell is unsuccessful due to
few unmergeable triangular units as illustrated in grey (similar as the case from Fig. 7(b) to 7(c)). The rest three Hamiltonian paths are
given in Table 4, yet, from which any effective simplest path can be obtained also as the unmergeable grey triangular units.

Therefore, a total of 19 simplest constraint paths of this dodecahedral mechanism can be found and identified from its 17
Hamiltonian paths, each of which is a sequential arrangement of five skew quadrilateral basic units. As a result, each simplest
dodecahedral mechanism can preserve the original one-DOF radial motion behavior and the degrees of overconstraint are greatly

14
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Table 4
Reduction results of dodecahedral mechanism using paths 15 to 17.

) Qg
>

B
>

2 B

< ¢ @

Fig. 13. The reduction of prismatic mechanism with prismatic joints. (a)The original mechanism; (b) the topology graph and its only one
Hamiltonian path in red lines; (c) the simplest topology graph; (d) the simplest mechanism. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

15
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reduced from 115 to 31.

3.3. Constraint reduction of a prismatic-based deployable polyhedral mechanism

Furthermore, the reduction method proposed in this paper can be readily applied into the expanding structures constructed by
prismatic joints. A quadrangular-prism mechanism is created in Fig. 13(a) as an example based on the construction approach in [30], in
which all the quadrangular faces have been triangulated to generate the one-DOF motion. Based on the original mechanism in Fig. 13
(a) with 8 rigid links A to H, 12 prismatic joints and overconstraints ¢ = 16, the corresponding mechanism topology graph is illustrated
in Fig. 13(b), in which its only one Hamiltonian path is highlighted by red lines [29]. Next, two congruent half shells can be split by this
Hamiltonian path due to the symmetry, we further remove BC and AD in the resulted half shell following the proposed reduction
method and topology operation, its simplest topology graph is obtained and demonstrated in Fig. 13(c). In addition to skew quad-
rilateral units ABFC and ACDH, there are two triangular units GFC and AEH should be reserved under reduction premise, in which any
line cannot be further removed. Finally, by mapping this simplest topology to prismatic mechanism, the simplest quadrangular-prism
mechanism is shown in Fig. 13(d), in which the overconstraints are reduced from 16 to 2, and it can be found that the original radial
motion is still preserved.

4. Conclusions

In this paper, we proposed a novel Hamiltonian-path based constraint-reduction method for a family of one-DOF Sarrus-inspired
DPMs. By introducing Hamiltonian paths on 3D topological graphs, constraint reduction strategy for the multi-loop overconstrained
DPMs was proposed based on skew quadrilateral basic units and their sequential arrangements. All Hamiltonian paths on their dual
tetrahedron, octahedron and icosahedron were detailly discussed to obtain one simplest tetrahedral mechanism, one simplest cubic
mechanism and nineteen dodecahedral mechanisms, respectively. The degree of overconstraint in each simplest DPM is greatly
reduced while preserving original motion behavior, i.e., one-DOF synchronized radial motion.

Referring to the proposed approach, the simplified form (non-simplest form) of multi-loop polyhedral mechanisms can also be
selected and obtained for the specific applications, such as the deployable structures that need appropriate actuation and stiffness
without affecting the kinematics. Yet, after mapping the simplest topology to the original mechanism constructed by Sarrus linkages,
the degrees of overconstraint are still exist due to the overconstrained construction element, future work will explore the non-
overconstrained assembly of spatial linkages, such as spatial 7R or 8R linkages. Synthesis and reduction process of the Sarrus-
inspired mechanisms were presented in this paper, which could provide inspirations for the deduction of the known multiloop
mechanisms or the construction of new ones with less or even no overconstraint, with potential applications in the fields of
manufacturing, architecture and space exploration.
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Appendix A

According to the original tetrahedral mechanism and its kinematic solution [16] based on p-H matrix method [31], the simplified
tetrahedral mechanism and the simplest form are illustrated in Fig. A1(a) and (b), respectively. Meanwhile, (p/i = 2¢; still exist in all
involved Sarrus linkages, yet some original 9R linkages are vanished after reduction. First, a spatial 12R linkage with revolute axes z;
to 212 can be identified in Fig. A1(a) after removing the Sarrus linkage between platforms B and C, respectively, its motion constraint
conditions can be obtained as follows, among platforms A, D and B,

P =@ :(ﬂ57(p/l :w/z :fﬂ,sv (A1)
among platforms A, D and C,
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V3 =92 = Q5,03 = @2 = Py (A2)

Substituting this constraint conditions into matrix calculations of this 12R linkage yields
PV=Pr =03 = Qs =P, P1 = Q2 = Q3= P5 = P (A3)

Thus, the identical kinematic behavior of five involved Sarrus linkages and the equivalent kinematics of the entire simplified tetra-
hedral mechanism are revealed.

On the other hand, there are no original 9R linkages reserved in the simplest mechanism in Fig. A1(b), thus the constraint con-
ditions in Egs. (A1) and (A2) no longer exist, we can only utilize the fundamental conditions in each Sarrus linkage, i.e.,

(/’/1 = 24’17(#’3 = 2%7‘#/5 = 2¢s, ‘Plﬁ =205, (A4)
after the matrix calculations of this 12R linkage, we have

D=0 = 5= PP =03 = Bs = P (A3)
Therefore, the equivalent kinematics of four involved Sarrus linkages and the entire simplest tetrahedron can also be obtained.

() (b)

Fig. Al. Analysis of kinematic variables in (a) the simplified tetrahedral mechanism and (b) its simplest one.
Appendix B

Taking the Hamiltonian path 2 with Ca-symmetry in an icosahedron (given in Table 1) as an example, as shown in Fig. B1(a), it has
arotational symmetry Cy-axis (highlighted in blue), this path can be rotated 180° around the Cy-axis then coincide with itself, in which
the mentioned rotational symmetry only refers to the red-line path. Next, two distinct half shells, shell 2.1 and shell 2.2, split by path 2
are illustrated in Fig. B1(b) and (d). Based on the Cp-symmetry, shell 2.1 also can coincide with itself after 180° rotation around the Co-
axis, see Fig. B1(c), although the blue facets inside the red path rotate together with the path, so do the shell 2.2 in Fig. B1(d) and (e)
before and after 180° rotation.

On the other hand, Hamiltonian path 6 (given in Table 2) also has the Cp-symmetry referring to red lines as shown in Fig. B1(a), it
split an icosahedron into two identical shells, shell 6.1 and shell 6.2, both of which has the original Cp-symmetry including the inside
blue facets. Differently, after the 180° rotation, shell 6.1 becomes the shell 6.2, and vice versa, see Fig. B2(b) to (d). Hence, we call them
two congruent shells, and this rotational symmetry is named as Cy-symmetry' to distinguish from the similar case given in Fig. B1.

In summary, the details of symmetry for all 17 Hamiltonian paths are listed in Fig. B3, besides the Cy-symmetry, there are several
paths without any symmetry. Especially, path 15 has a C3-symmetry, meaning that it can coincide with itself after 120° or 240° rotation
around Cgz-axis.
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Shell 2.1 Shell 2.1
(e)
1800 o
o— —>
Shell 2.2 Shell 2.2

Fig. B1. Cy-symmetry in the Hamiltonian path 2.

(b) (c)

Shell 6.1 Shell 6.2

Path 6: C,-symmetry’

Shell 6.2 Shell 6.1

Fig. B2. Cy-symmetry' in the Hamiltonian path 6.

18



and Machine Theory 193 (2024) 105563

N N
LY

B BOE
S0
A A
3 ) B

Path 17: C,-symmetry

AT

’
Fig. B3. Symmetries in different Hamiltonian paths
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