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Infrared ship target segmentation is the important basis of infrared guided weapon in the sea-air context. 
Typically, accurate infrared ship target segmentation relies on a large number of pixel-level labels. However, it is 
difficult to obtain them. To this end, we present a method of Semi-supervised Infrared Ship Target Segmentation 
with Dual Branch (SeISTS-DB), which utilizes a small amount of labeled data and a large amount of unlabeled 
data to train model and improve segmentation performance. There are three main contributions. First, we design 
a target segmentation branch to generate the pseudo labels for unlabeled data. It consists of a dual learning 
network and a segmentation network. The dual learning network generates pseudo labels with weights for 
unlabeled data. The segmentation network is trained using both labeled data and unlabeled data with pseudo 
labels to achieve target segmentation of infrared ship, obtaining the preliminary segmentation results. Secondly, 
we introduce an error segmentation pixel correction branch, which contains a student network and a teacher 
network, to modify the pixel category error of the preliminary segmentation map. Finally, the outputs of the 
two branches are combined to obtain the final segmentation result. The SeISTS-DB is compared with other fully-
supervised and semi-supervised methods on the infrared ship images dataset. Experimental results demonstrate 
that when the labeled data accounts for 1/8 of the training data, the mean Intersection over Union (mIou) is 
respectively improved by 15.35% and 6.19% at most. Besides, it is also compared with other methods on the 
public IRSTD-1k dataset, when the proportion of labeled images is 1/8, the mIoU is respectively improved by 
11.76% at most compared to the state-of-the-art semi-supervised methods, demonstrating its effectiveness.
1. Introduction

Infrared imaging is a technique that utilizes the infrared wavelength 
amplitude of an object for imaging. More specifically, it uses photoelec-
tric technology to detect infrared specific band signals radiated by ob-
jects, and then converts the signals into images that can be distinguished 
by human vision. With the advantages of long working distance, stable 
imaging effect, all-weather work and strong anti-interference ability, 
infrared imaging technology is widely used in sea surface monitoring 
systems [1–5]. In the field of infrared ship images, there are two re-
search directions, one is the task of small target detection and the other 
is the task of target segmentation. The goal of the small object detec-
tion task is to identify the target frame in the infrared image and the 
category of the target frame [6–8]. The goal of target segmentation is to 
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classify correct category of pixels in the infrared ship image. This paper 
focuses on the task of target segmentation. By classifying the pixels in 
the infrared ship image and marking the target of the ship, infrared ship 
target segmentation is conducive to combating illegal ships and achiev-
ing accurate maritime rescue, which plays an important role in marine 
security, marine rights, and the safety of people’s lives and property 
[9–12].

At present, most infrared ship segmentation methods are based on 
fully-supervised learning [13,14], which first designs a deep network 
model, and then uses all precisely labeled data for training to obtain seg-
mentation results. Common segmentation networks include Fully Con-
volutional Network (FCN) [15], U-shape Network (UNet) [16], and Seg-
mentation Network (SegNet) [17,18]. Although these networks achieve 
good segmentation results, they all require accurate pixel-level labels 
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for training. While for infrared ship images, obtaining these tags is time-
consuming and labor-intensive.

In this paper, we study semi-supervised learning method for infrared 
ship target segmentation, aiming to realize the training network based 
on a small amount of labeled data and a large amount of unlabeled 
data, and improve the segmentation accuracy [19–25]. Undoubtedly, 
the crux of the matter is how to effectively utilize unlabeled images. 
Self-training and consistent regularization are two of the more com-
monly used methods in semi-supervised learning. Self-training is ini-
tially developed in classification [26]. This method uses a segmentation 
network trained with labeled data to generate pseudo labels for unla-
beled data, and then expands the labeled dataset, so that iteratively 
trains the segmentation network to achieve a better segmentation level. 
Consistency regularization makes the features of pseudo labels obtained 
by adding different perturbations to the same image through the net-
work output close to each other [27]. Although the above two methods 
have achieved good performance in semi-supervised segmentation, they 
also have a prominent shortcoming: there is the problem of poor quality 
of pseudo labels generated for unlabeled data. In the process of re-
peated iterations, it is the network that generates confirmations bias. 
Most existing methods manually generate a threshold and filter out 
pseudo labels below the threshold to alleviate the problem of confir-
mation bias, but the impact on network performance largely depends 
on this manually set threshold [28–31].

Specifically, we propose a method of Semi-supervised Infrared Ship 
Target Segmentation with Dual Branch (SeISTS-DB). The two branches 
are the target segmentation branch and the error segmentation pixel 
correction branch, respectively.

The first branch is the target segmentation branch, which consists of 
dual learning network and a segmentation network. Among them, the 
dual learning network is used to generate pseudo labels for those un-
labeled data, and the segmentation network is used to generate initial 
segmentation result. In order to prevent the pseudo labels generated by 
a network from misleading the segmentation network, the dual learning 
network contains two networks with the same structure but different 
parameters. These two networks generate two different segmentation 
results for each unlabeled sample. By combining these two segmenta-
tion results, a pseudo label of an unlabeled data is generated to augment 
the labeled data.

For the segmentation network, both the labeled data and the un-
labeled data with pseudo labels are used for training to obtain initial 
segmentation results. Here, in order to reduce the impact of low-quality 
pseudo labels on updating segmentation network weights, we design an 
adaptive weight to reduce the proportion of such pseudo labels during 
training.

The second branch is the error segmentation pixel correction branch, 
which consists of a student network and a teacher network. During 
training, the two networks receive augmented images of the same im-
age with different perturbations, and make the predictions of the stu-
dent model as consistent as possible with those of the teacher model. 
Through semi-supervised learning, class labels for test images are gen-
erated. Finally, the category label is used to correct the initial segmen-
tation results to improve the segmentation accuracy.

The main contributions of this paper are as follows:

1) We propose a semi-supervised method for infrared ship target seg-
mentation, named as SeISTS-DB, to further improve the accuracy. 
It first generates a pseudo label for the unlabeled data, and then 
uses all the data to train the segmentation network to obtain the 
initial segmentation result. Finally, the initial segmentation result 
is modified to obtain the final segmentation result.

2) We design a target segmentation branch, including dual learning 
network and segmentation network, to achieve the initial segmen-
tation result. It first generates high-quality pseudo labels for un-
labeled data, and use pseudo labels to obtain initial segmentation 
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results.
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3) We introduce the error segmentation pixel correction branch to 
modify the initial segmentation result. It uses semi-supervised 
learning to obtain class labels for infrared ship images. Then, the 
category label is used to correct the initial segmentation result 
obtained in the target segmentation branch, thereby further im-
proving the segmentation accuracy

4) We present a sample-level adaptive weight to assign different 
weights for different pseudo labels, thereby improving the segmen-
tation performance of the segmentation network.

5) We verify the effectiveness of the proposed method on both home-
made infrared ship dataset and public datasets.

The rest of the paper is organized as follows: Section 2 gives the related 
work. Then, Section 3 describes the proposed method and the learning 
algorithm of each branch. Later on, Section 4 provides the experimental 
results as well as their analysis, and finally, Section 5 concludes the 
paper.

2. Related work

The method of our work is mainly related to the segmentation meth-
ods based on fully-supervised learning and semi-supervised learning, 
which are described in detail below.

2.1. Segmentation methods based on fully-supervised learning

The segmentation method based on fully-supervised learning refers 
to train the network with a large amount of labeled data so that the 
network has the ability to predict the label of the pixels in the image 
[32–35]. Fully convolutional network (FCN) is the first deep learning 
model to achieve segmentation in an end-to-end manner [15,36–38]. It 
replaces the last fully-connected layer of the network with the convolu-
tional layer in the convolutional network. However, the segmentation 
results of FCN are not fine enough, and the segmentation performance 
is poor [39–41].

Later on, researchers proposed some models to improve the seg-
mentation performance. For example, Ronneberger et al. presented the 
encoder-decoder network [16], named UNet. By fusing the features with 
splicing, the network can extract more detailed features of the image, 
obtaining higher segmentation accuracy. Badrinarayanan et al. also de-
signed a network based on the encoder-decoder structure [18], called 
SegNet. In the encoder part, the index of the maximum value located is 
recorded during maxpooling. In the decoder, the corresponding pooling 
index enables non-linear sampling during upsampling. By doing this, 
the learning process in the sampling phase is avoided. Chen et al. pro-
posed the Deeplab series models [42–44]. They designed a pyramid hole 
pooling operation to capture different scales of objects, thus enhancing 
the accuracy of segmentation. Takikawa et al. introduced a dual-stream 
segmentation network [45]. It adds an additional shape stream to learn 
the edge information of the objects, improving the quality of the seg-
mentation boundary area. Kirillov et al. used an iterative upsampling 
method to optimize the segmentation results of the object edge, which 
can improve the quality of the segmented boundary area [46].

The segmentation methods attempt to design different architectures 
to improve the segmentation accuracy. Overall, they all belong to the 
fully-supervised learning methods, and need accurately pixel-level la-
bels to train the network. However, it is difficult to obtain the pixel-level 
labels. Therefore, it is necessary to explore a method which is less de-
manding on the pixel-level labeled data.

2.2. Segmentation methods based on semi-supervised learning

The semi-supervised method aims to explore how to use unlabeled 
data to improve network performance. At present, the common semi-
supervised segmentation methods are mainly divided into two cate-

gories: self-training [47–55] and consistency training [56–61].
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Fig. 1. The overall architecture of SeISTS-DB. The target segmentation branch is used to generate the initial segmentation map. The error segmentation pixel 
correction branch performs semi-supervised label classification, and uses class level information to modify the error segmentation pixels in the segmentation map.
The self-training method first generates pseudo labels for unla-
beled data by pre-training the model, and then trains the model with 
two categories of labels. For example, Souly et al. proposed a semi-
supervised segmentation network with generative adversarial network 
[62]. Among them, the discriminator is an FCN to classify each pixel in 
the image. However, this network will generate inaccurate label cate-
gories. Hung et al. used the segmentation network as the generator and 
designed a fully convolutional discriminator to distinguish pixel-level 
labels from segmentation results [63]. For the unlabeled data, the high 
confidence category in the discriminator is used as the pseudo label for 
training generator. This method significantly improves the segmenta-
tion performance by using a large amount of unlabeled data. However, 
there is still the problem of schema collapse. Mondal et al. applied 
the recurrent adversarial networks to semi-supervised segmentation and 
enforced cycle consistency to learn a bidirectional mapping between un-
paired images and segmentation masks [64]. Additionally, they added 
an unsupervised regularization term in the loss function. The segmenta-
tion performance is improved when labeled data is limited. On the basis 
of the original generative adversarial network, Mittal et al. proposed a 
feature matching loss and a self-training loss [65]. Through these two 
networks, semi-supervised classification and semi-supervised segmenta-
tion are combined to reduce misclassified pixels in segmentation maps.

The method based on consistency training believes that adding per-
turbation to unlabeled data will improve the segmentation performance 
of the network [66]. Ouali et al. proposed a cross-consistency training 
method. It adds multiple auxiliary decoders based on the encoder-
decoder structure [56]. During training, firstly, the labeled data is used 
to train the encoder and the main decoder; secondly, the unlabeled data 
is input into the network to add different perturbations to the encoder. 
The network is optimized by forcing the predictions of multiple de-
coders to be consistent. French et al. first used an adaptive variant of 
CutMix to augment the data, and then imposed a consistency constraint 
between the prediction of the augmented data and the original data 
[60]. Olsson et al. introduced a new segmentation augmentation strat-
egy, ClassMix, into a unified framework. It leveraged the consistency 
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regularization and pseudo-labeling for segmentation [61,67]. Zeng et 
al. performed network perturbation by two segmentation networks with 
the same structure but with different initializations, enhancing the con-
sistency between perturbed network predictions [68].

The above semi-supervised segmentation methods can improve the 
segmentation accuracy by explicitly or implicitly extracting features for 
the unlabeled data. However, they all assume that the segmentation 
network’s pseudo labels for unlabeled data are correct. When the pre-
diction result is wrong, the error will be continuously amplified during 
training, thus affecting the performance of the network. Therefore, the 
fault tolerance of these methods is relatively poor.

Differently, the target segmentation branch proposed in this paper 
will generate a pseudo label for the unlabeled data according to the 
segmentation map of the two learning networks, and generate an adap-
tive weight for the generated pseudo label. In this way, the pseudo 
label with poor effect will have relatively little influence in the subse-
quent training. Additionally, to solve the pixel category error problem 
generated in the target segmentation branch, we design an error seg-
mentation pixel correction branch based on the semi-supervised label 
classification method, which is used to correct the segmentation results 
of the target segmentation branch and improve the performance of the 
infrared ship target segmentation.

3. Methods

In this section, we first introduce the overall framework of the semi-
supervised infrared ship target segmentation network with dual branch. 
Then, we describe the target segmentation branch, error segmentation 
pixel correction branch and two-branch fusion process one by one. Next, 
we give the loss functions of the two branches, respectively. Finally, we 
provide the learning algorithms of the two branches.

3.1. General framework

The overall architecture of SeISTS-DB is depicted in Fig. 1. As seen 
in Fig. 1, the model is mainly composed of the target segmentation 

branch and the error segmentation pixel correction branch. The target 



Alexandria Engineering Journal 87 (2024) 17–30T. Zhang, G. Jiang, Z. Liu et al.

Fig. 2. Illustrating the architectures for (a) the process of unlabeled data passing through double learning network, (b) the process of generating pseudo label.
segmentation branch is used to generate the initial segmentation re-
sult, whereas, the error segmentation pixel correction branch is used to 
correct the wrong segmentation pixel category to improve the segmen-
tation result.

Specifically, on the one hand, considering the low quality of the 
pseudo label generated by a single network, the target segmentation 
branch first uses the dual learning network to generate pseudo label 
for the unlabeled data, which prevents the pseudo label generated by 
a single network from causing confirmation bias in iterative training. 
Then, we use both the labeled data and unlabeled data to train the seg-
mentation network to obtain the initial segmentation result. Here, the 
dual learning network and segmentation network have the same struc-
ture. We denote the two sub-networks of dual learning network as A 
and B, and the segmentation network as F. On the other hand, to cor-
rect the wrong segmentation of pixels in the target segmentation map 
generated by the target segmentation branch, the error segmentation 
pixel correction branch is adopted for correction. This branch is able 
to identify the categories contained in the segmented image, and use 
the image-level label to correct the missegmented pixel in the target 
segmentation branch. This branch consists of two networks with the 
same structure, namely student network S and teacher network T. This 
branch network is trained with both labeled data and unlabeled data, 
and the image-level label is obtained by the student network S. Finally, 
the image-level label is used to modify the initial segmentation map to 
obtain the final segmentation map (Tables 8 and 9).

3.2. Branch introduction

SeISTS-DB first uses the target segmentation branch to get the initial 
segmentation result, and then uses the error segmentation pixel correc-
tion branch to predict the image category. Finally, the results of the two 
branches are fused to obtain the final segmentation result. The follow-
ing three parts are introduced sequentially.

3.2.1. Target segmentation branch

Target Segmentation Branch (TSB) consists of dual learning network 
A, B and segmentation network F. The dual learning networks A and B 
use the same segmentation network, but have different initialization 
weights. Firstly, labeled data is used to train dual learning networks A 
and B. Here, in order to avoid two networks producing segmentation 
maps with the same error, the segmentation maps output by networks 
A and B are not exactly the same during training. Then, the trained 
networks A and B generate segmentation confidence maps 𝑃1 and 𝑃2 of 
unlabeled data and corresponding pseudo labels 𝑌1 and 𝑌2, respectively, 
as shown in Fig. 2 (a) Among them, the segmentation confidence map is 
the network output after 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 normalization. Finally, the two seg-
mentation confidence maps are added and reduce the dimensionality 
to generate the final unlabeled data pseudo label. The adaptive weight 
of the pseudo label is calculated based on the outputs obtained by net-
20

works A and B.
The way to generate the pseudo label is showed in Fig. 2(b). By 
inputting unlabeled data into learning networks A and B, two three-
dimensional segmentation confidence maps 𝑃1 and 𝑃2 are obtained, 
respectively. Then, the corresponding dimensions of the two confidence 
maps are added to obtain the overall segmentation confidence map P. 
Finally, dimensionality reduction is performed in the channel direc-
tion of the segmentation confidence map to obtain a one-dimensional 
pseudo label. Wherein, at each pixel point 𝑖, the value of 𝑌 ′

𝑖
is the chan-

nel index where 𝑃𝑖 obtains the maximum value in the channel direction.
The process of generating adaptive weight is as follows. First, 

the segmentation confidence maps 𝑃1 and 𝑃2 are dimensionally re-
duced into one-dimensional segmentation maps 𝑌 ′

1 and 𝑌 ′
2 according 

to the channel direction. Then, the Intersection over Union of the non-
background pixels in the segmentation maps 𝑌1 and 𝑌2 are selected as 
the adaptive weight of the final pseudo label 𝑌 ′.

After obtaining the pseudo labels and the adaptive weights, we train 
the segmentation network F. Here, labeled data and unlabeled data with 
pseudo label are used to train the segmentation network. For the unla-
beled data, the gradient update is multiplied by the adaptive weight 
corresponding to the pseudo label (the weight value is between 0-1). 
Then, the trained segmentation network F is used to generate initial 
target segmentation map 𝑆(𝑥)𝑐 .

3.2.2. Error segmentation pixel correction branch

The error segmentation pixel correction branch is an image clas-
sification method based on semi-supervised learning [69–75], which 
consists of the student network S and the teacher network T. Both stu-
dent network S and teacher network T use Resnet50 [76] pre-trained 
on the ImageNet dataset [77] as the backbone network. However, the 
weight of the teacher network (𝜃0) is the exponential moving average of 
the weight of the student network (𝜃). Through online integration, the 
weights of the teacher network are updated [78–80]. In other words, 
updating the weight of the student network in each iteration will also 
update the weight of the teacher network. During the training process, 
the labeled data is first used to train the student network S, and the un-
labeled data is then used to train the student network S simultaneously. 
At this time, the image with Gaussian noise added and the original im-
age are respectively input into the student network and the teacher 
network to make their predictions as consistent as possible. In the test-
ing phase, we use the trained student network to output the image-level 
label 𝐺(𝑥)𝑐 .

3.2.3. Fusion of results from two branches

After obtaining the two branch outputs, they are fused to obtain the 
final segmentation result. Here, according to the category label output 
by the error segmentation pixel correction branch, the segmentation 
map output by the target segmentation branch is corrected, which is 

expressed as:
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𝑆(𝑥)𝑐 =

{
0, if 𝐺(𝑥)𝑐 < 𝛾

𝑆(𝑥)𝑐 , if 𝐺(𝑥)𝑐 ≥ 𝛾
(1)

where 𝑆(𝑥)𝑐 is the segmentation result of the c-th category in the target 
segmentation map of the target segmentation branch, 𝐺(𝑥)𝑐 represents 
the predicted probability of the 𝑐-th category of the error segmentation 
pixel correction branch. 𝛾 is a threshold, which is set to 0.1. When the 
value of 𝐺(𝑥)𝑐 is less than the threshold, it indicates that there is no 
the 𝑐-th class pixel in the target segmentation map, thereby filtering the 
wrong 𝑐-th class pixel and increasing the probability that the pixel is 
segmented into the correct class pixel.

3.3. Loss function

3.3.1. Loss function of the target segmentation branch

The target segmentation branch consists of the dual learning net-
work and the segmentation network. The dual learning network only 
uses labeled data for training. The segmentation network uses both la-
beled data and unlabeled data for training. The trained loss function is 
analyzed.

3.3.1.1. Dual learning network Learning network A and B need labeled 
data for training, and the training loss is cross-entropy loss [81]:

𝐿𝑐𝑒
𝐴,𝐵 = − 1|𝐷𝑙|

∑
𝑘∈{𝐴,𝐵}

∑
𝑖∈|𝐷𝑙 |𝒚𝑖 log𝑃𝑠𝑚(𝑓𝑘(𝒙𝑖)), (2)

where 𝐴, 𝐵 represent learning networks A, B respectively. 𝐷𝑙 denotes 
a set of labeled data. 𝒙𝑖 and 𝒚𝑖 respectively are the 𝑖-th sample in 𝐷𝑙
and its corresponding pixel-level label. 𝑓𝑘 means a single learning net-
work 𝑘 ∈ {𝐴,𝐵}. 𝑝𝑠𝑚(⋅) indicates the softmax function [82]. 𝑝𝑠𝑚(⋅) is 
calculated as:

𝑝𝑠𝑚(𝑚𝑖) =
𝑚𝑖∑𝑁

𝑛=1 𝑒
𝑚𝑛

(3)

where 𝑁 is the total number of categories, and 𝑚𝑖 is the probability 
prediction value of the network for the 𝑖-th type of data.

After training, the two learning networks have a certain segmenta-
tion ability. Since the two learning networks have the same structure, 
almost the same segmentation map will be obtained when the same un-
labeled image is input into learning networks A and B. In order to make 
the two networks produce not exactly the same results, we introduce 
the mean square error loss [83] as the dual learning loss of the dual 
learning network, so that the results of the two learning networks are 
not exactly the same. The dual learning loss is represented as:

𝐿𝑚𝑠𝑒 =
1|𝐷𝑙|

∑
𝑖∈|𝐷𝑙| ||𝑃𝑠𝑚(𝑚𝐴) − 𝑃𝑠𝑚(𝑚𝐵)||2 (4)

where 𝐷𝑙 represents the labeled dataset, 𝑃𝑠𝑚()̇ is the 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 function, 
𝒎𝐴 and 𝒎𝐵 denotes the outputs of learning networks A and B, respec-
tively.

Finally, the loss function when training learning networks A and B 
is:

𝐿 =𝐿𝑐𝑒𝐴,𝐵 −𝐿𝑚𝑠𝑒 (5)

It is worth noting that we choose the 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 function to normal-
ize the output of the network. The normalized results are used as the 
scores of the respective segmentation maps of the two learning net-
works, which are used as the basis for unlabeled data to train the 
adaptive weight of the segmentation network F.

After training, learning networks A and B are used to generate 
pseudo labels for unlabeled data. The segmentation map normalized 
by 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 is called a segmentation confidence map. The segmenta-
tion confidence maps obtained by the two learning networks are added 
together as the total segmentation confidence map. It is calculated as:
21

𝑰𝑠𝑐𝑜𝑟𝑒,𝑗 = 𝑃𝑠𝑚(𝒎𝐴)𝑗 + 𝑃𝑠𝑚(𝒎𝐵)𝑗 (6)
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where 𝑃𝑠𝑚(𝒎𝐴) and 𝑃𝑠𝑚(𝒎𝐵) are the segmentation confidence maps 
generated by two learning networks for unlabeled data. 𝑰𝑠𝑐𝑜𝑟𝑒,𝑗 is a 
total segmentation confidence map generated for an unlabeled image, 
where 𝑗 is the pixels in the segmentation map, and 𝑠𝑐𝑜𝑟𝑒 denotes the 
score for each pixel.

The total segmentation confidence map generated by two learning 
networks combines the segmentation results of the two networks, thus 
effectively avoiding the segmentation bias generated by a single net-
work. The category with the highest score selected for each pixel is 
selected as the category of this pixel. The calculation method is as fol-
lows:

𝑡𝑝𝑠𝑒𝑢𝑑𝑜,𝑗 = argmax(𝑰𝑠𝑐𝑜𝑟𝑒,𝑗 ) (7)

where argmax() is used to get the category with the highest score of 
each pixel, and 𝑡𝑝𝑠𝑒𝑢𝑑𝑜,𝑗 is the category of each pixel in segmentation 
map.

3.3.1.2. Segmentation network The segmentation network uses both la-
beled data and unlabeled data for training. On the one hand, using 
two networks to generate pseudo labels for unlabeled data can generate 
higher quality pseudo labels. On the other hand, this may also face mis-
classification of the two segmentation maps, resulting in poor quality 
pseudo labels.

In order to reduce the proportion of pseudo labels with poor quality 
in updating the weight of segmentation network F, we design a sample-
level adaptive weight. By adjusting the proportion of different pseudo 
labels in the reverse gradient propagation, the weight of the segmen-
tation network F is updated. The complete calculation process is as 
follows:

𝒕𝑝𝑠𝑒𝑢𝑑𝑜,𝐴 = argmax (𝑰𝑠𝑐𝑜𝑟𝑒,𝐴) (8)

𝒕𝑝𝑠𝑒𝑢𝑑𝑜,𝐵 = argmax (𝑰𝑠𝑐𝑜𝑟𝑒,𝐵) (9)

For the segmentation maps 𝒕𝑝𝑠𝑒𝑢𝑑𝑜,𝐴 and 𝒕𝑝𝑠𝑒𝑢𝑑𝑜,𝐵 generated by 
the two learning networks, the Intersection over Union of their non-
background pixels is calculated as the weight of the pseudo label in the 
segmentation network F weight update. Its calculation formula is:

𝜔 =
𝒕𝑝𝑠𝑒𝑢𝑑𝑜,𝐴

′⋂ 𝒕𝑝𝑠𝑒𝑢𝑑𝑜,𝐵
′

𝒕𝑝𝑠𝑒𝑢𝑑𝑜,𝐴
′⋃ 𝒕𝑝𝑠𝑒𝑢𝑑𝑜,𝐵

′ (10)

where 𝒕𝑝𝑠𝑒𝑢𝑑𝑜,𝐴′ and 𝒕𝑝𝑠𝑒𝑢𝑑𝑜,𝐵 ′ are the non-background pixels in the 
pseudo label, and 𝜔 is the adaptive weight of the pseudo label.

For the unlabeled data, an adaptive weighted cross-entropy loss is 
used for training:

𝐿𝑎𝑑𝑎𝑤 = − 1|𝐷𝑢|
∑
𝑗∈𝐷𝑢

𝜔 × 𝒕𝑝𝑠𝑒𝑢𝑑𝑜,𝑗 log𝑃𝑠𝑚(𝑓𝑠(𝒙𝑗 )) (11)

where 𝐷𝑢 is the set of unlabeled data, and 𝜔 is the sample-level adap-
tive weight. It is used to represent the influence of unlabeled data in 
adjusting the weights of the segmentation network F, as shown in for-
mula (10).

For the labeled data, the cross entropy loss is used for training:

𝐿𝑐𝑒𝑠 = − 1|𝐷𝑙|
∑
𝑖∈𝐷𝑙

𝒚𝑖 log𝑃𝑠𝑚(𝑓𝑠(𝒙𝑖)) (12)

where 𝐷𝑙 is the labeled dataset, 𝒙𝑖 is the labeled data, 𝒚𝑖 is the label 
corresponding to 𝒙𝑖.

Finally, the complete loss function of the segmentation network is:

𝐿𝑆 =𝐿𝑎𝑑𝑎𝑤 +𝐿𝑐𝑒𝑠 (13)

3.3.2. Loss function of the error segmentation pixel correction branch

During the training process, the input of the student network and the 
teacher network are the original image and the perturbed image with 

Gaussian noise added, respectively. The weight of the student network 



T. Zhang, G. Jiang, Z. Liu et al.

is updated through the gradient feedback of the network. The weight of 
the teacher network is the exponential moving average of the weight of 
the student network, which is adjusted by means of online integration.

The error segmentation pixel correction branch is a semi-supervised 
label classification network based on a consistency. Therefore, the pre-
dicted output of student network S and teacher network T should be 
close. Thus, the mean square error is used to measure the prediction 
results of these two networks. The training goal is to make the mean 
square error of the prediction results of the two networks as small as 
possible.

The goal of the error segmentation pixel correction branch is to 
make the student network capable of image label classification. The 
optimization method of the student network S is adjusted by classifica-
tion cross entropy loss 𝐿𝑐𝑒𝑐 of the labeled data, and the consistency loss 
𝐿𝑐𝑜𝑛𝑠 of the unlabeled data.

The cross-entropy loss is expressed as:

𝐿𝑐𝑒𝑐 = − 1|𝐷𝑙|
∑
𝑖∈𝐷𝑙

𝒚𝑖 log𝑃𝑠𝑚(𝑓𝑔(𝒙𝑙)) (14)

where 𝐷𝑙 is the labeled dataset, 𝒙𝑙 represents the sample of the labeled 
data, 𝒚𝑙 is the image-level label of 𝒙𝑙 , 𝑓𝑔() denotes the student network.

The consistency loss is expressed as:

𝐿𝑐𝑜𝑛𝑠 = ||𝑓𝑔(𝒙𝑢) − 𝑓ℎ(𝒙𝑢)||2 (15)

where 𝑓ℎ() represents the teacher network, 𝑓𝑔() stands for the student 
network, 𝒙𝑢 implies the unlabeled data.

Finally, the total loss function of this branch is:

𝐿𝑝 =𝐿𝑐𝑒𝑐 +𝐿𝑐𝑜𝑛𝑠 (16)

3.4. Training process

3.4.0.1. Training of target segmentation branch The target segmentation 
branch consists of two training stages. In the first stage, the labeled 
data is used to train the learning networks 𝐴 and 𝐵, to make the two 
learning networks generate the pseudo label of the unlabeled data. In 
the second stage, labeled data and unlabeled data are used to train the 
segmentation network 𝐹 . For the labeled data, the cross-entropy loss 
is used to update the gradients. For the unlabeled data, pseudo labels 
are used to supervise information and update gradients. It should be 
noted that, the unlabeled data needs to use adaptive weight to adjust 
the proportion in the gradient update. See Algorithm 1 for the training 
process of target segmentation branch.

3.4.0.2. Training of error segmentation pixel correction branch This 
branch training needs to use labeled data 𝑥𝑙 and the corresponding 
image-level label 𝑦𝑙 , and unlabeled data 𝑥𝑢. For labeled data 𝑥𝑙 , it is 
input to the student network 𝑆 generate the predicted image-level la-
bel 𝑓𝑔(𝐱𝑙). Then, the classification cross-entropy loss is used to tune the 
parameters of the student network 𝑆 . For the unlabeled data 𝐱𝑢, it is 
input to both the student network 𝑆 and the teacher network 𝑇 , and 
the mean square error is used to calculate the predicted values of the 
two networks. By adjusting the parameters of the student network, the 
mean square error moves in the direction of reduction. See Algorithm 2
for the training process of this branch.

3.5. Inference

For a new image, the segmentation process of our network is as 
follows: firstly, the network standardizes the size of the input image, 
and the size of the standardized image is 256*256; secondly, the stan-
dardized image is fed into the segmentation network F and the student 
network S simultaneously, and the preliminary segmentation map of the 
image and the category label of the image are obtained, respectively. Fi-
nally, the category label of the image is used to correct the preliminary 
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segmentation map of the image to obtain the final segmentation map.
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Algorithm 1 The target segmentation branch training process.
1: Input: labeled data (𝐱𝑙 , 𝐲𝑙) ∈𝐷𝑙 , unlabeled data 𝐱𝑢 ∈
2: 𝐷𝑢 , coefficient of balance 𝛼, training times of double
3: learning modules 𝐸𝐴𝐵 , training times of segmentation
4: network 𝐸𝐹 ;
5: Output: Segmentation network F;
6: Initialization Learning network A and B,segmentation
7: network F, current number of training rounds 𝐸𝑐𝑢𝑟 = 0;
8: for 𝐸𝑐𝑢𝑟 < 𝐸𝐴𝐵 do
9: for (𝐱𝑙 , 𝐲𝑙) in 𝐷𝑙 do

10: Use formula (5) to update the parameters of 𝐴 and
11: 𝐵;
12: end for

13: 𝐸𝑐𝑢𝑟 =𝐸𝑐𝑢𝑟 + 1;
14: end for

15: for 𝐸𝑐𝑢𝑟 < 𝐸𝐴𝐵 +𝐸𝑠 do
16: for 𝐱𝑢 in 𝐷𝑢 do
17: Use equation (7) to generate pseudo labels
18: 𝑡𝑝𝑠𝑒𝑢𝑑𝑜,𝑗 ;
19: Use A,B and equation (10) to calculate the weight
20: 𝑤𝑖𝑜𝑢,𝑗 of 𝑥𝑢 ;
21: Use equation (11) to update the parameters of F;
22: end for

23: for (𝐱𝑙 , 𝐲𝑙) in 𝐷𝑙 do
24: Use equation (12) to update the parameters of F;
25: end for

26: 𝐸𝑐𝑢𝑟 =𝐸𝑐𝑢𝑟 + 1;
27: end for

28: return segmentation network F;

4. Experimental results

In order to verify the effectiveness of SeISTS-DB, we did some ex-
perimental results with the self-made infrared ship dataset and a public 
dataset. In this section, we first introduce the infrared ship dataset and 
evaluation metrics used in the experiments, and describe the experimen-
tal details. Then, we compare different baseline networks to explore the 
effectiveness of the target segmentation branch. Later, we analyze the 
adaptive weight used to train the segmentation network F. Finally, we 
compare the performance of SeISTS-DB with that of the fully-supervised 
methods and semi-supervised methods.

Algorithm 2 The error segmentation pixel correction branch training 
process.
1: Input: labeled data (𝐱𝑙 , 𝐲𝑙) ∈𝐷𝑙 , unlabeled data 𝐱𝑢 ∈
2: 𝐷𝑢 , training times 𝐸;
3: Output: Student network 𝑆 for image classification;
4: Initialization student network 𝑆 and teacher network
5: 𝑇 , current number of training rounds 𝐸𝑐 = 0;
6: for 𝐸𝑐 < 𝐸 do
7: for (𝐱𝑙 , 𝐲𝑙), 𝐱𝑢 in 𝐷𝑙, 𝐷𝑢 do
8: Use (16) to update the parameters of 𝑆 , and then
9: the teacher network 𝑇 is regularly changed accord-

10: ing to the parameters of the student network 𝑆
11: through online integration;
12: end for

13: 𝐸𝑐 =𝐸𝑐 + 1;
14: end for

15: return Student network S;

4.1. Infrared ship dataset

The images of the infrared ship dataset come from image frames ex-
tracted from real infrared ship videos. After manual deduplication, a 
total of 4,671 infrared ship images are included, and each image has 
a corresponding pixel-level label and image-level label. The dataset is 
divided into training set and testing set according to the ratio of 4:1. Fi-
nally, the training set contains 3,743 images and the testing set contains 
928 images. In this dataset, the pixel category includes 10 foreground 
categories and 1 background category. Among them, the background 
category is removed from the image category. The foreground cate-

gories are jyj, qwc, tc_qzc_sag, yyc, hwj, lqt, myyyc, qt, qzj and slj. The 



Alexandria Engineering Journal 87 (2024) 17–30T. Zhang, G. Jiang, Z. Liu et al.

Table 1

Information of the infrared ship dataset.

Category jyj qwc tc_qzc_sag yyc hwj lqt myyyc qt qzj slj Total

Quantity 504 161 600 629 614 350 600 210 537 466 4671

Fig. 3. Examples of Infrared Ships.
dataset information is shown in Table 1, whereas Fig. 3 shows some 
examples of images and their label images.

4.2. Evaluation indicators

We select the mean Intersection over Union (mIoU), network pa-
rameter and floating point operations per second as the evaluation 
indicators of the experimental results.

The Intersection over Union (IoU) of each class refers to the ratio of 
the intersection area and the merged area between the predicted area 
and the true value area of the class, with a range between 0 and 1. 
Assuming that the predicted result of class 𝑘 is 𝑃𝑘, the actual value is 
𝑇𝑘, the calculation formula is:

𝐼𝑜𝑈𝑘 =
𝑃𝑘

⋂
𝑇𝑘

𝑃𝑘
⋃
𝑇𝑘

(17)

From formula (17), IoU can be expressed as 𝑇𝑃∕(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁). 
Among them, 𝑇𝑃 is the actual category is a certain category and the 
predicted result is also this category. 𝐹𝑃 is the actual category is a 
certain category but predicted to be other categories. 𝐹𝑁 is that the 
actual category should not be of this type but is predicted to be of 
this type. 𝑌𝑖𝑗 indicates that the actual class is the 𝑗-th class, and the 
predicted class is the 𝑖-th class. The IoU of the 𝑘-th category can be 
expressed as:

𝐼𝑜𝑈𝑘 =
𝑌𝑘𝑘∑𝐶

𝑖=0 𝑌𝑖𝑘 +
∑𝐶

𝑗=0 𝑌𝑘𝑗 − 𝑌𝑘𝑘
(18)

where 𝐶 represents all the pixel categories (total of 10 categories), 𝑘 = 0
indicates that the class 𝑘 is the background category, and 𝑘 ∈ [1, 10] is 
the target category.

The mIoU of 𝐶 classes can be expressed as:

𝑚𝐼𝑜𝑈 = 1
𝐶

𝐶∑
𝑘=1

𝐼𝑜𝑈𝑘 (19)

The network parameter (Parameters) [84] is the sum of the param-
eter quantities of all convolutional layers and fully-connected layers in 
the network, which represents the size of the network model.

Floating point operations per second (FLOPs) [85] represents the 
calculation amount of the network, which is mainly used to measure 
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the complexity of the network.
4.3. Experimental details

The target segmentation branch contains two learning networks and 
one target segmentation network, with the same structure. In the exper-
iments, the Adam optimizer [86–88] is chosen for branch optimization. 
The initial learning rate is 2e-4, the training epoches of both the dual 
learning network and the target segmentation network are 130, and the 
minibatch size is 12.

The error segmentation pixel correction branch contains a student 
network S and a teacher network T, with the same structure. This study 
uses ResNet50 pre-trained by ImageNet network as the backbone net-
work. In this branch, stochastic gradient descent is used for network 
optimization. The base learning rate is 3e-2, the momentum term is 
0.9, the weight decay is 1e-5, the epoch is 30, and the minibatch size is 
8.

The input image size for both branches above is 256 × 256 × 1. All 
experiments are run using the Pytorch [89] framework on an Intel(R) 
Xeon(R) E5-2603 v4 server with NVIDIA Tesla K40c 11G GPU.

4.4. Impact of target segmentation branch on the initial segmentation result

In order to explore the impact of target segmentation branch on 
the initial segmentation result, the following three sets of comparative 
experiments are designed:

(1) The segmentation network and the two learning networks are all 
SegNet, which are labeled as seg-SegNet, A-SegNet and B-SegNet, 
respectively. All three networks use a random initialization method 
to generate initialization parameters.

(2) The segmentation network and the two learning networks are both 
UNet, which are marked as seg-UNet, A-UNet and B-UNet, respec-
tively. All three networks use a random initialization method to 
generate initialization parameters.

(3) The segmentation network and the two learning networks are 
both DeepLabV3+, which are marked as seg-DeepLabV3+, A-
DeepLabV3+ and B-DeepLabV3+, respectively. The encoders of the 
three networks use ResNet101 and are all initialized with Kaiming 
[90].

Table 2 shows the mIoU of different segmentation networks and 
learning networks on the infrared ship dataset when the proportion of 
labeled data is 1/8, where the bold numbers indicate the best mIoU, 
and Fig. 4 shows the corresponding visualization results.
According to Table 2 and Fig. 4, we can find that:
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Table 2

mIoU(%) of different segmentation networks and learning networks on the infrared ship dataset.

Class seg-SegNet A-SegNet B-SegNet seg-UNet A-UNet B-UNet seg-DeepLabV3+ A-DeepLabV3+ B-DeepLabV3+

background 99.62 99.54 99.53 99.66 99.65 99.64 99.59 99.56 99.56

jyj 82.64 72.53 72.12 86.78 83.63 79.33 81.87 76.34 73.96

qwc 10.23 2.15 7.34 54.27 25.71 39.75 27.45 16.84 15.60

tc_qzc_sag 89.82 85.64 86.91 91.12 89.64 87.37 88.76 87.47 86.22

yyc 84.23 75.54 78.62 89.82 89.37 89.52 85.72 84.45 84.68

hwj 75.64 67.19 66.56 79.89 78.39 77.37 78.36 79.72 78.06

lqt 85.45 73.88 76.83 88.29 84.11 86.25 86.48 84.04 84.27

myyyc 85.46 79.00 79.58 88.78 88.93 88.12 86.01 85.26 86.76

qt 54.83 46.44 48.46 79.28 59.39 71.53 80.10 76.36 75.04

qzj 84.80 75.99 78.46 88.71 88.74 88.30 85.49 82.53 83.20

slj 70.92 63.14 68.06 82.31 75.33 85.19 77.56 80.73 78.29

mIoU 74.88 67.37 69.28 84.45 78.44 81.12 79.76 77.57 76.88

Fig. 4. Visualization results of different segmentation networks on the infrared ship dataset.
(1) When using different segmentation models, the three segmentation 
networks (seg-SegNet, seg-UNet, seg-DeepLabV3+) performed best 
on the tc_qzc_sag category, with mIoU of 89.82%, 91.12%, 88.76%, 
respectively, and performed worst on the qwc category, with mIoU 
are 10.23%, 54.27% and 27.45%, respectively. It indicates that 
all networks have poor segmentation effects on small-scale targets 
such as qwc, but better on large-scale targets such as tc_qzc_sag. 
The reason is that the information of small-scale targets is difficult 
to capture, but UNet has shown better performance in the three 
networks.

(2) When using different segmentation models, there are differences in 
the segmentation results produced by the two learning networks. 
For example, the mIoU of A-SegNet and B-SegNet are 67.37% and 
69.28%, respectively. The mIoU of A-UNet and B-UNet are 78.44% 
and 81.12%, respectively. The mIoU of A-DeepLabV3+ and B-
DeepLabV3+ are 77.57% and 76.88%, respectively. It demon-
strates that the dual learning loss can make the segmentation re-
sults obtained by the two learning networks different, which helps 
to generate high-quality pseudo labels.

(3) The segmentation effect of seg-UNet and its corresponding dual 
learning network (A-UNet and B-UNet) is the best, with mIoU are 
84.45%, 78.44%, 81.12%, respectively. It shows that the UNet net-
work is more suitable for small sample dataset.

(4) Compared with the segmentation results of the corresponding 
two learning networks, the segmentation results of the three segmenta-
tion networks (seg-SegNet, seg-UNet, seg-DeepLabV3+) are improved, 
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with the highest improvements of 5.6%, 3.33%, and 2.19%. The rea-
son is that this method uses a dual learning loss in training to make the 
two learning networks produce different segmentation results as much 
as possible. The two networks are encouraged to identify different re-
gions and capture more information. This can produce a better pseudo 
label for unlabeled data and improve the segmentation performance of 
the segmentation network.

4.5. Impact of adaptive weight on segmentation results

In order to explore the impact of adaptive weight on the segmenta-
tion network, we use three ways to set weights for unlabeled data:

(1) The weights of unlabeled data are all set to 1 and expressed as TSB 
only.

(2) The IoU of the non-background pixel in the two segmentation maps 
is taken as the power of the exponential function. The exponential 
function is used as the adaptive weight of the unlabeled data, which 
is expressed as TSB (with EX).

(3) The IoU of the non-background pixel in the two segmentation im-
ages is used as the adaptive weight of the unlabeled data, expressed 
as TSB (with AW).

Table 3 lists the mIoU obtained using these three weights, where 
bold numbers indicate the best results. Fig. 5 shows the segmentation 
results for different images.

According to Table 3 and Fig. 5, we can conclude that:

(1) Compared with the result of the method without adaptive weight 

(80.34%), the segmentation results of TSB (with EX) and TSB (with 
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Fig. 5. Segmentation results of different adaptive weights on the infrared ship dataset.
Table 3

Performance of different tar-
get segmentation branches.

Method mIoU(%)

TSB only 80.34

TSB (with EX) 83.28

TSB (with AW) 84.45

Table 4

Influence of error segmentation pixel correction branch on 
segmentation performance.

Method mIoU(%) Para(MB) GFlops

SeISTS-DB(without MSP) 84.45 197.56 120.36

SeISTS-DB 86.67 521.98 140.84

AW) increase by 2.94% and 4.11%, respectively. This indicates that 
the use of adaptive weight can improve the segmentation perfor-
mance of the network. This is because treating different quality 
pseudo labels differently can reduce the impact of poor-quality 
pseudo labels on network performance.

(2) Compared with the result of TSB (with EX) (83.28%), the segmen-
tation result of TSB (with AW) improved 1.17%. This demonstrates 
that using the IoU of the non-background pixel in the two segmen-
tation maps as the adaptive weight is more able to capture the small 
differences between the pseudo labels, which helps to improve the 
segmentation performance.

4.6. Impact of error segmentation pixel correction branch on segmentation 
results

In order to verify the influence of error segmentation pixel correc-
tion branch on the final segmentation result, models with and without 
this branch were trained separately to obtain segmentation results. 
Among them, labeled data accounts for 1/8 of the training set. Ta-
ble 4 shows the segmentation results on the infrared ship dataset with 
or without error segmentation pixel correction branch, where the bold 
number indicates the best result, and SeISTS-DB (without MSP) indi-
cates the model without error segmentation pixel correction branch. 
Fig. 6 shows the corresponding segmentation examples.
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According to Table 4 and Fig. 6, we can get that:
(1) SeISTS-DB obtains the mIoU of 86.67%, which is 2.22% higher than 
the result without error segmentation pixel correction branch. This 
denotes the error segmentation pixel correction branch can correct 
the wrongly segmented pixels in the target segmentation branch 
and increase the accuracy of the image segmentation results.

(2) The parameter quantity and computation quantity of SeISTS-DB 
are 521.98MB and 140.84GFlops, which are respectively increased 
by 324.42MB and 20.48GFlops compared with the results without 
error segmentation pixel correction branch. It that shows that the 
increase of error segmentation pixel correction branch will increase 
parameter quantity and computation quantity.

(3) In short, the increase of error segmentation pixel correction branch 
can improve the segmentation effect of the model, and increase the 
parameter quantity and computation quantity to a certain extent.

4.7. Comparison SeISTS-DB with fully-supervised methods

The results of the proposed SeISTS-DB method and three fully-
supervised methods (SegNet [18], UNet [16], DeepLabV3+ [42]) at 
different labeled data ratios were compared. Table 5 shows the seg-
mentation results of SeISTS-DB and the fully-supervised method on the 
infrared ship dataset, where the bold data indicates the best results. 
Fig. 7 shows the segmentation effect of our method and the segmenta-
tion example of the fully-supervised network.

It can be seen from Table 5 and Fig. 7 that:

(1) When the proportion of labeled data is 1/8, 1/4, 1/2 and 1, SeISTS-
DB obtains mIoU of 86.67%, 89.10%, 91.10% and 91.15% respec-
tively, which is 15.35%, 4.37%, 1.9% and 0.12% higher than the 
results of the other three methods. It signifies that the SeISTS-DB 
method can better learn the characteristics of the data and achieve 
a good segmentation performance.

(2) The parameter quantity of SeISTS-DB is 521.98MB, which increases 
409.64MB, 456.13MB, and 295.61MB respectively compared with 
the other three methods. The computation quantity of SeISTS-DB 
is 140.84Flops, which increases 100.36GFlops, 100.72GFlops, and 
118.63GFlops respectively compared with the other three methods. 
It shows that SeISTS-DB has more parameter quantity and computa-
tion quantity than the other three networks. Except that SeISTS-DB 
has 3 identical segmentation networks, other networks have only 
one segmentation network. Thus, SeISTS-DB has more parameter 
quantity and computation quantity.

(3) In short, the SeISTS-DB method can learn the features of unlabeled 
data when there is less labeled data, so as to achieve a better 

segmentation performance. However, it should be noted that it 
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Fig. 6. Segmentation results with or without error segmentation pixel correction branch.

Table 5

Segmentation performance of different methods on the infrared ship dataset.

Methods mIoU(%) Para(MB) GFlops

1/8 1/4 1/2 1

SegNet [18] 66.13 76.39 88.56 90.75 112.34 40.48

UNet [16] 71.32 84.73 89.20 91.03 65.85 40.12

DeepLabV3+ [42] 70.67 83.13 88.51 90.39 226.37 22.21

SeISTS-DB 86.67 89.10 91.10 91.15 521.98 140.84

Fig. 7. Segmentation results with or without error segmentation pixel correction branch.
needs to consume more parameter quantity and computation quan-
tity.

4.8. Comparison SeISTS-DB with semi-supervised methods

In the section, 1/8 of the training set is taken as labeled data, and 
the rest of the data is taken as unlabeled data. The segmentation perfor-
mance of the proposed method is compared with other semi-supervised 
methods. Table 6 shows the segmentation results of different methods 
on the infrared ship dataset and the parameter quantity and floating 
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point operations per second of the network, where the bold numbers 
indicate the best results. Fig. 8 shows examples of segmentation results 
of different networks on the infrared ship test set.

According to Table 6 and Fig. 8, we can conclude that:

(1) The SeISTS-DB method obtains an mIoU of 86.67%, which in-

creases by 49.51%, 16.11%, 16.18%, and 6.19% compared with 
the results of AdvSemiSeg [63], S4GAN-MLMT [65], CCT [56], 
and Cycle-GAN [64], respectively. This shows that SeISTS-DB can 
achieve better segmentation performance.

(2) The parameter quantity of SeISTS-DB is 521.98MB, which increases 

by 420.18MB, 7.87MB, 343.66MB, and 107.58MB compared with 
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Fig. 8. Infrared ship segmentation results of different methods.
Table 6

The results of different semi-supervised object segmen-
tation methods on the infrared ship dataset.

Method mIoU(%) Para(MB) GFlops

AdvSemiSeg [63] 37.16 101.80 28.69

S4GAN-MLMT [65] 70.56 514.11 69.94

CCT [56] 70.49 178.32 46.16

Cycle-GAN [64] 80.48 413.4 194.67

SeISTS-DB 86.67 521.98 140.84

the results of AdvSemiSeg [63], S4GAN-MLMT [65], CCT [56], 
and Cycle-GAN [64], respectively. The computation quantity of 
SeISTS-DB is 140.84 GFlops, which increases by 112.15GFlops, 
70.9GFlops, 343.66GFlops, 94.65GFlops compared with the results 
of AdvSemiSeg [63], S4GAN-MLMT [65], and CCT [56], and de-
creases by 53.83GFlops compared with Cycle-GAN [64]. Therefore, 
it can be concluded that SeISTS-DB has more parameter quantity 
and computation quantity.

(3) With the correction of mis-segmented pixels, SeISTS-DB achieves 
higher mIoU. However, this requires more parameter quantity and 
computation quantity, which needs to be further improved.

4.9. Comparison of different methods on IRSTD-1k dataset

In order to further verify the performance of the method SeISTS-
DB, we use the public infrared dataset IRSTD-1k [91] for experiments. 
The IRSTD-1k dataset consists of 1,160 infrared images, of which 928 
images are training set data and 232 images are testing set data. The size 
of the image is 416×416. This dataset mainly segments ships in infrared 
images. The images include ships of varying sizes and numbers. Among 
them, the ship in the image is a category, and other environments are 
treated as the background.

In the experiment, 1/8 of the training set in the IRSTD-1k dataset 
is used as labeled data, and the rest of the data is used as unlabeled 
data. Table 7 shows the segmentation performance of different semi-
27

supervised methods on the IRSTD-1k dataset, where the bold numbers 
Table 7

Results of different semi-
supervised object segmentation 
methods on the IRSTD-1k 
dataset.

Methods mIoU(%)

AdvSemiSeg [63] 68.39

S4GAN-MLMT [65] 63.65

Cycle-GAN [64] 60.72

SeISTS-DB 80.15

indicate the best segmentation results. Fig. 9 shows examples of seg-
mentation results of different networks on the IRSTD-1k testing set.

According to Table 7 and Fig. 9, it can be seen that the SeISTS-
DB method obtained an mIoU of 80.15%, which increases by 11.76%, 
16.40%, 16.18%, and 19.45% compared with the results of the Ad-
vSemiSeg, S4GAN-MLMT, and Cycle-GAN methods, respectively. There-
fore, it can be concluded that the SeISTS-DB method obtains a more 
accurate segmentation map by correcting wrongly segmented pixels.

5. Discussion

In this present study, our method has yielded better mIoUs due to 
the introduction of dual learning network and the error segmentation 
pixel correction branch.

First, the dual learning network can get pseudo label that contains 
more information. In previous work, the self-training method used sin-
gle network approach to generate pseudo label for unlabeled data. This 
proves that it is effective to generate pseudo label on unlabeled data 
to enrich the dataset. However, the newly generated pseudo label have 
equal weights when used to reverse train the network, which makes the 
good quality pseudo label and the poor quality pseudo label play the 
same role in updating the network weights, thus causing the problem of 
confirmation bias of the network. We introduced the dual learning net-
work combines the output of the two networks to generate pseudo label 

and adaptive weights. Our experiments show that the target segmen-
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Fig. 9. Segmentation results of different segmentation methods on the IRSTD-1k 
dataset.

tation branch with dual learning network can generate more accurate 
segmentation result with location information.

Further, the error segmentation pixel correction branch can extract 
category information into image. Although the segmentation map ob-
tained by the target segmentation branch contains accurate location 
information of the image, we find that there are misclassified pixels in 
the segmentation graph. To get the category information of the image, 
we designed this the error segmentation pixel correction branch. This 
branch is trained in a semi-supervised manner and is able to obtain cate-
gory information in images. The results of these two branches are fused 
to produce more accurate segmentation maps of location and category 
information.

However, our method still has shortcomings. It has more parame-
ter quantity and computation quantity. Besides, the two branches are 
trained separately and are unrelated during the training process, need-
ing a relatively larger amount of GPU memory. Subsequent research 
will consider combining the two branches to make the training process 
more complete. We will explore to add a classification head to the seg-
mentation network, so that the segmentation network can extract both 
semantic information and category information in the training process 
[92–94]. By this way, it can reduce the amount of parameters of the 
network and accelerate the iteration speed of the network.

6. Conclusion

In this paper, a semi-supervised infrared ship target segmentation 
model with dual branch is proposed, which obtains better segmentation 
results through the interaction of the two branches. The dual learning 
module in target segmentation branch can get high quality pseudo la-
bels. Meanwhile, the balance of the weights of the pseudo labels can 
enable the network to accurately extract image features. The target 
segmentation branch can combine the segmentation results of the dual 
learning module to generate pseudo labels and corresponding weights, 
avoiding the problem of confirmation bias caused by single network. 
Additionally, the error segmentation pixel correction branch can correct 
the wrongly segmented pixels in the segmentation map, so that the final 
segmentation map is more accurate. Our method achieved higher accu-
racies on both the infrared ship image dataset and the public IRSTD-1k 
28

dataset.
Alexandria Engineering Journal 87 (2024) 17–30

However, our method has still limitations. It has a large number of 
parameters and consume more GPU memory than other models. In the 
future, we will explore to add a classification module at the tail of the 
segmentation network.
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Appendix A

Table 8

Parameter notation table.

Notation Description

𝑐,𝑐∈ {0,1,2,3,4,...,9,10} The number of categories in the infrared ship image, 
defined by Equation (1).

𝑥 The infrared ship image, defined by Equation (1).

𝑆(𝑥)𝑐 The segmentation result of the c-th category in the 
target segmentation map of the target segmentation 
branch, defined by equation (1).

𝐺(𝑥)𝑐 𝐺(𝑥)𝑐 The predicted probability of the 𝑐-th category of 
the error segmentation pixel correction branch, defined 
by equation (1).

𝐴, 𝐵 The learning networks A and learning networks B, 
defined by Equation (2).

𝐿𝑐𝑒
𝐴,𝐵 The cross-entropy loss of learning network A and 

learning network B, defined by Equation (2).

𝐷𝑙 The labeled dataset, defined by Equation (2).

𝑃𝑠𝑚() Represent the softmax function, defined by Equation 
(3).

𝐿𝑚𝑠𝑒 The dual learning loss of learning network A and 
learning network B, defined by Equation (4).

𝐿 The dual learning network loss, defined by Equation (5).

argmax() A function that represents the index of the largest value, 
defined by Equation (7).

𝒕𝑝𝑠𝑒𝑢𝑑𝑜,𝐴 The segmentation map generated by learning network A 
on unlabeled data, defined by Equation (8).

𝒕𝑝𝑠𝑒𝑢𝑑𝑜,𝐵 The segmentation map generated by learning network B 
on unlabeled data, defined by Equation (9).

𝒕𝑝𝑠𝑒𝑢𝑑𝑜,𝐴
′,𝒕𝑝𝑠𝑒𝑢𝑑𝑜,𝐵

′ The segmentation map that is non-background pixels of 
unlabeled data, defined by Equation (10).

𝜔 The adaptive weight of the pseudo label, defined by 
Equation (10).

𝐷𝑢 The unlabeled dataset, defined by Equation (11).

𝐿𝑎𝑑𝑎𝑤 The cross-entropy loss with adaptive weights for 
unlabeled data in the segmentation network S, defined 
by Equation (11).

𝐿𝑐𝑒𝑠 The cross-entropy loss for labeled data in the 
segmentation network S, defined by Equation (12).

𝐿𝑆 The complete loss of the segmentation network S, 
defined by Equation (13).

𝑓𝑔 () The student network function, defined by Equation (14).

𝐿𝑐𝑒𝑐 The classification cross-entropy loss of the student 
network, defined by Equation (14).

𝐿𝑐𝑜𝑛𝑠 The consistency loss of the student network, defined by 
Equation (15).

𝑓ℎ() The teacher network function, defined by Equation (15).

𝐿𝑝 The total loss of the student network, defined by 
Equation (16).
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Table 9

Abbreviation notation table.

SeISTS-DB A semi-supervised method for infrared ship 
target segmentation with dual branch.

FCN Fully convolutional network.

UNet U-shape fully convolutional Network.

SegNet Segmentation Network.

CutMix A data augmentation method based on 
cross-fusion of image blocks.

ClassMix A data augmentation method based on pixel 
cross-fusion.

A The learning network of the target segmentation 
branch.

B The learning network of the target segmentation 
branch.

F Segmentation network of the target segmentation 
branch.

S Student network of the error segmentation pixel 
correction branch.

T Teacher network of the error segmentation pixel 
correction branch.

TSB Target segmentation branch.

𝑃𝑖,i∈ {1,2} Segmentation confidence map generated by 
learning network A and B.

𝑌𝑖,i∈ {1,2} Pseudo label corresponds to segmentation 
confidence map 𝑃𝑖.

P The overall segmentation confidence map that is 
the sum of the segmentation maps of learing 
network A and B.

𝑌 ′ Pseudo label corresponds to segmentation 
confidence map P.

mIou The mean Intersection over Union.

FLOPs Floating point operations per second.

TSB (with EX) The adaptive weight of the unlabeled data.

TSB (with AW) The two segmentation images is used as the 
adaptive weight of the unlabeled data.

SeISTS-DB (without MSP) The SeISTS-DB model without error 
segmentation pixel correction branch.
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