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ABSTRACT: The focus of this article is to study theoretically the steady-axisymmetric creeping flow dynamics of a couple 

stress fluid external to a semi-permeable sphere containing a solid core. This problem is motivated by emulsion hydrodynamics 

in chemical engineering where rheological behaviour often arises in addition to porous media effects. The non-Newtonian 

Stokes’ couple stress fluid model features couple stresses and body couples that are absent in the classical Navier-Stokes 

viscous model. It provides a robust framework for simulating emulsions, complex suspensions and other liquids which possess 

microstructure. The physical regime is delineated into two zones- the interior of the semi-permeable zone (region II) which 

engulfs the solid core and the external couple stress fluid zone (region I). The model is formulated using a spherical polar 

coordinate system in terms of the stream function ψ. The Brinkman-extended Darcy model is deployed for the porous medium 

hydrodynamics and isotropic permeability is considered. Analytical expressions are derived for dimensionless pressure, 

tangential stress and the couple stress components using the method of separation of variables and Gegenbauer functions of 

the first kind. The integration constants are evaluated with appropriate boundary conditions on the inner and outer boundary 

of the semi-permeable zone with the aid of Mathematica symbolic software. Solutions for the drag force exerted by the couple 

stress fluid on the semi-permeable sphere and volumetric flow rate are also derived with corresponding expressions for the 

drag coefficient and non-dimensional volumetric flow rate. The influence of permeability (k), separation parameter (l), couple 

stress viscosity coefficient (), couple stress inverse length dependent parameter (= (/)) and couple stress viscosity ratio 

( = //) on all key variables is studied graphically. Additionally streamline contours are computed for a range of parameters 

including inverse permeability parameter (=1/k). The computations show that increasing couple stress inverse length 

dependent parameter () greatly reduces the dimensionless volumetric flow rate in particular at high values of separation 

parameter (l). Flow rate is however markedly enhanced with permeability (k) and also couple stress viscosity parameter (). 

In the presence of the solid core a much greater drag coefficient is observed at all values of couple stress inverse length 

dependent parameter () relative to the case without a solid core. A significant distortion in streamlines is computed with 

increasing separation parameter (l) with a dual vortex structure emanating. With greater couple stress viscosity parameter () 

no tangible modification is observed in the streamline contours. The present work generalizes the earlier study of Krishnan 

and Shukla (2021) to consider a semi-permeable (porous medium) outer sphere and furthermore presents detailed streamline 

visualizations of the creeping flow for a range of emerging parameters of relevance to non-Newtonian chemical engineering 

processes including emulsion droplet dynamics in porous materials.   

KEYWORDS: Couple stress non-Newtonian fluid; viscosity ratio, radius ratio, permeability; flow rate; streamline 

visualization; Drag coefficient; chemical engineering. 
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NOMENCLATURE  

Roman 

a radius of solid core 

𝐴1  Integration constant  

𝐴2 Integration constant  

b radius to outer wall of outer semi-permeable sphere (region II) 

𝐵1 Integration constant  

𝐵2  Integration constant  

𝑑𝑖𝑗⃗⃗⃗⃗  ⃗(𝑖) Deformation rate tensor 

DN  Non-dimensional drag coefficient 

𝐸2 Stokes’ operator   

F Drag force 

𝐺2(𝜁)  Gegenbauer functions of the first kind  

k  Permeability of saturated porous medium sphere encasing solid core sphere 

l  separation parameter (a/b) 

 𝑚𝑟𝜙  Couple stress component   

Q Volumetric flow rate 

QN  Non-dimensional flow rate 

p Fluid pressure 

r radial coordinate 

ur, uθ  Radial and tangential velocity components 

 

Greek 

α  inverse permeability parameter (=1/k) 

 λ Couple stress inverse length dependent parameter  

η, η/  Couple stress viscosity coefficients 

 ψ  Dimensional stream function 

𝜇1 Dynamic viscosity of fluid in semi-permeable sphere 

𝜇2 Dynamic viscosity of couple stress region (external to sphere) 

θ polar coordinate  

ϕ azimuthal coordinate 

𝜏 Couple stress viscosity ratio (=//) 

𝜏𝑟𝜃    Shear stress component   

 

1.INTRODUCTION 

 

The couple stress fluid theory was introduced by Stokes [1] by incorporating couple stresses 

and body couples in the classical Navier-Stokes viscous flow model. The concept of couple 

stresses arise due to the way in which the mechanical interactions in the fluid medium are 

modelled. These non-Newtonian fluids are also termed “polar” fluids [2]. Couple stress theory 

provides an elegant framework for simulating the rheology of complex industrial and biological 

fluids. The stress tensors for couple stress fluids are not symmetric and can capture length effect 

which is not possible with the classical Navier-Stokes model. However, they are simpler than 

micropolar fluids [3] since they possess no microstructure at the kinematic level and therefore 

the kinematics of such fluids is totally described using the velocity field. As such a 
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supplementary angular momentum (micro-rotation vector) equation is not required for couple 

stress fluids. The couple stress effects are all encapsulated in the modified linear momentum 

equations (Navier-Stokes). The mechanical interactions in the fluid medium that penetrate the 

surface create couple stresses. The relative simplicity of couple stress fluids have made them 

very attractive for simulating a wide spectrum of problems in engineering where suspended 

particle effects can be simulated with the additional couple stress terms. These applications 

have included biomedical and chemical engineering science processes. Relevant works include 

Naduvinamani and Patil [4], Walicki and Walicka [5] and Lin and Huang [6] all addressing 

couple stress effects in lubrication flows. Biophysical studies have included Bég et al. [7] (on 

centrifugal blood flow separation) and Ali et al. [8] (on embryological propulsion). Chemical 

materials processing studies include Ramana Murthy et al. [9] (on thermo-rheological duct 

processing) and Nagaraju et al. [10] (on stretching sheet coating dynamics). Further 

investigations have considered couple stress working fluids in bio-inspired electromagnetic 

pumping [11]. All these studies have confirmed the considerable modification in transport 

characteristics induced by couple stresses relative to Newtonian formulations.  

Another important category of non-Newtonian flows involves the creeping dynamics from a 

spherical geometry. This framework can be utilized to simulate droplet hydrodynamics, 

emulsions and many other areas of chemical engineering transport phenomena. Many different 

rheological models have been deployed in assessing such flows including viscoelastic, power-

law, Stokes couple stress [12] and Eringen micropolar [13] models, all of which capture 

different non-Newtonian characteristics. The slow steady flow of couple stress fluids external 

to axisymmetric bodies has been studied by Ramkissoon [14] who derived an expression for 

drag experienced by a sphere using a stream function approach and also presented comparisons 

with the micropolar model. Devakar and Iyengar [15] derived analytical solutions for Stokes’ 

first and second oscillatory plate problem using Laplace transforms. Devakar and Iyengar [16] 

further computed the run up flow between parallel plates for an incompressible couple stress 

fluid. Iyengar and Vani [17] considered the creeping flow of couple stress fluids between two 

confocal oblate spheroidal bodies slowly rotating about a common axis of symmetry with 

different angular speeds. They used Legendre functions, oblate spheroidal radial and angular 

wave functions to derive expressions for velocity and the couple experienced by the spheroids 

and noted that enhancement in couple stress is caused by increasing the rate of rotation of the 

spheroids. Devakar et al. [18] studied the effects of slip boundary conditions in Couette and 

Poiseuille flows of a couple stress fluid. Ashmawy [19] investigated the drag on a rigid slowly 

moving sphere engulfed with couple stress fluid showing that greater drag is present with 
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couple stresses present compared with the Newtonian viscous case (negligible length 

dependence effects). Vani and Ravi Kant [20] considered the oscillatory flow of an 

incompressible couple stress fluid between two slowly spinning and vibrating concentric 

spheres with equal oscillation frequency but dissimilar rotational velocities. Ramalakshmi and 

Shukla [21] conducted a rigorous analysis of the creeping flow of couple stress fluid from a 

sphere containing a solid core. They computed the drag coefficient analytically and showed 

that as couple stress parameter (inverse length dependence) increases the velocity, drag force 

and the pressure decreases. However, they also noted that with increasing couple stress 

viscosity coefficient is elevated the drag is also increased. Furthermore, they found that with 

greater couple stress parameter and radius ratio (i. e. the normalized distance from the surface 

of the sphere) there is a decrement in pressure.   

The above studies neglected the inclusion of porous (permeable) media. They considered only 

purely fluent media. However, in many chemical and biomedical flow applications, a porous 

medium may be present. These include packed beds, filtration materials, biological tissue, 

droplets in foams etc. The classical approach for simulating fluid percolation in a porous 

medium was developed by the French engineer, Darcy [22]. The famous law named after him 

assumes that the flow is proportional to the drop in pressure across the porous medium and 

features the permeability i. e. hydraulic conductivity. For densely packed porous media the 

permeability is low and vice versa for sparsely packed materials. Both situations can arise in 

chemical engineering. Indeed, packed beds may exhibit a range of permeabilities depending on 

the application under consideration. Darcy’s model is restricted to viscous-dominated transport 

where inertial effects are neglected. However, it is not founded on the basis of the Navier-

Stokes equations framework. Furthermore, it cannot accommodate materials with very high 

porosity values. The Ditch petroleum engineer, Brinkman [23] modified the Darcy formulation 

by considering the transport of a spherical particle in a porous medium and derived a 

relationship between permeability and particle size and density, also corroborating his results 

with the empirical Carman model [24]. This formulation which considers the Stokes equations 

(neglecting inertial terms) has come to be known as the Darcy-Brinkman model and is one of 

the best approaches available for simulating creeping viscous flows in porous media. It also 

features an effective viscosity. Joseph and Tao [25] applied the Darcy-Brinkman model to 

study the streaming flow of an incompressible viscous fluid past a permeable spherical particle. 

They showed that the drag on the permeable sphere is equivalent to the drag on a solid 

(impermeable) sphere with the radius reduced. The Darcy-Brinkman model however has 

limitations and cannot accommodate very high porosity and high shear rates (inertial effects). 
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Several other investigators have addressed the problem of drag effects on a spherical particle 

in a porous medium including Tam [26] who showed that the drag in low Reynolds number 

flow is a function of the first three moments of the particle size distribution. Ludgren [27] re-

examined the drag effect on porous media bed transport by generalizing Brinkman’s model to 

both stationary beds and suspensions using the Stokes equations (inertia negligible). His 

solution for stationary beds concurred with Brinkman’s model for permeability. Subsequently 

many investigators have adopted the Darcy-Brinkman model (and its modifications) to 

examine a range of non-Newtonian flows. Raptis and Takhar [28] studied the boundary layer 

flow of a couple stress fluid from an infinite wall using the Darcy-Brinkman-Forchheimer 

porous medium, to include inertial drag effects. They computed the velocity evolution for a 

range of permeability parameters. Hiremath and Patil [29] derived perturbation solutions for 

couple stress (polar) fluid thermal convective flow from an oscillating wall to a porous medium. 

They showed that couple stresses induce significant cooling in the regime and lower velocities 

compared with Newtonian liquids and that increasing permeability and thermal buoyancy force 

respectively accelerate and decelerate the flow. Umavathi and Bég [30] investigated 

numerically the thermo-convective stability of a couple-stress nanofluid saturated permeable 

layer using a Galerkin weighted residual method. They conducted both linear and non-linear 

stability analysis and showed that increasing couple-stress parameter (ratio of couple stress 

viscosity to dynamic viscosity) exerts a stabilizing effect on both the stationary and oscillatory 

convection modes. They also showed that increasing Vadász number (an inverse function of 

Darcy permeability parameter) tends to destabilize the oscillatory convection mode. Creeping 

Stokesian flows both inside permeable bodies and external to permeable layers have also been 

addressed with the Darcy-Brinkman approach for a range of microstructural liquids. 

Srinivasacharya D and Rajyalakshmi [31] determined the drag force in creeping flow of a 

micropolar incompressible fluid external to a porous sphere with permeability effects. They 

found that the resistance force decreases as the Eringen coupling number (ratio of vortex 

viscosity to dynamic viscosity) decreases whereas it is elevated as the permeability parameter 

decreases. Gupta and Deo [32] derived analytical solutions for Stokes flow of a micropolar 

fluid through a permeable sphere. They used non-homogenous boundary conditions for the 

microrotation vector and obtained an expression for the drag exerted by the sphere. They 

observed that there is a decrement in drag force with increasing Eringen coupling number and 

decreasing permeability of the porous medium. Aparna et al. [33, 34] computed the oscillatory 

and uniform steady flows, respectively of a couple stress fluid through a permeable sphere 

using the Darcy-Brinkman model. Radhika and Iyengar [35] investigated the Stokes flow of a 
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couple stress fluid external to a pair of confocal prolate spheroids, with the inner most shell 

contains couple stress fluid, surrounded by a porous medium (annular region). They noted that 

permeability and couple stress parameter strongly modify velocity and drag force and that with 

increment in eccentricity of the outer spheroid there is an elevation in the drag. Selvi and Shukla 

[36] studied the Stokesian dynamics from a porous medium sphere containing viscous 

Newtonian fluid surrounded by micropolar fluid external to the sphere. They determined the 

stream functions via matching the solution of the Brinkman equation with the Stokes equation. 

They computed the effects of permeability on drag force and drag coefficient numerically. 

Numerous other studies of this type have been reported for different combinations of the fluid 

saturating the porous medium and the encasing fluid. These include Selvi et al. [37] who 

studied the case of a viscoelastic fluid in the porous inner shell engulfed in a micropolar fluid). 

Selvi et al. [38] considered a three-zone model with an inner core of Reiner–Rivlin non-

Newtonian liquid particle, surrounded with a Newtonian liquid shell and encased in a 

permeable medium. Selvi and Shukla [39] addressed the two-zone case of a Reiner-Rivlin 

liquid sphere surrounded by a micropolar fluid with Mehta-Morse boundary conditions and 

asymptotic expansions. El-Sapa and Alsudais [40] considered the hydromagnetic slip flow of 

Newtonian concentric spheres surrounded with a porous medium. Namdeo and Gupta [41] 

considered the electrically conducting flow over a sphere inside a semipermeable shell in the 

presence of the magnetic field using a Darcy model, noting that increasing magnetic field 

enhances the drag on the composite sphere, and that an impermeable sphere experiences greater 

drag than a permeable sphere.  Madasu and Sarkar [42] simulated the case of a couple stress 

fluid streaming past a solid spherical body in a permeable Brinkman medium with wall slip 

effects. They showed that as the slip parameter increases, drag increases and surface velocity 

on the sphere is depleted. Sakthivel and Pankaj [43] studied the Stokes flow through a couple 

stress fluid enclosed by a permeable medium. They showed that lower drag is produced for 

couple stress fluids compared with Newtonian fluids.  

A scrutiny of the literature has identified that steady-axisymmetric creeping Stokesian flow of 

a couple stress fluid external to a semi-permeable sphere saturated with couple stress fluid and 

containing a solid core, has thus far not been addressed with the Darcy-Brinkman formulation. 

This is the focus and novelty of the current investigation. In the present article analytical 

solutions are derived for this problem. Expressions are presented for velocity, pressure, shear 

stress, couple stress, drag force and volumetric flow rate with the aid of orthogonal 

polynomials. The dimensionless drag coefficient and non-dimensional volumetric flow rate are 

also obtained. Numerical evaluations of the solutions are executed in MATHEMATICA 
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software. A parametric study of the influence of permeability (k), separation parameter (l), 

couple stress viscosity coefficient (), couple stress inverse length dependent parameter (= 

(/)) and couple stress viscosity ratio (= (//) on all key variables is conducted. Extensive 

visualization is included additionally for streamline contours. Special cases of the general 

model are extracted to compare with earlier published works. Extensive physical interpretation 

of the graphical results is included. The present work generalizes the earlier study of Krishnan 

and Shukla [21] who ignored permeability effects, to consider a permeable outer sphere and 

furthermore presents detailed streamline visualizations of the creeping flow for a range of 

emerging parameters of relevance to non-Newtonian chemical engineering processes including 

oil or emulsion droplet motion in porous regimes [44] or lymph droplet intrusion into biological 

tissue [45].   

 

2.MATHEMATICAL FORMULATION AND GEOMETRIC MODEL 

 

The physical model under investigation is depicted in Fig. 1. The steady, axisymmetric 

flow of an incompressible couple stress (polar) fluid of viscosity η past a semipermeable sphere 

containing a solid sphere core is considered.  

 
 

Fig. 1: Physical representation of regime 

 

A spherical polar coordinate system (r, θ, ϕ) is adopted. The semipermeable medium is 

assumed to be isotropic and homogeneous and saturated with couple stress fluid. The 

characteristic (uniform) velocity U acts along the Z-direction of the fluid flow. O denotes the 

centre of the concentric spheres. The interior of the semipermeable layer is considered as 
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region II and the exterior of the couple stress fluid is consider as region I. The mass and 

momentum conservation equations for a polar (couple stress) fluid in vector form, following 

Stokes [46] is: 

                               div �⃗� (1) = 0,                                                                                  (1) 

 

                         𝜇1∇
2 �⃗� (1) − η ∇4 �⃗� (1) = ∇𝑝(1).                                                      (2) 

 

Here  �⃗� (1) =velocity vector, 𝜂 denotes coefficient of couple stress viscosity and 𝜇1is the 

dynamic viscosity parameter. Mathematically, the motion of a couple stress fluid is therefore 

governed by an equation similar to the classical Navier–Stokes equation but with higher order. 

The internal governing equations for a semipermeable region are based on the Brinkman-

extension to the Darcy law: 

 

                               div �⃗� (2) = 0,                                                                                  (3) 

 

                                 −  
𝑘

𝜇2
∇𝑝(2) = �⃗� (2).                                                                    (4) 

Here 𝜇2= dynamic viscosity of semi-permeable region fluid, 𝑝(2)is a pressure, k = permeability 

of the porous material which is assumed isotropic. A dimensional stream function,  is 

introduced (to define the velocity components in the radial and polar directions) which satisfies 

the continuity equation 𝑑𝑖𝑣 �⃗� = 0 by virtue of the Cauchy-Riemann equations in spherical 

polar coordinates:       

                   𝑢𝑟 = −
1

𝑟2𝑠𝑖𝑛𝜃

𝜕𝜓

𝜕𝜃
 , 𝑢𝜃 = −

1

𝑟 𝑠𝑖𝑛𝜃

𝜕𝜓

𝜕𝑟
 ,                                                       (5) 

 

Using equation (5), we eliminate the pressure term from equations (2) and (4) which yields: 

 

                                       𝐸4(𝐸2 − 𝜆2)𝜓(1) = 0,                     (6) 

                                           𝐸2𝜓(2) = 0.                           (7) 

Here the Stokes’ operator   𝐸2 is given by  𝐸2 =
𝜕

𝜕𝑟2 +
𝑠𝑖𝑛𝜃

𝑟2

𝜕

𝜕𝜃
(

1

𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
). Also 𝜆2 =

𝜇

η
  is the 

couple stress parameter i. e. ratio of dynamic (Newtonian) viscosity to couple stress viscosity 

coefficient.              

 

Using Eqns. (6) and (7), the stream function can be determined by implementing the method 

of separation of variables as follows: 
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               𝜓(1)(𝑟, 𝜁) = [𝑟2+𝐴1𝑟+𝐴2𝑟
−1 + 𝐴3(1 +

1

𝜆𝑟
)𝑒−𝜆𝑟] 𝐺2(𝜁) ,                       (8) 

 

             𝜓(2)(𝑟, 𝜁) = [𝐵1𝑟
2+𝐵2𝑟

−1]𝐺2(𝜁).                                                       (9) 

Here 𝐺2(𝜁) =
1

2
(1 − 𝜁2) is a Gegenbauer function of the first kind and 𝜁 = 𝑐𝑜𝑠𝜃. Important 

physical quantities are the pressure components, tangential stress and the couple stress which 

emerge as: 

 

                             𝑝(1) = −
2𝜇1𝐴1

𝑟2
𝑐𝑜𝑠𝜃,                          (10)

  

                             𝑝(2) = 𝛼2 [𝐵1𝑟 −
𝐵2

𝑟2
] 𝑐𝑜𝑠𝜃,           (11)

  

 

         𝜏𝑟𝜃 = 𝜇 [
3𝐴2

𝑟4 + 𝐴3 (
𝜆

𝑟2 +
3

𝑟3 +
3

𝜆𝑟4) 𝑒−𝜆𝑟] 𝑠𝑖𝑛𝜃,                          (12) 

            

         𝑚𝑟 = [(2η + η′) (
2𝐴1

𝑟3 − 𝜆2𝐴3 [
1

𝑟2 +
1

𝜆𝑟3] 𝑒
−𝜆𝑟) − η

𝜆3

𝑟
𝐴3𝑒

−𝜆𝑟] 𝑠𝑖𝑛𝜃.                         (13)

  

The expression for couple stress 𝑚𝑟 is based on Stokes [47].  

 

In Eqn. (11), the parameter, α =1/k. The coefficients  𝐴1, 𝐴2, 𝐴3, 𝐵1, 𝐵2 are constants which 

can be determined with the help of boundary conditions described in due course. 

 

3.BOUNDARY CONDITIONS 

In order to evaluate the expressions (8)-(13) to quantify the hydrodynamic behaviour as 

influenced by mechanical properties of particles interactions, it is necessary to choose four 

appropriate boundary conditions on the inner and outer surfaces of the sphere. In this regard, 

the continuity of normal velocity, vanishing of tangential velocity, continuity of pressure, and 

vanishing of couple stress component  𝑚𝑟𝜃  at (r =1) are considered. It follows that: 

 

On the outer region at r = 1: 

 

                                                               
𝜕𝜓(1)

𝜕𝜃
=

𝜕𝜓(2)

𝜕𝜃
 ,                                                       (14) 

 

                                                               
𝜕𝜓(1)

𝜕𝑟
= 0,                                                              (15) 

 

                                                               𝑝(1) = 𝑝(2),                                                             (16) 
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                                                                𝑚𝑟𝜑 = 0.                                                    (17) 

 

On the inner region at r = l (l=b/a i. e. ratio of inner solid sphere core radius to semi-permeable 

sphere radius): 

 

                                                               
𝜕𝜓(2)

𝜕𝜃
= 0,                                                               (18) 

 

Introducing the boundary conditions from (14) to (18) into the expressions (8), (9), (10), (11) 

and (13), the following linear equations emerge: 

    

𝐴1 + 𝐴2 + 𝐴3 (1 +
1

𝜆
) 𝑒−𝜆 = −1,                                                             (19) 

 

𝐴1 − 𝐴2 − 𝐴3 (1 + 𝜆 +
1

𝜆
) 𝑒−𝜆 = −2,                                                           (20) 

 

                 −2𝜇1𝐴1 − 𝛼2𝐵1𝜇2 + 𝛼2 𝐵2

2
𝜇2 = 0,                                       (21) 

 

                 2(2 + 𝜏)𝐴1 + 𝐴3 [−(2 + 𝜏)𝜆2 (1 +
1

𝜆
) 𝑒−𝜆 − 𝜆3𝑒−𝜆] = 0,         (22)

  

 

                         𝑙2𝐵1 +
𝐵2

𝑙
= 0.                                                                      (23)

  

Here 𝜏 designates the couple stress viscosity ratio (=//). Solving the system of linear Eqns. 

(19) to (23), with Mathematica symbolic software, all the integration constants,  𝐴1, 𝐴2, 𝐴3, 𝐵1  

and  𝐵2 are determined as follows: 

 

 

              𝐴1 =
3𝛼2(𝑙3+2)(𝜆2+𝜆(2+𝜏)+2+𝜏)

2((2𝛼2+1)𝜆2+(2𝛼2+1)𝜆(2+𝜏)+𝑙3((𝛼2−1)𝜆2+(𝛼2−1)𝜆(2+𝜏)−2−𝜏)+2+𝜏)
,    (24)

  

 

      𝐴2 = 2 −
3𝛼2(𝑙3+2)(𝜆4+𝜆3(2+𝜏)−𝜆2(2+𝜏)−2𝜆(2+𝜏)−2(2+𝜏))

2𝜆2((2𝛼2+1)𝜆2+(2𝛼2+1)𝜆(2+𝜏)+𝑙3((𝛼2−1)𝜆2+(𝛼2−1)𝜆(2+𝜏)−2−𝜏)+2+𝜏)
,   (25)

  

 

      𝐴3 = −
3𝛼2(𝑙3+2)(2+𝜏)𝑒𝜆

𝜆((2𝛼2+1)𝜆2+(2𝛼2+1)𝜆(2+𝜏)+𝑙3((𝛼2−1)𝜆2+(𝛼2−1)𝜆(2+𝜏)−2−𝜏)+2+𝜏)
,          (26)

  

 

    𝐵1 = −
3(𝜆2+𝜆(2+𝜏)+2+𝜏)

(2𝛼2+1)𝜆2+(2𝛼2+1)𝜆(2+𝜏)+𝑙3((𝛼2−1)𝜆2+(𝛼2−1)𝜆(2+𝜏)−2−𝜏)+2+𝜏
 ,               (27)
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    𝐵2 = −
3𝑙3(𝜆2+𝜆(2+𝜏)+2+𝜏)

(2𝛼2+1)𝜆2+(2𝛼2+1)𝜆(2+𝜏)+𝑙3((𝛼2−1)𝜆2+(𝛼2−1)𝜆(2+𝜏)−2−𝜏)+2+𝜏
 .           (28) 

 

Here l = b/a represents the radius of the solid core to the radius of the semi-permeable sphere 

zone. When l = 1 the solid core occupies the entire spherical zone, and the semi-permeable 

zone vanishes. In other words, the region II vanishes. Essentially two cases are studied in this 

work. The first is the unbounded case: for which r=1, l is separation parameter (=a/b). The 

second is the bounded case (cell model) for which r=l, l is then termed a volume fraction. 

 

4. EVALUATION OF DRAG FORCE 

 

To determine the drag force resulting from the external flow acting on the surface of the inner 

solid core experienced by the couple stress fluid saturated porous medium, which will be 

oriented along the symmetrical axis, we define following Happel and Brenner [48], the integral: 

                    

                      𝐹 = 2𝜋𝑎2 ∫ (𝜏𝑟𝑟
(1)

 𝑐𝑜𝑠𝜃 − 𝜏𝑟𝜃
(1)

 𝑠𝑖𝑛𝜃 )
𝑟=𝑎

𝑠𝑖𝑛𝜃 𝑑𝜃
𝜋

0
.     (29) 

Evaluation of the integral, leads to:  

              𝐹𝑧 =
12𝜋𝜇𝑈𝑎𝛼2(𝑙3+2)(𝜆2+𝜆(2+𝜏)+2+𝜏)

2((2𝛼2+1)𝜆2+(2𝛼2+1)𝜆(2+𝜏)+𝑙3((𝛼2−1)𝜆2+(𝛼2−1)𝜆(2+𝜏)−2−𝜏)+2+𝜏)
.      (30)

  

Eqn. (30) is the drag force experienced on the semipermeable sphere (“particle”) engulfed by 

a couple stress fluid and generalizes the early result of [48] which only considered Newtonian 

fluids. Eqn. (30) can be normalized to give a dimensionless drag coefficient which is written 

as: 

 

                                  𝐷𝑁 =
𝐹𝑧

−2𝜋𝜇𝑈𝑎
 .                                                                   (31)

  

In full form we have: 

              𝐷𝑁 =
6𝛼2(𝑙

3
+2)(𝜆2+𝜆(2+𝜏)+2+𝜏)

2((2𝛼2+1)𝜆2+(2𝛼2+1)𝜆(2+𝜏)+𝑙
3
((𝛼2−1)𝜆2+(𝛼2−1)𝜆(2+𝜏)−2−𝜏)+2+𝜏)

 .         (32)

  

5. EVALUATION OF VOLUMETRIC FLOW RATE 

 

The volumetric flow rate through the semipermeable region is given by: 

 

                         𝑄 = 𝑢. 𝑛 𝑑𝑠 = −2𝜋𝑈𝑎2𝜓
(1)

(1,0).                             (33) 

Non-dimensional flow rate can be computed as follows: 
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                               𝑄𝑁 =
𝑄

−𝜋𝑈𝑎2
= 1 + 𝐴1+𝐴2 + 𝐴3(1 +

1

𝜆
)𝑒−𝜆  .                            (34) 

 

6. RESULTS AND DISCUSSION 

Numerical evaluations using Mathematica software have been conducted. The results are 

visualized graphically in Figs. 2-11 for the non-dimensional drag coefficient (DN) and 

dimensionless flow rate (QN) behaviour. The effects of permeability (k), separation parameter 

(l), couple stress viscosity coefficient (), couple stress inverse length dependent parameter 

(= (/)) and couple stress viscosity ratio ( = //) on these variables is addressed in 

sections 6.1 and 6.2. In section 6.3 streamline contours are computed in Figs. 12-14 for various 

values of these parameters in addition to the inverse permeability parameter (=1/k). 

 

6.1 Effect of key parameters on non-dimensional drag coefficient (DN): 

 

 
      Fig. 2: The impact of permeability (k) and separation parameter (l) on non-dimensional 

drag (DN). 

 

Figure 2 shows the effect of the separation parameter on the non-dimensional drag within 

the enclosure containing a solid core for λ = 3 and τ = 0.5. A significant influence is exerted 

on DN with a change in separation parameter. Physically, for l = 0 (inner solid core radius b 

→ 0 i. e. the solid core vanishes) and the sphere changes into a hollow sphere. As l attains a 

value of 1, b/a  → 1 implying that the inner solid core now occupies the whole encased region 

replacing region II which vanishes). There is a significant elevation in drag DN therefore as l 

increases from 0 to 1. The profiles are also strongly influenced with permeability (k). For 

small values of k i. e. tightly packed porous media with low permeability, the drag coefficient 

is maximum. 
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Fig. 3: The impact of couple stress viscosity (η) and separation parameter (l) on non-

dimensional drag (DN). 

 

    
Fig. 4: The impact of couple stress viscosity ratio (τ) and permeability (k) on non-

dimensional drag (DN). 
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Fig. 5: The impact of couple stress viscosity ratio (τ) and couple stress viscosity parameter 

() on non-dimensional drag (DN). 

 

    
 Fig. 6: The impact of couple stress viscosity parameter () and permeability (k) on non-

dimensional drag (DN). 
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Fig. 7: The impact of couple stress viscosity () and separation parameter (l) on non-

dimensional drag (DN). 

 

             
Fig. 8: Comparison of the drag for cases with a solid core and without solid core and for 

couple stress viscosity ratio parameter () 
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As permeability, k increases, all profiles exhibit an asymptotic decay and there is a therefore a 

significant reduction in drag coefficient. Eventually a steady state is achieved at very high k 

values. There is clearly increasing impedance to the flow produced with lower permeability 

which is attributable to the presence of more fibres in the porous medium. These decelerate the 

percolating couple stress fluid. With higher permeability the porous medium is more sparsely 

packed, and this leads to a depletion in fibre resistance to the fluid and therefore lower DN 

values. Figure 3 represents the variation of non-dimensional drag DN with couple stress 

viscosity (η) and different values of separation parameter ranging from l = 0, l = 0.3, l = 0.6 

to the maximum of l = 1. Evidently the drag increases markedly with increment in couple stress 

viscosity implying that greater resistance is produced. A monotonic growth is observed at low 

values of (η) which morphs into a much gentler growth at higher values. The supplementary 

term,  −η ∇4 �⃗� (1), in the original momentum eqn. (1) indicates that couple stress viscosity 

opposes the flow. Couple stresses contribute to deceleration which results in a hike in drag 

coefficient. This has been confirmed in many other studies including Stokes [46, 47].  

 Couple stress fluid region with increasing the value of the viscosity parameter increases. As 

observed in Fig. 2, an increment in separation parameter (l) again produces a strong elevation 

in drag implying that much greater drag is produced for a fully solid core (l = 1, where external 

couple stress fluid is in direct contact only with the solid core) compared with the case where 

the solid core is absent (l =0) and there is an interface only between the semi-permeable region 

II and the engulfing couple stress fluid. The presence of both an inner solid core and outer 

semi-permeable region (region II) corresponds to intermediate values of l (0.3, 0.6) and drag 

coefficient is between the other two limits on the plot. Figure 4 confirms that the drag 

coefficient decreases with elevation in porous medium permeability (k) in the semi-permeable 

region II. The presence of more sparsely packed permeable material in region II can therefore 

be utilized to manipulate drag force and assist the flow. The couple stress viscosity ratio (τ) is 

also found to increase drag coefficient significantly implying again that couple stress 

viscosities are inhibitive to the flow i. e. they create extra resistance. Again, a steady state trend 

is attained at very high values of couple stress viscosity ratio implying that there is a limit to 

the opposing nature of the couple stresses in the regime. The collective influence of couple 

stress viscosity ratio (τ) and couple stress viscosity parameter () on non-dimensional drag (DN) 

is displayed in Figure 5. This figure clearly shows that the drag reaches its peak for λ = 0, 

whereas it is minimized at the maximum value of λ. This parameter is an inverse length 

dependent parameter (= (/)). In other words when λ is high the length dependent effect of 
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couple stress fluids will be minimized and vice versa for when λ is low. This will contribute to 

the effects observed in Fig. 5 implying that as the flow tends to Newtonian (vanishing length 

dependence and high λ) the drag will be minimized. Again, the drag enhancement induced with 

couple stresses is therefore confirmed. Figure 6 displays overall the resistance of the flow 

versus permeability (k) for different values of couple stress viscosity parameter (). The 

decreasing of the couple stress parameter plays a vital role in the non-dimensional drag which 

is strongly increased but only at very low permeability values (k). As permeability, k is 

increased the effect of  is rapidly negated and all profiles merge. Therefore, at higher 

permeability values, the impact of couple stress viscosity is dominated by the permeability of 

the porous medium and couple stresses do not alter the drag coefficient tangibly. As the couple 

stress parameter λ increases it tends to a maximum (i.e., infinity) and in this limit the fluid 

becomes a viscous Newtonian fluid.  Figure 7 illustrates the variation of non-dimensional drag 

with both separation parameter (l) and couple stress viscosity (). This figure clearly elucidates 

that there is a much lower drag coefficient for separation parameter l < 0.5. However very sharp 

escalation in the drag coefficient is incurred with separation parameter l ≥ 0.5. The sensitivity 

of the drag force produced to the geometric configuration (solid core and surrounding semi-

permeable sphere, which is controlled by the parameter l = b/a) is clearly captured. Physically 

it implies that as inner (solid core) sphere gets bigger the drag acting on the sphere increases. 

When l = 1, the composite sphere geometrically become a solid sphere and in the case the drag 

is a maximum.  

Figure 8 provides a comparison of non-dimensional drag (DN) both with and without a solid 

core versus couple stress viscosity ratio parameter ().  It is abundantly clear that the drag is 

greater in the case of solid core than for the case of without solid core. 

 

6.2 Effect of key parameters on non-dimensional flow rate (QN): 

 

The effects of selected parameters on non-dimensional flow rate (QN) are shown in figs. 9-11. 

Figure 9 displays the variation in volumetric flow rate (QN) with separation parameter (l) and 

couple stress fluid parameter (λ). It is apparent that flow rate decreases as radius of the inner 

solid core sphere (b) increases i. e. as l values increase. This is the reverse trend to the influence 

on the drag coefficient (which is increased) as computed earlier. The volumetric flux of fluid 

is clearly reduced as the inner solid core occupies an increasing of region II and then in the 

limit, l =1 actually replaces the outer semi-permeable region II (the composite sphere 

geometrically becomes a solid sphere). For this case, volumetric flow rate must therefore 
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become a minimum. With increasing couple stress parameter () there is a sharp depletion in 

volumetric flow rate values, but this strong downtrend is maximized at much higher values of 

separation parameter (l). At lower values of l, the profiles while they are reduced are not 

modified as significantly with an increase in couple stress parameter () and exhibit a plateau-

like topology.  

 

    
 

Fig. 9: Influence of couple stress viscosity ratio parameter () and separation parameter (l) on 

non-dimensional flow rate (QN)  

 

     
 

Fig. 10: Influence of couple stress viscosity () and permeability parameter (k) on non-

dimensional flow rate (QN)  
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Fig. 11: Influence of couple stress viscosity ratio parameter () and permeability (k) on non-

dimensional flow rate (QN) 

 

Figure 10 shows the effect of the permeability (k) on the flow rate with the various values of 

couple stress viscosity (η) ranging from 0.4, 0.8, 1.2 to 2.0. It is noted that the flow rate is 

strongly enhanced as the permeability of the sphere region II increases. Higher permeability 

clearly encourages the percolation of couple stress fluid since less fiber impedance is present. 

It is also noteworthy that an increment in flow rate is also achieved with higher values of couple 

stress viscosity, although the effect is clearly amplified at higher permeability (k). Flow rate is 

therefore minimized for low couple stress viscosity (η = 0.4) and very low permeabilities (k < 

0.3). The greatest enhancement is computed in the range between η = 0.8 to η = 2 indicating 

that stronger couple stresses boost the flux of the fluid.  

Figure 11 depicts graphically the variation of the flow rate QN against the permeability k for 

diverse values of couple stress parameter (λ) with l = 0.5 (i. e. the solid sphere is exactly half 

the radius of the outer semipermeable region II). Evidently the flow rate increases as 

permeability k increases. However, the rate of flow decreases as couple stress parameter λ 

increases although the effect diminishes with greater permeability. The depression induced in 

flow rate with increment in couple stress parameter (λ) is maximum when the permeability is 

very low for the region II. We noted that the flow rate is a minimum in the case of an 
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impermeable outer sphere (k →0). The opposite case of infinite permeability i. e. purely fluid 

region II corresponds to k → but is not computed since the trend established with high finite 

values of k up to 10 is sufficient to establish the nature of the hydrodynamics at very high 

permeabilities. Overall, the flow rate is greater in the case of a permeable sphere (region II). 

 

6.3 Effects of selected parameters on streamline contour patterns  

 

The streamline patterns are displayed in Figures 12-14 for various parameters. 

 

Fig. 12 depicts the influence of separation parameter (l) on streamline contours with fixed 

values of α = 0.1, λ = 2, and η = 5. The hydrodynamic flow patterns are uniformly affected 

initially with a small increment in separation parameter [l = 0.05 and l = 0.1] and there is a 

slight clustering of streamlines computed towards the solid core. However, with further 

increment in separation parameter l to higher values of 0.5, 0.8 and l = 1 the flow patterns are 

increasingly disturbed, and an increasingly strong dual vortex structure is synthesized with a 

symmetrical pattern on either side. 

 

 
 

Fig. 12: Streamlines for various separation parameter (l) 
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Fig. 13: Streamlines for various couple stress viscosity ratio ()  
 

    

 
 

Fig. 14: Streamlines for various inverse permeability parameter (α= 1/k) 
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Figure 13 illustrates the effect of couple stress viscosity ratio 𝜏 = (
η

η′
) on the streamline with 

fixed values of λ = 2, α = 0.1. When couple stress viscosity ratio τ = 0.05 the flow of the 

streamlines is perturbed in the semipermeable region II. With a large increment in couple stress 

viscosity parameter, the streamlines are not markedly modified i. e. the streamline patterns 

remain almost uniform with minimal distortion with increasing couple stress viscosity ratio. 

Figure 14 visualizes the effect of inverse permeability parameter (α) on streamline contours. 

Increasingly the initial distortion in flow patterns around the sphere are strongly damped out. 

Initially for semi permeable parameter α = 0.1 the couple stress fluid penetrates weakly in the 

semi permeable medium (region II). However, for larger values of α (0.1, 2, 8, 20, 50, and 60) 

the couple stress fluid completed penetrates more strongly into the semipermeable medium and 

it becomes increasingly closer to the solid inner sphere. This stabilizes the flow patterns.  

 

 

7. CONCLUSIONS 

 

Motivated by applications in non-Newtonian chemical engineering processes involving 

emulsion droplet motion in porous media, a mathematical model has been developed for 

steady-axisymmetric creeping Stokesian flow of a couple stress fluid external to a semi-

permeable sphere saturated with couple stress fluid and containing a solid core. The Darcy-

Brinkman formulation is adopted for the porous medium. Analytical expressions are derived 

for dimensionless pressure, tangential stress and the couple stress components using the method 

of separation of variables and Gegenbauer functions of the first kind. The integration constants 

are evaluated with appropriate boundary conditions on the inner and outer boundary of the 

semi-permeable zone with the aid of Mathematica symbolic software. Solutions for the drag 

force exerted by the couple stress fluid on the semi-permeable sphere and volumetric flow rate 

are also derived with corresponding expressions for the drag coefficient and non-dimensional 

volumetric flow rate. Extensive visualization is included additionally for streamline contours. 

The present work generalizes the earlier study of Krishnan and Shukla [21] to consider porous 

medium permeability effects, with the inclusion of a permeable outer sphere. The present 

analysis has shown that: 

1. As the separation parameter (l) increases, the non-dimensional drag within the semi 

permeable layer is increased.  

2. An increase in couple stress fluid parameter reduces the non-dimensional drag within 

the solid core. 
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3. The drag experienced with a solid core present is greater than when it is absent. 

4. Drag coefficient is observed to decrease with increment in permeability (k) owing to 

the reduced resistance of porous medium fibers to the flow 

5. With increase in couple stress viscosity parameter (η) and couple stress viscosity ratio 

(τ) the drag coefficient is sharply increased initially but attains an asymptotic limit at 

very high values of these parameters. 

6. With the increase in couple stress fluid viscosity (η) and permeability parameter (k), 

the flow rate increases. 

7.  The reduction induced in flow rate with increment in couple stress parameter (λ) is 

maximum when the permeability is very low. 

8. Streamline patterns are most strongly influenced by the separation parameter (l) and 

only weakly modified with permeability parameter () and couple stress viscosity ratio 

(𝜏). 

9. The permeability of region II (outer sphere) can be manipulated to considerably modify 

drag and volumetric flow characteristics in practical chemical engineering systems. 

 

The present work has revealed some interesting features of Stokesian dynamics of couple stress 

fluids with permeability and solid core effects. However, porosity of the porous medium has 

been ignored. Furthermore, there are a diverse range of alternative rheological models relevant 

to characterizing the non-Newtonian behaviour which include Bingham viscoplastic models 

[49] and FENE-P viscoelastic models [50]. Furthermore, magnetohydrodynamic effects may 

also be considered in future studies, following the excellent recent work of Maurya et al. [51].  

Additionally, wall slip effects and non-Newtonian nanofluids such as Maxwell viscoelastic, 

Reiner-Rivlin second grade and Williamson shear-thinning nano-liquids ([52]-[54]) which are 

growing in interest in chemical engineering may also be considered. These areas are currently 

being explored and efforts in these directions will be communicated imminently.  
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