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Host- plasmid network structure in
wastewater is linked to antimicrobial
resistance genes

Alice Risely 1,6, Arthur Newbury 2,3,6, Thibault Stalder 4,5,
Benno I. Simmons 2, Eva M. Top 4,5, Angus Buckling2,3 & Dirk Sanders 2,3

As mobile genetic elements, plasmids are central for our understanding of
antimicrobial resistance spread in microbial communities. Plasmids can have
varying fitness effects on their host bacteria, which will markedly impact their
role as antimicrobial resistance vectors. Using a plasmid populationmodel, we
first show that beneficial plasmids interact with a higher number of hosts than
costly plasmids when embedded in a community with multiple hosts and
plasmids. We then analyse the network of a natural host-plasmid wastewater
community from aHi-Cmetagenomics dataset. As predicted by themodel, we
find that antimicrobial resistance encoding plasmids, which are likely to have
positive fitness effects on their hosts in wastewater, interact with more bac-
terial taxa than non-antimicrobial resistance plasmids and are dis-
proportionally important for connecting the entire network compared to non-
antimicrobial resistance plasmids. This highlights the role of antimicrobials in
restructuring host-plasmid networks by increasing the benefits of anti-
microbial resistance carrying plasmids, which can have consequences for the
spread of antimicrobial resistance genes through microbial networks. Fur-
thermore, that antimicrobial resistance encoding plasmids are associated with
a broader range of hosts implies that they will be more robust to turnover of
bacterial strains.

Plasmids playa key role in the spreadof antimicrobial resistance (AMR)
and other genes (e.g., metal resistance, biodegradation, virulence),
both within and between bacterial taxa1–5. Understanding the ecolo-
gical mechanisms that underpin plasmid transmission within bacterial
communities is important for combating the spread of AMR and
associated bacterial epidemics6. However, our knowledge about how
plasmids interact with their hosts, which host they can infect, and the
dynamics of spread within communities is mostly gained from
laboratory research on a limited number of bacteria and plasmids.
Therefore, there remains considerable uncertainty surrounding the

role of plasmids within larger communities in nature. This limits our
understanding of the ecological and evolutionary processes driving
plasmid transmission across natural microbial communities. An eco-
logical network approach, where plasmids are linked to their bacterial
hosts in natural environments, can provide important insights about
the realised plasmid host range (observed range within a specific
community) and AMR transmission pathways across these networks.

While natural plasmid–host networks are likely to be very com-
plex and affected by a wide range of variables such as nutrients and
habitat structure7,8, it is possible to make some general predictions.
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Theoretical and experimental evidence suggests that plasmids that
have positive fitness consequences for their hosts should interact with
a wider range of hosts9, thereby being central for the formation of
network structure. Classical single host–single plasmid models
demonstrate that persistence, as well as the frequency of a plasmid in a
host population, are largely determined by the fitness effects it has on
its hosts10, with fixation in the population expected when the plasmid
confers a benefit9. Furthermore, a plasmid within a microbial com-
munity need only be able to maintain a high frequency in one host
population to continually re-infect other bacteria in the community11.
Thus, even if a plasmid is only beneficial to one or a subset of bacterial
strains in a community, it may maintain a relatively high frequency
amongst other strains9. Such exposure to and conjugation between
multiplebacterial strains can also lead to the evolutionofgeneralism in
plasmids12, i.e. a reduction in the costs they impose on multiple hosts.
Therefore, beneficial plasmids (at least to some hosts) should have
higher contact rates with a range of hosts, potentially leading to the
evolution of generalist plasmids. So far, however, there is (1) a lack of
theory relating to host–plasmid network formation in the case of
multiple (potentially incompatible) plasmids. This is a significant lim-
itation since natural communities contain a wide range of plasmids.
Moreover, there is (2) an absence of real-world data, comparing the
structure of beneficial versus non-beneficial plasmid–host networks,
which in the presence of antibiotics equates on average to plasmids
that carry relevant AMR genes versus plasmids that do not.

In this work, we combine theory and observation to address both
issues. We use a plasmid populationmodel to explore the relationship
between the positive vs negative effects plasmids have on their hosts
and the number of hosts they interact significantly with when
embedded in a community with multiple hosts and multiple plasmids.
Recent work applied a similarmodel to investigate the persistence of a
single plasmid in amicrobial community13. We extend this approach to
includemultiple plasmids, whose fitness effects vary and are unique to
the specific host–plasmid combination. This addition to themodelling
framework is crucial for making predictions about plasmid population
dynamics in natural communities. To construct and analyse a
host–plasmid interaction network based on a natural microbial com-
munity we make use of recent technical and analytical advances. We
use Hi-C metagenomics14–16 to link mobile genetic elements to their

bacterial hosts in a wastewater sample14. We determine host–plasmid
linkage from this natural microbial sample by using geNomad17, a
recently developed identification tool for mobile genetic elements, to
identify clusters of plasmid contigs that originate from the same cell
(hereafter termed ‘putative plasmids’). We test whether AMRpresence
on these putative plasmids is associated with altered interaction dis-
tributions with 374 bacterial metagenome-assembled genomes
(MAGs). While plasmids can carry a range of host-beneficial genes, we
make the assumption that in municipal wastewater putative plasmids
that carry AMR genes will be on average more beneficial than those
that do not. Antibiotics are commonly found in wastewater18–22 often
exceedingminimal inhibitory concentrations (MICs) and predicted no‐
effect concentrations (PNECs), especially before treatment23,24.
Therefore, antibiotics in wastewater are likely to confer an advantage
to the majority of AMR genes25,26. Here, we show that plasmids that
carry AMR genes interact with more bacterial hosts (i.e., have a higher
degree in the network, which describes the number of connections the
plasmid has to other host taxa) than plasmids without AMR genes, and
thereby lead to a more connected network. We further discuss the
potential of this analytical approach to understand the spread of AMR.

Results
Model
Our populationmodel extends the work by Alonso del Valle et al.13 and
describes the dynamics of three plasmids in a community of eight
bacterial strains. Plasmids have varying fitness effects ranging from
imposing fitness costs to being beneficial. For each community, once
themodel reaches equilibrium, we calculated the network degree for a
focal plasmid as the number of associated bacterial hosts in which it
makes up at least 1% of the population.

Plasmids that benefited a subset of hosts in the model showed a
higher network degree and this degree increased with the number of
hosts they benefit. However, there was a non-linear relationship
between positive interactions, conjugation rate and degree, whereby
the increase in degree caused by positive interactions was greatest at
an intermediate conjugation rate value 10−7 (Figs. 1a and S1)). Here,
conjugation rates were the same for each plasmid/host combination in
each simulation run, but with a 10-fold increase in conjugation rate
within vs between host strains. When conjugation rates were lower,

Fig. 1 | Plasmid population dynamics model results. a Mean degree (number of
hostswith at least 1% infection rate for the focal plasmid) of a plasmid embedded in
a community of eight hosts and three plasmids. Estimates are shown for a range of
conjugation rates and the number of positive interactions for the focal plasmid,
whilst both other plasmids confer only negative effects on hosts and all other
parameter values are assigned randomly as detailed in the “Methods” section.
Panels b–d highlight the way in which a plasmid which is beneficial to a subset of
hosts can spread throughout the rest of the host community as a result, and show
why the results in a are sensitive to conjugation rate γ. Each panel shows the first
100h of a 3 × 3 bacteria plasmid network. Here, all three plasmids have identical
negative interactions with all three hosts, apart fromplasmid 1, which has a positive

interaction with host C and is slightly more costly to hosts A and B than the other
two plasmids. b As this plasmid spreads through the host population, it increases
host C’s density and resultantly transfers to the other two hosts at a high rate,
supplanting the other two plasmids. In panel c with a 100-fold increase in con-
jugation rate, all three hosts quickly become approximately fully infected. Since
conjugation frequency then becomes negligible with so few susceptible bacteria,
fitness effects determine which plasmids will thrive in a given host population.
Thus, plasmid 1 is steadily being lost from hosts A and B. In panel d there is a 100-
fold decrease in conjugation rate compared with (b). Here, all three plasmids are
being lost from hosts A and B since the rate of conjugation is not sufficient to
overcome the fitness costs incurred.
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there was less opportunity for plasmids prevalent within a particular
host to invade another host population via inter-strain conjugation.
Whereas, at higher conjugation rates, the number of susceptible bac-
teria within each population fellmore rapidly, leaving less opportunity
for plasmids to move between strains and allowing the within-host
dynamics to be governed more by the fitness effects of each plasmid
(Fig. 1b–d). The same pattern emerges for a range of growth rates and
plasmid loss parameters (shown in Figs. S1 and S2). Overall, as with
previous models involving only a single plasmid9, beneficial interac-
tions lead to a higher degree in the network, though herewithmultiple
incompatible plasmids degree did not increase linearly with the con-
jugation rate.

Wastewater network
We tested whether the predictions from the population model were
empirically supported by a bacteria–plasmid network generated from
a natural microbial community. The inferred wastewater
bacteria–plasmid network was made up of 374 bacterial MAGs
(metagenome-assembledgenomes) and 109putative plasmids (Fig. 2a,
b). Most MAGs identified belonged to either the class Betaproteo-
bacteria (Phylum Pseudomonadota), Gammaproteobacteria (Phylum

Pseudomonadota), Clostridia (Phylum Firmicutes), Bacteroidia (Phy-
lumBacteroidetes) or Actinobacteria (PhylumActinobacteria). The full
network clustered strongly by bacterial taxonomy, with MAGs
belonging to Pseudomonadota, Firmicutes, and Bacteroidetes largely
clustering separately (Fig. 2a). The large majority of AMR plasmids (21
of 32) clustered together with Gammaproteobacteria (Fig. 2a, b), with
this Gammaproteobacteria cluster heavily represented by the genus
Acinetobacter. Most of the AMR genes found on
Gammaproteobacteria-associated plasmids were identified as the
protein msr(E) (Fig. S3), an ABC-F subfamily protein that confers
resistance to a range of antibiotics including erythromycin and
streptogramin27. Taxa belonging to Bacteroidia were associated with
two plasmids carrying tet(Q) and aadS proteins, associated with tet-
racycline and streptomycin resistance, respectively28,29.

Bacterial MAGs were associated with an average of 4 putative
plasmids (median = 2, min. = 0, max. = 42), whilst putative plasmids
were associated with an average of 14 MAGs (median = 10, min. = 1,
max. = 112). Note that this does not equate to one bacterial cell having
42 plasmids; rather, 42 putative plasmids were found to be associated
with that MAG across its entire population within the wastewater
community, which describes the degree of that MAG in the network.

Class
c__Betaproteobacteria
c__Gammaproteobacteria
c__Clostridia
c__Bacteroidia
c__Actinobacteria
Other

a

b

Plasmid
Bacteria

Plasmid with AMR
Bacteria without AMR

*

**

Bacterial class

Plasmid/bacteria

Plasmid AMR

BACTERIA

PLASMIDS AMR No AMR

Fig. 2 | Bacteria–plasmid networks based on normalised Hi-C linkage. a The full
bacteria–plasmid network is made up of 374 bacterial MAGs and 109 putative
plasmids, with MAGs coloured by class. Plasmids are represented by stars, and
plasmids with AMR are highlighted in pink. Node size represents how many other
nodes they are connected to; b same network as (a) but visualised as a bipartite

network, with plasmids carrying AMR genes and their links to MAGs highlighted in
pink. The size of the bars represents how many Hi-C connections the MAG or
plasmid had. The width of the edges in both a and b represents the strength of the
association (i.e., thicker edges represent more Hi-C connections). Data to replicate
this figure is contained in the source data file.
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MAGs that associatedwith a high number of plasmids were distributed
across the phylogenetic tree, although MAGs belonging to Betapro-
teobacteria, Gammaproteobacteria, and Bacteroidia tended to
associate with a higher number of plasmids than those belonging to
Clostridia and Actinobacteria (Kruskal X2 = 88.7, p <0.001; Fig. 3a).
Putative plasmids that were associated with AMR genes were more
widely distributed across MAGs (median AMR= 15.5, median no
AMR=8; Wilcoxon W = 750, p = 0.0013; Fig. 3b) and more phylogen-
etically diverse suite of bacterial hosts (WilcoxonW = 677, p =0.0002;
Fig. 3c) than those that were not associated with AMR genes.

We investigated the link between likely beneficial plasmids and
network structure by comparing sub-networks based on whether
putative plasmids are associatedwith AMR or not. When putative AMR
plasmids were excluded (Fig. 3d; 205 bacterialMAGs and 32 plasmids),
networks were made up of more clusters, were more modular (have a
higher number of separated sub-networks that clustered strongly by
class) and less nested (nestedness means the presence of highly gen-
eralist plasmids linking the network, with rare specialist plasmid links
are already provided by the generalists) than networks based on solely
AMR putative plasmids (Fig. 3e; 203 bacterial MAGs and 77 plasmids).
Putative plasmids carrying AMR genes further connected Pseudomo-
nadota to other phyla linking large parts of the whole network. We
additionally focused on networks formed by Pseudomonadota and
their plasmids and found similar differences in network structure
within this bacterial phylum compared to the full network (Fig. S4).

We next visualised the distribution of the 10 putative plasmids
with the highest network degree (super generalists) across the bac-
terial phylogenetic tree (Fig. 4). Putative plasmids with the highest
degree were largely shared amongst members of the same phylum,
although some were occasionally shared more widely. Putative plas-
mids that were associated with Pseudomonadota were often shared

across both Beta- and Gammaproteobacteria (Fig. 4). Whilst most
putative plasmids remainundescribed, plasmid 2 (Fig. 4)was identified
as a broad range plasmid belonging to the IncP-β group.

Discussion
Ourmodel predicts that in communities withmultiple bacterial strains
and plasmids, beneficial plasmids will be associated with a higher
number of uniquehosts than costlyplasmids.Thenetworkanalysis of a
natural complex microbial community from a wastewater sample
reflects those predictions, with both approaches providing critical
insights into the ecology of AMR spread by plasmids in complex
communities. We found that while the natural plasmid–host commu-
nity in the wastewater sample was dominated by more specialist
putative plasmids, those carrying AMR genes tended to be more
generalist and increased the connectivity of the overall network. As
predicted by the model, the network structure for the AMR
plasmid–host subnetwork differed from the non-AMR plasmid net-
work. The AMR plasmid–host network showed higher plasmid gen-
eralism, with an overall higher level of connectedness. Further, we
found much clearer phylogenetic structuring in the non-AMR plasmid
network. This shows that AMR plasmids play an important role in
connecting MAGs across bacterial phyla.

Ourmodel and data from experimentalmicrobial communities9,30

suggest that the reason for these patterns are two different broadly
categorised types of plasmids: (1) Those that are costly for the host are
more specialised and (2) plasmids that are beneficial for the host are
more generalist. In our model, beneficial plasmids reached higher
prevalence in their hosts which then increased the likelihood of
transmission to other strains. These dynamics lead to highly con-
nected plasmid–host networks. It is reasonable to think that AMR
genes can be directly beneficial in the wastewater environment

c__Actinobacteria

c__Bacteroidia

c__Clostridia

c__Gammaproteobacteria

c__Betaproteobacteria

0 1 5 10 20 30 40
Number of plasmids per MAG
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AMR absent
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Number of MAGs per plasmid

b
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c
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14.07
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d
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30.30
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e

Bacterial class
c__Betaproteobacteria

c__Gammaproteobacteria

c__Clostridia

c__Bacteroidia

c__Actinobacteria

Other

Plasmid
Bacteria

Plasmid with AMR
Bacteria without AMR

*

**

Plasmid/bacteria

Plasmid AMR

Bacterial classBacterial class

Fig. 3 | Network structure and effect of AMR plasmids, based on 374 bacterial
MAGs and 109 putative plasmids. a Number of plasmids per bacterial MAG, split
by bacterial class. Points represent unique MAGs. b Number of MAGs per putative
plasmid, split by whether plasmids were associated with antimicrobial resistance
genes (AMR). c Phylogenetic breadth of bacterial hosts, split by whether plasmids
were associated with AMR. Points in b and c represent unique putative plasmids;
Sub-networks and network statistics when retaining only d plasmids without AMR

genes and e plasmids with AMR genes. Stars represent plasmids and circles MAGs,
with AMR plasmids highlighted in pink. Widths of the edges represent the strength
of theHi-C connection,whilst node size reflects nodedegree. Thephylogenetic tree
in a is based on bacterial taxonomy. Boxplots for a–c show the interquartile range
and median. The whiskers extend no further than 1.5*IQR from the hinge. Data to
replicate this figure is contained in the source data file.
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because they can confer a selective advantage even in the presence of
low concentrations of antibiotics and other biocides31. Even if not
directly beneficial in the current wastewater environment experienced
by these organisms, AMR genes will almost certainly have provided a
benefit in the environments they originate from, such as hospitals and
a community of people consuming various antibiotics. In the presence
of antibiotics, we can expect the dynamics predicted by the model,
with beneficial AMR plasmids becoming more prevalent, spreading
faster and coming in contact with a higher number of bacteria. Recent
experiments using simplified bacteria–plasmid networks demonstrate
that short-term growth rate advantages conferred by a beneficial
plasmid can result in greater plasmid generalism9. Specifically, if a
plasmid increases the frequency of its host, the plasmid then has
greater opportunities to be transmitted to other host taxa. While the
distribution of hosts of a plasmid canbe influencedby factors affecting
its ability to transfer into a new host, after entry it is primarily the
plasmid-encoded replication system and its interaction with host fac-
tors that determines the ability of a plasmid to survive in that host32,33.
This suggests that increased ecological generalism of beneficial plas-
mids could in turn promote greater evolutionary generalism as a
consequence of mutualistic coevolution for plasmid maintenance
occurring between plasmids and the multiple hosts they interact
with34. Note that we can’t distinguish ecological and evolutionary
generalism within the natural community studied here.

Interestingly, observational studies across biological systems
such as plant–insect or tree–parrot communities describe similar
patterns, where interaction networks dominated by (trophic) antago-
nists tend to have fewer generalist interactions than mutualistic
networks35–37. Theory suggests that more generalism may lead to
greater stability in communities dominated bymutualistic interactions
(i.e., species and functional traits are less likely to go extinct, resulting
in changes in network properties), while generalism decreases the
stability of antagonistic communities35. Theory also predicts that
coevolution may drive this pattern under the assumption that trait

matching (e.g., attack-defence traits) determines the strength of
antagonistic interactions while trait differences (e.g., barriers for
transmission) determine mutualistic interactions38,39.

While greater generalismassociatedwithAMRplasmids obviously
has important implications for the spread of the specific AMR genes
encoded by the plasmids, it is also likely to affect the spread of addi-
tional AMR genes, even those not currently under selection. First, a
new AMR gene that gets incorporated into a generalist plasmid will
have more chance to spread. Second, generalist plasmids are more
likely to acquire additional AMR genes (e.g., by transposition), given
the greater diversity of hosts they interact with. However, it is likely
that there are higher costs for the hosts associated with a higher
number of AMR genes on mobile genetic elements, suggesting that
there is an upper limit40. Generalist plasmids and in particular gen-
eralist plasmids with AMR were mostly associated with Gammapro-
teobacteria and the genus Acinetobacteria, supporting other findings
on the importance of this genus for harbouring diverse AMR profiles41.
Generalist AMRplasmids assumed a central role in the overall network
by linking Pseudomonadota to other phyla, although these interac-
tions were relatively rare. These generalist plasmids may contribute to
AMR gene transfer in general between different phyla of bacteria. This
might reflect a greater selection for AMR in Pseudomonadota because
many common human pathogens belong to this phylum. Two meta-
analyses observed that the accumulation of AMR resulting from
mutations of chromosomal genes entails a much stronger fitness cost
than the accumulation of transferable AMR genes from plasmids40,42.
This phenomenon may contribute to the observed dominance of
transferable AMR genes in the current multidrug resistance epidemic
in enterobacteria.

Our approach to analyse the wastewater community advances on
the analysis of Stalder et al. 14 by utilising previously validatedmethods
(geNomad17) to identify undescribed plasmid signatures. Whilst this
method considerably increases our understandingof howundescribed
plasmids contribute to interaction network structure, we assume that
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Fig. 4 | Phylogenetic distributions of the most prevalent plasmids across
374 MAGs. Phylogenetic weighted distributions of the 10 most prevalent putative
plasmids (i.e. plasmids with associations to the highest number of MAGs), ordered
by howmany MAGs they associate with. Bar length represents interaction strength

(i.e. the number of normalised Hi-C links). Putative plasmids with AMR are high-
lighted in pink, and the AMR-associated gene or genes are indicated beneath. The
phylogenetic tree is basedon taxonomy. Data to replicate this figure is contained in
the source data file.
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connected clusters of sequences represent one plasmid. Yet, it is
possible that these clusters in fact represent multiple co-occurring
plasmids, or, conversely, that some sequences treated as separate
plasmids are in fact part of the same plasmid. An additional limitation
to our approach is that some shared genes or mobile elements
between different plasmids could have amplified the connections of
generalist putative plasmids to more hosts. We strived to remove any
such genomic elements, such as transposons, AMR, metal resistance,
biocide resistance and virulence genes, yet it is possible that at least
some generalist putative plasmids may be a product of other plasmid
accessory genes commonly shared among different plasmids of this
bacterial community.

Future advances in Hi-C technology paired with long-read
sequencing methods will further our ability to distinguish and
describe plasmids in natural communities using high-throughput
sequencing technology. Analysing the network structure of the was-
tewater sample is based on a correlational study and AMR presence
and generalism may also be driven by host taxa. Indeed, Pseudomo-
nadota is a very ecologically diverse phylum43, so they may be more
likely to be associated with promiscuous plasmids that carry genes
beneficial in a range of hostile environments. However, the analysis of
the Pseudomonadota network for AMR and non-AMR plasmids
showed similar results compared to the overall analysis (see Fig. S4).
To fully understand the ecological and evolutionary dynamics under
varying plasmid–host interaction types we need experimental
approaches that measure fitness consequences and link those to
changes in observed network structures.

Themodelling approachemployedhere ismorecomplicated than
most plasmid populationmodels, due to the incorporation ofmultiple
hosts, plasmids and resources. However, some simplifying assump-
tions were necessary. Firstly, we assume bacterial hosts interact only
through competition for resources. While in reality bacteria interact
via diverse mechanisms such as the excretion of both nutrients and
toxins, such features are unconnected to the core focus of the present
works—the increased spread of plasmids throughout a host commu-
nity due to benefits conferred within populations. That said, the
impact of host community structure (as a result of inter and intra-
specific interactions) on host–plasmid networks is itself an interesting
question for future research. The model was also simplified by con-
sidering multiple plasmids from within the same incompatibility
group. This avoids making further assumptions about how the fitness
effects of multiple plasmids interact in natural communities. Further-
more, it has been shown previously that a plasmid that is not com-
peting with other plasmids for hosts will form a better-connected
plasmid–host network when it is beneficial9. Thus, it is not expected
that considering multiple plasmids which are compatible with each
other would change our overall result. Though again, the exact effects
of the distribution of incompatibility groups on plasmid–hosts net-
works are itself a useful line of enquiry for future research.

By conducting ecological network analyses on a wastewater Hi-C
metagenome, we have been able to describe a natural plasmid–host
network. The patterns we observe are consistent with the predictions
made by our model. First, the network is primarily driven by special-
ism, consistent with a predominantly parasitic impact of plasmids in
the absence of carriage of beneficial accessory genes. Second, a
greater prevalence of AMR genes—which are often transferred by
plasmids—in generalist and abundant plasmids leads to a more con-
nected network. Third, the sharing of a few generalist plasmids across
the network promotes the potential for inter-class HGT and indirect
network interactions. A fourth implication of our results is the resi-
lience of AMR plasmids to ecological processes affecting bacteria.
SinceAMRplasmids are typically associatedwith a range of hosts, their
presence is less vulnerable to the local extinction of one or a few host
taxa. Further work is clearly required to determine the generality of
our findings and the mechanisms underpinning them. This also

includes other types of networks, such as bacteria–bacteriophage44,
where interactions while primarily antagonistic can also be
mutualistic45,46. A closer look at the types of plasmids that cause higher
network connectedness would also help understand the drivers of
AMR spread in various environments.

Methods
Model
To understand how plasmid fitness consequences impact the forma-
tion of host–plasmid networks and affect plasmid spread in a com-
munity we used a population modelling approach. This approach is
based on Eqs. (7)–(9) from Alonso-del Valle et al.13, extended to
accommodate multiple plasmids and multiple resources, which are
part of a bacterial community of M strains, initially harbouring N
plasmids and subsisting in L resources. To make predictions about
long-term community dynamicswe extended themodel in three ways:
(i) resources accumulate according to a logistic function

R̂
k
Rk 1� Rk
� �

ð1Þ

where Rk is the kth resource and R̂
k
its associated rate of influx. (ii)

Resource depletion due to consumption is proportional to the den-
sities of the consumers (bacteria with and without plasmids)
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where V maxik is the maximum consumption rate of the kth resource
by the ith strain and Km is a half-saturation constant, common to all
strains and resources. (iii)We allow for cell death in themodel at a rate
di for each strain, which increases linearly with the total density of the
relative strain (with and without plasmids) ðBi
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As with Alonso-del Valle et al.13, bacterial reproduction is given by
the function G Rð Þ=ρU Rð Þ, where ρ is the strain-specific efficiency of
converting consumed resources into new cells. Thus, given Gik

0 is the
function governing the conversion of the kth resource into cells of the
ith species (plasmid free) and Gijk

p is the same for the ith species with
the jth plasmid, the dynamics of the resources, plasmid-carrying and
plasmid-free cells are governed by the following differential equations:
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where λi is the ith strain’s rate of loss of plasmids due to segregation, γ
is the conjugation rate (shared by all hosts/plasmids) and δ is a square
matrix in which all off-diagonal elements equal 1 and all diagonal
elements equal 10 resulting in 10-fold higher intra-strain that between-
strain conjugation rate. Note that since conjugation is a function of the
contact between plasmid-carrying cells (for a given plasmid) and
plasmid free cells of a potential recipient, we are assuming no
coinfection of distinct plasmids in a single host cell, i.e., plasmids
belong to the same Inc group. This simplifying assumption greatly
reduces the complexity of the model, while keeping the focus on the
key distinction between single and multiple plasmid models (the
ability for the spread of one plasmid to be affected by another).
Furthermore, it avoids making additional assumptions about how
plasmid fitness effects interact.

In order to measure the impact of positive interactions on the
network degree of plasmids (their number of hosts) we numerically
solved Eqs. (1)–(3) with L = 3, N = 3 and M = 8 for 133,480 unique
combinations of parameter values, based on the empirical parameters
estimated in Alonso-del Valle et al.13 using the fifth-order explicit
Runge–Kutta method47 implemented in DifferentialEquations.jl48 in
the Julia programming language49. For the results presented in the
main text, we set λi = 10−6 for each i, Km = 1 with ρi ~ truncated-Normal
(8 × 108,100, 4.8 × 108,1.2 × 109) and V maxik ~ truncated-Normal (6Km
× 10−10,100), 4Km × 10−10,8Km × 10−10), though qualitatively similar
results were obtained for a range of other parameter values (Figs. S1,
S2). To produce a range of predominantly negative fitness effects,
fitness effectswi,j for each straini andplasmidj combinationweredrawn
from N(0.985,0.007) with the resulting value used as a multi-
plier:ρij = ρiw

ij
,V maxikj =V maxikw

ij
. Thus, forw < 1, the plasmidhas a

negative effect. We truncated the distribution of ws at 1 for 2 of the
three plasmids, leaving only a single (focal) potentially beneficial
plasmid in each community (see Fig. S2 for an alternative approach,
where all three plasmids may be beneficial within a single simulation).
Once equilibrium was reached, we calculated the network degree for
the focal plasmid as the number of bacterial hosts in which itmakes up
at least 1% of the population. Mean degree values for a range of con-
jugation rates and numbers of positive interactions were visualised
using Makie.jl50.

Hi-C dataset/sample origin
The Hi-C metagenome data from Stalder et al.14 are derived from a
wastewater sample corresponding to a 24-flow composite sample
(repeated sampling over a 24 h period and combined) collected in
2017 at the Moscow wastewater treatment plant in Idaho (USA). The
facility serves a population of ~25,000 residents and collects mainly
domestic wastewater. Hi-C metagenome data uses proximity ligation
technology to link contigs that are in close physical proximity (i.e., in
the same cell) and therefore can be applied to improve genome
assembly and link bacterial hosts tomobile elements such as plasmids.

Sample processing
Full details of how thewastewater samplewasprocessed are described
in Stalder et al.14. In brief, half of the homogenised sample was used to
generate Hi-C libraries using the ProxiMeta™ Hi-C preparation kit
(Phase Genomics, Seattle, WA, USA) and the other half was used to
generate the shotgun library. For the shotgun library, total genomic
DNA was extracted and isolated using the DNeasy® PowerWater® kit
(Qiagen, Venlo, Netherlands). PCR-free Illumina libraries for short
insert length sequencing with Hiseq were made by the IIDS Genomics
Resources Core (Moscow, ID, USA) using TruSeq® DNA PCR-Free
library Prep kit (Illumina, San Diego, CA, USA). Hi-C and shotgun
metagenomic libraries we pooled and sequenced using HiSeq 4000,
2 × 150bp paired-end reads at the University of Oregon sequencing
core (Eugene, OR, USA).

Hi-C data processing
The major Hi-C processing steps are visualised in a flowchart (Fig. S5).
To build our host–plasmid network, we categorised every metagen-
ome contig as belonging to either a bacterial MAG or a plasmid, and
categorised plasmids by whether they were connected via Hi-C to an
AMR gene or not. Any contigs that did not identify as either of these
elements were automatically removed from the dataset. Contigs that
were identified as potential transposons were removed from the
dataset, as their ubiquity can generate spurious associations51. Trans-
posons and IS elements were identified by performing a homology
search with BLASTp on predicted genes from all contigs using an e-
value < 0.01 against all known transposase proteins from thedatabases
from IS finder52 available from https://github.com/thanhleviet/
ISfinder-sequences/blob/master/README.md and from Tn3 Transpo-
son Finder53 available from https://tncentral.
proteininformationresource.org/TnFinder.html. Protein-coding genes
were predicted from all contigs using prodigal in metagenomic mode
using the option ‘-p meta’ available from https://github.com/hyattpd/
Prodigal54. We then used the Hi-C linkage data to identify how these
contigs were attached to one another and to build an interaction
network between plasmids and MAGs. Below we summarise each step
in this process.

Generating bacterial MAG data
Hi-C metagenome data was assembled into MAGs using an updated
algorithm of ProxiMeta™ on April 4, 2021 (Phase Genomics, Inc. 2021).
This generated the 374MAGs analysed in this study. We assignedMAG
taxonomy by runningMAGs through Phylophlan55, which callsMASH56

for taxonomic assignment, and used taxonomy as a proxy for phylo-
geny (Supplementary Data 1).WhileMAGs relate to ametagenomic bin
that canbe asserted to be a close representation of an actual individual
genome, here the quality ofmost of theMAGs identified (according to
genome size and completeness scores computed by CheckM) did not
allow us tomake this assumption. Instead, we consideredMAGs not as
one bacterial cell’s genome, but as the genome (or fragments of a
genome) of closely related strains within a species. MAG abundance
was calculated as the percent of the average Hi-C read depth of the
assembly contained in theMAG relative to the averageHi-C read depth
of the total assembly of the sample.

AMR gene detection
Contigs with genes coding for antimicrobial resistance, virulence fac-
tors, metal resistance or resistance to biocides were identified using
AMR finder plus57, using ‘-n’ and ‘–-plus’ parameters. The vast majority
of resistance genes were categorised as AMR, therefore we only con-
sidered genes as ‘AMR’ if they coded for antimicrobial resistance and
not metal resistance or virulence factors. AMR contigs were used to
identify which putative plasmids carried AMR genes but were subse-
quently removed from the network because, similar to transposons,
their ubiquity can create spurious network links.

Identifying putative plasmids
To identify contigs of plasmid origin, all contigs were run through
geNomad17 using the end-to-end command. Because the contigs iden-
tified as plasmids were mostly constituted by short contigs (the
median lengthwas 3703 bp), we reasoned that for a contig to belong to
a plasmid it should be consistently connected to at least one other
such contig. To account for this, we retained only plasmid contigs that
were linked to other plasmid contigs at least 15 times (n = 379 contigs).
Thismay exclude small non-transferable plasmids, but not conjugative
or mobilisable plasmids58 that are the focus of this study. We then
performed a cluster analysis on these plasmid contigs using the
Walktrap clustering algorithm using the igraph::walktrap.community
function59 and with a step length of 10. This clustering step identified
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109plasmid clusterswhichwe treated asputative plasmids.Wedid not
find any matches with the described plasmids identified by
PlasmidFinder60. However, we manually checked gene content of the
top tenputative plasmids anddetected transfer genes belonging to the
IncP- β group on the second most prevalent plasmid.

We conducted several quality checks to assess the reliability of
these clusters of contigs we called putative plasmids. We first checked
the total length of plasmid contigs. The average total length
(19,368 bp) and the general distribution (median = 8772 bp, min =
1351 bp, max. = 240,077 bp) are within the expected range of plasmid
sizes found in natural communities61. Associations characterised by
less than fiveHi-C links were considered unreliable and removed. After
this quality filtering, 109 putative plasmid clusters made up of 379
contigs were retained for analysis (Fig. S6a). The remaining putative
plasmids were classified as associating with an AMR gene if the puta-
tive plasmid was connected via Hi-C to an AMR contig at least five
times (Fig. S6b).

Transposons
To ensure we captured Hi-C associations between bacteria and plas-
mids only, wefiltered out any remaining contigs that were identified as
transposons, even if these were additionally identified as MAGs or
putative plasmids. Transposons and IS elements were identified by
performing a homology search with BLASTp on predicted genes from
all contigs using an e-value < 0.01 against all known transposase pro-
teins from the databases from IS finder52 available from https://github.
com/thanhleviet/ISfinder-sequences/blob/master/README.md and
from Tn3 Transposon Finder53 available from https://tncentral.
proteininformationresource.org/TnFinder.html. Protein-coding genes
were predicted from all contigs using prodigal in metagenomic mode
using the option ‘-p meta’ available from https://github.com/hyattpd/
Prodigal54.

Analysis and reproducibility
Hi-C link counts were normalised by both MAG abundance and puta-
tive plasmid size, as these both would affect the number of links
detected (Fig S5). A MAG-putative plasmid adjacency matrix was
generated from the processedHi-C linkage data, and data was handled
using the packages phyloseq62 and igraph. Any Hi-C connections
represented by five or fewer links were deemed unreliable and
removed. Networks were visualised using the ggnetwork63 using gra-
phopt layout. Network statistics for the five major host classes were
generated with the bipartite::networklevel function64. Network clusters
were calculated with the igraph::fastgreedy.community function. Phy-
logenetic trees and their attributes were visualised with the ggtree
package65. To test for differences in the number of plasmids harboured
by different bacterial classes we used a non-parametric
Kruskal–Wallace test, and differences in average network degree and
phylogenetic breadth between plasmids with and without AMR were
tested using a non-parametric Wilcoxon test. We calculated the phy-
logenetic breadth of bacterial hosts by measuring the mean distance
between bacterial tips using a rooted phylogenetic tree generated by
Phylophlan. The mean phylogenetic distance was calculated with the
ape::branching.time function. We also calculated maximum and med-
ian distances between branch tips and applying these metrics also
demonstrated significant phylogenetic host breadth of plasmids
associated with AMR genes.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Sequencing data are available in FASTQ format at SRA accession
PRJNA506462. All data and code for both the ecologicalmodel and the

Hi-C metagenome data are available at https://doi.org/10.17605/OSF.
IO/K8PMF. Source data to reproduce figures is available as in the
source data file. Source data are provided with this paper.

Code availability
All data and code for both the ecological model and the Hi-C meta-
genome data are available at https://doi.org/10.17605/OSF.IO/K8PMF.
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