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Abstract: Tamoxifen-resistant breast cancer cells (TamR-BCCs) are characterized by an enhanced
metabolic phenotype compared to tamoxifen-sensitive cells. FoxO3a is an important modulator of cell
metabolism, and its deregulation has been involved in the acquisition of tamoxifen resistance. There-
fore, tetracycline-inducible FoxO3a was overexpressed in TamR-BCCs (TamR/TetOn-AAA), which,
together with their control cell line (TamR / TetOn-V), were subjected to seahorse metabolic assays and
proteomic analysis. FoxO3a was able to counteract the increased oxygen consumption rate (OCR) and
extracellular acidification rate (ECAR) observed in TamR by reducing their energetic activity and gly-
colytic rate. FoxO3a caused glucose accumulation, very likely by reducing LDH activity and mitigated
TamR biosynthetic needs by reducing G6PDH activity and hindering NADPH production via the pen-
tose phosphate pathway (PPP). Proteomic analysis revealed a FoxO3a-dependent marked decrease
in the expression of LDH as well as of several enzymes involved in carbohydrate metabolism (e.g.,
Aldolase A, LDHA and phosphofructokinase) and the analysis of cBioPortal datasets of BC patients
evidenced a significant inverse correlation of these proteins and FoxO3a. Interestingly, FoxO3a also
increased mitochondrial biogenesis despite reducing mitochondrial functionality by triggering ROS
production. Based on these findings, FoxO3a inducing/activating drugs could represent promising
tools to be exploited in the management of patients who are refractory to antiestrogen therapy.

Keywords: FoxO3a; tamoxifen resistance; breast cancer; glycolysis; cancer metabolism

1. Introduction

The involvement of the estrogen receptor « (ER) in the development and progression
of breast cancer (BC) has been confirmed by numerous ‘in vivo” and ‘in vitro” studies
that have elucidated many aspects of ER regulation and functions, paving the way to
the wide range of endocrine therapies commonly used in clinics for the treatment of
ER-positive (ER+) BC patients [1-3]. The use of ‘selective ER modulators” (SERMs) or
"degraders’ (SERDs), such as tamoxifen (Tam) and fulvestrant, respectively, as well as of
aromatase inhibitors (Als), e.g., anastrozole, significantly improved both the relapse-free
survival (RFS) and the overall survival (OS) of ER + BC patients. However, many patients
acquire resistance to these endocrine therapies, making the treatment ineffective [4]. The
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potential mechanisms underlying the evolution toward anti-estrogen-resistant phenotypes
have been attributed to various causes, including the ligand-independent activation of
receptors [5], the induction of growth-activating pathways [6,7], and the perturbation of
normal metabolism [8]. Significant alterations in intermediary metabolism have been found
in most tumors, including BC. Deep alterations in glycolysis, mitochondrial oxidative
phosphorylation, and lipid and amino acid metabolism have been described in BC cells
(BCCs) [9]. Moreover, the metabolic phenotype of BCCs changes as they progress from
non-metastatic to metastatic [10]. We have previously defined the basal metabolic profile
and the metabolic alterations induced by the acquired resistance to Tam treatment of MCF-7
BCCs [8]. The metabolic phenotype of Tam-resistant MCF-7 cells (TamR) is characterized
by increased mitochondrial biogenesis, increased ATP production and a reduction in
reduced glutathione levels, indicating the adaptation of cell metabolism to the acquired
cell functions. The growth and viability of malignant cells are strongly dependent on their
ability to adopt an altered metabolic profile that fulfills their bioenergetic requirements, a
condition frequently stemming from the promotion of glucose-dependent survival through
the Akt signal transduction pathway [11]. ATP generation through glycolysis instead of
oxidative phosphorylation, even under normal oxygen concentrations, was the earliest
described metabolic phenotype observed in tumor cells (the Warburg effect) [12]. In
this regard, glycolysis provides cancer cells not only with energy but also with carbon
sources that provide anabolic precursors for biosynthesis [13]. However, complex interplay
between glucose metabolism and mitochondrial activity exists and it depends on several
factors, such as the region of the tumor (whether hypoxic or non-hypoxic) and the tumor
microenvironment. Depending on the combinations of these factors and a given cellular
context, cancer cells can manifest an array of metabolic phenotypes, ranging from the
predominance of the glycolytic phenotype to a glycolytic partial phosphorylative and/or
phosphorylative phenotype. In this context, the Forkhead box class O (FoxO)3a, an Akt
downstream target, has been described as an important modulator of cell metabolism.
Indeed, FoxO3a has been shown to reduce glycolysis through the transcriptional induction
of tuberous sclerosis complex 1 (TSC1) tumor suppressor that opposes mTOR Complex 1
(mTORC1) activation [14]. In addition, in a low-glucose regimen, FoxO3a has been found to
bind to mitochondrial DNA regulatory regions by forming a complex containing the NAD-
dependent mitochondrial deacetylase sirtuin-3 and the mitochondrial RNA polymerase,
causing an increase in mitochondprial respiration [15]. Moreover, FoxO3a inactivation has
been reported to lead to intracellular ROS accumulation [16], with consequent oxidative
stress due to mitochondrial dysfunction. On the other hand, FoxO3a activation has been
reported to induce autophagy, initially as a protective attempt to save energy to survive,
while leading to cell death under persistent stress conditions [17]. Therefore, being involved
in the regulation of a wide spectrum of cellular processes, including metabolism, autophagy
and response to stress stimuli [18], the pharmacological modulation of FoxO3a seems to
hold a great therapeutic potential. In this context, we recently reported how FoxO3a results
downregulated in TamR cells and how its re-expression is able to restore the apoptotic
response to Tam treatment [19].

Here, we add a new dowel to our understanding of the role of FoxO3a in reverting the
resistance to Tam in BCCs, demonstrating how active FoxO3a affects cell metabolism by
decreasing their glycolytic rate and mitochondrial oxygen consumption in TamR cells.

2. Materials and Methods
2.1. Generation of Tam Resistant Cell Lines

ERo+ human breast cancer epithelial cell lines MCF-7, T-47D and ZR-75-1 (ZR-75)
were purchased from ATCC (LGC Standards S.r.1., Milan, Italy), and authenticated and
cultured as previously described [20].

Tam-resistant MCF-7 (MCF-7/TR), T-47D (T-47D/TR) and ZR-75 (ZR-75/TR) cell lines
were obtained after long-term cultivation of parental cells in their own growing medium,
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with increasing concentrations of Tam (Merck, Milan, Italy), followed by chronic exposure
to Tam 1 uM, as previously reported [19].

2.2. FoxO3a Inducible Stable Cell Lines

TamR/TetOn-AAA cell line and the relative control TamR /TetOn-V were developed as
previously described [19]. Briefly, TamR cells were subjected to a first transfection with the
pTet-On regulator plasmid, carrying the G418 resistance. Antibiotic-resistant TamR /TetOn
cells were further transfected with the pTRE-F3aAAA plasmid, bearing a cDNA encoding
a constitutively active form of the human FoxO3a gene, a GFP-encoding cassette and the
Zeocin resistance gene. Control cell lines (TamR/TetOn-V) were established using the
same protocol, but the pTRE backbone (vector only) was used in place of the F3aAAA
cDNA insert. Pools of TamR/TetOn-V and TamR /TetOn-AAA cells were maintained in
DMEM/F12 containing G418 and Zeocin selection antibiotics, plus Tam 1 uM. The tetracy-
cline derivative Doxycycline (Dox) (Sigma-Aldrich, Merck, Milan, Italy) was employed at a
concentration of 1 pg/mL to induce F3aAAA expression.

2.3. Plasmids and Transient Transfections

To transiently over-express FoxO3a, the 1319 pcDNAS3 flag FKRHRL1AAA (F3aAAA),
encoding a constitutively active triple mutant of FoxO3a (Addgene, plasmid 10709), was
transfected with FuGENE® HD (Promega Italia S.r.l, Milan, Italy). pcDNA3.1 vector
(Invitrogen) was used as control (pcDNA3).

2.4. RNA Extraction, Reverse Transcription, and Real-Time (RT)-PCR

Total RNA was extracted with TRIzol reagent (Thermo Fisher Scientific Inc., Waltham,
MA, USA). Two ug was used for reverse transcription using the High-Capacity cDNA
Reverse Transcription Kit (Thermo Fisher Scientific Inc.) according to the manufacturer’s
instructions. cDNA was mixed to SYBR green Universal PCR Master Mix (Bio-Rad, Mi-
lan, Italy) and subjected to RT-PCR in an iCycler iQ (Bio-Rad, Milan, Italy). The primer
sequences used in this study are listed in Table S1. The samples were normalized on
the relative 185 rRNA content. The results were reported as n-fold differences in gene
expression vs. controls.

2.5. Western Blotting (WB)

Cytosolic proteins were obtained using a lysis buffer containing 50 mM HEPES (pH
7.5), 150 mM NaCl, 1% Triton X-100, 1.5 mM MgCl,, 10 mM EGTA (pH 7.5), 10% glycerol,
and inhibitors (0.1 mM Na3VOy, 1% PMSF and 20 mg/mL aprotinin). All reagents were
from Merck, Milan, Italy. After separation on SDS-PAGE gel and transfer to nitrocellulose
membranes, proteins were detected with specific antibodies: FoxO3a (75D8, #2497) (from
Cell Signaling Technology, Danvers, MA, USA), PFKM (MAB7687; Clone 842736) and,
LDHA (MAB9158; Clone 2066C) (from R&D Systems, Minneapolis, MN, USA), Aldolase A
(1C5B2) (from Novus Biologicals, Centennial, CO, USA), 3-Actin (AC-15) (Sigma-Aldrich,
Merck, Milan, Italy). IRDye secondary Abs, the Odyssey FC Imaging System imager
and the Image Studio™ Lite v5.2 software were all from LI-COR Biosciences GmbH, Bad
Homburg, Germany.

2.6. Glucose Assay

Glucose content was determined by using an Inter-Medical kit (Biogemina Italia Srl,
Catania, Italy). Glucose oxidase catalyzes the oxidation of glucose to gluconic acid, gener-
ating H,O, which is detected by using a chromogenic oxygen acceptor, phenol, 4-amino-
phenazone in the presence of peroxidase. The color intensity observed is proportional to
the glucose concentration in the sample. Data are presented as nmol/mg protein.
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2.7. Lactate Dehydrogenase (LDH) Activity Assay

Cell proteins were extracted and counted as previously described [21]. Lysates were
used to evaluate LDH activity according to the Inter-Medical kit protocol (Biogemina Italia
Srl, Catania, Italy) [22]. Absorbance measures at 490 nm were normalized on protein
content and reported on a graph.

2.8. Glucose-6-Phosphate Dehydrogenase (G6PDH) Activity Assay

The conversion of NADP+ to NADPH, catalyzed by G6PDH, was measured by exam-
ining the increase in absorbance at 340 nm. Briefly, after treatment, 50 ug of proteins was
diluted in 1 mL of buffer containing 100 mM MgCl,, 100 mM triethanolamine, 10 mg/mL
NADP+, pH 7.6 (Merck, Milan, Italy) and 10 mg/mL glucose-6-phosphate) for spectropho-
tometric determination. The absorbance of samples was read at 340 nm every 20 s for
1.5 min. Data are presented as nM/min/mg protein.

2.9. Seahorse XFe96 Metabolic Flux Analysis

Real-time oxygen consumption rates (OCRs) and extracellular acidification rates
(ECARs) in all transfected cells treated with Dox 1 pg/mL for 48h and 72h were determined
using the Seahorse Extracellular Flux (XFe96) analyzer (Agilent, Santa Clara, CA, USA).
Briefly, 1 x 10* cells per well were seeded into XFe96 well cell culture plates and incubated
overnight to allow cell attachment. Then, cells were treated with Dox 1 ng/mL for 48 h and
72 h. Empty vector (Vector) control cells were processed in parallel. After 48 or 72 h hours
of incubation, cells were analyzed following the manufacturer’s protocol. Measurements
were normalized by examining the protein content (Bradford assay). Data sets were
analyzed using XFe96 software and GraphPad Prism software using one-way ANOVA and
Student’s t-test calculations. All experiments were performed in quintuplicate, three times
independently.

2.10. Sulfo-Rhodamine B (SRB) Assay

Cells were fixed in 10% trichloroacetic acid for 1 h at 4 °C, stained with SRB for
15 min, and washed three times with 1% acetic acid. The incorporated dye was solubilized
with 10 mM Tris-HCl, pH 8.8 (all reagents were from Merck, Milan, Italy). Absorbance
was spectrophotometrically measured at 540 nm in a FluoStar Omega plate reader (BMG
Labtech, Ortenberg, Germany). Background measurements were subtracted from all values.

2.11. Label-Free Unbiased Semi-Quantitative Proteomics Analysis

Cell protein extracts were prepared for trypsin digestion via the sequential reduction
of disulphide bonds with TCEP and alkylation with MMTS. Peptides were extracted
and prepared for LC-MS/MS. All LC-MS/MS analyses were performed as previously
reported [23]. Five replicates were analyzed for each sample. Data were analyzed using the
Mascot search.

2.12. Mitochondrial Staining

MitoTracker Orange and MitoTracker Deep-Red (both from Thermo Fisher Scientific
Inc.) were used to assess the mitochondrial activity and the mitochondrial mass, respec-
tively. After 72 h, cells were incubated with 10 nM MitoTracker staining solution for
30-60 min at 37 °C. Cells were then washed in PBS, harvested, resuspended in PBS and
analyzed using the Attune NxT Flow Cytometer [8].

2.13. Reactive Oxygen Species (ROS) Assessment

Intracellular ROS were quantified using CellROX™ Deep Red (Thermo Fisher Scientific
Inc.), as previously described [24]. Briefly, cells were treated with Dox (1 ng/mL) for 48 h
and 72 h and then harvested and resuspended in 5 pm CellROX™ Deep Red fluorescent
dye. Stained cells were centrifuged, resuspended in PBS and then analyzed using the
Attune NxT Flow Cytometer.
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2.14. cBioPortal Analysis

Gene co-expression profiles were extracted from “Breast Cancer (METABRIC, NA-
TURE 2012 & NAT. COMM 2016)”, using cBioPortal (cbioportal.org Cerami et al., 2012
& Gao et al., 2013). mRNA expression profiling (RNA Seq V2 RSEM) was carried out
via RNA-sequencing of tissue samples derived from n = 1329 patients with breast cancer.
Searching criteria: tumor type (breast carcinoma) and ER status (positive).

2.15. Statistical Analysis

Data were analyzed using the Student’s t-test and 2-way ANOVA Sidék’s multiple
comparisons test, where indicated, using the GraphPad Prism 4 software program. All
values with p < 0.05 were considered statistically significant.

3. Results
3.1. Nuclear FoxQO3a Restores the Sensitivity of TamR BCCs to Tam

We previously demonstrated that FoxO3a is able to restore the sensitivity of TamR
BCCs to Tam treatment [19]. Unlike the parental MCF-7 cell line, whose growth is noto-
riously inhibited by Tam (Ref. [19] and Figure S1A), the antiestrogen did not show any
effect on the proliferation of control TamR/TetOn-AAA cells compared to the control
TamR /TetOn-V cell line (Figure 1 and Figure S1B). Our previous studies also showed that
the over-expression of a constitutive active form of FoxO3a (F3a-AAA) in parental MCF-7
cells as well as in TamR/TetOn-AAA cells causes a dramatic reduction in cell proliferation
(Refs. [19,25] and Figure S1A,B). Notably, FoxO3a overexpression significantly improved
the antiproliferative effect of Tam in parental cells and re-established the response to Tam
treatment in TamR/TetOn-AAA cells (Figure 1 and Figure S1).
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Figure 1. Nuclear FoxO3a restores the sensitivity of TamR breast cancer cells to Tam. TamR /TetOn-
AAA and control Vector (TamR/TetOn-V) cell lines have been subjected to proliferation assay. Serum-
starved cells (for 24 h) were treated with Tam 1 uM and Dox 1 pg/mL (the latter to activate Tet-induced
transcription). (A) At the indicated time points, cells were subjected to SRB assay (see Materials
and Methods). (B) GFP-expressing cells were counted by means of Image] after 0 and 120 h of Dox
(1 pg/mL) treatment. Data are the mean + SD of three independent experiments (at least in triplicate)
reported as variation (%) vs. time 0 (* p < 0.01) or vs. the correspondent time point in TamR /TetOn
cells (4 p < 0.001). Images from microscope (10x) after 120 h in absence or presence of Dox 1 ug/mL.
Scale bar = 10\0 pum. (C) A duplicate set of TamR/TetOn-V and TamR /TetOn-AAA cells were treated
as in (A) and subjected to WB analysis to confirm Dox-dependent FoxO3a induction at 72 h and 120 h.
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3.2. FoxO3a Counteracts the Increased Oxygen Consumption Rate and Extracellular Acidification
Rate Observed in TamR BCCs

TamR BCCs have been previously described to be characterized by an enhanced
metabolic phenotype highlighted by a significant increase in both basal and maximal respi-
ratory capacity [8]. The dynamic interplay between glycolysis and oxidative metabolism
was evaluated in TamR/TetOn-V and TamR/TetOn-AAA cells by analyzing both the
oxygen consumption rate (OCR) and the extracellular acidification rate (ECAR) after
48 and 72 h of Dox stimulation. Interestingly, Dox-induced FoxO3a overexpression
caused a shift in the metabolic potential of TamR BCCs to a low efficient metabolic phe-
notype (Figures 2A and 3A). The effect was emphasized after 72 h of Dox stimulation
(Figures 2C and 3C).
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Figure 2. FoxO3a causes a significant decrease in mitochondrial oxygen consumption and mitochon-
drial ATP production in TamR BCCs. TamR/TetOn-AAA and TamR/TetOn-V cells were plated, left
to attach and then treated with Dox 1 pg/mL for 48 (A,B) and 72 (C,D) hours to induce FoxO3a
expression. At the end of the incubation period, the mitochondrial function was evaluated by deter-
mining the real-time oxygen consumption rates (OCR) (see Section 2). OCR was measured under
basal conditions followed by the sequential addition of 10 uM Oligomycin, 9 uM FCCP, 10 uM
Rotenone and 10 uM Antimycin A. Each data point represents an OCR measurement. Representative
line graphs of three independent experiments, normalized vs. protein content, are shown (A,C).
Histograms represent the % of basal and maximal respiration and Proton leak calculated at 48 (B) and
72 (D) hours compared to TamR/TetOn-V cells. A duplicate set of cells was plated on 60 mm dishes
to assess FoxO3a overexpression by WB analysis. 3-Actin was used as loading control (E). Data
are reported as the mean =+ SD of three independent experiments (at least in triplicate). Statistical
significances are calculated by using 2way ANOVA Sidak’s multiple comparisons test evaluating the
differences between TamR /TetOn-AAA and TamR/TetOn-V samples (**** p < 0.00005).
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Figure 3. FoxO3a reduces the energetic activity of TamR BCCs, reducing their glycolytic rate. Extra-
cellular acidification rate (ECAR) was evaluated in TamR /TetOn-AAA and TamR /TetOn-V cell clones
(described in Materials and Methods). Cells were plated, left to attach and then treated with Dox
1 ug/mL for 48 (A,B) and 72 (C,D) hours to induce FoxO3a expression. Extracellular acidification rate
(ECAR) was then evaluated (see Section 2). ECAR was measured under basal conditions followed
by the sequential injection of 80 mM glucose, 9 uM oligomycin, and 500 mM 2-deoxyglucose. Each
data point represents an ECAR measurement. Representative line graphs of three independent
experiments, normalized vs. protein content, are shown (A,C). Histograms represent the % of gly-
colysis, glycolytic capacity, glycolytic reserve of TamR/TetOn-AAA cells calculated at 48 (B) and
72 (D) hours, compared to TamR/TetOn-V cells. OCR/ECAR ratios at 48 h and 72 h are reported
in (EF), respectively. FoxO3a and (3-Actin expression are shown in Figure 2E. Data are reported
as the mean £ SD of three independent experiments (at least in triplicate). Statistical significances
are calculated by using 2way ANOVA Sidak’s multiple comparisons test evaluating the differences
between TamR/TetOn-AAA and TamR/TetOn-V samples (* p < 0.05, ** p < 0.005, **** p < 0.00005).

As shown in Figure 2B,D, a significant reduction in ATP-coupled respiration, leaked
respiration (proton leak) and maximal respiration was observed in TamR/TetOn-AAA
in response to the sequential addition of oligomycin, FCCP, Rotenone and antimycin A
to the cells. These results suggest that the electron transport chain activity is affected by
FoxO3a expression. In addition, a significant reduction in glycolysis, glycolytic capacity
and glycolytic reserve was observed in TamR/TetOn-AAA with respect to TamR/TetOn-V
in response to the sequential injections of glucose, oligomycin and 2-deoxyglucose. As
for OCR, the effect was emphasized by the increased expression of FoxO3a (Figure 3A-D).
Interestingly, the expression of FoxO3a in TamR BCCs caused a regression from a high
energetic phenotype to a quiescent cell phenotype, indicated by the ratio between OCR and
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ECAR (Figure 3E,F). Considering that the energy deriving from an increased glycolysis sup-
ports the proliferation of cancer cells, FoxO3a inhibitory effect on OCR and on ECAR shows
that its protective role in BCCs also occurs through the reduction in the ATP production.
ECAR and OCR results have been confirmed in both MCF-7/TR (Figures Ala,b and A2a,b)
and T-47D/TR (Figures Alc,d and A2c,d) BCCs transiently transfected with F3aAAA. On
the other hand, ZR-75/TR only showed a trend toward a reduction in both glucose and
oxygen consumption following FoxO3a over-expression (Figures Ale,f and A2ef).

3.3. FoxO3a Reduces Glycolysis Efficiency and LDH Activity in TamR BCCs

To give more insight into the effect of FoxO3a on the glycolytic pathway, we used a
combination of metabolic phenotyping and proteomics analysis. First, we analyzed the cellular
glucose content in our cell lines over-expressing or not FoxO3a (Figure 4A), evidencing an
accumulation of glucose in TamR /TetOn-A A A with respect to TamR/TetOn-V (Figure 4B).
Glucose storage could be caused by reduced LDH activity in TamR/TetOn-AAA cells, as
detected in both protein lysates (Figure 4C) and cell incubation media (Figure 4D).

Proteomic analysis confirmed that F3a-AAA over-expression strongly affects carbo-
hydrate metabolism, reducing the efficacy of glycolysis through a significant decrease
in relevant enzymes of the canonical pathways involved in carbohydrate metabolism
compared to the control (TamR/TetOn-V) cells (p = 2.89-8) (Figure 4E), some of which
are reported in Figure 4F. In particular, we observed that the expressions of Aldolase A
(ALDOA), LDHA and phosphofructokinase (PFK) are affected by F3a-AAA at both the
mRNA (Figure 4G-J) and protein level (Figure 4K), suggesting a potential involvement of
FoxO3a in the transcriptional regulation of these enzymes.
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Figure 4. Influence of FoxO3a expression on glycolysis of TamR breast cancer cells. TamR/TetOn-
AAA and TamR/TetOn-V were plated, left to attach and then treated with Dox 1 ug/mL for 48 h to
induce FoxO3a expression. (A) FoxO3a overexpression was determined by WB. GAPDH = loading
control. Glucose content (B) LDH (Lactate dehydrogenase) activity in cell lysates (C) and in the
growing media (D) were analyzed as described in Section 2. Data are reported as the mean £ SD of
three independent experiments (at least in triplicate). Statistical significances are calculated by using
Student’s t-test evaluating the differences between TamR/TetOn-AAA and TamR/TetOn-V samples
(* p < 0.05). Proteins involved in Carbohydrate Metabolism differentially expressed in the comparison
analysis in TamR/TetOn-AAA with respect to TamR /TetOn-V (E). The expression fold changes of
reported proteins were evaluated in TamR/TetOn-AAA with respect to TamR/TetOn-V by using
Ingenuity Pathway Analysis (Qiagen), fixing the cut-off to 1.6 (F). Proteomic data were confirmed by
RNA and WB analysis. To this aim, a duplicate set of cells was treated with Dox 1 pug/mL for 48 h.
The RNA (G-J) and protein (K) expressions of FoxO3a, AldoA, LDHA and PFKM were assessed.
mRNA content was normalized vs. the relative 185 rRNA content, and (3-actin was employed as a
loading control. (L-N) Analysis of genes involved in carbohydrate metabolism that correlated with
FOXO3 (cBioPortal dataset) [26], Spearman and Pearson correlation coefficient with the respective
p-value are reported.

FoxO3a strongly reduced ALDOA, LDHA and PFK protein levels also in transiently
transfected MCF-7 /TR (Figure A3a—e) and T-47D /TR (Figure A3f-j), but only LDHA RNA
transcripts were affected by F3aAAA overexpression at the considered time point. On the
other hand, as expected from seahorse results, FoxO3a induction did not lead to any change
in both the RNA and protein expression of these enzymes in ZR-75/TR (Figure A3k-o0).
Despite this inconsistency, we found that FoxO3a RNA expression resulted inversely
correlated to those of ALDOA (Figure 4L), LDHA (Figure 4M) and PFK (Figure 4N) in a
cBioPortal dataset [26] (see Section 2). These data suggest that, with only a few exceptions,
FoxO3a’s inverse correlation with enzymes of the canonical carbohydrate metabolism
might be considered a general phenomenon in BC patients.

3.4. FoxO3a Increases Mitochondrial Biogenesis and Reduces Mitochondrial Functionality,
Increasing ROS Production in TamR BCCs

TamR BCCs have been previously described as being characterized by increased
mitochondrial function and biogenesis [8]. Considering that F3a expression alters several
metabolic functions involving mitochondria, we deepened our findings on these organelles.
Particularly, the expression of nuclear F3a in TamR BCC caused a significant increase
in the mitochondrial population (about 50%) of TamR BCC (Figure 5A). An additional
slight increase in mitochondrial biogenesis was observed after 72 h of Dox treatment
(Figure 5A). Interestingly, the increase in mitochondrial mass was not paralleled by an
increase in mitochondrial membrane potential (Figure 5B), resulting in significantly reduced
TamR/TetOn-AAA cells (—25% after 48 h and —50% after 72 h of Dox treatment). The
reduced mitochondrial functionality was paralleled by an elevated formation of reactive
oxygen species (ROS) (Figure 5C), indicating a perturbation in the electron transport.

3.5. FoxO3a Impairs NADPH Production through the Pentose Phosphate Pathway (PPP) in
TamR BCCs

Since glycolytic inhibition generally promotes NADPH formation, we also evaluated
the effect of FoxO3a overexpression on the main route for cellular NADPH production, the
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pentose phosphate pathway (PPP), which is composed of the oxidative and non-oxidative
arms (Figure 6A). The key rate-limiting enzyme of the PPP oxidative arm is the glucose-6-
phosphate dehydrogenase (G6PDH), which has been reported to be activated or overex-
pressed in several cancers [27]. Based on this evidence, we expectedly found that G6PDH ac-
tivity was reduced by about half in TamR/TetOn-AAA cells with respect to TamR /TetOn-V
(Figure 6B). Nevertheless, proteomic analysis revealed that the reduced G6PDH activity was
not due to a reduction in enzyme expression, which, instead, resulted in a strong increase in
TamR/TetOn-AAA compared to the control cells (Figure 6C), rather suggesting a possible
reduction in substrate availability. However, the protein levels of the other two enzymes
of the oxidative arm of PPP, 6-phosphogluconolactonase (PGLS) and 6-phosphogluconate
dehydrogenase (PGD), which were reproducibly decreased in TamR /TetOn-AAA cells
(Figure 6C). As for G6PDH, PGD also mediates a reaction that generates NADPH and
its decreased expression confirms that NADPH generation through the oxidative PPP is
impaired in TamR/TetOn-AAA. These results suggest that the ROS-mediated redirection
of glucose into PPP is less effective in FoxO3a-overexpressing TamR BCCs.
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Figure 5. Impact of Nuclear FoxO3a on mitochondrial biogenesis, mitochondrial functionality,
and ROS production. TamR/TetOn-AAA and TamR/TetOn-Vcells were serum starved for 24 h,
treated with Dox 1 pg/mL for the indicated time points and to subjected to FACS analysis to
evaluate: mitochondrial mass (A) using MitoTracker Deep-Red dye; mitochondrial membrane
potential (B) using MitoTracker Orange dye; ROS production (C) using CellROX Deep Red Reagent.
Data are the mean + SD of three independent experiments (at least in triplicate) reported as % of
variation with respect to vector (* p < 0.01).

Several enzymes in the PPP non-oxidative arm, including Ribose 5-Phosphate Iso-
merase A (RPIA) [28] and Transketolase (TKT) [29,30] have been found to be involved
in cancer. Particularly, TKT holds a key position, since it connects PPP with glycolysis,
affecting the production of the antioxidant NADPH, and its blockade has been reported to
increase oxidative stress, making tumor cells more vulnerable to therapeutic treatment [29].
Accordingly, TKT expression was dramatically reduced in our TamR/TetOn-AAA cell
model (Figure 6C).

Other cytosolic enzymes, including Malate dehydrogenase 1 (MDH1) and Isocitrate
Dehydrogenase 1 (IDH1), are also involved in the production of NADPH. The inhibition of
MDH]I, a key enzyme in the glutamine catabolic pathway, has been recently reported to
sensitize cancer cells to oxidative stress, decreasing cell proliferation and inhibiting tumor
growth in vivo [31], and its targeting is being suggested as a therapeutic approach [32].
Similarly, IDH1 has been related to tumor development, and changes in IDH1 expression
levels or gene mutations have been reported in several tumors [33,34]. Our proteomic
data reveal a decreased expression of both MDH1 and IDH1 in TamR /TetOn-AAA cells
(Figure 6D), suggesting the breakdown of NADPH cytosolic production driven by FoxO3a.

Proteomic data were confirmed by analyzing clinical data from BC patients’ cohorts,
which showed that FoxO3a expression correlates directly to G6PDH (Figure 6E) and in-
versely to PGLS (Figure 6F), PGD (Figure 6G), TKT (Figure 6H), MDH1 (Figure 6I) and
IDH1 (Figure 6]).
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Figure 6. FoxO3a affects the Pentose Phosphate Pathway (PPP) in TamR BCCs. Cells were treated
as shown in Figure 4. (A) Schematic representation of the PPP, composed of an oxidative and a
non-oxidative arm. Under high oxidative stress conditions, metabolites from the PPP non-oxidative
arm re-enter into glycolysis to refill the oxidative arm for the synthesis of NAPDH. (B) G6PDH activity
was assessed as described in Section 2. Data are reported as the mean £ SD of three independent
experiments. Statistical significances are calculated by using Student’s ¢-test (* p < 0.05). FoxO3a
overexpression was determined by WB; (3-actin was used as loading control. (C) The expression fold
changes of proteins of the oxidative and non-oxidative branches of the PPP were evaluated; cut off to
1.5-fold-change in protein levels, with p < 0.05, was considered significant. (D) The expression fold
changes of indicated proteins were evaluated as in (C). (E-J) Analysis of genes involved in NADPH
production that correlated with FOXO3 (cBioPortal). Spearman and Pearson correlation coefficients
with the respective p-values are reported.

4. Discussion

Recently, FoxO3a has been recognized as a promising therapeutic target in cancers
and enhancing its expression appears to be relevant to tumor treatment [35]. Acquired
Tam resistance is the major limitation in the efficacy of Tam in ~50% of ER+ BCs; therefore,
overcoming this drawback with novel therapeutic strategies is highly needed. MCEF-
7 cells are sensitive to Tam and display a prevalently glycolytic metabolic phenotype.
Conversely, high mitochondrial activity and low glucose uptake were observed in Tam
resistance [8]. FoxOs transcription factors have been involved in the control of cellular



Cells 2023, 12,2777

12 0f 18

energy metabolism [36]; therefore, we hypothesized a role of FoxO3a in the disruption of
the TamR BC metabolic phenotype and in restoring the sensibility to Tam. Herein, by using
multifaceted approaches, such as proteomics analysis and metabolic phenotyping, we
discovered a novel protective role of FoxO3a in human BC since it interferes with various
features of tumor metabolism, enabling TamR BCCs to reacquire sensibility to Tam. These
results perfectly fit with our recently published studies [19], showing that the expression
of an active FoxO3a in TamR BCCs (TamR/TetOn-AAA) re-established the response to
Tam, causing a strong reduction in cell proliferation compared to control TamR BCCs
(TamR /TetOn-V). The characterization of the metabolic phenotype of TamR/TetOn-AAA
versus TamR/TetOn-V cells was first evaluated through the use of the Seahorse XF96
Analyzer to determine the dynamic interplay between glycolysis and oxidative metabolism.
Intriguingly, FoxO3a induction reduced metabolic flux, with a significant decrease both in
glycolytic rate (ECAR) and in oxidative mitochondrial metabolism (OCR). These results are
consistent with the previously reported data, which suggests that FoxO3a is an important
determinant in restraining oncogenic glycolysis in cancers since its knockdown is sufficient
to activate cellular glycolysis and increase cell resistance to apoptosis [14]. The effect
of FoxO3a on ECAR and on OCR was also confirmed in transiently transfected MCF-
7/TR and T-47D/TR cell lines but not in ZR-75/TR, which showed only a slight, not
significant, decrease in both glucose and oxygen consumption. These data are in line
with our previously published results, showing that FoxO3a overexpression was able to
reduce the migrating and invasive potential of MCF-7/TR and T-47D/TR cell lines but
not that of ZR-75/TR [21]. In addition, salient metabolic differences among ZR-75 (more
phosphorylative) and MCEF-7 (highly glycolytic) cells have been reported, and the use
of specific genes and energy pathways probably impart more aggressiveness to ZR-75
compared to MCF-7 [37]. Nonetheless, such different behavior might also depend on the
fact that, different from MCF-7 and T-47D, ZR-75 are PTEN-mutant cells [38], showing basal
hyperactive AKT signaling [39], further emphasized by the condition of Tam resistance,
which results, in turn, in very low levels of FoxO3a [19]. In this scenario, FoxO3a transient
expression might not be sufficient to counteract such a sustained PI3K/AKT pathway.
Therefore, since the contribution ratio of glycolysis versus OXPHOS for the total
ATP yield varies in different cell systems, growth states and microenvironments, we
decided to delve comprehensively into the metabolic status of TamR/TetOn-AAA cells,
scanning several biochemical pathways. The study was conducted through the use of both
biochemical and WB assays as well as by using proteomics analysis for each metabolic
branch considered. By approaching the glycolytic machinery, we observed an increase in
the glucose content and a reduction in PFK1 (PFKM) expression in TamR/TetOn-AAA cells.
In addition, LDH-A expression and the lactate production both inside and outside the cells
decreased. LDH-A is a vital metabolic enzyme that is associated with cancer development,
and it catalyzes the forward and backward conversion of pyruvate to lactate. Elevated
LDH has been recognized as a poor prognostic indicator in breast cancer [40] and the
inhibition of LDH-A has an anti-proliferative effect on breast tumors [41]. Consistently, our
results show a significant reduction in LDH expression and activity in TamR/TetOn-AAA
cells, which might be a consequence of PFK1 decrease, resulting in the accumulation of
fructose-6-phosphate, which is then isomerized to glucose-6-phosphate and, in turn, is
diverted into the pentose phosphate pathway (PPP). Indeed, the lower glycolytic efficiency
observed in TamR /TetOn-AAA cells could also be due to the reduced activity of G6PDH,
the rate-limiting catalyzing enzyme of the PPP and the main cellular source of NADPH.
Therefore, FoxO3a seems to decrease the glucose catabolism in TamR/TetOn-AAA cells
by lowering both the glycolysis and the PPP rates. These results may explain, at least in
part, the glucose accumulation found in TamR/TetOn-AAA cells. Rapidly proliferating
cancer cells constantly demand nucleotides and materials for biosynthesis, and the PPP is
frequently upregulated in many tumors, accounting for approximately 60% of NADPH
production in humans. Other than the PPP, MDHI1 and IDH1 cytosolic enzymes are also
involved in the production of NADPH. The proteomics analysis indicated the decreased



Cells 2023,12, 2777

13 0f 18

expression of both MDH1 and IDH1 (Figure 6), suggesting a breakdown of NADPH
cytosolic production driven by FoxO3a. Among the multiple mechanisms that have been
proposed for the development of Tam resistance, Lisanti et al. hypothesized that it occurs
through a metabolic shift in MCF-7 cells from a glycolytic to an oxidative state and that
restoring their glycolytic state may overcome Tam resistance [8]. Since the metabolic
phenotype of MCE-7 TamR cells is prevalently phosphorylative, it is clear that mitochondria
play a central role in the acquisition of resistance to Tam. Indeed, both tricarboxylic acid
(TCA) and electron transport chain (ETC) are highly functional in TamR BCCs [8].

Notably, FoxO3a strongly reduced mitochondrial functionality in TamR/TetOn-AAA
with respect to the control cells, attenuating the hyper-phosphorylative phenotype of TamR
cells, and the concomitant ROS increase observed is consistent with a perturbation in
electron transport [42]. Our data well fit with a previously published study showing that
FoxO3a activation reduces the mitochondrial DNA copy number as well as the expression
of respiratory complexes and mitochondrial proteins, leading to an overall inhibition of
mitochondrial respiratory activity [16]. Intriguingly, the decrease in the mitochondrial
membrane potential was rather paralleled by an increase in mitochondrial biogenesis.
Although the effect might be explained as a compensatory response of the cell to mi-
tochondrial dysfunction, it has to be underlined that FoxO3a is a direct transcriptional
regulator of peroxisome proliferator-activated receptor y coactivator 1o (PGC-1«) [43],
which has emerged as a master regulator of mitochondrial biogenesis [44]. Therefore, the
potential implications of the FoxO3a/PGC-1« axis in the reversion of Tam resistance need
further investigations.

5. Conclusions

Here, we report, for the first time, an additional mechanism through which an active
FoxO3a can counteract Tam resistance in BCCs. Our data demonstrate how FoxO3a can
affect multiple biochemical pathways of BC cell metabolism, spanning from the impairment
of glucose breakdown, mitochondrial functionality and NADPH production to the induc-
tion of ROS production. These FoxO3a-induced metabolic perturbations might explain, at
least in part, the restoration of the response to Tam treatment that we recently described in
FoxO3a overexpressing TamR cells [19]. Ongoing studies in our laboratory are aimed at
elucidating the molecular mechanisms governing each metabolic pathway (i.e., glycolysis,
mitochondrial respiration and PPP) affected by FoxO3a. In addition, the impact on the
metabolism of drugs that are able to enhance FoxO3a activity (e.g., AKT inhibitors [25] or
lamotrigine [20]) will be investigated as well. The results derived from these efforts will
emphasize the idea that anti-cancer therapies exploiting FoxO3a might be beneficial to
those BC patients who have developed resistance to Tam treatment.
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6 h, cells were serum-starved for 16 h and then shifted to 5% PRF-CT +/— 4-OHT (1 uM). After 24 h,
48 h and 72 h cells were then harvested by trypsinization and counted using trypan blue dye exclusion
assay. (B) TamR/TetOn-V and TamR/TetOn-AAA cells were serumstarved for 16 h and then switched
to 5% PRF-CT plus 1 uM 4-OHT and treated or not with Dox 1 pug/mL. After 24 h, 48 h and 72 h cells
were detached from the culture plate and subjected to cell counting in trypan blue dye exclusion assay.
Statistical significances are calculated by using One Way Anova (* p < 0.05).
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Figure Al. Effect of FoxO3a on OCR and on ECAR in other TamR BCC lines. TamR cells were
transfected in suspension with F3aAAA or pcDNA3.1 plasmids. After 72 h, OCR and ECAR were
evaluated in MCF-7/TR (a,b), T-47D/TR (c,d), and ZR-75/TR (e,f). OCR was measured under
basal conditions followed by the sequential addition of 10 uM Oligo-mycin, 9 uM FCCP, 10 uM
Rotenone and 10 pM Antimycin A. ECAR was measured under basal conditions followed by the
sequential injection of 80 mM glucose, 9 uM oligomycin, and 500 mM 2-deoxyglucose. Each data
point represents an OCR and ECAR measurements. Representative line graphs of three independent

experiments, normalized vs. protein content, are shown.
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Figure A2. Effect of FoxO3a on OCR and on ECAR in other TamR BCC lines. TamR cells were
transfected in suspension with F3aAAA or pcDNA3.1 plasmids. After 72 h, OCR and ECAR were
evaluated in MCF-7/TR (a,b), T-47D/TR (c,d), and ZR-75/TR (e,f). OCR was measured under basal
conditions followed by the sequential addition of 10 uM Oligo-mycin, 9 uM FCCP, 10 uM Rotenone
and 10 uM Antimycin A. Histograms represent the % of basal and maximal respiration, proton
leak and ATP calculated at 72 h, compared to pcDNA3.1 cells. ECAR was measured under basal
conditions followed by the sequential injection of 80 mM glucose, 9 uM oligomycin, and 500 mM
2-deoxyglucose. Histograms represent the % of glycolysis, glycolytic capacity, glycolytic reserve
calculated at 72 h, compared to pcDNA3.1 cells. Statistical significances are calculated by using
2way ANOVA Sidak’s multiple comparisons test, evaluating the differences between F3aAAA and
pcDNA3 samples (ns = not significant, * p < 0.05, ** p < 0.005, **** p < 0.00005).
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Figure A3. Effect of FoxO3a on relevant enzymes involved in carbohydrate metabolism. A double
set of cells was transiently transfected in suspension with F3aAAA and pcDNAS3 plasmids for 48 h.
FoxO3a, PFKP, LDHA, and Aldolase A expressions were assessed at the RNA and protein level in Tam-
resistant MCF-7 /TR (a—e), T47D/TR (f-j) and ZR-75/TR (k-0). mRNA content was normalized vs.
the relative 18S rRNA content, and 3-actin was employed for loading controls (* p < 0.05, ** p < 0.005).
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