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ABSTRACT The advancement of sustainable energy sources necessitates the development of robust
forecasting tools for efficient energy management. A prominent player in this domain, solar power, heavily
relies on accurate energy yield predictions to optimize production, minimize costs, and maintain grid
stability. This paper explores an innovative application of tiny machine learning to provide real-time,
low-cost forecasting of solar energy yield on resource-constrained edge internet of things devices, such
as micro-controllers, for improved residential and industrial energy management. To further contribute to
the domain, we conduct a comprehensive evaluation of four prominent machine learning models, namely
unidirectional long short-term memory, bidirectional gated recurrent unit, bidirectional long short-term
memory, and simple bidirectional recurrent neural network, for predicting solar farm energy yield. Our
analysis delves into the impacts of tuning the machine learning model hyperparameters on the performance
of these models, offering insights to improve prediction accuracy and stability. Additionally, we elaborate on
the challenges and opportunities presented by the implementation of machine learning on low-cost energy
management control systems, highlighting the benefits of reduced operational expenses and enhanced grid
stability. The results derived from this study offer significant implications for energy management strategies
at both household and industrial scales, contributing to a more sustainable future powered by accurate and
efficient solar energy forecasting.

INDEX TERMS Solar power forecasting, Time series forecasting, Internet of things, Deep neural networks.

I. INTRODUCTION

A. MOTIVATION

SOLAR photovoltaic (PV) integration into global power
systems has increased significantly over the past decade.

The majority of these PV facilities are deployed in low-
voltage (LV) and medium-voltage (MV) networks, pre-
senting distinct challenges for integrating renewable en-
ergy sources (RES) as distributed generation (DG). In dis-
tribution networks (DN), these difficulties include reverse
power fluxes, voltage violations, and grid stability [1], [2].

González-Sotres et al. [1] conducted a study to assess the
impact of forecasting on centralised voltage control for solar
generation in distribution systems. Their findings emphasised
the significance of accurate forecast data for achieving opti-
mal control settings and highlighted the need for improve-
ments in forecasting tools for predicting solar generation
in distribution systems. Therefore, Zang et al. proposed a
day-ahead PV power forecasting approach based on deep
learning (DL). Their study demonstrated the accuracy and
reliability of the approach through the utilisation of deep
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convolutional neural network (CNN) [2]. On the other hand,
high levels of PV penetration can cause power and voltage
fluctuations due to cloud shadows, as well as an increase in
energy losses when reversing power fluxes are significant. In
addition, the unpredictable nature of PV power generation,
which is influenced by abrupt weather changes, ultimately
presents a significant challenge to integrated power infras-
tructures [3], [4]. Prema et al. conducted an extensive review
of forecast models in the context of integrating solar and
wind power into main power grids. Their study emphasises
the importance of accurate short-term predictive models for
grid operation and planning, providing critical insights into
the duration of data used and the performance indices of these
models [3]. In the process of determining the scheduling of
power generation plans and short-term dispatches, it is an
essential tool for mitigating the effects of weather-induced
power fluctuations. Dimd et al. [4] presented a compre-
hensive review of machine learning (ML)-based PV output
power forecasting models in the context of cold regions such
as the Nordic countries and Canada. Their study focused on
the impact of meteorological parameters and the effect of
snow on prediction model performance, providing important
insights and suggestions for model selection of ML. As
a solution to this problem, accurate PV power forecasting
emerges as a crucial and valuable technology. artificial in-
telligence (AI) and modern ML techniques have the potential
to tackle PV power’s limitations. By utilising the capabilities
of modern ML methods, PV usage can be increased, thereby
improving PV power forecasting performance and stochastic
low voltage data at the distribution network application [5].
Therefore, this paper aims to employ and assist various
modern and new ML models, including multi-layer deep
neural networks (DNNs), bidirectional gated recurrent unit
(BiGRU), bidirectional long short-term memory (BiLSTM),
simple bidirectional recurrent neural network (BiRNN), and
unidirectional LSTM in the context of solar power yield
time series forecasting. By evaluating the performance of
these models under different hyperparameter settings and
exploring their strengths and weaknesses, we seek to identify
the most suitable forecasting model for solar energy yield
prediction. This research contributes to the development of
effective forecasting tools for solar energy yield, ultimately
promoting more efficient resource planning and energy man-
agement in the rapidly expanding solar power sector.

Furthermore, the rising interest in edge computing and
implementing ML models on resource-limited devices, such
as micro-controllers unit (MCU) and internet of things
(IoT) devices, has encouraged the investigation of Tiny ML
(TinyML) for solar power forecasting [6]. TinyML enables
the deployment of AI and ML capabilities on small, low-
power devices, allowing them to execute complex tasks with-
out the need for remote servers or high-performance hard-
ware. This presents numerous benefits, including reduced
latency, enhanced privacy, and energy efficiency. In this
scenario, unidirectional LSTM is particularly appealing for
deployment on edge devices due to its lower complexity and

compatibility with TensorFlow Lite Micro [7]. This renders
it an attractive option for practical applications requiring
on-device processing and local decision-making capabilities,
particularly in remote locations with limited connectivity or
where immediate responses are crucial [8]. By evaluating
the performance of unidirectional LSTM models for solar
power forecasting and edge inference using TinyML, we
aim to identify a robust, efficient, and computationally vi-
able solution that can be deployed on resource-constrained
devices. This approach not only contributes to more precise
and effective solar power forecasting but also encourages the
adoption of edge AI solutions in the renewable energy sector,
fostering innovative applications and more efficient energy
management [9].

B. LITERATURE REVIEW
In the management of new energy generation and consump-
tion, the accuracy of forecasting models is crucial. The imple-
mentation of smart grid technology [10] facilitates accurate
capacity forecasting, which is essential for such strategies
and distribution power networks [5]. The effectiveness of
load management techniques, coupled with accurate fore-
casting, enables DN operators to navigate the challenges
presented by ultimately promoting sustainable energy con-
sumption practices. In the context of smart grid applications
such as solar generation in low and medium voltage levels
[1] and outputs of photovoltaic panel power [2]. The litera-
ture provides multiple articles on PV power forecasting that
employ techniques such as time series forecasting and neural
networks.

Forecasting methods for PV power can be broadly clas-
sified into three categories: statistical, physical model, and
intelligent methods. Statistical methods or time series fore-
casting techniques, such as Auto-regressive moving aver-
age (ARMA), for forecasting PV power rely on historical
data (PV power data), making them suitable for short-term
forecasting. The ARMA model is one of the most com-
mon statistical models used for load demand and PV power
forecasting and does not require meteorological forecasts.
Nevertheless, statistical models rely on inputs with stable
auto-correlations, such as daily and seasonal periodicities
in PV power series, and therefore may exhibit insufficient
prediction accuracy on cloudy or rainy days. This issue
becomes especially severe when forecasting one day in ad-
vance. Recent research, however, has investigated methods
to enhance the prediction accuracy of statistical models by
integrating multiple forecasting models using ensemble and
ML techniques [2], [10]. The meteorological data (weather
prediction) are used as input to predict PV power outputs
[2]. To establish the correlation between input data (weather
data) and the future PV power output, there are two common
approaches: analytical equations and soft-computing models
under various ML algorithms. However, analytical equations
can be difficult to compute due to their complexity, resulting
in high computational costs, especially when the edge de-
ployment is in mind [2]. As such, soft-computing models are
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more commonly used for PV power forecasting, as they offer
a more efficient and effective solution. Ongoing research
in this field is aimed at further improving these models
and increasing their accuracy. Rodríguez et al. developed an
approach for forecasting intra-hour solar photovoltaic energy
by combining wavelet-based time-frequency analysis with
deep-learning neural networks. This study [10] demonstrated
improved accuracy compared to a persistence benchmark
model, achieving a validation deviation below 4% in the
majority of sample days.

In recent years, AI and ML algorithms, such as support
vector machine (SVM), and artificial neural network (ANN),
have become increasingly popular for forecasting PV out-
put power due to their ability to effectively capture the
highly nonlinear relationship between environmental input
parameters and PV power [11]. These models typically use
both power and weather parameter measurements as inputs
to the forecasting model, although limited high-performing
models have been developed that only require measurements
of PV power for short-term forecast horizons [4]. ANN,
SVM, adaptive neuro-fuzzy (NF) networks and evolutionary
optimisation have been used to forecast PV power output by
using time series data of PV power and weather forecasting
[12], [13]. Semero et al. [12] developed a hybrid approach for
accurate forecasting of electricity production in micro-grids
with solar photovoltaic installations. Their method combines
genetic algorithm, particle swarm optimisation, and adap-
tive NF inference systems to address the intermittent and
uncertain nature of solar power. In [13], a forecast model
employing LSTM and neural network (NN) to predict the PV
power generation over one step advance with data resolutions
up to one hour. Authors in [14] have developed a forecast
model based on LSTM and NN for predicting the hourly PV
power output over 24 hours. To achieve high performance
from SVM or ANN models, it is necessary to determine suit-
able model parameters via optimisation algorithms and cross-
validation. However, when dealing with large-scale samples,
the training efficacy of SVM models tends to decrease, re-
sulting in low performance [11]. The study [15] examines
a long-term PV power forecast constructed by using feed
ANN. However, the proposed approach disregards the effect
of past trends on prospective PV output. In short-term fore-
casting, [16] utilised the extreme learning machine (ELM)
to predict PV power for forecast horizons extending from
15 to 60 minutes. The researchers utilised particle swarm
optimisation to optimise the ELM. However, ELM with par-
ticle swarm optimisation has a complex structure with many
model parameters and high computational costs. Therefore,
a Gated Recurrent Unit network (GRU) was proposed as
an alternative to the commonly used LSTM architecture in
RNNs in a study by K. Cho et al. [17]. GRU, as contrasted
with LSTM, has only two gates, resulting in fewer train-
ing parameters while preserving high prediction accuracy.
This architecture additionally addresses the overfitting issue
observed in LSTM models. Although GRU and other DL
algorithms have significantly improved prediction accuracy

over ML techniques, they may not completely exploit the
local characteristics and concealed information present in
historical PV data.

DL, with its autonomous feature extraction capabilities,
has transformed ML and AI fields, as evidenced in works
like [4], [12], [13], [15]–[19]. Models like RNNs, LSTMs,
and GRUs have excelled in handling time series data. Our
study builds on this foundation, optimizing these models
for TinyML applications in edge computing environments
[20], [21]. This approach, unique in its focus on low-cost,
resource-constrained edge IoT devices, addresses a gap in
the existing literature, where the full potential of TinyML for
solar energy forecasting remains largely unexplored.

C. CONTRIBUTIONS AND ORGANISATION
This paper contributes to the field of solar power output
forecasting by introducing the innovative use of TinyML
for real-time, low-cost solar energy yield forecasting on
edge IoT devices. This approach is particularly suitable for
DNs and residential settings due to its cost-effectiveness and
efficiency. Further, we provide a comprehensive comparative
study of various ML techniques to predict and improve the
PV power output forecasting. Our main contributions are as
follows:

• Introduction of the novel use of TinyML on edge IoT
devices for real-time, low-cost solar energy yield fore-
casting. This approach significantly contributes to the
field by enabling efficient resource planning and energy
management at both household and industrial scales.

• Comprehensive evaluation of four prominent ML mod-
els, namely unidirectional LSTM, BiGRU, BiLSTM,
and simple BiRNN, for predicting solar farm energy
yield.

• Systematic comparison of the performance of these ML
models in the context of solar energy yield forecasting,
providing valuable insights into their effectiveness and
areas for potential improvement.

• Detailed analysis of the impact of hyperparameter selec-
tion on the performance of these ML models, providing
practical insights for future research and applications.

• Thorough investigation into the computational require-
ments and resource constraints of implementing the
proposed TinyML-based solution on edge IoT devices,
emphasising its suitability for real-time, cost-effective
forecasting applications.

• Highlighting the inherent challenges and trade-offs of
implementing complex DNN architectures for solar
power forecasting in the context of edge computing, and
showing how TinyML principles can address these chal-
lenges, making our approach distinct from traditional
forecasting methods that don’t account for computa-
tional limitations.

The rest of this paper is organised as follows: In Section
II, we describe the methodology employed, including data
preprocessing, model development, and evaluation metrics
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used in our study. Section III delves into the implementation
of TinyML for low-cost household power yield prediction,
discussing the benefits and challenges associated with de-
ploying ML models on resource-constrained devices. The
results and discussion of the performance of various models
are presented in Section IV, highlighting the strengths and
weaknesses of each approach. Section V concludes the paper,
summarising our findings and providing insights into future
research directions in this field. Finally, appendix A lists all
the abbreviations and acronyms that we used in this article.

II. METHODOLOGY
A. THE DATASET
The dataset used in our research was collected from on-
site renewable energy facilities located in China, comprising
power generation and weather-related information from six
wind farms and eight solar stations. The dataset was intro-
duced in [22] and collected at 15-minute intervals over a two-
year period from 2019 to 2020. Our work focuses primarily
on the dataset related to five on-site solar farms. We use ML
models to develop time series forecasting for solar power
generation across these five locations, with the trained model
tested and validated against actual data from these sites.

The primarily dataset was divided into 70% as a training
dataset 10% for validation and 20% for testing. The division
of the dataset into training, validation, and testing sets is a
common practice in ML. It aims to optimise model perfor-
mance and generalisability. The training set, being the largest
portion, enables the model to learn and capture patterns. The
validation set helps in tuning the model’s hyperparameters
to avoid overfitting and improve its generalisability. The test
set, kept separate, provides a final evaluation of the model’s
performance, simulating real-world scenarios. Our 70/20/10
split is widely accepted in the field as it provides a balance
between maximising learning and evaluating the model’s
generalisability capability. This split can vary depending on
factors such as the dataset’s size and the specific application.

The dataset includes seven features, with the first six
representing weather-related features (i.e., TSI for total solar
irradiance, DNI for direct normal irradiance, GHI for global
horizontal irradiance, AT for air temperature, ATM for at-
mospheric pressure, and RH for relative humidity). The last
feature represents the solar farm power yield and is the output
of the latent relations between the first six features and the
power yield [22].

To preprocess the data for our analysis, we first average
the dataset based on specific time intervals instead of the
original 15-minute intervals. In this approach, every Navg

samples, corresponding to 15-minute intervals, are averaged
together to obtain the desired interval for forecasting. Next,
we prepare the samples for each forecasting task to look back
for LB look-back steps and predict the LA look-ahead steps.
We test the model configurations for two different grouping
setups for the number of features N = 3 and N = 7.

The choice of Navg and the look-back and look-ahead
steps is crucial as it influences the granularity of our forecast

and the ability of our models to capture temporal depen-
dencies. For instance, larger Navg would yield coarser time
intervals, potentially smoothing out significant fluctuations.
On the other hand, smaller Navg could capture more detailed
fluctuations but might be more prone to noise and less gener-
alisable.

For the look-back steps, LB, a higher value allows the
model to take into account a wider window of past data,
helping it identify longer-term patterns or trends. However,
this might also increase the model’s complexity and com-
putational requirements. As for the look-ahead steps, LA, a
higher value would mean forecasting further into the future,
which can be more challenging and uncertain.

In this study, the specific values of Navg , LB, and
LA were selected through experimentation, considering the
trade-off between model performance, computational effi-
ciency, and the specific requirements of solar power fore-
casting. Further, the feature selection (N = 3 or N = 7)
was determined based on the relevance and contribution of
each feature to the power yield, aiming to retain the most
informative features while reducing the model’s complexity
and potential for overfitting.

B. FEATURES SELECTION
Feature selection constitutes a critical phase in devising
precise ML models. To streamline this procedure, we concen-
trated on the correlation between input features and the power
yield of each solar farm. We employed the normalised co-
variance matrix to pinpoint the variables exhibiting a strong
correlation with the power yield, allowing us to choose a
subset of the most predictive features. This strategy optimises
our ML forecasting models by diminishing the number of
features employed and centring on the most crucial variables,
which, in turn, will enhance the model performance. Further-
more, by recognising the variables strongly correlated with
power yield, we will acquire lucid insights into the physical
and environmental factors that impact the power generation
process [23].

Figure 1 illustrates the normalised covariance matrix be-
tween the input features of the dataset. For our analysis, we
selected the top 5 cleanest datasets (i.e., The datasets exhibit-
ing high data quality, characterized by accuracy, consistency,
minimal noise or errors, and a lack of significant gaps or
missing values.) from the available options (sites) listed in
[22]. The input features related to solar irradiance have the
most significant impact on the output power yield, as seen in
the highly correlated top left 3× 3 dark sub-heatmap and the
correlations with the output power yield in the last heatmap
column.

Figure 1 further showcases the correlation between the
three input features and the output power yield. In this
investigation, we concentrate on two kinds of forecasting
models. Firstly, we will employ the first three input features
to execute forecasting and examine the impact of altering
the hyperparameters of the ML model on the comprehensive
performance of the forecasting. Secondly, we will utilise
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the complete set of features including the time series power
data in the datasets to carry out forecasting and undertake a
comparative analysis between the two chosen input features
grouping models.

C. DATA SCALING
We apply min-max data scaling to minimise errors and aid
the learning process. This technique normalises the dataset
input features to a specific range based on the minimum and
maximum values of the features.

The scaling can be expressed as follows:

ŷi =
yi −min(yi)

max(yi)−min(yi)
, (1)

where ŷi is the normalised vector that contains all the data
for a certain input feature i, and yi is the original vector that
contains all input feature vectors from the specific dataset.

To reverse the data scaling after the inference (time series
forecasting), we use the following equation:

yi = y′i(max (yi)−min (yi)) + min (yi), (2)

where y′i is the estimated value after the inference of the fu-
ture value in the time series forecasting application. The min-
max scaling technique is efficient and useful in optimising
ML processes such as gradient descent algorithms, leading
to faster convergence in the learning process. Moreover, the
scaling ensures that different models are compared fairly in
terms of their performance, especially when measuring the
root mean square error (RMSE).

In the subsequent subsections, we explore the BiRNN,
BiLSTM, and BiGRU models. Additionally, we discuss the
unidirectional LSTM, deferring its discussion to section III
to place it within the context of TinyML for edge inference.
Our objective is to determine the most fitting model for
solar energy yield prediction by analyzing their performance
across diverse configurations and considering multiple input
features. Moreover, we will evaluate the pros and cons of
each model, offering a thorough understanding of their suit-
ability for solar power forecasting applications.

D. BIRNN MODEL
The BiRNN model consists of two simple RNN layers, one
processing the input sequence in the forward direction (

−→
H t)

and the other in the reverse direction (
←−
H t). For a given time

step t, the RNN equations for both directions are as follows
[24]:

−→
H t = tanh(W−→

h
· [−→h t−1, xt] + b−→

h
), (3)

←−
H t = tanh(W←−

h
· [←−h t+1, xt] + b←−

h
) (4)

where xt is the input vector at time step t,
−→
h t and

←−
h t are the

hidden state vectors in the forward and reverse directions,
respectively, and tanh denotes the hyperbolic tangent acti-
vation function. The weight matrices W−→

h
and W←−

h
and the

bias vectors b−→
h

and b←−
h

are the learnable parameters of each
RNN layer. In the BiRNN model, the hidden states of both

the forward and reverse RNN layers are combined at each
time step, providing a better context for predictions [25].

While the bidirectional structure of the BiRNN model
allows it to capture both past and future information ef-
fectively, it suffers from certain limitations that can affect
its performance in solar energy yield forecasting. The most
notable drawback of the BiRNN model is its susceptibility to
the vanishing gradient problem, which can hinder the model’s
ability to learn long-range dependencies in the input data.
In the following sections, we will discuss the BiGRU and
BiLSTM models and demonstrate how their unique features
make them ideal candidates for solar energy yield forecast-
ing.

E. BILSTM MODEL
In this paper, we examine the potential of the LSTM models
for forecasting the energy yield of solar farms, considering
multiple input features. The LSTM model is especially pro-
ficient in managing time series data, owing to its inherent
ability to seize long-range dependencies, which is vital for
precise forecasting. We utilise seven input features to train
our LSTM model, where the last feature signifies the target
variable to be predicted. By adjusting the number of look-
back steps, we aim to discover the optimal LSTM configura-
tion for effective solar energy yield forecasting.

The Bidirectional LSTM (BiLSTM) model consists of
two LSTM layers, one processing the input sequence in the
forward direction and the other in the reverse direction. Each
LSTM layer is composed of memory cells and three gating
units: the input gate (it), the forget gate (ft), and the output
gate (ot). For a given time step t, the LSTM equations for
both directions are as follows [24]:

ft = σ(Wf · [ht−1, xt] + bf ) (5)
it = σ(Wi · [ht−1, xt] + bi) (6)
C̃t = tanh(WC · [ht−1, xt] + bC) (7)
Ct = ft ⊙ Ct−1 + it ⊙ C̃t (8)
ot = σ(Wo · [ht−1, xt] + bo) (9)
ht = ot ⊙ tanh(Ct) (10)

where it is input gate, ft is the forget gate, and ot is the output
gate, xt is the input vector at time step t, ht is the hidden
state vector, and Ct is the cell state vector. The sigmoid
activation function is represented by σ, while element-wise
multiplication is denoted by ⊙. The weight matrices Wf ,
Wi, WC , and Wo correspond to the forget, input, cell state,
and output gates, respectively, and the bias vectors bf , bi, bC ,
and bo are the learnable parameters of each LSTM layer. The
gates it, ft, and ot control the flow of information through
the memory cells, while C̃t is a temporary cell state used
for updating the cell state Ct. The hidden state ht is updated
using the output gate and the cell state [26].

In the BiLSTM model, the hidden states of both the
forward and reverse LSTM layers are combined at each
time step, providing a better context for predictions. In our
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FIGURE 1: (a) Solar station site 1 (Nominal capacity = 30MW), (b) Solar station site 2 (Nominal capacity = 130MW), (c)
Solar station site 3 (Nominal capacity = 30MW), (d) Solar station site 4 (Nominal capacity = 50MW), (e) Solar station site 5
(Nominal capacity = 130MW).

study, we train the BiLSTM model with seven input features,
adjusting the number of look-back steps to optimise the
model’s performance for solar energy yield forecasting.

In our study, we train the BiLSTM model with N = 3 and
N = 7 input features, adjusting the number of look-back
(LB) steps to optimise the model’s performance for solar
energy yield forecasting.

F. BIGRU MODEL

We also explore the applicability of the BiGRU model for
predicting the energy yield of solar farms based on multiple
input features. The BiGRU model, which consists of two
GRU layers processing the input sequence in both forward
and reverse directions, addresses the vanishing gradient prob-
lem commonly encountered in RNNs. This characteristic
makes it a promising candidate for handling time series
data. We utilise seven input features to train our BiGRU
model, where the last feature serves as the target variable to
be predicted. By adjusting the number of look-back steps,
we aim to determine the optimal BiGRU configuration for
effective solar energy yield forecasting.

The BiGRU model consists of two GRU layers, one pro-
cessing the input sequence in the forward direction and the
other in the reverse direction. Each GRU layer has two gating
units: the update gate (zt) and the reset gate (rt). For a given
time step t, the GRU equations for both directions are as

follows [24]:

zt = σ(Wz · [ht−1, xt] + bz) (11)
rt = σ(Wr · [ht−1, xt] + br) (12)
h̃t = tanh(Wh · [rt ⊙ ht−1, xt] + bh) (13)
ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t (14)

where xt represents the input vector at time step t, and
ht denotes the hidden state vector. The sigmoid activation
function is denoted by σ. Element-wise multiplication is
represented by the symbol ⊙. The weight matrices Wz , Wr,
and Wh correspond to the update, reset, and candidate hidden
state gates, respectively. The bias vectors bz , br, and bh are
the learnable parameters associated with these gates in the
GRU layer. zt and rt are the update and reset gates, which
control the flow of information through the hidden state. h̃t

is the candidate hidden state, a temporary value that helps in
updating the hidden state [27]. The hidden state is updated
using a combination of the previous hidden state and the
candidate hidden state, weighted by the update gate. In the
BiGRU model, the hidden states of both the forward and
reverse GRU layers are combined at each time step, providing
a better context for predictions. In our study, we train the Bi-
GRU model with seven input features, adjusting the number
of look-back steps to optimise the model’s performance for
solar energy yield forecasting.
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G. MODELS COMPARISON FOR SOLAR POWER
FORECASTING

In this section, we discuss the key differences between the
four ML models—BiGRU, BiLSTM, BiRNN, and Unidi-
rectional LSTM—in the context of power yield time series
forecasting1. The primary distinctions between these models
lie in their architecture, ability to handle time dependencies,
complexity, and susceptibility to the vanishing gradient prob-
lem as illustrated in Table 1.

BiGRU, an RNN variation, addresses short and long-term
time dependencies. This model, with medium complexity
and lower vulnerability to the vanishing gradient issue, holds
potential for time series forecasting tasks, including power
yield predictions by capturing temporal dynamics.

BiLSTM, another RNN variant, manages short and long-
term time dependencies effectively. Its high complexity and
significantly diminished susceptibility to vanishing gradient
problems make it a preferred choice for time series fore-
casting tasks, such as power yield predictions. BiLSTM
efficiently captures complex patterns, enhancing forecasting
performance.

BiRNN, capable of handling short-term time dependen-
cies, struggles with long-term dependencies due to low-to-
medium complexity and severe susceptibility to the van-
ishing gradient problem. Though applicable to time series
forecasting tasks, its performance may lag behind BiGRU
and BiLSTM, particularly when long-term dependencies are
crucial.

Unidirectional LSTM, adept at handling short and long-
term time dependencies, lacks BiLSTM’s bidirectional in-
formation flow. Consequently, it might not grasp all rele-
vant patterns, potentially resulting in less accurate forecasts
compared to BiLSTM. However, its lower complexity could
render it suitable for edge devices with limited computational
resources.

In summary, for power yield time series forecasting, mod-
els like BiGRU, BiLSTM, and Unidirectional LSTM are
likely to deliver better performance due to their ability to
capture both short- and long-term dependencies in the data.
While BiRNNs might face limitations in handling long-term
dependencies. The choice between BiGRU, BiLSTM, and
Unidirectional LSTM will depend on the specific require-
ments of the forecasting task and the trade-offs between
complexity and performance.

H. PERFORMANCE METRICS

In order to measure the performance of time series fore-
casting, we employ two types of measures. To measure the
accuracy of the prediction, we use the RMSE as a measure of

1The full discussion of Unidirectional LSTM is deferred to section III
to place it within the context of TinyML inference on edge devices, as we
conduct a more in-depth analysis to study its applicability for deployment
on resource-constrained, low-cost devices.

error between the predicted values and the actual values [11].

RMSE(y, ŷ) =

√√√√ 1

Ns

Ns∑
i=1

(yi − ŷi)
2
, (15)

where y, ŷ are the actual and the predicted vector of readings,
respectively. The vector y = {y1, y2, ..., yNs

} represents the
times series values at time i where i = 1, 2, ..., Ns. Ns

is the number of samples in the time series. In subsequent
discussions, we will use ei = yi− ŷi to represent the error in
prediction at a specific time step and e to denote the average
error in the forecast.

In order to capture how well our model can predict future
values, we use the determinant coefficient R2. The deter-
minant coefficient is the proportion of the variance in the
dependent variable that is predictable from the independent
variable. We can write the determinant coefficient as follows

R2(y, ŷ) = 1−
∑Ns

i=1(yi − ŷi)
2∑Ns

i=1(yi − ȳ)2
, (16)

where ȳ = 1
n

∑Ns

i=1 yi and
∑Ns

i=1(yi− ŷi)
2 =

∑Ns

i=1 ϵ
2
i is the

residual sum of squares.

III. TINYML FOR LOW-COST HOUSEHOLD POWER
YIELD PREDICTION
TinyML, an emerging field at the intersection of ML and
embedded systems, offers effective tools for executing ML
models on resource-limited devices like MCUs [21]. In the
context of our study, TinyML has been utilised to establish an
optimised, real-time solar power yield prediction mechanism
for low-cost household solar farms. The power of ML is
brought to the edge, directly at the source of data, thereby
enhancing prediction efficiency, reducing latency, and ensur-
ing data privacy.

The TinyML deployment process commences with data
collection from the hardware where the inference engine is
required. This data is utilised to train the ML model, which
is then implemented directly on the MCU for inference in
subsequent iterations. A notable challenge in unlocking the
full potential of ML for IoT systems is the fragmentation
of the MCU market, and the absence of a unified standard
for TinyML implementation. To address these, we utilize
TensorFlow Lite Micro, which has become synonymous with
TinyML. Most practical ML model implementations now
rely on the TFLite libraries [21].

TFLite Micro provides the necessary features for enabling
ML on IoT devices. It assumes that the model, input data, and
output arrays are already in memory and performs computa-
tions on these arrays directly. The TFLite Micro framework
uses an interpreter to load the data structure that defines
the ML model. This design choice allows for the model
to be easily updated without recompiling the firmware on
the IoT device. Particularly, the use of an LSTM model in
conjunction with TinyML presents an innovative approach in
the realm of low-cost, real-time solar power yield forecasting.
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TABLE 1: Comparison of LSTM, BiGRU, BiLSTM, and BiRNN.

Model Architecture Directionality Time Dependency Complexity [24] Vanishing Gradient [24]

LSTM Long short-term memory Unidirectional Short- and long-term Medium Significantly reduced
BiRNN Bidirectional RNN Bidirectional Short-term Low-medium Severe
BiGRU Bidirectional GRU Bidirectional Short- and long-term Medium Reduced
BiLSTM Bidirectional LSTM Bidirectional Short- and long-term High Significantly reduced

This approach not only serves as a potential solution to over-
come the challenges posed by resource-constrained settings
but also sets a novel precedent in employing ML techniques
for such applications. By deploying the LSTM model on edge
devices via TinyML, we are essentially bringing the power
of ML directly to the source of data, thereby enhancing the
efficiency of prediction tasks, reducing latency, and ensuring
data privacy.

The advancements in TinyML research have demonstrated
its effectiveness across various domains, including human
activity recognition and classification and time series fore-
casting in diverse scenarios [21]. In this context, we be-
lieve that TinyML will be instrumental in shaping the fu-
ture of smart grids and solar power time series forecasting.
Consequently, we have developed an evaluation framework
for power yield forecasting in solar farms. However, the
scarcity of household-specific datasets poses a limitation for
implementing our ML models. To overcome this challenge,
this study aims to establish pre-trained models using the
aforementioned ML architectures, which can later be adapted
for local household solar farms through transfer learning
(TL) techniques [28], [29]. The application of TL will ulti-
mately simplify the adoption of such forecasting methods,
streamlining the development operations (DevOps) process
for seamless ML operations (MLOps) [21].

In addition to TL, which enhances the training experience
for forecasting tasks, federated learning (FL) also plays a
vital role, especially when applying forecasting to privacy-
related data. FL provides an advantage in scenarios where
data privacy is concerned and data cannot be moved to a
centralised location due to regulatory restrictions or security
concerns [30]. FL, much like TL, can offer a streamlined
process for the development and implementation of fore-
casting models. It allows for the leveraging of distributed
data sources, enabling a more secure view of the data and
thus enhancing the accuracy and robustness of our forecast-
ing models. Moreover, when combined with TL, FL can
potentially accelerate the learning process as the models
can benefit from previously learned knowledge and apply it
across different yet related tasks. This powerful combination
can bring forth a new era in ML-powered forecasting, where
models are not only effective and efficient but also respectful
of data privacy and security requirements.

A. UNIDIRECTIONAL LSTM MODEL FOR EDGE
INFERENCE
The Unidirectional LSTM model is designed to process the
input sequence in the forward direction (

−→
Ht) only. This

model is used to compare its performance with the previously
mentioned bidirectional models, as well as to facilitate in-
ference on edge devices using TinyML and TensorFlow Lite
Micro since TensorFlow Lite Micro only supports unidirec-
tional LSTM layers [31]. For a given time step t, the LSTM
equations are as follows [24]:

ft = σ(Wf · [ht−1, xt] + bf ), (17)
it = σ(Wi · [ht−1, xt] + bi), (18)
C̃t = tanh(WC · [ht−1, xt] + bC), (19)
Ct = ft ⊙ Ct−1 + it ⊙ C̃t, (20)
ot = σ(Wo · [ht−1, xt] + bo), (21)
ht = ot ⊙ tanh(Ct), (22)

where xt represents the input vector at time step t. The hid-
den state vector is denoted by ht, and the cell state vector is
represented by Ct. The functions σ and tanh are the sigmoid
and hyperbolic tangent activation functions, respectively. ft,
it, and ot are the forget, input, and output gates of the LSTM
layer, which control the flow of information through the cell
state. C̃t is the candidate cell state, a temporary value that
helps in updating the cell state. The weight matrices Wf ,
Wi, WC , and Wo correspond to the forget, input, output, and
candidate cell state, while the bias vectors bf , bi, bC , and bo
are the learnable parameters associated with these gates in
the LSTM layer.

The unidirectional LSTM model efficiently captures past
information through the cell state vector, which helps to
alleviate the vanishing gradient problem to a certain degree.
However, it doesn’t consider future information like bidirec-
tional models do. Despite this, unidirectional LSTM’s lower
complexity makes it apt for deployment on edge devices,
and its compatibility with TensorFlow Lite Micro renders it
a compelling choice for real-world applications needing on-
device processing.

B. UNIDIRECTIONAL LSTM NETWORK ARCHITECTURE
Building on a solid foundation, we present a DL model for
forecasting solar power generation using a stacked unidirec-
tional LSTM architecture. By integrating L2 regularisation,
dropout, and batch normalisation techniques, the model en-
hances both performance and generalisation capabilities. As
illustrated in Figure 2 (a), the network comprises two LSTM
layers with (LSTM1) N1 and (LSTM2) N2 units, captur-
ing temporal relationships in input data. L2 regularisation,
with a strength of 0.001, counters overfitting by penalising
large weight values, while dropout layers with a rate of
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FIGURE 2: (a) Unidirectional LSTM Network Architecture
and (b) BiRNN, BiLSTM, and BiGRU Networks Architec-
ture.

0.2 bolster robustness and curb overfitting. Batch normali-
sation layers standardise the activations of the LSTM layers,
boosting training efficacy and mitigating overfitting. A Dense
layer with N3 units maps the LSTM outputs to a lower-
dimensional space, and the output layer produces the final
solar power generation forecasts. In essence, our proposed
model smoothly integrates a stacked unidirectional LSTM
architecture with L2 regularisation, dropout, and batch nor-
malisation techniques, creating a robust and well-generalised
model apt for solar power generation forecasting.

C. BIRNN, BILSTM, AND BIGRU NETWORKS
ARCHITECTURE
To make a fair comparison with the Unidirectional LSTM,
the BiRNN, BiLSTM, and BiGRU models adopt the same
DL architecture. As depicted in Figure 2 (b) this consists
of two bidirectional layers, with (BiRNN1 or BiLSTM1 or
BiGRU1) N1 and (BiRNN2 or BiLSTM2 or BiGRU2) N2

number of units. L2 regularisation (with a strength of 0.001)
and dropout layers (with a rate of 0.2) are employed across
all three models2, as well as batch normalisation layers for
normalising the activations of the bidirectional layers. A
Dense layer with N3 number of units maps the bidirectional
layer outputs to a lower-dimensional space, and the output

2To further elucidate our choice of parameters, it’s pertinent to note that
the selection of 0.001 for L2 regularization and 0.2 for dropout rate was not
arbitrary. This decision has been formulated after an extensive grid search
process and trial and error for fine tuning the model and training process to
ensure no model overfitting.

Data Collection

Data Preprocessing

Feature Extraction

Model Training

Model Selection

Hyperparameter Tuning

Model Optimization

Edge Device Deployment 
with OTA

Inference & Predictive 
Analysis

Continuous Improvement 
Feedback Loop

MCU & Other Edge Devices TensorFlow Lite Micro

BiGRU, BiLSTM, BiRNN, LSTM

FIGURE 3: Simplified TinyML MLOps workflow for solar
energy forecasting.

layer produces the final solar power generation forecasts.
This configuration enables an equitable comparison of their
performance with the Unidirectional LSTM.

D. TINYML MLOPS PIPELINE
To summarise the deployed operations, our approach to-
wards solar energy forecasting incorporates a comprehensive
MLOps pipeline, specially designed for TinyML applica-
tions. This pipeline is outlined in Figure 3 and consists of
several steps, each contributing to the efficient and accurate
functioning of the forecasting model.

The process initiates with Raw Data Collection from di-
verse sources, including solar irradiance sensors and weather
stations. Following this, the collected data is subjected to
Data Preprocessing to ensure data integrity and consistency.
Upon preprocessing, we carry out Feature Extraction and
Engineering, where pertinent features are selected to be
included in the forecasting model. These features encompass
historical solar irradiance data, weather conditions, and other
relevant factors.

The Model Training phase follows, involving the experi-
mentation with various ML architectures. Post model selec-
tion, Hyperparameter Tuning is conducted to refine the cho-
sen model’s performance. The model then undergoes Model
Optimisation to strike a balance between model complexity
and computational efficiency, a critical step in the realm of
TinyML. Subsequently, the optimised model is Deployed
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TABLE 2: Hyperparameters and Regularisation Parameters
used in the Model.

Parameter Value

Optimiser Adam
Learning rate 0.001
Batch size 64
Epochs {64, 128, 254}
Hidden dense layers activation function ReLU
Output layer activation function Linear
L2 regularisation (LSTM) 0.001
Dropout (after LSTM and dense layers) 0.2
Loss function MSE

on Edge Devices via TensorFlow Lite Micro for real-time
inference and predictive analysis.

In addition to this, Over-The-Air (OTA) Updates play a
significant role in ensuring that the edge devices run the
most updated version of the model, permitting remote model
management and updates. The pipeline concludes with a
Continuous Improvement Feedback Loop, facilitating the
continuous collection of new data, evaluation of our model’s
performance, and model updating as needed. This feedback
loop ensures that our model remains current with the latest
data and trends, thereby maintaining its predictive accuracy
and efficiency over time.

IV. RESULTS AND DISCUSSION
This section discusses the results of employing various ML
models and elaborates on the key hyperparameters and regu-
larisation techniques used in the training process. The hyper-
parameters of the different models are summarised in Table 2.
The use of these specific hyperparameters and regularisation
parameters, as discussed earlier, ensures a robust and stable
learning process.

The comparative analysis of the different ML models
addresses the disparities in their performance, and provides
insights into their relative merits and limitations. These vari-
ations in performance are particularly significant when con-
sidering the deployment of these ML models on edge devices
for low-cost domestic applications. A detailed exploration of
this aspect will help us understand the practical limitations
of the chosen models, as well as the potential enhancements
required for future implementations.

A. MODELS PERFORMANCE COMPARISON
Figure 4 presents the results of the effect of the choice
of LB on the overall performance of the system for two
performance metrics, RMSE and R2. The figure displays the
performance of three types of bidirectional models—BiGRU,
BiLSTM, and BiRNN—using both 3 and 7 input features.
The first row of subfigures corresponds to the models using 3
input features, while the second row represents those using 7
input features.

A noticeable trend across the subfigures is that the models
tend to perform relatively similarly after 5 look-back time
steps, regardless of the number of input features used. This

suggests that increasing the look-back step size beyond 5
steps may not significantly improve the models’ forecasting
performance. As such, we can optimise the computational
resources by limiting the look-back step size to around 5
steps without compromising the accuracy of the solar power
forecasting.

Figure 5 showcases the outcomes for various ML model
configurations with three input features and a 4-hour look-
back period (i.e., 8 look-back steps with a half-hour step
size for solar power forecasting for half an hour ahead) for
a site with a nominal power of 50MW. The figure includes
six subfigures, illustrating the performance of three kinds
of bidirectional models—BiRNN, BiGRU, and BiLSTM—in
terms of R2 and RMSE, along with their respective error
distributions.

The marked epochs in Figure 5 represent key "elbow
points" during the training of the models. The "elbow point"
in a training curve typically signifies the point at which
further training begins to yield diminishing improvements
in the error rate. In other words, this is the point at which
the models start to converge, and training beyond these
epochs leads to relatively minor reductions in the error. This
observation is particularly crucial from a computational ef-
ficiency standpoint, as it indicates an optimal stopping point
that can prevent excessive computational resource usage and
overfitting.

Identifying these "elbow points" is an empirical process
based on monitoring the model’s performance throughout
the training period. The depicted epochs were determined to
be the most effective in our case. This technique is widely
used in the ML community to optimise training and prevent
overfitting, a critical aspect for practical applications.

Our study of the error distribution results, illustrated in
Figure 5, demonstrates that our models’ error patterns diverge
from the conventional characteristics of a normal distribu-
tion. Nevertheless, it’s key to underline that despite these
variations, our models don’t exhibit a considerable bias,
and the error variance stays within permissible boundaries.
Importantly, the mean error is around zero, emphasising that
our models, by and large, avoid over or under fitting.

These findings illustrate that, despite the deviations from
a normal distribution in error patterns, the models can still
deliver precise, unbiased forecasts of solar power production
and almost follows kernel normal distribution. This under-
standing stands out as it demonstrates the models’ deftness in
dealing with the intrinsic unpredictability tied to solar power
generation. It highlights their capability to provide trustwor-
thy, data-driven results when interacting with intricate, real-
world datasets. Here, it is essential to clarify that the objective
behind this bias test analysis was not to show which error
distribution is suitable for the forecasting task but to under-
score the models’ unbiased nature. The results show that,
regardless of the observed error distribution, these models
offer unbiased forecasts which emphasise the robustness and
reliability of these models in solar power yield prediction.

Drawing from these insights, we propose the selection of
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FIGURE 4: RMSE and R2 for time series forecasting for 1/2 hour ahead on site 1 using site 1 dataset trained model. The
figures in the first row correspond to the number of used input features N = 3, and the figures in the second row correspond to
the number of used input features N = 7. From left to right: BiGRU, BiLSTM, and BiRNN models. Hyperparameters: Adam
optimiser, ReLu activation functions for the hidden layers, linear activation function for the output layer, learning rate = 0.001.
Dashed line for RMSE (Left red axis) and solid for R2 (Right blue axis).

the most fitting bidirectional model be guided by a combina-
tion of aspects - predictive accuracy, available computational
resources, and the type and volume of input features. This
considered approach aids in more customised optimisation
of solar power forecasting, consequently improving the profi-
ciency and practicality of renewable energy systems. Further-
more, recognising and managing the deviations from normal
distribution in error patterns enables a deeper comprehension
of model performance and promotes a consistent enhance-
ment of our forecasting models’ robustness.

Figure 6 showcases time series power yield forecasting
outcomes from multiple ML models. These models, tested
for a site with a 50MW nominal power, utilize either 3
or 7 input features and adopt an 8-hour look-back period,
effectively meaning 8 steps each of a half-hour interval to
forecast the solar power for the subsequent half-hour. Three
bidirectional models, namely BiRNN, BiGRU, and BiLSTM,
form the core focus of this analysis.

A closer look at Figure 6 brings to light a discernible trend:
models leveraging the full suite of 7 features (N = 7) tend
to have a performance edge over those restricted to just 3
features (N = 3). One critical factor behind this superior
performance is the inclusion of the ’actual power yield’
feature in the seven-feature setup. These features selection
can be used as evidence of the correlation coefficient analysis
and features selection criterion that we studied before in
Figures 1 and 4. That said, it’s vital to acknowledge the
practical considerations that govern feature selection in real-
world scenarios. Often, the availability of certain features,
especially time-series data for the actual power yield, might
be restricted due to various reasons – from data collection

challenges to resource constraints. The encouraging take-
away from our analysis is the model’s capability to churn out
reliable and relatively accurate forecasts even when it’s fed
with a pared-down feature set. This demonstrates the model’s
resilience and adaptability, and signifies that solar farms,
even those with fewer measurement tools or data constraints,
can still harness robust forecasting models. This adaptability
underscores the model’s value, especially in settings where
resources might be limited or data acquisition might pose
challenges.

Furthermore, the assertions and insights drawn from Fig-
ure 6 find resonance in the comprehensive results that are
presented in Table 3. The table, set for a detailed discussion
in the subsequent table, lays bare the numeric performance
metrics across an array of scenarios – ranging from different
feature inputs to season-based variations. This reinforces the
findings from the figure but also offers a multi-dimensional
understanding of the model’s performance.

Table 3 presents the performance of four different mod-
els—LSTM, BiRNN, BiGRU, and BiLSTM—across three
different seasons’ results (Winter, Summer, and both). The
performance is measured using various metrics, including
training and test R2, training and test RMSE, error variance
(σ2

e ), and the expectation of error (E[e]). The results are
shown for two different feature sets (N = 3 and N = 7).
As observed in the table, a more insightful analysis can be as
follows:

1) The BiRNN model demonstrates a comparable per-
formance in terms of test R2 to other more com-
plex models such as BiLSTM, despite its own lower
complexity. This hints towards BiRNN’s effectiveness
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FIGURE 5: Results for various setups of the ML models for three input features and look-back period of 4 hours (i.e., 8 look-
back steps with half an hour step size for solar power forecasting for half an hour ahead) for a site with nominal power of
50MW.

in learning from the provided data without requiring
complex architectures. However, one should also bear
in mind the significant vanishing gradient problems
associated with BiRNN, which might limit its ability
to learn long-term dependencies if the data involves
intricate temporal patterns.

2) The uni-directional LSTM and BiLSTM models have
architectures designed to tackle the vanishing gradi-
ent problem, leading to a significantly reduced effect.
However, their performance does not show a clear
advantage over the simpler BiRNN model. This could
be due to the nature of the solar power yield data, where
the benefits of the more sophisticated architectures are
not as pronounced. It’s also worth noting that the BiL-
STM model has higher complexity, which might lead
to increased computational costs and longer training
times.

3) The BiGRU model strikes a balance between complex-
ity and performance, with diminished vanishing gradi-
ent problems in comparison to BiRNN. Even though
it doesn’t noticeably outperform the BiRNN model, it
offers a competitive performance against the others.
Therefore, if there’s a need to balance performance

with computational efficiency in the realm of solar
power yield forecasting, the BiGRU model could be
an apt choice.

4) All the models show consistent performance improve-
ment when the number of input features increases from
N = 3 to N = 7, suggesting that a more comprehen-
sive feature set can boost the forecasting performance,
irrespective of the model architecture. This observation
could be harnessed in future researches by including
weather forecasting data as additional input features,
potentially elevating the accuracy of solar power yield
predictions without necessitating prior knowledge of
the exact power yield time series data.

5) The seasonal effect, as reflected in the performance ta-
ble, reveals that the models generally perform better in
Summer compared to Winter. This can be attributed to
the differences in weather patterns, cloud coverage, and
solar radiation between these two seasons. Therefore,
when evaluating the performance of different models
and choosing the most suitable one for solar power
yield forecasting, the seasonal effect should be taken
into account.

In conclusion, despite the challenges posed by vanishing
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FIGURE 6: Results for various setups of the ML models for 3 and 7 input features and look-back period of 4 hours (i.e., 8
look-back steps with half an hour step size for solar power forecasting for half an hour ahead) for a site with nominal power of
50MW.

gradients, the BiRNN model’s performance, coupled with
its simplicity, stands out. However, in choosing the most
suitable model for forecasting, it is imperative to consider
other factors, such as model complexity, computational cost,
seasonal impacts, and the specific attributes of the solar
power yield data. The BiGRU model serves as a balanced
alternative, and the augmentation of features can generally
enhance the performance across all architectures.

B. PERFORMANCE ON EDGE DEVICES FOR
HOUSEHOLD FORECASTING
In this section, we present the results associated with evalu-
ating the unidirectional LSTM model. The model testing on
edge devices is carried out on an ESP32-S3 MCU, which
boasts a dual-core XTensa LX7 processor operating at 240
MHz and 512 kilobytes of internal Static random-access
memory (SRAM). The choice of the ESP32-S3 stems from
its affordability and IoT-readiness, as it encompasses built-in
WiFi and Bluetooth capabilities, as well as a dual-core archi-
tecture that enables running multiple threads. This facilitates

the collection of footprint measurements of the ML model
while isolating background processes, providing a clearer
understanding of the TinyML performance for cost-effective
solar energy yield forecasting.

In Figure 7, the performance of unidirectional LSTM
models with 3 and 7 input features and a 4-hour look-back
period (i.e., 8 look-back steps with an hour step size for solar
power forecasting for half an hour ahead) for a site with
a nominal power of 50MW is displayed. Comparing these
outcomes to the previously discussed bidirectional models
(BiRNN, BiGRU, and BiLSTM), it’s clear that unidirec-
tional LSTM models exhibit similar performance levels. Yet,
one notable difference is the LSTMs’ tendency to converge
more gradually than other models. This slower convergence
can be a trade-off when considering their use on edge de-
vices. Although offering comparable accuracy levels, their
extended training times might pose concerns for resource-
limited devices. Nevertheless, the benefits of unidirectional
LSTM models in terms of computational efficiency and edge
device compatibility make them an appealing option for solar
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TABLE 3: Comparison of LSTM, BiGRU, BiLSTM, and BiRNN architectures and performance for solar power yield
forecasting for N = 7 and 3 input features and a look-back period of 4 hours (i.e., LB = 8 steps with half an hour step
size for solar power forecasting for half an hour ahead) for a site with nominal power of 50MW.

Season Performance metric Training R2 Test R2 Training RMSE Test RMSE σ2
e E[e] Training R2 Test R2 Training RMSE Test RMSE σ2

e E[e]

ModelNumber of features N=3 N=7

Summer

LSTM 0.913 0.931 0.079 0.072 14.710 -0.145 0.974 0.970 0.043 0.046 4.385 -0.062
BiRNN 0.914 0.933 0.079 0.071 14.564 0.252 0.976 0.980 0.041 0.038 4.084 -0.099
BiGRU 0.906 0.927 0.082 0.074 15.734 0.175 0.971 0.977 0.046 0.041 4.908 0.124
BiLSTM 0.908 0.928 0.081 0.073 15.393 -0.198 0.972 0.976 0.045 0.042 4.852 0.010

Winter

LSTM 0.885 0.881 0.094 0.093 20.145 -0.027 0.965 0.964 0.052 0.052 6.111 0.025
BiRNN 0.888 0.874 0.093 0.098 19.502 -0.317 0.965 0.967 0.052 0.051 6.044 0.208
BiGRU 0.884 0.863 0.094 0.102 20.245 -0.259 0.963 0.965 0.053 0.052 6.387 -0.093
BiLSTM 0.883 0.862 0.095 0.102 20.306 -0.280 0.962 0.959 0.054 0.056 6.666 0.196

All

LSTM 0.900 0.886 0.086 0.091 17.524 -0.107 0.972 0.974 0.046 0.044 4.812 -0.101
BiRNN 0.901 0.889 0.086 0.090 17.122 0.430 0.970 0.969 0.047 0.049 4.923 -0.450
BiGRU 0.896 0.884 0.087 0.092 17.965 -0.267 0.970 0.970 0.047 0.048 5.132 0.006
BiLSTM 0.897 0.886 0.087 0.091 17.906 0.040 0.969 0.969 0.048 0.048 5.229 -0.006
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FIGURE 7: Results for various setups of the unidirectional LSTM ML models for 3 and 7 input features and look-back period
of 4 hours (i.e., 8 look-back steps with an hour step size for solar power forecasting for half an hour ahead) for a site with
nominal power of 50MW.

power forecasting.
Table 4 presents the performance comparison of LSTM

models for solar power forecasting on edge IoT devices for
various setups of the unidirectional LSTM ML models for 7
input features and a look-back period of 8 hours (i.e., 8 look-
back steps with an hour step size for solar power forecasting
for half an hour ahead) for a site with a nominal power of
30 MW. In the table, various hyperparameters, such as the
number of LSTM cells and look-back steps, are adjusted to
understand their impact on forecasting performance, model
flash size, and inference rate. The performance metrics con-
sidered include train and test RMSE, train and test R2, model
flash size (Bytes), and inference rate (Hz).

The selection of optimal hyperparameters is critical in
achieving an effective balance between model performance
and computational efficiency, especially when deploying
these models on edge IoT devices with limited computational
resources. As observed in the table, a more insightful analysis
can be as follows:

1) Look-back steps: This represents the number of pre-
ceding time steps that are considered as input features
for the LSTM model to forecast. In our study, different
look-back periods (8 and 4) are evaluated. Models
using a 4-step look-back consistently outperform those
with an 8-step look-back. This indicates that using a
shorter sequence of historical data effectively captures

the most influential temporal patterns for accurate fore-
casting. The performance improvement might be due
to focusing on more recent and hence more relevant
information. Alternatively, it may be the case that
longer look-back steps increase the model’s complex-
ity, leading to less optimal results.

2) Number of LSTM cells: This refers to the complexity
of the LSTM model, denoting the number of hidden
units or memory cells in the LSTM layers. We test with
different configurations, such as 128 + 64 + 32, 64 +
32 + 24, and so forth. Models with a higher number of
LSTM cells generally exhibit improved performance,
as indicated by lower train and test RMSE values.
However, there is a trade-off. More LSTM cells neces-
sitate more computations, which result in a decrease
in the inference rate. Hence, for an edge IoT device
with limited computational resources, there’s a need to
select an optimal number of LSTM cells that balances
forecasting accuracy and computational efficiency.

3) Train and Test Metrics (RMSE and R2): These metrics
evaluate the model’s performance on both the training
and testing datasets. Lower RMSE values and higher
R2 values signify better model performance. The table
reveals that the test R2 values are generally higher than
the corresponding train R2 values, which implies our
models are not overfitting and can generalise well to
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TABLE 4: Performance comparison of LSTM models for solar power forecasting on edge IoT devices for various setups of the
unidirectional LSTM ML models for 7 input features and look-back period of 4 and 2 and hours (i.e., 8 and 4 look-back steps
with half an hour step size for solar power forecasting for half an hour ahead) for a site with nominal power of 30MW.

Look back # steps N1+N2+N3 # of units Train RMSE Test RMSE Train R2 Test R2 Model flash size (Bytes) Inference rate (Hz)

8 128 + 64 + 32 0.0384 0.0631 0.9798 0.9475 102,848 19.05
8 64 + 32 + 24 0.0494 0.0580 0.9662 0.9560 51,592 57.14
8 32 + 16 + 20 0.0524 0.0581 0.9617 0.9552 38,176 103.16
8 16 + 8 + 16 0.0531 0.0576 0.9611 0.9558 34,304 197.24
8 8 + 4 + 8 0.0528 0.0577 0.9612 0.9559 33,656 396.37

4 128 + 64 + 32 0.0480 0.0568 0.9691 0.9569 89,032 41.85
4 64 + 32 + 24 0.0503 0.0546 0.9655 0.9590 36,680 97.27
4 32 + 16 + 20 0.0528 0.0536 0.9624 0.9608 22,792 206.80
4 16 + 8 + 16 0.0550 0.0543 0.9592 0.9593 18,920 420.56
4 8 + 4 + 8 0.0564 0.0547 0.9568 0.9587 17,752 826.19

unseen data.
4) Model Flash Size: This is the amount of storage the

model requires, a vital factor when deploying ML
models on edge IoT devices, which typically have lim-
ited memory. As the complexity of the LSTM model
(number of LSTM cells) increases, the model flash size
also expands. Thus, it’s crucial to find a model with the
right level of complexity that fits within the device’s
storage constraints for successful deployment on edge
devices.

5) Inference Rate: This denotes the computational speed
or how many inferences the model can make per sec-
ond (Hz). As the LSTM model’s complexity (number
of LSTM cells) increases, the inference rate generally
decreases. Simpler models with fewer LSTM cells and
look-back steps are computationally more efficient and
provide higher inference rates.

In conclusion, based on these results, an LSTM model
with 64 cells and a 4-step look-back period appears to
offer the best balance between predictive performance and
computational efficiency. It’s therefore an excellent candi-
date for deployment on edge IoT devices for solar power
forecasting. This configuration achieves a test R2 of 0.9590,
demonstrating high predictive accuracy. Simultaneously, it
respects the computational and storage limitations of edge
devices, making it suitable for real-world applications in both
industrial and residential scenarios.

C. PRACTICAL IMPLICATIONS FOR INDUSTRIAL AND
HOUSEHOLD APPLICATIONS
This investigation’s outcomes bear several pragmatic impli-
cations for both industrial and domestic applications. En-
hancing the precision of solar energy forecast through the
proposed LSTM models can support the general effectiveness
and solidity of energy networks, diminishing the dependency
on conventional power origins and promoting the incorpora-
tion of renewable energy.

Industrial Applications: In industrial environments, pre-
cise solar energy forecasting is essential for optimising en-
ergy utilisation and reducing operational expenses. By har-
nessing the studies models, industries can more effectively

arrange their energy-intensive procedures during periods of
heightened solar energy generation, lessening their reliance
on grid-supplied electricity and minimising their energy ex-
penditures. Furthermore, solar energy forecasting can as-
sist utilities in managing energy demand more proficiently,
resulting in enhanced grid stability and decreased energy
squandering.

Household Applications: For household users, solar energy
forecasting can play a crucial role in optimising solar panel
usage and energy storage systems. Homeowners can employ
forecasts to organise their energy consumption, guaranteeing
that they exploit the solar energy generated by their panels
to the greatest extent with low-cost solutions. For instance,
households can schedule energy-intensive tasks, such as
charging electric vehicles or operating appliances, during
times when solar energy production is anticipated to be high.
Moreover, precise solar energy forecasts can aid homeowners
in determining when to store solar energy in their batteries,
enabling them to utilise stored energy during periods of low
solar generation or elevated electricity prices.

Edge IoT Devices: Deploying unidirectional LSTM mod-
els on edge IoT devices for solar power forecasting can
cultivate a more decentralised and cost-effective energy man-
agement ecosystem. By performing solar power forecasting
directly on edge devices like smart meters or home energy
management systems, households can reap the benefits of
real-time forecasting without relying on external servers or
cloud services, minimising latency and safeguarding data
privacy. Furthermore, edge devices can interact with other
smart appliances within the residence to fine-tune energy
usage habits, fostering a greener and more energy-conscious
living space.

D. LIMITATIONS AND FUTURE RESEARCH DIRECTIONS
Despite the promising results obtained, we can address sev-
eral limitations that should be carefully taken into account,
which also pave the way for future research directions.

Feature Selection: Although the current study considers
multiple features for predicting solar energy yield, additional
features or feature engineering techniques might further im-
prove the prediction accuracy of the models. Other input
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features may also consider wind speed, cloud cover, time
of day, seasonal changes and forecasted weather conditions
as they are commonly used as features in solar panel power
forecasting.

Model Selection: The study concentrates on comparing
certain types of ML models. Nonetheless, it merits noting that
other ML or DL models might potentially provide superior
performance in solar energy forecasting. Alternative models,
such as hybrid models that amalgamate different ML or DL
algorithms, or innovative ML or DL architectures explicitly
crafted for time series forecasting, should also be contem-
plated.

Hyperparameter Tuning: The tuning of hyperparameters
is a key facet of our methodology. It is particularly critical
in the context of TinyML applications and edge inference,
where resource constraints necessitate highly efficient and
optimised models.

A careful choice of hyperparameters such as learning rate,
number of hidden layers and units, and look-back steps, can
significantly influence the forecasting model’s performance.
For instance, the learning rate orchestrates the magnitude of
adjustments made to the model’s weights during learning.
An optimally selected rate ensures effective reduction in
training loss, while inappropriate rates can cause unstable
training or slow convergence. Among the hyperparameters,
the learning rate stands out in significance as underscored
by [32], [33] where the learning rate often emerges as the
most influential hyperparameter, with its fine-tuning being of
paramount importance when employing stochastic gradient
descent.

Furthermore, the model’s complexity, as determined by
the number of hidden layers and units, should be carefully
chosen to effectively capture underlying patterns in the data
without leading to overfitting, a critical concern in TinyML.
The choice of look-back steps impacts the temporal depen-
dencies the model can learn, striking a balance between
richer historical data integration and computational load.

In this study, guided by the significance of learning rate
as emphasised in [32], [33], we employed grid search and
random search for hyperparameter tuning across the BiGRU,
BiLSTM, BiRNN, and unidirectional LSTM models. Specif-
ically, the learning rate was carefully selected from a log-
scale set of {10−4, 10−3, 10−2, 10−1} during grid search.
The objective was to pinpoint hyperparameter combinations
conducive to optimal solar power yield forecasting losses and
ensuring the models’ suitability for edge inference.

While our hyperparameter exploration was thorough, we
acknowledge that advanced optimisation techniques like ge-
netic algorithms, particle swarm optimisation, and Bayesian
optimisation could further refine model performance. By
more effectively navigating the hyperparameter space, these
techniques can pinpoint optimal values, and their integration
into future studies could bolster the performance of our
forecasting models.

Edge Devices: To ensure that the LSTM model used for
low-cost household forecasting on edge devices is appli-

cable and efficient in practice, it is necessary to conduct
extensive evaluations on various edge device configurations.
Different edge devices may have different computational
capabilities and hardware specifications, which can affect the
performance of the LSTM model. Moreover, the training and
inference times of the LSTM model may vary depending on
the edge device’s processing power and memory capacity.

Impact of Solar Farm Size on Edge-based Forecasting:
The size of solar installations significantly impacts the pre-
dictability of solar power yield and, consequently, the com-
plexity and performance of forecasting models deployed on
edge devices. The application of TinyML techniques for
these scenarios, considering their inherent constraints and
opportunities, is crucial.

Industrial applications often feature solar farms that span
vast areas, leading to an inherent averaging effect on solar
irradiance due to this extensive coverage. Weather-induced
localised fluctuations in solar power yield are averaged over
the large solar farm area, resulting in relatively stable and
predictable power output. This stability can be effectively
harnessed by TinyML models operating on edge devices
in these setups, simplifying the task of forecasting peak
production periods, typically between 7:00 AM to 11:00 PM
on weekdays, and aligning them with high-energy-demand
operations.

In contrast, household applications typically have limited
areas for solar panel installation, making them more prone
to yield fluctuations due to variable weather conditions. This
situation introduces higher variability and unpredictability in
solar power yield, thereby complicating the task of forecast-
ing peak and off-peak production hours. Common residential
peak hours are from 5:00 PM to 8:00 PM on weekdays and
on weekends, while off-peak hours are usually on weekdays
before 4:00 PM and after 9:00 PM, with weekends having a
more flexible off-peak schedule. It is worth mentioning that
the off-peak and on-peak periods specified pertain to average
timings in the USA. It’s notable that the distinction between
off-peak and on-peak periods can vary between summer and
winter, the geographical area as well as the time throughout
the year [34], [35]. Such a challenge necessitates TinyML
models to incorporate a broader and more dynamic range
of information, including real-time weather forecasts and
local shading conditions, among other features, to generate
accurate predictions on edge devices.

In both contexts, our proposed TinyML models are capa-
ble of predicting solar energy yield effectively, accounting
for these distinct dynamics. For industrial applications, the
models can leverage the relative stability of solar yield to
provide reliable forecasts on edge devices, aiding in opti-
mising energy-intensive processes. In contrast, for residential
settings, our models can adeptly manage the additional com-
plexities by integrating a wider array of predictive features,
ensuring precise and efficient predictions even on resource-
constrained edge devices.

Moreover, it is essential to evaluate the appropriateness of
the LSTM architecture for implementation on edge devices.
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Notably, TensorFlow Lite Micro currently supports only sim-
ple unidirectional LSTMs. This implies that more intricate
LSTM architecture variants, such as BiRNNs, BiLSTMs, and
BiGRUs, might not be compatible with edge devices utilising
TensorFlow Lite Micro. Hence, it becomes imperative to
consider the constraints and capabilities of TensorFlow Lite
Micro when devising LSTM models for low-cost household
forecasting on edge devices.

Based on the limitations identified, several avenues for
future research can be explored:

Expanding the dataset: It is important to investigate new
results based on some new datasets with different charac-
teristics and climate conditions and regions. This will give
more insight into the applicability of employing ML on edge
devices to improve the design space of AI-powered smart
solar systems and generally smart grids.

Advanced Feature Engineering in TinyML: The adoption
of advanced feature engineering techniques can enhance the
predictive power of TinyML models for solar power fore-
casting on edge devices. These techniques could include in-
corporating additional data sources, calculating derived fea-
tures like moving averages, standard deviations over rolling
windows, or using time-lagged values to capture complex
temporal patterns. External data such as weather conditions
could also be integrated for enriched context.

However, the introduction of complex features increases
computational demands, which can pose a challenge for
resource-limited edge devices. Balancing the need for model
performance and computational efficiency is therefore cru-
cial. This could involve employing advanced feature selec-
tion methods to retain only the most impactful features, keep-
ing the model simple and computationally feasible. Thus, the
fine-tuning of feature engineering, in line with hyperparam-
eter tuning, is key to maximizing model performance under
the constraints of edge inference.

Exploring Alternative Models: While our study primarily
utilized unidirectional LSTM models for their effectiveness
in time-series forecasting and compatibility with TinyML in
edge IoT devices, we also included bidirectional models like
BiGRU and BiLSTM for a more comprehensive understand-
ing of sequential data. This diverse model selection not only
aligns with current computational capacities but also sets a
benchmark for future research. As technology progresses,
especially in edge computing, investigating more advanced
models, which could become deployable on such devices,
will be a key area of future work. This approach lays the
groundwork for ongoing advancements in solar energy yield
forecasting.

Potential alternatives could include CNNs, valuable for
spatial data patterns, and hybrid models like CNN-LSTM or
Transformer-LSTM, merging the benefits of both architec-
tures. Nevertheless, the increased computational complexity
of these alternatives should be considered, especially in the
context of TinyML applications with resource limitations.
Therefore, model selection should harmonise computational
efficiency and predictive performance. In many instances,

simpler models like the LSTM may offer the best trade-
off, delivering solid forecasting outcomes without unneces-
sary complexity, as exemplified by the models in this study.
Hence, the advantages of more complex models should be
carefully examined against their computational costs.

Incorporating Climate Change: Moving forward, it’s es-
sential to acknowledge the influence of changing climate
aspects on solar power yield prediction models. The in-
escapable progression of climate change is reshaping weather
patterns and solar irradiance, consequently impacting solar
power production. Integrating these shifting climate factors
in future investigations will contribute to a more durable
and reflective forecasting model, accounting for long-term
ecological shifts. This might entail the use of dynamic mod-
els designed to adjust to climate variable modifications, or
introducing climate change projections as an extra feature in
the model.

V. CONCLUSION
This study underscores the transformative potential of com-
bining advanced ML methodologies with TinyML for solar
energy yield prediction in low-cost, household-level solar
farms. Our research delivered in-depth evaluation of four ML
architectures (BiGRU, BiLSTM, BiRNN, and unidirectional
LSTM), offering valuable guidance on their applicability and
performance under the constraints of edge devices. Our work
broadens the understanding of deploying smart, cost-efficient
solutions in IoT environments and emphasises the necessity
to consider the limitations of edge devices when choosing
suitable ML architectures.

While our models exhibit promising accuracy, it is worth
noting that the efficacy of our solution might vary based on
factors like dataset characteristics, edge device capabilities,
and the specificities of solar installations. For instance, the
size and type of solar installations, whether household or
industrial, significantly influence the predictability of solar
yield. As larger installations can provide averaged, more
stable outputs, edge-device models may find such contexts
easier for prediction. Smaller, household installations, with
their inherent yield variability, pose a more complex fore-
casting challenge.

Future research directions include exploration of other ML
or DL models, innovative hybrid architectures for time-series
prediction, and the integration of advanced hyperparameter
tuning methods to enhance solar energy yield prediction
accuracy. Ultimately, our work paves the way for improved
resource planning and energy management in solar energy
systems, promoting a more sustainable and efficient energy
landscape at both the household and industrial levels.

.
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