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Abstract: 

This paper presents the results of a listening experiment designed to assess annoyance and perceived 

loudness (PL) for several Unmanned Aircraft System (UAS) operations, with the listener simulated 

in indoor and outdoor positions. This research investigated (i) how participant responses change 

depending on UAS operation, (ii) which broadband metrics are most suitable for representing 

annoyance and PL, (iii) differences in noise level required to result in equal participant responses to 

different operations and (iv) which Sound Quality Metrics (SQMs) are significant for UAS noise 

perception. Results indicate annoyance and PL responses were greatest for landing operations with 

flyovers being least annoying or loud. LAeq, LASmax and Loudness (N5) were the strongest predictors in 

representing Annoyance. Offset analysis predicted small differences in Annoyance responses 

between flyovers and other operations, but also indicated that flyovers would require an increase to 

LASmax of 3.3 to 6.3 dB compared to other operations to achieve equal PL. Loudness was the most 

significant SQM, with minor contributions from impulsivity for annoyance and PL when outside, 

and tonality for PL when indoors. These findings contribute to the understanding of UAS noise 

perception for the development of metrics and assessment methods accounting for the 

characteristics of UAS operations. 
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I. INTRODUCTION 1 

Over recent years, the interest in using Unmanned Aircraft Systems (UASs) for commercial 2 

operations has increased dramatically as numerous public and private sectors seek to leverage the 3 

potential benefits of autonomous vehicles. As a result, the requirement to better understand auditory 4 

perception and exposure-response to UAS noise and the potential associated impacts on exposed 5 

communities (e.g., noise annoyance) has also become of greater interest.  6 

Significant strides have been made developing an understanding of the complex sound signature 7 

generated by UAS attributed to phenomena such as ‘rotor / rotor interaction’ (Torija et al., 2021) 8 

and the unsteady tonal components of the sound present within outdoor flight (Cabell et al., 2016; 9 

Alexander and Whelchel, 2019; Torija et al., 2019). Torija & Clarke (2021), compared the sound 10 

spectra of two conventional aircraft (737 Max 8 and Airbus A320) and two multi-copter drones (DJI 11 

Matric 200 and Yuneec Typhoon)at a normalized broadband level of 65 dB(A). What was evident 12 

from the comparison was at equal overall sound level the two UAS exhibited significantly more 13 

noise above 2kHz than the conventional aircraft. Gwak et al. (2020b) made a similar observation, 14 

noting that one of the significant differences between the sound generated by conventional aircraft 15 

and UAS is the amount of high frequency energy within the sound signature. The same is also true 16 

when compared against noise from road traffic which peaks around the 1 kHz third octave band and 17 

quickly reduces above 1.6 kHz (Gjestland, 2008). 18 

Research into the perception of UAS noise has also been advancing over recent years. For example, 19 

the Civil Aviation Authority (CAA) in the UK have recently produced an overview report (CAA, 20 

2023) summarising the current knowledge on the effects of electric Vertical Take-Off and Landing 21 

(eVTOL) noise on humans. Schäffer et al. (2021) produced a systematic review of existing research 22 

on UAS noise including the effects on humans. Most of the literature discussed within these reviews 23 

highlight the significance of sound pressure level and its impact on Annoyance (Christian and 24 
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Cabell, 2017; Callanan et al., 2020; Gwak et al., 2020b). Others have investigated the use of Sound 25 

Quality Metrics (SQMs, refer to Zwicker and Fastl (2013) for a detailed introduction) to better 26 

understand what elements of the UAS sound the listener is responding to. Torija & Nicholls (2022) 27 

identified Sharpness (measuring perceptual effects of high frequency noise) and Fluctuation Strength 28 

(measuring perceptual effect of slow amplitude modulation) as being significant factors influencing 29 

annoyance and Perceived Loudness (PL). Hui et al. (2021) found that the Sound Quality Metric 30 

(SQM) Loudness (N5), A-weighted Equivalent Continuous Sound Level (LAeq), and A-weighted 31 

Maximum Sound Level (LAmax) all had a strong correlation with the Annoyance associated with a 32 

hovering drone, with LAmax, N5, Sound Exposure Level (LAE) and Roughness (R5) all demonstrating a 33 

strong correlation with Annoyance for drone flyover events.  34 

Torija & Clarke (2021) discussed how the noise signature of a given UAS will be different depending 35 

on whether the vehicle is taking-off, hovering, landing or flying over.  This is particularly observed in 36 

relation to the directivity and prominence of tonal noise over broadband noise (Alexander and 37 

Whelchel, 2019).  Gallo et al. (2022) found the psychoacoustic annoyance, based on the value of the 38 

Sound Quality Metrics Loudness, Sharpness, Fluctuation Strength and Roughness (Zwicker and 39 

Fastl, 2013) of flyover and transition manoeuvres to be higher than for hovering flight.  However, to 40 

date, there is not a detailed study investigating the noise perception of UAS under different 41 

operational manoeuvres. 42 

Hitherto, little research has been conducted to better understand the changes in perception of UAS 43 

noise when the listener is outdoors vs. indoors or, to understand how different noise metrics 44 

perform for UAS noise signatures transmitted through building partitions. Work previously 45 

undertaken by Ramos-Romero et al. (2022) began to investigate how noise from UAS flyovers could 46 

be predicted within indoor environments. That work provided a framework for how UAS noise 47 

propagation and transmission to an indoor environment might be predicted with the aim of 48 
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determining a minimum Drone-Façade distance required to avoid excessive internal noise levels. 49 

The framework was based upon existing assessment metrics (e.g., 42 dB LAmax,indoors) but did not 50 

investigate the performance of such metrics for UAS noise perception. This paper presents the 51 

results of a listening experiment designed to investigate the perception of UAS noise from different 52 

operational procedures, and for three simulated listener positions (i.e., outdoors, indoors with a 53 

partially open-window, and indoors with a closed window). The goal of the paper is to advance the 54 

state of the art in UAS noise perception by answering the following research questions: 55 

1. How do annoyance and PL of UAS noise change as the listener is positioned outdoors or 56 

indoors? 57 

2. Which broadband noise metrics correlate best with annoyance and PL for UAS noise? 58 

3. Are there operating procedures that are perceived as particularly loud or annoying? 59 

4. What is the contribution of metrics accounting for loudness, tonality, frequency content and 60 

temporal characteristics on UAS noise perception? 61 

The structure of this paper is as follows: Section II presents a literature review and technical 62 

justification for the research, Section III presents details of the UAS included within the experiment, 63 

the design and methodology of the listening experiment and introduces the method of statistical 64 

analysis, Section IV the results of the experiment and Section V the conclusions.  65 

II. Review of Key Aspects for UAS noise assessment 66 

A. Indoor vs Outdoor Noise 67 

Exposure to excessive indoor noise, particularly at home or at people’s place of rest, is a well-68 

documented problem as it can lead to behavioural changes, increased annoyance, reduced speech 69 

intelligibility and sleep disturbance (Berglund et al., 1999; Hurtley, 2009). The potential adverse 70 

impacts of excessive noise can also extend to physiological issues, such as increased risk of 71 
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hypertension and heart disease (Babisch, 2011; Basner et al., 2014; Foraster et al., 2017; Kempen et al., 72 

2018), and the deterioration of mental health (Stansfeld et al., 2000; Hardoy et al., 2005; Clark and 73 

Paunovic, 2018; Clark et al., 2020).  74 

When considering the acoustic transmission through a typical residential façade, the window or 75 

glazed element is usually the weakest point. The sound reduction of windows can vary significantly 76 

depending on the design: single glazed windows may offer a weighted sound reduction performance 77 

(Rw) of around 24 dB, whereas much more robust designs, such as triple-glazing windows may offer 78 

up to 45 dB Rw (Waters-Fuller et al., 2007). Most residential properties in urban and suburban areas 79 

in the UK have double-glazed windows and typically offer an Rw of between 30 and 35 dB (Hurtley, 80 

2009) but assume the windows are closed. However, many properties will rely upon openable 81 

windows to provide adequate ventilation and prevent overheating during the summer months. By 82 

extension, when considering the external to internal transmission of noise, it is important to 83 

consider the transmission through both partially open and closed windows. 84 

A comprehensive laboratory study (Waters-Fuller et al., 2007), considering window configurations 85 

and receiving room representative of typical sensitive residential rooms (e.g., living room) in the UK, 86 

reported the sound reduction performance of a typical double glazing configuration, either fully 87 

closed or with the window partially open. 88 

It is also worth noting the significance of the distance between the noise source and the façade. The 89 

greater the distance between the source and receiver, the less noise will be observed because of 90 

spherical spreading and atmospheric absorption which will reduce the ratio of high frequency energy 91 

before it arrives at the receiver or façade. Whilst it was outside the scope of this experiment to 92 

investigate how changes of distance between the UAS noise source and receiver/façade effect 93 

perception, research into this area could be of significant value.  94 

 95 
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B. Metrics – Impact Assessment, Noise Certification and ΔL 96 

1. Noise Impact Assessment – Single Events 97 

When determining the magnitude of impact of environmental noise, it is still most common to have 98 

assessment criteria defined as broadband noise metrics. Whilst there are significant limitations to 99 

what can be expressed about sound within a broadband noise metric, they remain indispensable, as 100 

they are simple to measure, require relatively basic equipment to capture, are long established and 101 

simple to understand and compare. For single events, the sound of a vehicle is typically represented 102 

using the A-weighted Equivalent Continuous Sound Pressure Level (LAeq), A-weighted Sound 103 

Exposure Level (LAE), the Maximum A-weighted Sound Level (LAmax). The Effective Perceived 104 

Noise Level (EPNL) is the metric generally used for the noise certification of larger commercial 105 

aircraft, both propeller and jet driven (Filippone, 2014). EPNL is a combination of the Perceived 106 

Noise Level (PNL), which accounts for the combined ‘noisiness’ of a noise event across the 107 

frequency spectra plus corrections for tones and duration of the event.  108 

2. UAS Noise Certification 109 

Noise certification refers to the process undertaken to determine the noise level associated with a 110 

vehicle when operating under specific conditions. New guidance from the European Union Aviation 111 

Safety Agency (EASA) for UAS below 600kg (2022) has recommended that LAE is the metric to be 112 

reported for flyover or cruise operations whereas LAeq is recommended for hover operations. No 113 

metrics were recommended within this document for take-off or landing operations. In September 114 

2022, the Federal Aviation Authority (FAA) certified the Matternet model M2, a quadcopter with a 115 

Maximum Take-Off Weight (MTOW) of 11.5 kg designed for parcel delivery. The certification 116 

process for flyover noise was broadly based on the noise certification method for small helicopters 117 

defined within Part 36, Subpart H, Appendix J of the Code of Federal Regulations (Archives, 2023) 118 

which stipulates noise levels are to be presented as an LAE. Recently published consultation paper 119 
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from EASA (2023) which admittedly is for the certification of larger Urban Air Mobility (UAM) 120 

vehicles has recommended EPNL, typically used for conventional aircraft, as the metric to be used 121 

for take-off, flyovers and landing operations and LAeq for hover operations.  122 

3. Sound Quality Metrics 123 

SQMs, such as Loudness, are unlike conventional metrics that are used to describe the physical 124 

properties of the sound or noise event (maximum or average sound pressure for example). Instead, 125 

SQMs are tailored to describe the human response to sound or hearing sensation. Psychoacoustic 126 

annoyance can be described through a combination of SQMs describing the Loudness, tone colour 127 

and temporal structure of a sound (Zwicker and Fastl, 2013). Early Psychoacoustic Annoyance 128 

models we derived using a combination of the following SQMs: Loudness, Sharpness (describing 129 

tone colour), Fluctuation Strength and Roughness to describe the temporal structure. Other SQMs 130 

have subsequently been developed to describe other spectral or temporal characteristics such as 131 

Impulsiveness and Tonality.  132 

Although these metrics are not used for the certification or assessment of environmental noise, they 133 

are highly valuable in predicting or understanding what characteristics of a sound listeners may be 134 

responding to when they rate the annoyance or PL of a sound. 135 

4. dB Offset or ∆𝑳 136 

Examining the difference in noise levels (∆𝐿) required for two noise sources to result in equal 137 

annoyance is an important tool to help understand variations in response to road traffic, rail and 138 

conventional aircraft noise (Fields and Walker, 1982; Schreckenberg et al., 1999). Recent studies have 139 

taken this principal and applied it to UAS noise and found it to be more annoying than other 140 

transportation vehicles, at the same sound level. A pioneering study by Christian and Cabell (2017) 141 

compared the annoyance of drone flyovers with road vehicle pass-bys. In their study Christian and 142 
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Cabell found drones to be equally annoying as road vehicles at 5.6 dB higher sound level; or in other 143 

words, road vehicles had to be 5.6 dB louder to be perceived as equally annoying as UAS. Similar 144 

findings have been found by other researchers. For instance, Torija and Li (2020) investigated the 145 

preference (i.e., an ‘inverse indicator’ of annoyance) of different transportation noise sources, 146 

finding a small quadcopter was 33% less preferred than a conventional civil aircraft taking-off (at the 147 

same sound level, 65 dBA); Gwak et al.(2020a; b) also found the annoyance of a hovering drone to 148 

be significantly higher than a take-off jet aircraft.  Specifically, they found hovering drones equally 149 

annoying as a jet aircraft taking-off with a 4-10 dB higher sound level, depending on the size of the 150 

drone. 151 

 In these cases, this sound level difference, or offset, (∆𝐿) helps to understand the differences in 152 

exposure-response between vehicles. However, this research intended to use the same process for 153 

investigating the ∆𝐿 for different noise metrics (e.g., LAeq or LAmax) between different UAS operations 154 

for equal exposure response. This process of deriving a dB offset value or delta (Δ) is illustrated in 155 

FIG. 1. 156 

 157 
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 158 

FIG. 1. (Colour Online) Illustration showing how the Δ dB value is derived from two trendlines 159 
summarising participant responses to two different sound sources 160 

III. Methodology 161 

A. Drone Noise Audio Database 162 

The listening experiment used a database of audio files provided by the U.S Volpe National 163 

Transportation Systems Centre (Read et al., 2020). The database includes recordings of three types of 164 

small multi-rotor UAS performing different flying operations, four of which have been included 165 

within this listening experiment (hovering, take-off, landing and flyover at 15 m/s,). Table I presents 166 

the design specifications of the multi-rotor UAS that were recorded and have subsequently been 167 

used with this listening experiment.  168 

Table I. Specifications of the UAS used within the listening experiment 169 

Multirotor Aircraft Number Drone Weight MTOW* (Kg) Largest 
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Models of rotors (Kg) Dimension** (m) 

Gryphon Dynamics 
GD28X 

Four pairs – 
Contra-Rotating 

11.8 31.7 2.1 

DJI M200 4 4.0 6.1 0.9 

Yuneec Typhoon 6 1.9 2.4 0.5 

 Full details of the measurement methods can be found in the following document (Read et al., 170 

2020). To summarise, the microphone was mounted on a tripod at 1.2 metres above ground. Flyover 171 

measurements were obtained with the microphone directly underneath the flightpath and the drone 172 

at an altitude of 150 feet above ground (~47.5 m). For the take-off measurements the drone flew to 173 

an altitude of 150 feet with a vertical ascent, then proceeded to move away from the measurement 174 

position, the landing measurements followed the same process, but in reverse. For the hover 175 

measurements, the drone hovered at an altitude of four feet (1.2 m) above the ground, held the 176 

position for 30 seconds and then rotated 90 degrees. For the take-off, landing and hover 177 

measurements the distance between the microphone and take-off/landing point was 30 feet (9.1m) 178 

from the microphone position. 179 

Both audio and sound level data were recorded. The audio was recorded with a fidelity of 48kHz 180 

sample rate and 24-bit analogue to digital conversion. Sound level data was also recorded by feeding 181 

using a Larson Davis sound level meter, measurements were recorded at 1 second intervals with 182 

slow response A-weighted noise levels. These measured levels were used to calibrate the audio files 183 

and equipment used for the listening experiment. In total, 12 audio files were selected from the 184 

Volpe database, i.e., each UAS described in Table I performing a flyover, hover, landing and take-off 185 

operation.  186 
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FIG. 2 details the stages of work that were undertaken to prepare the audio files for the listening 187 

experiment and SQM analysis.  188 

 189 

FIG. 2. (Colour Online) Preparation of Audio Files for Listening Experiment 190 

 191 

B. Sound Transmission Through a Building Façade 192 

To estimate the sound reduction through a building façade, with either a partially open or closed 193 

window, test data was obtained from the document titled ‘NANR116: Sound Insulation Through 194 

Ventilated Domestic Windows’ (Waters-Fuller et al., 2007). The measurements presented within 195 

NANR116 are laboratory measurements but designed to emulate a typical residential receive room 196 

in terms of room dimensions and reverberation time. Therefore, the sound reduction values 197 

presented within the document are the Apparent Sound reduction (R’) per third octave band or the 198 

weighted Apparent Sound Reduction (R'w) denoting broadband performance. For this reason, no 199 

additional reverberation was applied to the audio files during the processing phase. 200 

The sound reduction data used for this experiment were collected from measurements of a typical 201 

residential double glazing window configuration. More specifically, this window was an inward right 202 

hand swinging configuration with an area of 0.945 m2. The glass/ airspace / glass arrangement was a 203 

4 – 16 – 4 mm configuration. The partially open scenario had a free area of 0.05 m2, this free area 204 
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was selected as the weighted sound reduction value (R’w) of 12 dB and for the closed window the R’w 205 

was 30 dB. The selected R’w were also consistent with results presented within other research 206 

(Locher et al., 2018) that summarised the results of numerous studies concluding that ‘open window’ 207 

scenarios typically exhibited sound reductions of 10 – 13 dB and ‘window closed’ scenarios typically 208 

between 26 and 31 dB.  209 

For these measurements, only the third octave band R’ data between 50 Hz and 5 kHz were 210 

recorded. For third-octave bands below 50 Hz, the same values as the 50 Hz third octave band were 211 

applied. As analysis of the drones’ frequency content indicated they were not producing any 212 

significant levels of sound within this frequency range, the uncertainty introduced by this 213 

assumption is considered negligible. For frequencies above 5 kHz, for the partially open window an 214 

average of the previous three third octave bands (3.15, 4 and 5 kHz) were calculated and applied to 215 

all third octave bands up to 20 kHz. For the closed window, it was assumed that the mass law would 216 

dictate the sound reduction performance over 5 kHz which assumes a 6dB increase in performance 217 

per octave or, a 2 dB increase per third-octave. Both assumptions were considered reasonable in 218 

estimating the actual performance of the window at frequencies above 5 kHz although it must be 219 

acknowledged it does introduce a degree of uncertainty at very high frequencies.  220 

C. Creation of Audio Files 221 

The audio editing software ‘Audacity’ was used as it contains all the audio editing functions that 222 

were required to prepare the files for the experiment. The first step was  to clip the audio files to the 223 

desired length (12 seconds each). Using the 12 audio files obtained from the Volpe outdoor 224 

measurement database, the files were then filtered using third-octave band sound reduction values to 225 

simulate the transmission through the double-glazed window, which was either partially open or 226 

closed, creating 36 audio files in total. This filtering was done using the ‘Filter EQ Curve’ tool within 227 
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Audacity. FIG. 3 below presents the R’ values used for each third octave band for the two window 228 

conditions.  229 

 230 

FIG. 3 (Colour Online) Third Octave Sound Reduction values – Partially-open and closed windows 231 

A short ‘fade-in’ and ‘fade-out,’ approximately 100ms in length were applied to the audio files to 232 

avoid startling the participant. When ‘clipping’ the audio file zero crossing points were selected to 233 

avoid clicks or pops appearing at the beginning or end of the track.  234 

D. Audio Reproduction System, Listening Room, and Calibration  235 

The listening experiment was conducted within the ‘Listening Room’ at the University of Salford. 236 

This room is acoustically treated to reduce both reverberation and ambient sound levels. The LAeq 237 

value was measured as being between 20 – 22 dB. Although the listening experiment was 238 

administered through headphones, the headphones that were used were an open-back design and 239 
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provide minimal isolation from external sounds. Any noise generating equipment such as laptops 240 

were positioned away from the participant and covered with acoustic foam. During pilot sessions, 241 

the noise from the listening experiment equipment was monitored, and it was concluded that any 242 

contributions to the ambient noise levels within the listening room were negligible.  243 

The audio reproduction system used for the experiment was a laptop with Matlab software, external 244 

sound card (Motu 4Pre – Audio Interface, Cambridge Massachusetts, US), Headphone Amplifier 245 

(Little Labs ‘Monotor’, Los Angeles, California, US) and headphones (Beyer Dynamic DT 1990 Pro, 246 

Heilbronn, Germany). The calibration equipment included a Brüel & Kjær 2250 Class 1 Sound Level 247 

Meter (SLM) and Brüel & Kjær Artificial Ear Type 4153. The calibration process consisted of 248 

playing the audio files through the audio playback system to measure the LASmax and LAeq values. 249 

These values were compared with those measured by Volpe during the outdoor measurement 250 

campaign, gain corrections were then applied to the audio files within ‘Audacity’ to correct the 251 

broadband sound levels of the audio files. The ‘corrected’ audio files were then remeasured using the 252 

SLM to check the level. Priority was given to LASmax value during the calibration process as this 253 

would be unaffected by the ‘fade-in’ and ‘fade-out’ applied to the audio file. A calibration level 254 

within 0.5 dB of the LASmax value presented within the measured Volpe data (or value derived once 255 

third octave band sound reductions had been applied to the measured data) was considered suitably 256 

calibrated. FIG. 4 (A) presents the audio reproduction system and FIG. 4 (B) the calibration process. 257 

Table II presents the calibrated LAeq and LASmax noise levels of the 36 audio files used within the 258 

listening experiment are shown in Table II. 259 
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 260 

 261 

FIG. 4 (A) (Colour Online) Calibration process and audio reproduction equipment & FIG. 4 (B) 262 
Sound Level Meter and Artificial Ear Being Used for Calibration 263 
 264 
Table II Calibrated LAeq and LASmax values of the audio files 265 

Operation Drone LAeq LASmax 
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Outdoor 
Part-
Open Closed Outdoor 

Part-
Open Closed 

Flyover 

GD28X 66.6 54.1 39 70.3 57.9 42.7 

M200 51.4 35.9 24.7 54.6 39.3 27.4 

TYPHOON 52.3 38.3 24.3 54.8 41.6 26.0 

Landing 

GD28X 69.8 56.5 40.6 72.1 58.8 43.4 

M200 64.2 51.3 35.6 67.0 55.0 38.6 

TYPHOON 61.9 48.8 31.6 64.2 51.3 34.4 

Take-Off 

GD28X 72.7 59.9 44.3 74.4 61.5 46.0 

M200 58.0 44.6 29.6 59.8 47.2 31.1 

TYPHOON 56.3 43.4 27.4 60.3 47.2 32.2 

Hover 

GD28X 75.4 59.7 46.5 76.3 60.7 47.4 

M200 58.8 46.1 30 59.6 46.9 30.5 

TYPHOON 55.8 41.8 26.4 56.9 42.9 27.2 

The calibrated LAeq and LASmax noise levels of the 36 audio files presented within Table II show a 266 

wide range of sound levels used within the listening experiment ranged between 26.0 – 76.3 dB and 267 

24.3 – 75.4 dB for the LASmax and LAeq respectively. The rationale for presenting the stimuli across this  268 

wide range of sound levels was to simulate the actual level of noise that would be experienced by the 269 

listener in each of the indoor / outdoor listening positions. Although, it should be noted that 270 

without the presence of masking noise to simulate real-world listener scenarios, participants were 271 

asked to rate stimuli, some with very low noise levels which may be rendered negligible or inaudible 272 

once even a small amount of ambient sound is introduced. However, the selected method was 273 

decided upon for the study to focus solely on how changes to the stimuli affect participant 274 

responses. The research team recognise that further research considering the acoustic context of 275 
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various listener positions and other non-acoustic factors will be important in understanding more 276 

about human response to UAS noise. 277 

E. Uncertainty within the Audio Stimuli 278 

It should be acknowledged that the processing and calibration of the data, outlined within 279 

Subsections C and D, presents a risk in terms of introducing distortions or unwanted artifacts within 280 

the sound. Measures were taken at every stage of the stimuli preparation to reduce the risk of 281 

introducing unwanted audio distortions. Professional grade audio reproduction hardware was used 282 

within the experiment with care taken at all stages of the process to reduce the risk of introducing 283 

noise to the signal. Whilst the exact magnitude of distortion within the audio files has not been 284 

quantified, it is thought the risk of audible distortions arising from the processing and calibration is 285 

very low.  286 

F. Questionnaire and Interface 287 

Before the experiment, participants were provided with an overview of the task and format of the 288 

experiment, the task overview stated that they will be listening to sounds from UAS but not that 289 

filtering had been applied to simulate external to internal transmission. Once the participants had 290 

been given time to read the instructions and ask questions they put on the headphones and were 291 

presented with four ‘familiarisation sounds’, these sounds were not used within the main experiment 292 

but were selected as they highlighted the range of sounds the participant would be presented. 293 

Participants were able to replay the sounds if they wanted, once the participant had listened to each 294 

of these sounds, they were given one more opportunity to ask questions before the experiment 295 

began.  296 

The listening experiment interface was created within Matlab (Version R2022a). The interface of the 297 

experiment presented the participant with a single audio file randomly selected from the 36 files. The 298 
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interface had a ‘Play Sound’ button, two 11-point sliders (0 to 10) one to rate the ‘Annoyance’ and 299 

the other to rate the ‘Perceived Loudness’. At the bottom, a next button which could only be 300 

pressed once the ‘Play Sound’ button has been pressed, this was to avoid participants accidentally 301 

missing the stimuli. Finally, there was a counter in the top right corner showing remaining stimuli to 302 

help maintain concentration.  303 

G. Participant Information 304 

The participants that took part within the experiment were sourced from a mailing list which is 305 

maintained by the university to notify students, staff and alumni from across the entire university 306 

about upcoming listening experiments.  307 

Initially, 31 participants took part within the experiment. However, due to an error with the data 308 

collection for one of the participants, their response was excluded from the analysis. Therefore, the 309 

final number of participants was 30. A sample size of 30 has been previously adopted for prior UAS 310 

listening experiments and is typically considered to be the smallest size required to be able to test for 311 

both Type I errors (rejection of a true null hypothesis) with 95% confidence and having a 312 

sufficiently large statistical power to reduce the risk of Type II errors (acceptance of a false null 313 

hypothesis) (Torija et al., 2020b; Lakens, 2022). However, it is noted that if additional resources were 314 

available at the time of the experiment, increasing the sample size would have resulted in a greater 315 

statistical power.  Table III presents the demographical information collected for each of the 316 

participants. 317 

Table III Demographical Information of Participants 318 

Gender 

Category Male Female Other 

Number of Participants 22 (73%) 7 (23%) 1 (3%) 
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Age Range 

Category 18 – 24 25 - 34  35 – 44 45 – 54 55 - 64 

Number of 
Participants 

11 (37%) 9 (30%) 6 (20%) 3 (10%) 1 (3%) 

English as Native Language 

Category Yes No 

Number of Participants 19 (63%) 11 (37%) 

Self-Identify as having a Hearing Impairment 

Category Yes  No 

Number of Participants 3 (10%) 27 (90%) 

As the information in Table III demonstrates, most participants were male and tended to fall into 319 

the younger age ranges, either ‘18 – 24’ or ‘25 – 34’. Of those who identified as having a hearing 320 

impairment the additional information provided highlighted some loss of high frequency response 321 

to their hearing and one participant mentioned they suffer from mild tinnitus but also noted that it 322 

did not interfere with their daily life. Based on the participant information provided, all response 323 

data was included within the analysis.  324 

H. Statistical Analysis 325 

The association between acoustic metrics and SQMs with subjective responses (i.e., Annoyance and 326 

PL) for the series of UAS sound samples presented to the participants was investigated using linear 327 

regression and multilevel models. As shown in Eq. (1), the subjective response (either Annoyance or 328 

PL) 𝑌𝑖 for the 𝑖th sound is predicted as: 329 

                                                           𝑌𝑖 = 𝛾0 + 𝛾1𝜒1𝑖 + 𝑒𝑖                                                           (1) 330 
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Where 𝛾0 is an intercept, 𝛾1 is the slope with respect to acoustic metric or SQM 𝜒1, 𝜒1𝑖 is the value 331 

of the acoustic metric or SQM of the 𝑖th sound, and 𝑒𝑖 is the residual error. In a linear regression 332 

approach, a ‘complete pooling’ takes place, as all participants’ responses are aggregated in the 333 

analysis. In contrast, in a multilevel analysis, a ‘partial pooling’ is possible allowing regression 334 

parameters (i.e., intercept and slope) to vary randomly across participants (Hox et al., 2017).   335 

A multilevel analysis augments a linear regression analysis by providing both participant-specific and 336 

aggregate regression parameters in one analysis. Boucher et al. (2023) provide a detailed description 337 

of the multilevel analysis, and its use for the analysis of transportation noise. A multilevel analysis 338 

approach was implemented by Torija et al. (2020a) to investigate the contribution of a series of 339 

acoustic and non-acoustic factors to the perception of different urban soundscapes with a UAS 340 

hovering. 341 

The formulation of a multilevel regression analysis is shown in Eqs. (2-4). 342 

                                                           𝑌𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗𝜒1𝑖 + 𝑒𝑖𝑗                                                     (2) 343 

Where 𝑌𝑖𝑗 is the subjective response, either Annoyance or PL, for the 𝑖th sound and the 𝑗th 344 

participant, and 𝑒𝑖𝑗 is the residual error,  345 

                                                                 𝛽0𝑗 = 𝛾00 + 𝜇0𝑗                                                            (3) 346 

Where 𝛾00 is an overall mean intercept for all participants, and 𝜇0𝑗 is a participant-specific intercept 347 

offset, and  348 

                                                                 𝛽1𝑗 = 𝛾10 + 𝜇1𝑗                                                            (4) 349 
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Where 𝛾10 is an overall mean slope for the metric 𝜒1, and  𝜇1𝑗 is a participant-specific slope offset. 350 

Both 𝜇0𝑗 and 𝜇1𝑗 are assumed to follow a normal distribution. 351 

These statistical analyses were conducted with the IBM SPSS Statistics package (version 29). 352 

  353 
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IV. Results 354 

A. Annoyance and Perceived Loudness as a function of UAS operational procedure and 355 

listener position  356 

FIG. 5 presents the average participant response data for annoyance and PL separated by the 357 

listener response position.  358 

 359 

FIG. 5 (Colour Online) Boxplots presenting Average Annoyance and PL Ratings Separated by 360 
Listener Positions. 361 

The participant responses show a clear trend for both annoyance and PL with responses being the 362 

highest (i.e., most annoying, and loudest) when the listener was in the outdoor position followed by 363 

indoors ‘partially-open window’ then the ‘closed window’ scenario. The significance of the listener 364 

position on annoyance and PL was evaluated using a one-way Analysis of Variance (ANOVA) 365 

which found the differences in average responses to be statistically significant (Annoyance:  F [2,33] 366 
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= 28.124 P = <0.001) (PL: F [2,33] = 49.844 P = <0.001). The significance of the listener position 367 

on effect size can be better visualised using a Cumming estimation plot, making use of bootstrap 368 

resampling to determine the confidence interval (CI) of the effect size, see (Ho et al., 2019) for more 369 

details. FIG. 6 presents the individual participant annoyance ratings separated by the listener 370 

position (left), and the mean difference and 95% CI between the listener positions with ‘Outdoors’ 371 

being the control group and the other ‘test’ groups (right). For annoyance, results demonstrated a 372 

mean difference between Outdoors and Open Window scenarios is -2.59 (upper and lower bounds 373 

of 95% CI [-2.93 and -2.27]). The mean difference between Outdoors and Closed Window is -4.5 374 

(upper and lower bounds of 95% CI [-4.8 and -4.21]). For PL, the mean difference between 375 

Outdoors and Open Window scenarios is -2.34 (upper and lower bounds of 95% CI [-2.68 and -376 

1.98]). The mean difference between Outdoors and Closed Window is -4.05 (upper and lower 377 

bounds of 95% CI [-4.37 and -3.72]). 378 

 379 

FIG. 6 (Colour Online) Cumming estimation plot presenting annoyance ratings separated by listener 380 
position and mean difference and 95% CI upper and lower bounds between the control and test 381 
groups. N = number of participant resposnes 382 

The data can also be separated by operation. FIG. 7 presents an estimation plot presenting 383 

participant annoyance ratings separated by the UAS operation and using the flyover operation as the 384 

control group. The mean difference along with the lower and upper bound of the 95% CI between 385 

the control and test operations are presented in Table IV. 386 
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Table IV Differences in Participant Annoyance and PL for the four UAS Operations 387 

Operation 

Annoyance Perceived Loudness 

Mean 

Difference 

Lower 

Bound 

Upper 

Bound 

Mean 

Difference 

Lower 

Bound 

Upper 

Bound 

Take-off 0.85 0.42 1.3 1.38 0.93 1.83 

Landing 1.33 0.90 1.79 1.48 1.04 1.91 

Hover 0.72 0.28 1.17 1.03 0.58 1.46 

 388 

FIG. 7 (Colour Online) Cumming estimation plot presenting annoyance ratings separated by UAS 389 
operation and mean difference and 95% CI upper and lower bounds between the control and test 390 
groups 391 

For both annoyance and PL, responses to each of the operations appear to follow the same trend 392 

with landing exhibiting the greatest mean difference, followed by takeoff, hover and flyover. This 393 

suggests that the possibility of annoyance is increased when exposured to noise from UAS 394 

operations other than flyovers. However, as the sound levels of the audio files were not 395 

standardised, some of these variations within the participant responses are likely a result of changes 396 
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to noise levels. For example, the difference between the LASmax for the ‘Outdoor’ flyover and hover 397 

operations of the GD28X drone were +6.0 dB for the hover. Therefore, it is not entirely clear at this 398 

stage whether the increased annoyance and PL resulted from the characteristics of the operation or, 399 

whether the participants were responding to differences in noise level. The significance of the 400 

differences in noise level have been investigated further in Section C.  401 

B. Comparison of Loudness Metrics 402 

Previous research into the perception of UAS and other environmental noise sources has 403 

demonstrated that ‘loudness’ is the most significant characteristic of the sound when assessing it for 404 

both Annoyance and PL (Gwak et al., 2020b; Nicholls, 2021). To better understand the efficacy of 405 

different loudness metrics, six metrics have been used to model the participant response data. The 406 

conventional metrics of LAeq, LAsmax and LAE along with other metrics such as Perceived Noise Level 407 

(PNL), Effective Perceived Noise Level (EPNL) and the Sound Quality Metric (SQM) Loudness – 408 

DIN 45631/A1 model (N5). Note that the standard 5th percentile value of Loudness (i.e., loudness 409 

exceeded 5% of the time) was used for the analysis; and that the first 0.5 s of the sound sample was 410 

excluded from the calculation to avoid transient effects of the digital filters used for the calculation 411 

of the metric (Torija et al., 2021). 412 

Each of the metrics mentioned above have been used to model annoyance and PL response data 413 

using simple linear regression analysis and bootstrapping to calculate the Confidence Intervals (CIs). 414 

The R2 values and 95% CIs for each of the loudness metrics (independent variable) are presented 415 

within Table V.  416 

Table V Results of Regression Analysis for each for the Broadband Metrics with 95% Confidence 417 
Interval 418 
 419 
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Metric Annoyance R2 Annoyance CI PL R2 PL CI 

LASMax 0.93 0.91, 0.96 0.90 0.84, 0.95 

LAeq 0.93 0.91, 0.96 0.90 0.82, 0.95 

LAE 0.91 0.88, 0.95 0.88 0.80, 0.93 

PNL 0.91 0.87, 0.95 0.88 0.80, 0.94 

EPNL 0.91 0.86, 0.94 0.89 0.82, 0.94 

Loudness (N5) 0.94 0.92, 0.97 0.87 0.82, 0.93 

Results of the regression analysis for Annoyance show that the SQM Loudness performed best with 420 

an R2 value of 0.94. LAeq and LAsmax scored marginally lower with R2 values of 0.93. PNL, EPNL and 421 

LAE scored slightly lower with R2 values of 0.91. For modelling PL, LASMax, LAeq both scored an R2 422 

value of 0.90. EPNL scored slightly lower with 0.89, PNL and LAE with 0.88 and Loudness the 423 

lowest with 0.87.  424 

The A-weighted metrics generally performed better than PNL and EPNL. This is most likely a result 425 

of the A-weighted metrics better representing how humans are sensitive to the spectral content of 426 

the stimuli. A small difference was observed between the results for PL and PNL or EPNL, this 427 

may be a result of the tonal corrections applied within EPNL which could help predict the effect of 428 

tones on the PL of a stimuli.    429 

The positive relationship between sound level or Loudness and average annoyance can also be seen 430 

by plotting average annoyance against LAeq and N5, as can be seen in FIG. 8 (A) and FIG. 8 (B). For 431 
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LAeq noise levels between 20 – 50 dB, the average annoyance response increases steadily as the sound 432 

level increases, with scatter plot slope of 0.1. From approximately 50 dB LAeq and above, increases to 433 

loudness appear to cause a sharper increase to annoyance as the slope increases to 0.24 for LAeq. 434 

When plotting the average annoyance against Loudness (Sones), the scale has a more linear 435 

representation of average annoyance which suggests Loudness is the more consistent performer 436 

across different sound levels.  437 

For LAeq, the change in gradient of the slope is consistent with the response data of the ‘outdoor’ 438 

stimuli, the significance of Sharpness was investigated (as high frequencies were more attenuated 439 

than the other frequency regions during the outdoors-to-indoor propagation). Multiple linear 440 

regression analysis was used to plot LAeq and Sharpness (Aures model) against Average Annoyance. 441 

The inclusion of Sharpness resulted in a statistically significant improvement (Adj. R2 change = 442 

0.007, Sig. F Change [1,33] = 0.034) of the Adjusted R2 value suggesting Sharpness could be a factor 443 

influencing the greater increase to recorded annoyance. Alternatively, the reason could be associated 444 

with the overall noise level or loudness of the noise events of around 50 dB being the onset level of 445 

a more adverse response. In the UK, a Survey of Noise Attitudes (SoNA) for aircraft (CAA, 2017) 446 

recommended that the ‘Lowest Observable Adverse Effect Level’ and the ‘onset of significant 447 

annoyance’ be set at 51 dB and 54 dB LAeq,16hr respectively. The analysis of LAeq data corresponds 448 

closely with the thresholds recommended within the SoNA report.  449 
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450 
 451 

 452 

FIG. 8 (A) (Colour Online) Scatter graph plotting Average Annoyance against LAeq separated at 50 453 
dBA level & FIG. 8 (B) Scatter graph plotting Average Annoyance against Loudness 454 

Interestingly, the SQM Loudness performed the least effectively of all the analysed metrics for 455 

predicting PL. Although the exact reason is unknown, this could be a limitation of the metric itself 456 
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as the DIN 45631 / A1 Loudness model is known to have some limitations when calculating the 457 

Loudness of time-varying sounds such as many of those presented within the experiment (Sottek, 458 

2014; 2016; Völk, 2016) 459 

C. Offset Analysis 460 

Following a procedure suggested by Christian and Cabell (2017), the presence of systematic 461 

differences between UAS operational conditions in terms of annoyance and PL were investigated.  462 

A series of linear regression analyses adding a binary term 𝐶 were conducted (see Eq. 5).  463 

                                                            𝑌𝑖 = 𝛾0 + 𝛾1𝜒1𝑖 + 𝛾2𝐶𝑖 + 𝑒𝑖                                              (5) 464 

This binary term 𝐶 is a dummy variable representing the type of operational condition; and 𝛾2 is the 465 

slope with respect to the binary term 𝐶. This augmented linear regression was conducted for each 466 

operational condition investigated, where 𝐶𝑖=1 corresponded to flyover and 𝐶𝑖= 0 corresponded to 467 

either hover, take-off, or landing. The offset, measured in the units of the specific acoustic metric or 468 

SQM, was calculated as 𝛾2 𝛾1⁄ .  469 

As shown in Table V, the inclusion of the binary predictor 𝐶 in the linear regression analysis for 470 

annoyance was found to be non-significant in all cases (p-value > 0.05). Consequently, the 471 

explanatory value (𝑅2) of the model for all acoustics metrics and Loudness was not improved. The 472 

offset value for most metrics, in their respective units, was reduced. Looking at the offset values for 473 

Loudness (N5) in sones, the metric with the highest correlation with annoyance (see Table IV), the 474 

results suggest that the Loudness of the hover, take-off and landing operations would all need to be 475 

reduced by either 1.0 or 1.1 sone to be rated as equally annoying as the flyover operation.   476 

Table VI. Offset or ∆ values between metrics for hover, take-off and landing operations vs flyovers 477 
for Annoyance. Offset values are shown in the respective metric’s unit. R2 values are shown in 478 
brackets. 479 
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 Hover Take-off Landing 

LASMax (dB) -0.9 (0.93) -0.5 (0.93) -0.5 (0.92) 

LAeq (dB) 1.4 (0.94) 0.0 (0.94) 0.0 (0.93) 

LAE (dB) 0.7 (0.80) -0.1 (0.92) 1.0 (0.90) 

PNL (PNdB) 2.6 (0.91) 0.3 (0.90) 1.3 (0.90) 

EPNL (EPNdB) 2.1 (0.90) 0.4 (0.91) 0.8 (0.90) 

Loudness (N5, sone) -1.1 (0.93) -1.0 (0.94) -1.1 (0.97) 

In Table VII, it is shown that the inclusion of the binary predictor 𝐶 in the linear regression analysis 480 

for PL is significant at a p-value < 0.05 or 0.1 for the metrics LASMax, LAeq, LAE, PNL and Loudness 481 

(N5) when comparing flyover to take-off operations. This is also true for LASmax for the comparison 482 

of flyover and hover as it has been predicted that the LASmax of the hover operation would need to be 483 

4.2 dB quieter than the flyover operation to have the same PL. The explanatory value (𝑅2) of the 484 

model for these metrics increases consequently. In this case, there is great consistency between the 485 

different metrics, clearly indicating that (1) flyover operations are perceived as less loud than hover, 486 

landing and take-off operations, and (2) take-off operations generally require the greatest offset from 487 

flyovers to achieve equal PL with LAeq, LASmax, LAE for take-off operations all requiring corrections in 488 

the range of -5.9 to -6.6 dB to achieve equal PL.  489 

Table VII. Offset or ∆ values between metrics for hover, take-off and landing operations vs flyovers 490 
for Perceived Loudness. Offset values are shown in the respective metric’s unit. R2 values are shown 491 
in brackets. * p-value < 0.1, ** p-value < 0.05 492 

 Hover Take-off Landing 
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LASMax (dB) -4.2 (0.93)* -6.3 (0.91)** -3.3 (0.93) 

LAeq (dB) -1.9 (0.93) -5.9 (0.89)** -2.8 (0.93) 

LAE (dB) -3.3 (0.77) -6.6 (0.85)* -2.1 (0.91) 

PNL (PNdB) -1.2 (0.91) -6.6 (0.87)* -1.9 (0.91) 

EPNL (EPNdB) -1.5 (0.92) -6.3 (0.88) -2.3 (0.92) 

Loudness (N5, sone) -4.0 (0.89) -6.1 (0.89)** -3.6 (0.95)** 

 493 

D. Multilevel Analysis 494 

A multilevel analysis was carried out to investigate the contribution of psychoacoustic features other 495 

than Loudness to annoyance and PL. A series of multilevel regression analyses were performed, 496 

according to Eq. 2, with annoyance or PL as dependent variables, and Loudness (ANSI S3.4 2007), 497 

Sharpness DIN 45692 , Fluctuation Strength, Roughness, Tonality, and Impulsiveness as predictors. 498 

Fluctuation Strength, Roughness, Impulsiveness and Tonality metrics were calculated using the 499 

hearing model developed by Sottek (1993). Similar to the Loudness metric, the 5th percentile of the 500 

Sharpness, Fluctuation Strength, Roughness, Tonality and Impulsiveness metrics were used for the 501 

analysis; and the first 0.5 s of the sound sample were excluded from the calculation. 502 

Four multilevel analysis models were built for each listening condition, outdoors, indoor with 503 

partially open window and indoor with closed window: 504 

• Model M0, with fixed intercept (𝛾0) and fixed slopes (𝛾1). This is equivalent to a 505 

conventional multiple linear regression. 506 
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• Model M1, with variable intercept (𝛾00 + 𝜇0𝑗) and no predictors. This model accounts for 507 

the participants using different ranges of the annoyance and PL scales (Boucher et al., 2023). 508 

• Model M2, with variable intercept (𝛾00 + 𝜇0𝑗) and fixed slopes (𝛾10). 509 

• Model M3, with variable intercept (𝛾00 + 𝜇0𝑗) and variable slopes (𝛾10 + 𝜇1𝑗). This is to 510 

account for different changes in annoyance and PL as a function of changes in 511 

psychoacoustic features between participants. 512 

The explanatory values (𝑅2) of each multilevel analysis model for annoyance and PL for the three 513 

listener positions are presented in Table VII.  As shown in Table VII, the 𝑅2 values of the models 514 

for annoyance are consistently higher than for PL. The only exceptions are M1 models, where the 515 

𝑅2 values are higher for PL than for annoyance. M1 models for PL have also 𝑅2 values higher than 516 

M0 values. This suggests a different interpretation and use of the PL scale between participants. 517 

Moreover, comparing 𝑅2 values of the M1 models between outdoors and indoor listener positions, 518 

it can be seen the influence of the scale use for both annoyance and PL in the quieter environments. 519 

The 𝑅2 values consistently increase when variable intercept and slopes are used in the multilevel 520 

analysis. 521 

Table VIII. R2 values for each multilevel analysis model and listener position, for both annoyance 522 
and Perceived Loudness 523 

 Outdoors 
Indoor – Partially Open 

Window 

Indoor – Closed Window 

 Annoyance 
Perceived 

Loudness 
Annoyance 

Perceived 

Loudness 
Annoyance 

Perceived 

Loudness 

M0 0.54 0.28 0.38 0.15 0.34 0.10 
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M1 0.23 0.34 0.34 0.51 0.36 0.45 

M2 0.76 0.61 0.71 0.66 0.70 0.55 

M3 0.83 0.76 0.80 0.75 0.85 0.69 

 524 

The contribution of each SQM to annoyance and PL was assessed by the reduction in 𝑅2 when such 525 

SQM is removed from the multilevel analysis model. A small reduction in 𝑅2 implies that the 526 

specific SQM is of less importance; while a substantial reduction in 𝑅2 implies that the SQM’ 527 

importance is large. 528 

As shown in FIG. 9, Loudness (N5) is the main contributor to annoyance in the three listener 529 

positions. Outdoors, Impulsiveness (I5), seems to play an important role for both annoyance and PL. 530 

After further exploration, I5 values are significantly higher for landing than for the other operational 531 

conditions (see FIG. 9), which seems to suggest that the contribution of this SQM to annoyance and 532 

PL might be due to Blade Vortex Interaction (BVI) nose (Yung, 2000).  For PL, the contribution of 533 

N5 seems to be smaller, with important contributions of other SQMs, such as Fluctuation Strength 534 

(FS5), I5 and Tonality (T5). In indoor environments, T5 seems to be the most important predictor for 535 

PL. 536 
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 537 

FIG. 9 Reduction in 𝑅2 for the Sound Quality Metrics Loudness (N5), Sharpness (S5), Roughness 538 

(R5), Fluctuation Strength (FS5), Impulsiveness (I5) and Tonality (T5) when predicting annoyance 539 

(left) and Perceived Loudness (right), for outdoors (top), indoor with partially open window 540 

(middle) and indoor with closed window (bottom).541 
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542 
FIG. 10 (Colour Online) Box and Whisker plot presenting Impulsiveness for each UAS Operation 543 

V. CONCLUSION 544 

This paper investigates the changes in responses of annoyance and PL (i) with different UAS 545 

operations (i.e., flyover, hover, landing and take-off), and (ii) when a listener is in either an indoor or 546 

outdoor position. This paper also investigated the performance of a series of loudness based metrics, 547 

and complementary SQMs accounting for spectral and temporal characteristics, to explain such 548 

changes in annoyance and PL. 549 

The participants’ responses demonstrated that there was a statistically significant variation when 550 

comparing annoyance or PL simulated in different listener positions. Landing operations were 551 

considered the loudest and most annoying, followed by take-off and hover. Flyovers were perceived 552 

to be the least loud and annoying of the different operations.  553 
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Broadband noise metric analysis was undertaken to understand which metrics have the highest 554 

efficacy in predicting average annoyance and PL. The results of the analysis for annoyance indicate 555 

that across the different operations Loudness (N5) performed the best, with an R2
 value of 0.94, 556 

followed by LAeq and LASmax, both with a value of 0.93. For PL, LASmax and LAeq performed the best, 557 

with an R2 value of 0.90, followed by PNL, EPNL and LAE 0.88 and Loudness (N5) at 0.87. Further 558 

analysis of the LAeq metric suggests annoyance begins to increase at a faster rate when noise levels are 559 

above the 50 dB level.  560 

The differences in response to the different UAS operations have been quantified through Offset 561 

analysis. Specifically, this analysis method was used to understand the noise level difference required 562 

to achieve an equal Annoyance or PL level between the different operations. Results of the offset 563 

analysis showed that only minor differences, less than 1 dB, are required for LAeq, LASmax and LAE to 564 

achieve equal annoyance between the different operations. However, the differences become more 565 

pronounced when analysing PL with a flyover required to be 3.3 to 6.6 dB louder (when considering 566 

the LASmax) to be considered equally loud as other operations. For Loudness, flyovers would need to 567 

increase by between 3.6 and 6.1 sone to be considered equally loud as the other operations.  568 

Results of the multilevel regression analysis demonstrate that Loudness was the principal factor for 569 

predicting annoyance and PL. However, there were contributions from other SQMs in specific 570 

scenarios. Impulsiveness influences responses of annoyance and PL when the listener was outdoors, 571 

which is thought to be potentially associated with Blade Vortex Interaction noise during the landing 572 

operation. For PL when the listener was in either of the two indoor scenarios tonality appears to 573 

play a role which became more significant in the window closed scenario. Further research will be 574 

conducted to investigate the perception of the tonal UAS noise in indoor environments, as this 575 

research demonstrates that it could be a key factor in their perception. 576 
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Several of the limitations of this study has been considered below along with the steps on how they 577 

could be addressed in future research. A single window opening type was considered within this 578 

experiment. Further research could look at multiple window configurations or, additional openings 579 

to better understand the effect of different configurations on UAS noise. Similarly, the number of 580 

UAS or UAS configurations could be increased from the three included within this study. Whilst the 581 

three UAS included all varied in their configurations, the nature of UAS means there are many more 582 

configurations dependant on size, weight, number of rotors, rotor diameter, number of blades etc. 583 

All of which contribute to the sound character generated by the UAS and may be perceived 584 

differently depending on whether the listener is indoors or outdoors. The limitations of the DIN 585 

45631/A1 Loudness model were acknowledged for PL analysis as it has seemingly not dealt well 586 

with the time-varying nature of some stimuli particularly well. Further research could expand the 587 

analysis to evaluate the efficacy of other Loudness models, some of which may be better suited to 588 

predict the PL of time-varying sounds.  589 
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