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Abstract 16 

The present study assesses the concentration, probabilistic risk, source classification, and dietary risk 17 

arising from heavy metal (HMs) pollution in agricultural soils affected by coal mining in eastern part 18 

of India. Analyses of  soil and rice plant indicated significantly elevated levels of  HMs beyond the 19 

permissible limit in the contaminated zones (zone 1: PbSoil:108.24±72.97, CuSoil:57.26±23.91, 20 

CdSoil:8.44±2.76, CrSoil:180.05±46.90, NiSoil:70.79±25.06 mg/kg; PbGrain:0.96±0.8, CuGrain:8.6±5.1, 21 

CdGrain:0.65±0.42, CrGrain:4.78±1.89, NiGrain:11.74±4.38 mg/kg and zone 2: PbSoil:139.56±69.46, 22 

CuSoil:69.89±19.86, CdSoil:8.95±2.57, CrSoil:245.46±70.66, NiSoil:95.46±22.89 mg/kg; 23 

PbGrain:1.27±0.84, CuGrain:7.9±4.57, CdGrain:0.76±0.43, CrGrain:8.6±1.58, NiGrain:11.50±2.46 mg/kg) 24 

compared to the uncontaminated zone (zone 3). Carcinogenic and non-carcinogenic health risks were 25 

computed based on the HMs concentration in the soil and rice grain, with  Pb, Cr, and Ni identified as 26 

posing a high risk to human health. Monte Carlo simulation, the solubility-free ion activity model 27 

(FIAM), and severity adjusted margin of exposure (SAMOE) were employed to predict health risk. 28 

FIAM hazard quotient (HQ) values for Ni, Cr, Cd, and Pb were > 1, indicating a significant non-29 

carcinogenic risk. SAMOE (risk thermometer) results for contaminated zones ranged from  low to 30 

moderate risk (CrSAMOE: 0.05, and NiSAMOE: 0.03). Fuzzy-TOPSIS and variable importance plots (from 31 

random forest) showed that Ni and Cr were mostly responsible for the toxicity in the rice plant, 32 

respectively. A self-organizing map for source classification revealed common origin for the studied 33 

HMs with zone 2 exhibiting the highest contamination. The positive matrix factorization model for 34 

the source apportionment identified coal mining and transportation as the predominant sources of 35 

HMs. Spatial distribution analysis indicated higher contamination near mining sites as compared to 36 

distant sampling sites. Consequently, this study will aid environmental scientists and policymakers 37 

controlling HM pollution in agricultural soils near coal mines. 38 

Keywords:Coal mine, Free ion activity model, Monto Carlo Simulation, Pollution and Health risk, 39 

fuzzy-TOPSIS  40 



1. Introduction 41 

Coal, commonly referred to as the “Black Diamond," stand out as one of the most crucial minerals in 42 

the Earth’s crust. Globally, India holds 2nd and 4th positions in terms of coal production and reserve 43 

deposits. The coal mines of Giridih (Kabdibad mine and Giridih open cast) were among the first coal 44 

mines in India, covering 20 coal seams and an area of about 28.5 km2 (11 sq mi) (Ministry of Coal, 45 

2018). For a developing nation like India, coal mining is an ubiquitous necessity. However, mining 46 

also has negative consequences for the environment. Intensive coal extraction, consumption, and 47 

transportation result in environmental damage, leading to the contamination of heavy metals (HMs) 48 

(Pb, Ni, Cr, Cu, and Cd) in agricultural soil and evoking public health concerns (Fasinu and Orisakwe, 49 

2013; Cortes-Ramirez et al., 2018). According to Coal India (2020), India has roughly 380 coal 50 

mines, generating massive quantities of overburden and tailings which are often stacked up close to 51 

the agricultural lands in mining regions. Furthermore, mining practices expose a significant amount of 52 

rock to weather events like rain or erosion, leaching HMs into the environment (Cortes-Ramirez et al., 53 

2018). These mine wastes, due to their high toxicity, non-biodegradability and persistent nature pose a 54 

hazard to the ecosystem. Consequently, crops grown on agricultural land near coal mines absorb 55 

potentially toxic HMs in the plant (crop) parts (shoot, grain, and root), posing a possible threat to the 56 

food chain (Zhao and Wang, 2020; Banerjee et al., 2023). The consumption of these HMs-polluted 57 

crops from agricultural fields near mining sites poses severe health hazards, including non-58 

carcinogenic (NCR) and carcinogenic (CR) effects (Zakir et al., 2021). Studies have already shown 59 

that long-term exposure to HMs increases the chance of various diseases like cancer in both animals 60 

and humans (Chen et al., 2022). 61 

Multiple methods exist for estimating the degree of contamination and health risks associated with 62 

HMs in soil affected by mining wastes. Evaluating the likelihood of HMs containing the soil is 63 

pivotal, requiring an understanding of their solubility in the soil ecosystem and their transportation 64 

from agricultural soil to plant parts. Numerous researchers have employed techniques such as FIAM, 65 

SAMOE, partial dependency plots, and Fuzzy-TOPSIS have been used to estimate the risk posed by 66 

HMs-contaminated soils (Golui et al., 2017; Singh et al., 2019; Chowdhury et al., 2020; Ghosh et al., 67 



2023; Banerjee et al., 2023). A comprehensive analysis of the health concerns associated with HMs is 68 

required for a community living close to coal mines. The Monte Carlo simulation model (MCS) is one 69 

of the best methods for probability risk analysis. It recognizes the priorities of risks and assesses 70 

whether the risk exceeds the permissible value (Tong et al., 2019). It is possible to calculate the 71 

positive contribution of each point in the PMF model and assist in allocating the contribution of each 72 

element. It can be combined with SOM and cluster analysis to compare the quantitative attributes of 73 

different HMs (Nakagawa et al., 2020). This combined model would evaluate both environmental and 74 

human health hazards in the region of the coal mines, identify the most significant sources of 75 

pollution, and manage and regulate those sources while protecting ecosystems. 76 

To the best of our knowledge, there is lack of substantial research on the analysis of HMs and 77 

associated health risks in coal mine impacted agricultural fields of India. This study is designed to fill 78 

this gap by examining the extent of HMs pollution from two coal mines and comparing the health 79 

risks associated. Additionally, we compared the bioavailability, plant accumulation, and effects of 80 

HMs on food chains between the two mines. Hence, the primary objectives of this research were to (a) 81 

ascertain the extent of HMs contamination in agricultural soil near two coal mining areas considering 82 

their geo-spatial pattern and (b) evaluate the relative effectiveness of the FIAM models in predicting 83 

the transport of HMs from soil to grain (rice), their exposure in diet through SAMOE and the 84 

contribution of each HMs in the rice crop through the random forest and Fuzzy-TOPSIS analysis, (c) 85 

assess both CR and NCR health risks resulting from HMs, and (d) utilize the PMF model with spatial 86 

tools to identify and allocate contamination sources of HMs.  87 

Materials and methods 88 

1.1. Description of study site and sampling 89 

Giridih have two active mining sites: one is Giridih Open Cast mines (24°10'25.47"N-86°15'14.23"E), 90 

and the other is Kabdibad Mines (24°9'6.23"N-86°18'0.61"E). Human settlements and agricultural 91 

fields surround both mining sites. Topsoil (10–15 cm) from an agricultural field supposed to be 92 

affected by coal mining activities was collected from the surrounding area of two coal mining sites in 93 



Giridih, namely Giridih Open Cast Mines (zone 1; n = 25) and Kabdibad Mines (zone 2; n = 24). An 94 

uncontaminated zone (zone 3; n = 20), at a distant location, was also selected for comparison. 95 

Sampling sites were randomly selected to cover the most extensive areas around the mines. Samples 96 

were collected first by removing the topsoil cover and digging to a depth of 10–15 cm using a shovel 97 

and spade and washed thoroughly after that to avoid overlapping samples and contamination. 1 kg of 98 

soil samples along with paddy plants were uprooted from each sampling site, and their coordinates 99 

were recorded using the GPS (Global Positioning System). The GPS coordinates for each sampling 100 

site in all three zones (zones 1, 2, and 3) are represented in Table S1. Samples (soil and paddy) were 101 

carefully stored in zipper pouches with proper labels for safe transportation and sample storage. 102 

2.2 Preparation of sample and its analysis 103 

The physicochemical analyses of soil samples were done following the methods outlined in Page et al. 104 

(1982). The bio-available HMs were extracted using DTPA as proposed by Lindsay and Norvell 105 

(1978). The HM content of soil (total and DTPA extractable) and plant (root, shoot, and grain) 106 

samples were estimated by Systronics make Atomic Absorption Spectrophotometer (AA S-816).2.3 107 

Prediction models for HMs accumulated by plant 108 

2.3.1 Solubility-free ion activity model (FIAM) 109 

FIAM was used to predict the HMs in rice grain with soil pH and organic carbon as the variables. The 110 

transfer factor (TF) was calculated as the ratio of metal content in a plant [𝑀𝑝𝑙𝑎𝑛𝑡] to metal ions 111 

activity in the soil pore water [𝑀𝑛−], given in Eq. (1) (Mirecki et al., 2015). 112 

𝑇𝐹 = log
[𝑀𝑝𝑙𝑎𝑛𝑡]

[𝑀𝑛−]
                                                                                                                                 (1) 113 

Freundlich equation is a simple pH-dependent method to calculate free ion activity of HMs (Datta and 114 

Young, 2005) given in Eq. (2). 115 

p(Mn−) = {p[MC] + k1 + k2 pH} ∕ nF                                                                                              (2) 116 

where (𝑀𝑛− ) was the free HMs ions activity in the soil; MCwas the easily displaceable soil HMs 117 

content; k1 and k2were experimental metal-specific constants; and nFwas the power term from the 118 



Freundlich equation. By combining Eqs. (1) and (2), the expression for predication of HMs uptake by 119 

plants can be represented as: 120 

p[Mplant] = C + 𝛽1p[MC] + 𝛽2pH                                                                                                    (3) 121 

where C = k1/nF − log TF, β1 = 1/nF, β2 = k2/nF and C, β1 and β2 were empirical metal and plant-122 

specific coefficients (Mandal et al., 2019). Equation (3) was parameterized by using the “SOLVER” 123 

addon facility in Microsoft Excel. 124 

2.3.2 Risk assessment 125 

The Hazard Quotient (HQ) was estimated to assess the health risk to humans from the consumption of 126 

rice, grown in contaminated soil. It was calculated as the average daily intake (ADI) of rice divided by 127 

their reference dose (RfD) of each HMs as outlined in IRIS (2019).  The HQ was calculated by the 128 

following equation: 129 

𝐻𝑄 =
𝑀𝑝𝑙𝑎𝑛𝑡 ×𝑊

𝑅𝑓𝐷 ×68
                                                                                                                                   (4)                    130 

Where 𝑀𝑝𝑙𝑎𝑛𝑡 is the HMs concentration in rice grain, 𝑊 is the weight of rice consumed daily and 131 

RfD is the reference dose for different HMs. 132 

2.4 Risk assessment of HMs through dietary exposure 133 

2.4.1 Risk thermometer and severity adjusted margin of exposure (SAMOE) 134 

Risk Thermometer is a method of risk assessment proposed by the Swedish National Food Agency 135 

(Sand et al., 2015). SAMOE of different heavy metals was calculated by the following equation: 136 

SAMOE =
𝑇𝐷𝐼

(𝐴𝐹𝐵𝑀𝑅 ×𝐴𝐹 ×𝑆𝐹 ×𝐸)
                                                                                                              (5) 137 

where TDI is the provisional tolerable daily intake (PTDI), AFBMR is the non-linear relation in dose 138 

range (1/10; BMR was the benchmark response), AF is assessment factor taken as 10, SF is severity 139 

factor considered as 100, and E is the exposure factor (concentration of HMs). 140 

2.4.2 Carcinogenic risk from dietary exposure to rice grain 141 



The target cancer risk (TCR) is an important tool for assessing dietary risks considering the 142 

individual’s lifetime exposure to carcinogenic HMs (Sengupta et al., 2021). It was calculated from the 143 

following equation: 144 

TCR =
EFr×ED×FIR×C×CSF 

BW×AT
× 10−3                                                                            (6) 145 

Where EFr is the frequency of exposure to various HMs, ED is the duration of exposure. FIR is rate of 146 

ingestion of food. C is HM content in rice grain, CSF is the oral cancer slope factor for HMs, BW is 147 

the average body weight and AT is the average carcinogenic exposure time, 10− 3 is unit conversion 148 

factor (Antoine et al., 2017). 149 

2.5. Fuzzy TOPSIS 150 

Entropy was employed in the TOPSIS method to identify alternatives that were nearest to Si+ and 151 

farthest from Si-, thereby aiding in decision-making (Singh et al., 2019). 152 

Phase 1: In order to rate the "alternatives" (rice parts) and "criteria" (metals), based on HMs 153 

contamination status. Assuming "b" viable alternatives, P = {P1, ..., Pb}, were to be examined 154 

alongside "c" criteria. Q = {Q1, … , Qc} 155 

Phase 2: The criterion ratings were assigned according to a matrix O, where zij indicates alternative Pi' 156 

value for criterion Qj. 157 

𝑂𝑏×𝑐 = [

𝑧11 𝑧12 ⋯ 𝑧𝑙𝑐

⋮ …    𝑧𝑖𝑗 ⋮
𝑧𝑏𝑙 ⋯ 𝑧𝑏𝑐

]                                                                                                                (7)                                                                             158 

Phase 3: The weights of the criteria were calculated based on entropy as follows: 159 

𝑟𝑖𝑗 =
𝑧𝑖𝑗

𝑧1𝑗+⋯+𝑧𝑏𝑗
; ∀𝑗€ {1, … , 𝑐}, and                                                                                                      (8) 160 

𝐺𝑗 = −
1

ln 𝑏
∑ 𝑟𝑖𝑗𝑙𝑛𝑟𝑖𝑗; ∀𝑗€ {1, … , 𝑐} 𝑏

𝑖=1                                                                                               (9) 161 



Where 0 ≤Gj≤1 and indexes with higher entropy have more variation. Therefore, the criteria's weight 162 

can be estimated as follows: 163 

𝑤𝑗 =
𝑎𝑗

𝑎1+⋯+𝑎𝑐
                                                                                                                                      (10) 164 

Where, aj = 1 − 𝑤𝑗; All the weights were aggregated into the wcxc matrix. 165 

Phase 4: Enumeration of normalized matrix as follow, 166 

𝑌𝑖𝑗
̅̅ ̅ =

𝑌𝑖𝑗

√∑ 𝑌𝑖𝑗
2𝑛

𝑖=1

                                                                                                                                      (11) 167 

Phase 5: Determination of weighted normalized matrix 168 

𝑈𝑖𝑗 = 𝑌𝑖𝑗
̅̅ ̅  × 𝑊𝑗                                                                                                                                    (12) 169 

Phase 6: Calculate the ideal best (Si+) and ideal worst value (Si-) 170 

𝑆𝑖
+ = [∑ (𝑉𝑖𝑗 − 𝑉𝑗

+)
2𝑏

𝑗=1 ]
0.5

                                                                                                                (13) 171 

𝑆𝑖
− = [∑ (𝑉𝑖𝑗 − 𝑉𝑗

−)
2𝑏

𝑗=1 ]
0.5

                                                                                                                (14) 172 

Phase 7: Evaluation of Performance Score and rank according by the following equation. 173 

𝑃𝑖 =
𝑆𝑖

−

𝑆𝑖
++𝑆𝑖

−                                                                                                                                           (15) 174 

2.6 Assessment of HM pollution through various indices 175 

To assess the severity of pollution from the HMs pollution indices like geoaccumulation index (Igeo), 176 

pollution load index (PLI), degree of contamination (Cd), potential ecological risk index(Ri) were 177 

calculated according to the formula outlined by Tomlinson et al.(1980), Hakanson (1980), Zhang et 178 

al.(2007), and Zerizghi et al.(2022) respectively. 179 

2.7 Assessment of soil to human health risk through ingestion, inhalation, and dermal contact 180 



The presence of heavy metals (HMs) in soil can impact human health through three exposure 181 

pathways: ingestion, inhalation, and dermal contact. The accumulation of these metals in the human 182 

body has been associated with both carcinogenic and non-carcinogenic risks and hence proper 183 

assessment is required.  184 

2.7.1 Assessment of non-carcinogenic risk 185 

The non-carcinogenic risk was assessed as the Hazard Quotient (HQ), calculated as the ratio of ADI 186 

(Average Daily Intake) to reference dose (RfD) through different exposure pathways, as per Eq. (19) 187 

(USEPA, 1986). ADI for different exposure pathways were calculated by using Eqs. (16)-(18) 188 

(USEPA, 1989). Hazard Index (HI) was calculated from the  Eq. (20) (Goumenou and Tsatsakis, 189 

2019). 190 

ADIing = Ci ×
IRing×EFr×ED

BW×AT
× 10−6                                                                 (16) 191 

ADIinh = Ci ×
IRinh×EFr×ED

BW×PEF×AT
                                                                              (17) 192 

ADIderm = Ci ×
DAF×SA×SAF×EF×ED

BW×AT
× 10−6                                                    (18) 193 

HQing =
ADIing

RfDing
 , HQinh =

ADIinh

RfDinh
, HQderm =

ADIderm

RfDderm
                                        (19) 194 

HI = ∑HQi =  HQing + HQinh + HQderm                                                         (20)                     195 

Where ADIing, ADIinh, and ADIdermwere the average daily intake through different pathways. Ci is 196 

the concentration of metal in soil, IRing and IRinhare the rate of ingestion and the rate of inhalation, 197 

EFr is exposure frequency, ED is the duration of exposure, BW is body weight, PEF is particulate 198 

emission factor, DAF is dermal absorption factor, SA is skin exposure area, SAF is skin adherence 199 

factor, and AT is the average time over which the dose is averaged (Zerizghi et al., 2022). 200 

2.7.2 Assessment of carcinogenic risk 201 

Carcinogenic risk associated with HMs and exposure pathways from contaminated soil was calculated 202 

by Eq. (21) (Jolly et al., 2022).   203 



CR = LAAD × SF                                                                                                                                (21) 204 

where, LAAD (Lifetime Average Daily Dose) = (LAADing+ LAADinh + LAADderm) is the weighted 205 

average for each exposure pathway, SF denotes the slope factor of studied HMs. 206 

2.8. Probabilistic risk assessment through Monte-Carlo simulation (MCS) model 207 

Monte Carlo simulation was undertaken for evaluating probabilistic non-carcinogenic health risk 208 

through sensitivity analysis of studied HMs (Kalantary et al., 2022). The simulation was performed 209 

using Oracle Crystal Ball application (version11.1.1)  210 

2.9. Pattern identification of HMs through Kohen’s self-organizing map (SOM) model  211 

SOM is an artificial neural network used for clustering, estimating, and predicting complex data. It 212 

resembles the neural network present in biological systems and is used to find the source pattern of 213 

HMs present in the affected soil. For better visualization, neurons were represented into 2-D units, 214 

called computational grid in the unsupervised learning process of the model. R-studio software was 215 

used to create the model using Kohonen package version 3.0.11 (Kohonen et al., 2001; Park et al., 216 

2003).  217 

2.10. Positive factorization matrix model for source apportionment of HMs 218 

For source apportionment of the HMs the USEPA PMF 5.0, a multivariate receptor model was used. 219 

It is a reliable technique for identifying the source of metals in soils, previously used for water and air 220 

pollution (Zhang et al., 2017).  221 

2.11. Geostatistical methods and spatial distribution maps of heavy metals 222 

Spatial interpolation is an important technique for quality interpretation, comparative analysis, and 223 

prediction. Kriging interpolation was applied using QGIS software, and the best fitted model was 224 

selected based on nugget values (smallest) and root mean square standardized error (minimum value 225 

close to 1). 226 

2.12 Statistical analysis and modelling 227 



The statistical parameters such as mean, standard deviation, range, least significant difference (LSD-228 

ANOVA), correlation plot (‘corPlot’ package)and fuzzy-TOPSIS were performed in R-Studio 229 

(version 1.3.1093 2.3.1). The random forest was performed in R-studio using ‘randomForest’ 230 

package, ‘vip’ package for variable importance plot and ‘pdp’ package for partial dependence plot. 231 

2. Result and Discussion 232 

3.1 Description of physio-chemical and HMs in soil  233 

The Table S2 provides an overview of physico-chemical properties of agricultural soil contaminated 234 

with HMs, collected from the Giridih open cast mines (zone 1) and Kabdibad mines (zone 2) in 235 

Jharkhand. In this study, both zones 1 and zone 2 exhibit significantly lower pH (p =0.0005; LSD = 236 

0.135)  compared to zone 3 (uncontaminated zone). Specifically, soils of Zone 1 (6.01±0.5) were 237 

more acidic than zones 2 (6.21±0.51). The EC in the contaminated zones (zone 1 and 2) were 238 

significantly (p =0.005; LSD = 0.006) lower compared to the uncontaminated zone (zone 3). Zone 2 239 

(Kabdibad mines) exhibited the highest OC values (2.16 ± 0.33 %) when compared to the other two 240 

zones. Carbon level in the soils near coal mining sites was high due to deposition of coal waste. A 241 

significant decline in OC content was observed in uncontaminated zone (p =0.003; LSD = 0.272) 242 

compared to contaminated zones. Since these toxic mine wastes in the mining region (zone 1 and zone 243 

2) are not nutrient-rich but instead contain a variety of toxic HMs (Pb, Cu, Cd, Cr and Ni) both the 244 

total and bioavailable (DTPA) fraction of HMs were significantly higher in zone 2 and zone 1 than 245 

zone 3.As a result of the dumping of hazardous coal mine residues near agricultural land, Cr and Pb 246 

poisoning was prevalent in these coal mining regions (zone 1 and 2). The observations align with the 247 

findings of Xiao et al. (2020) and Zerizghi et al. (2022) where Cr, and Pb toxicity were found in coal 248 

mine area. The current situation raises concern for the well-being of humans, plants, and other living 249 

creatures. 250 

3.2 Accumulation of HMs in paddy 251 

The concentration of HMs in plant parts (root, shoot, and grain) collected from Zone 1, 2 and 3 has 252 

been represented in Fig. 1. The HMs concentration in the roots, shoots, and grains of zone 1 and zone 253 



2 were significantly higher (above the WHO, 1996 prescribed limits) than zone 3. The findings of 254 

Ghosh et al. (2024) and Banerjee et al. (2023) supported the result of current study. Further, a 255 

significant positive correlation (r >0.6) was found between bioavailable (DTPA) fraction of HMs 256 

concentration and rice grains, as depicted in Fig. 2. The results were consistent with studies by 257 

Banerjee et al. (2023), which claimed that there was a direct link between hazardous HMs uptake by 258 

rice grains and their bioavailable forms. 259 

3.3 Importance of DTPA extractable HMs on plant uptake  260 

The availability of HMs in the plant is not governed by the total HMs present in soil, instead it is 261 

governed by their available forms (DTPA fraction). Fig. S1 illustrated the variable importance plot 262 

derived from the random forest models showcasing the relationship between DTPA extractable metal 263 

fraction and their uptake by plant (root, shoot, and grain). The %IncMSE indicated the degree of 264 

model's precision decreases if the variable is omitted.Additionally, the IncNodePurity quantified the 265 

purity of the nodes at the terminus of the tree without each variable. Identifying a split with high inter-266 

node variation and small intra-node variance leads to higher increases in node purities.. Through this 267 

model, we observed that the rice grain and shoot parts were significantly influenced by plant 268 

bioavailable form of metals particularly in case of Cr, Pb and Cu. The metal concentrations in the  269 

contaminated soil varied significantly due to diverse waste materials deposited at mine sites over the 270 

years. 271 

Fig. 3.demonstrates the 3-D (three dimensional) partial dependence plot from random forest algorithm 272 

representing uptake in different parts of rice plant (root, shoot, and grain) most affected by DTPA 273 

extractable HMs. The grain and shoot make substantial contribution to HMs accumulation. 274 

Concentrations of Pb and Cu in shoot and grain increased when DTPA_Pb and DTPA_Cu 275 

concentartions in soil surpassed 15 mg/kg and 7 mg/kg, respectively. In the case of Cd, the uptake in 276 

shoots and roots increased when the DTPA_Cd concentration in soil surpassed from 2.4 mg/kg in soil.  277 

3.4 Human health risk assessment through rice grain 278 



Rice, one of the most important cereal crops, is a major constituent in Indian diets. In Section 3.2,  it 279 

can be noticed that rice grains grown in contaminated zones (1 and 2) exhibited elevated 280 

concentrations of toxic HMs. Prolonged consumption of rice from these regions may potentially 281 

endanger the health of living organisms. Therefore, in our study, we considered the concentration of 282 

HMs in the rice grain from the contaminated zones (zones 1 and 2) for calculating the health risk. This 283 

choice was made because the concentration of HMs in the rice grains from the uncontaminated zone 284 

(3) was negligible and well below the prescribed limit by WHO (1996). 285 

3.4.1 Assessment of risk through FIAM and FIAM-HQ  286 

pH, DTPA-extractable HMs, and OC were used to evaluate the variability of HMs in rice grain with 287 

FIAM. The prediction coefficient of FIAM, as well as plant-specific model parameters (C, β1, and 288 

β2), are shown (Table S3 and Figs. S6-7). Khaledian et al. (2017) have previously reported that pH 289 

and organic carbon (OC) of the soil are the most important factors governing the solubility of HMs in 290 

soil. This model was very useful in predicting the transfer of HMs from soil to plant without 291 

measuring the actual solubility of metals in the soil. In Zone 1, β1 was negative, and β2 was positive 292 

for all heavy metals (HMs) except β2-Cd and β2-Cr. On the other hand, in Zone 2, β1 was negative, 293 

except for β1-Cr and β1-Ni, while β2 was positive for all studied HMs compared to Zone 3 (β2-Cr, 294 

β2-Ni, and β2-Cd).. As per the results, β1 and β2 are negative for most of the HMs in both zones 295 

(zone 1 and zone 2), and the uptake of HMs from soil to rice grain might positively affected by OC 296 

and pH. Mandal et al. (2019) found similar trends in how metal mobility, pH, and OC are related to 297 

each other. 298 

Using the FIAM model's hazard quotient (HQ), this study evaluated the health risk associated with 299 

HMs uptake in rice grain (Table S3). According to Raj et al. (2022), the  FIAM-HQ > 0.5, rice grains 300 

was regarded as a threat to human health. The mean values of HQ-Pb, HQ-Cd, HQ-Cr, HQ-Ni for 301 

zone 1 were 1.61, 3.81, 9.39, 3.45, for zone 2, 2.14, 4.53, 9.6, 3.38 and for zone 3, 0.08, 0.15, 0.15, 302 

0.51, respectively. These findings indicated that zone 2 has the highest health risk from consuming 303 

rice grains, with HQ values exceeding the recommended levels for Ni, Pb, Cd, and Cr except for Cu 304 

as compared with zone 1 and 3. In light of this, it might not be advisable for humans to consume rice 305 



that has been produced on this agricultural soil affected by coal mine waste (zone 1 and 2). Similar 306 

research by Banerjee et al. (2023) suggested that rice cultivated in metal-polluted soil was not suitable 307 

for human intake. 308 

3.4.2 Dietary risk from grain intake through SAMOE and risk thermometer 309 

The presence of HMs in rice and their consumption has adverse effects on human health, which was 310 

assessed in terms of target cancer risk (TCR). TCR results (Table S4) for Pb at both zones show no 311 

cancer risk as their values were lower than the tolerable limit of 10-4 (zone 1: 2.37E-04; zone 2: 312 

3.15E-04). But in the case of Ni (zone 1: 6.29E-02; zone 2: 6.162E-02), Cd (zone 1: 1.45E-03; zone 2: 313 

1.72E-03), and Cr (zone 1: 1.41E-02; zone 2: 1.44E-02), TCR was much higher than the tolerable 314 

limit. Similarly, the TCR values for zone 3 were below the acceptable threshold.  315 

The risk thermometer and the value of SAMOE for various HMs are shown in Fig. 4 and Table S4. 316 

The risk thermometer was used to evaluate the toxicity of HMs through the classification of the risk 317 

scale and concern level. The results indicated that Pb, Cu, and Cd pose a low risk in zones 1 and 2, 318 

while Cr and Ni pose a moderate risk. The risk level of studied HMs based on SAMOE for both zones 319 

was ordered as follows: NiSAMOE>CrSAMOE>CdSAMOE>PbSAMOE>CuSAMOE. Also, zone 3 320 

presents no risk for Pb, Cu, and Cd, whereas Cr and Ni represent a modest risk. As the TCR values for 321 

Cd, Cr, and Ni were higher than the tolerable limit and simultaneously the NiSAMOE and CrSAMOE 322 

showed moderate risk, prolonged consumption of rice from fields contaminated by coal mines (zone 1 323 

and zone 2) may have a detrimental impact on the environment and living beings. 324 

3.4.3. Fuzzy TOPSIS method for risks posed by HMs 325 

The optimal alternative (metals) for heavy metal concentrations in different rice parts was 326 

estimated using the fuzzy-TOPSIS multi-criteria decision-making approach. For this experiment, 327 

alternatives {A = rice parts}were evaluated based on the criteria {Cr, Ni, Cu, Cd, Pb} for zone 1 and 328 

zone 2.The ideal best and ideal worst values are shown in (TableS4), and the criteria weights of the 329 

estimated concentration of heavy metals from rice parts (root, shoot and grain) were enumerated 330 

through entropy technique as follows: zone 1 Wj= 0.214, 0.314, and 0.470; zone 2 Wj= 0.230, 0.281, 331 



and 0.487; zone 3 Wj= 0.293, 0.278, and 0.427 respectively. From the Table the sequence of metal 332 

accumulation in different parts of rice, exhibiting a declining pattern among three zones (zone 1, 2 333 

and 3) was ascertained. The order of metal accumulation follwerd the order: zone 1and 2: Ni > Cu > 334 

Cr > Cd > Pb. Conversely, in zone 3, the order was Cu > Ni > Cr > Pb > Cd. Result revealed that, for 335 

both mining sites, Ni toxicity was responsible for the highest risk in rice. This type of observation was 336 

obtained due to the deposition of toxic coal mine waste near an agricultural field. Our outcome 337 

showed resemblance with Saif-Ud-Din et al. (2022) where risk was evaluated based on accumulation 338 

of metals in different food resources. 339 

3.5.Assessment of HM pollution through different indices 340 

The geoaccumulation index (Igeo) evaluates the possibility of HMs accumulation in the ecosystem. In 341 

this study, Igeo values indicate extremely low to moderate pollution (0 ≥ Igeo ≤ 2) all over the 342 

contaminated zones, due to the presence of HMs (Pb, Cu, Cd, Cr, and Ni) (Fig. S2). The average Igeo 343 

for Cr showed a moderate level of pollution in both zone 1 and zone 2 as compared with zone 3. 344 

Further, the mean Cf values of all 3 zones were in the order of Cr > Pb > Ni > Cu > Cd, showing low 345 

to high contamination (0 ≥ Cf ≤ 6). Zone 3 was in the low-contaminated zone, but the Cf values for Cr 346 

and Pb indicated the highest contamination in zone 1 and 2. These indices aligned with the results of 347 

studies carried out by Ghosh et al. (2023) and Banerjee et al. (2023). The value of the contamination 348 

index (degree of contamination) for contaminated zones (zone 1 and zone 2) indicates a moderate 349 

degree of contamination (0 ≤ Cd ≤ 6). Igeo, and Cf together revealed contamination of Pb and Cr in 350 

the coal mine area. Several children have died from lead poisoning due to exposure to contaminated 351 

soil from mining practices in Nigeria (Mandal et al., 2022)  and Senegal (WHO, 2022). The 352 

International Agency for Research on Cancer classified Cr as a group I carcinogen (Kim et al., 2015), 353 

and Núñez et al. (2016) reported cancer mortality in a population exposed to Cr-enriched soil. The 354 

ecological risk index (Ri) was the cumulative sum of the ecological risk factors of all the studies (Fig. 355 

S2). The mean ecological risk factors for each HMs were in the order of Pb>Cr>Ni>Cd>Cu and 356 

possess low ecological risk(Eri< 30;Ri <100). Hence, the soil contamination in the coal mine area 357 

contributes to a low potential ecological risk. 358 



3.6. Soil to human health risk assessment  359 

HM-contaminated soil adversely affects human health through different exposure pathways such as 360 

ingestion, inhalation, and dermal contact, which might be carcinogenic or non-carcinogenic. In the 361 

current study, health risk (carcinogenic and non-carcinogenic) was calculated for contaminated zones 362 

(zones 1 and 2) and uncontaminated zone 3 using the value of total HM content (Pb, Cu, Cd, Cr, and 363 

Ni). 364 

3.6.1 Assessment of non-carcinogenic risk 365 

The non-carcinogenic risk was calculated in terms of the ADD, HQ, and HI for all three exposure 366 

pathways given in tables S6 and S7. In the case of ingestion, Pb had the highest hazard quotient (HQ) 367 

value for both contaminated zones (zone 1; adult: 1.86E-02; child: 1.73E-01) and (zone 2; adult: 368 

2.41E-02; child: 2.25E-01). In contrast, for inhalation, Cr had the maximum HQ for zone 1 (adult: 369 

5.18E-04; child: 9.19E-04) and zone 2 (adult: 7.44E-04; child: 1.32E-03). For the dermal route, Pb 370 

had the highest HQ for zone 1 (adult: 1.84E-04; child: 1.32E-03) and zone 2 (adult: 2.39E-04; child: 371 

1.71E-03). HI represented a cumulative risk from all three exposure pathways, which is the best way 372 

to represent the non-carcinogenic risk. HI results for all studied heavy metals and sampling sites were 373 

< 1 (Table S7) for all 3 zones, suggesting low non-carcinogenic risk in the study area. 374 

3.6.2 Assessment of carcinogenic risk using MCS 375 

The International Agency for Research on Cancer (1990) has categorized HMs, such as Cd, Cr, and 376 

Ni, as group 1 carcinogens, and Pb as a group 2 carcinogen. The present study observed the 377 

carcinogenic risks of Pb, Cd, Cr, and Ni from contaminated soils (zones 1 and 2), considering all three 378 

modes of human body exposure, with no significant risk from zone 3 (uncontaminated site).The 379 

enrichment of Cu was studied but was not included in the cancer risk assessment due to its lower 380 

anthropogenic toxicity (SF=0). (Onyedikachi et al., 2018).HMs in all three zones had CR < 1.00E-06 381 

(Banerjee et al., 2023), for both Cd and Pb, indicating level 1 contamination and an extremely low 382 

lifetime cancer risk (Table S8). On the other hand, the average CR value for Cr and Ni was found to 383 

be > 1.00E-06 in zone 1 (contaminated site)as compared to zone 2 and 3. Hence, both children and 384 



adults were observed to be most likely to have a lifetime cancer risk due to Cr and Ni, as supported by 385 

the sensitivity analysis (Fig. 5a) comparing contaminated regions to uncontaminated regions. Upon 386 

comparing the cancer risk (CR) values, it was observed that children had a higher risk than their adult 387 

counterparts, indicating that children were more likely to be affected. Due to their underdeveloped 388 

organ systems and body ratios (Al Osman et al., 2019), children were at an increased risk of 389 

carcinogenic exposure. They are more susceptible because they spend more time outdoors, frequently 390 

chew non-food items, and consume food in quantities higher than their per-kilogram body weight 391 

(Ruggieri et al., 2017).Similar trends were found in a study conducted by Kabir et al. (2022). Total 392 

Cancer Risk (TCR) values represent the cumulative cancer risk of Pb, Cd, Cr, and Ni through three 393 

human exposure pathways (inhalation, ingestion, and dermal contact). TCR values were higher than 394 

the unacceptable level (10-6) for zone 1 (child: 3.94E-05; adult: 3.37E-05) and zone 2 (child: 1.03E-395 

04; adult: 4.57E-05). No anthropogenic risk was observed in zone 3 (child: 8.22E-07; adult: 1.20E-07) 396 

(Li et al., 2020), with the highest contribution from Cr. The simulation of cancer risk (Fig. 5b) for 397 

adults and children suggested that children in zone 2 were at a higher risk as compared to zone 3. Fig. 398 

5a and 5b depict the probabilistic risk assessment values of TCR for adults and children in the 399 

contaminated zones (zones 1 and 2), supporting the results described above. 400 

3.7 Source classification of HMs through SOM analysis 401 

The unified distance matrix (U-matrix) and the component planes of SOM analysis were illustrated in 402 

Fig. 6 (a–c). In SOM planes, the color gradient indicates the normalized values of each variable. 403 

Similar colors show a positive correlation, while different ones show a negative correlation. The 404 

hexagon represented neurons in component planes, and the least space of the hexagon represents 405 

strong similar characteristics within the sample. (Wang et al., 2020). Fig. 6a demonstrated  the neural 406 

patterns of HMs, similar neural patterns pointing towards similarities in their origin. Based on the 407 

SOM result, Ni showed a higher concentration in the upper left-to-middle portion of the matrix map. 408 

whereas Cu was found to be more concentrated in the upper right corner and lower left plane (Fig. 409 

6a). Cr, Pb, and Cu showed a similar concentration pattern and ranked inside all HMs: Ni > Cu > Cr > 410 

Cd. HMs concentration in three different coal mine sites (zones 1, 2, and 3) showed that the neurons 411 



in the upper middle left corner to lower middle left corner of zone 2 (Kabdibad mine) were higher 412 

than those in zone 1 (Giridih open cast mine: upper right corner to lower middle right corner) and 413 

zone 3 (uncontaminated site: lower middle to lower right) (Fig. 6c). Based on the U-matrix clustered 414 

by zone, most of the neurons belong to zone 2 (n = 16 neurons) with respect to zone 1 (n = 14 415 

neurons) and zone 3 (n = 6 neurons) (Fig. 6b). Based on the overall SOM results, areas contaminated 416 

with HMs can be characterized by regional characteristics based on the differences in HMs emissions 417 

associated with zone 2. 418 

3.8 Source apportionment of HMs present in affected soil by PMF 419 

The PMF model, identified four factors (Factors 1, 2, 3, and 4) as the most significant contributors to 420 

contamination in the study region (Fig. 7 and Fig. S3). The least stable Q value hindered the 421 

evaluation of the most appropriate and best-fit factors. The determination coefficient (r2) (Table S9) 422 

between observed value and predicted value indicates a strong correlation between HMs (Cd had the 423 

minimum r2 value of 0.116 and Pb had the maximum r2 of 1, and the remaining had values greater 424 

than 0.997). The results showed that for Factor 1, Ni and Cd were the primary loading elements, 425 

accounting for 59.9% and 37.3%, respectively. Ni and Cd had low Cf values, indicating a natural 426 

origin, but their higher values suggested anthropogenic contributions (Chen et al., 2015; Wang et al., 427 

2021). It appears that Ni and Cd originated from a parent source, with Factor 1 likely linked to 428 

lithogenic enrichment resulting from displaced parent material due to open coal mining activities in 429 

the area. For Factor 2, the main contributor was Cu, accounting for 59%. Factor 2 may represent 430 

industrial activities, as Cu is widely used in industries (Wang et al., 2020). It could also be associated 431 

with agricultural activities through the application of livestock manures (Liang et al., 2017), 432 

fertilizers, and other agrochemicals (Jiang et al., 2017). Factor 3 contributed to 59.7% of the Cr. It 433 

should be noted that the mean concentration of Cr in contaminated zones exceeded its background 434 

concentration. The higher Cf value of Cr in the contaminated zones indicated anthropogenic addition 435 

through the weathering of exposed overburden accumulated during open-cast mining. The main 436 

contributors for Factor 4 were Pb and Ni, accounting for 73.6% and 35.2%, respectively. Pb is crucial 437 

for tracing vehicular emissions from leaded petrol, and although its use has been discontinued, traces 438 



still exist in the soil. Mining operations induce high traffic on routes used to transport coal and mining 439 

wastes, allowing Pb to enter the environment through brake wear, tire friction, road surface erosion, 440 

and wasted lube oil (Yan et al., 2018; Men et al., 2019). 441 

3.9 Geostatistical distribution of HMs 442 

Geostatistical modeling was employed to assess the spatial distribution of HMs (specifically Cr, Ni, 443 

Cd, Pb, and Cu) within soils in two contaminated zones (zone 1 and 2) and an uncontaminated zone 444 

(zone 3). Fig.S4 and Table S10 present the characteristics of the most suitable semi-variogram model 445 

and the results from ordinary kriging, offering insights into the spatial distribution of these HMs at the 446 

sampling sites. When evaluating the semi-variogram, we observed that nugget values, indicating 447 

variability at zero distances, were positive in all zones(zone 1, 2, and 3). To determine the best-fit 448 

model, we considered the Akaike Information Criteria (AIC) for this study. Notably, the partial sill 449 

and nugget values showed the most significant differences among the data sets. For Cd, the semi-450 

variograms exhibited a lower nugget effect in all three sample zones (zone 1, 2, and 3). Similar trends 451 

were observed for other HMs such as Cr, Cu, Pb, and Ni in zone 1 zone 3, except for Pb in zone 2. 452 

This suggests that the sampling density was adequate to capture the spatial patterns of the data (Ghosh 453 

et al., 2024).We employed a Gaussian model for Cu, Cd, and Cr in zone 1, Pb in zone 2, and Pb, Cu, 454 

and Ni in zone 3. Meanwhile, we applied a spherical model for Pb in zone 1 and Cr in zone 2. Strong 455 

spatial dependencies were observed for Cd in zone 1, and for Pb, Cu, Cd, and Ni in zone 2, as well as 456 

Cu, Cd, and Ni in zone 3.The model's suitability was demonstrated by the close Root Mean Square 457 

Error (RMSE) and Average Standard Error (ASE) values. G values for all three zones were greater 458 

than zero, indicating that spatial prediction using semi-variogram parameters outperformed assuming 459 

the mean of observed values. The semi-variogram attributes derived from the experimental data 460 

effectively depicted spatial variations (Banerjee et al., 2023). 461 

Interpolation analysis using Kriging of the factor scores obtained from the PMF model revealed that 462 

Factor 1 was predominantly concentrated in the eastern-southern to northwestern part of zone 1, while 463 

in zone 2, it centered in the middle (Fig. S5). Factor 2 was mainly distributed in the northeastern to 464 

west-southern and eastern-southern to southwestern sections of both zone 1 and 2, particularly in 465 



areas occupied by mines and partially used for agriculture. Consequently, high Factor 3 scores were 466 

observed in the west-southern part of both zones. An agricultural region extending from the 467 

northwestern to north-southern and eastern-southern to southwestern parts of both zones emerged as a 468 

pollution hotspot for Factor 4. 469 

4. Conclusion 470 

The current study has assessed HM contamination in the agricultural soil surrounding two coal mines: 471 

Giridih open cast mines (zone 1) and Kabdibad mines (zone 2) in the Giridih district of Jharkhand. 472 

The elevated levels of HMs (Pb, Cu, Cd, Cr, and Ni) were found, particularly higher concentrations of 473 

Ni, Pb, and Cr, in zone 1 and 2 compared zone 3. The concentration of HMs was also higher in the 474 

plant parts (root, shoot, and grain).Rice grains posed the greatest risk from Ni, Cr, and Pb, as 475 

determined by FIAM, SAMOE, and Fuzzy-TOPSIS analyses. TCR values for Cd, Cr, and Ni 476 

exceeded tolerable limits, with NiSAMOE and CrSAMOE indicating a moderate health 477 

risk.Consequently, prolonged consumption of rice grown from the area is not recommended. In zones 478 

1 and 2, pollution indices indicate  soil quality deterioration. The geo-statistical distribution map of 479 

HMs reveals higher contamination near mining sites compared to distant sampling sites. Analysis of 480 

the SOM component plane suggested similarities in the source and origin of HMs. PMF analysis 481 

indicated that HMs contamination in the area resulted from four different activities: lithogenic, coal 482 

mining, industrial activities, and transportation. Hence, the mining authorities should develop proper 483 

plans to mitigate HMs leaching from the dumping of toxic coal mine overburdens and tailings. 484 
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Figure captions 684 

Fig. 1 Violin plot comparing the HMs (Pb, Cu, Cd, Cr, and Ni) content in grain, shoot, and root of 685 

paddy sampled from coal mine contaminated zones (zone 1 and zone 2) and uncontaminated zone 686 

(zone 3). 687 

Fig. 2 Interaction between total HMs and DTPA extractable HMs (Pb, Cu, Cd, Cr, and Ni) with plant 688 

(root, shoot, and grain) uptake. 689 

Fig. 3 Partial dependence plot from random forest algorithm representing uptake in two plant parts 690 

(among root, shoot, and grain) most affected by available heavy metals (Pb, Cu, Cd, Cr, and Ni). All 691 

the values are in mg/kg. 692 

Fig. 4 Risk thermometer diagram showing risk of HMs (Pb, Cu, Cd, Cr, Ni) through the consumption 693 

of rice grown on coal mine contaminated and uncontaminated soil. 694 

Fig. 5 (a) sensitivity analysis of carcinogenic risk of different HMs for child and adult populations in 695 

contaminated zone, (b) predicted probability density functions of carcinogenic risk child and adult in 696 

contaminated zone. 697 

Fig. 6 (a) SOM component planes of concentration of heavy metals (HMs) in coal mine affected 698 

agricultural soil (b) U-Matrix cluster representing sampling zones (c) Zone-wise distribution map of 699 

HMs. 700 

Fig. 7 Source allocation of HMs in coal mine contaminated soils of the study location (a) the 701 

contribution percentage of each factor by PMF and (b) PMF model factor profiles of HMs in coal 702 

mine contaminated soils. 703 
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Fig. 1 Violin plot comparing the HMs (Pb, Cu, Cd, Cr, and Ni) content in grain, shoot, and root of 709 

paddy sampled from coal mine contaminated zones (zone 1 and zone 2) and uncontaminated zone 710 

(zone 3).711 
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Fig. 2 Interaction between total HMs and DTPA extractable HMs (Pb, Cu, Cd, Cr, and Ni) with plant (root, shoot, and grain) uptake.713 



714 
 Fig. 3 Partial dependence plot from random forest algorithm representing uptake in two plant parts 715 

(among root, shoot, and grain) most affected by available heavy metals (Pb, Cu, Cd, Cr, and Ni). All 716 

the values are in mg/kg. 717 
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Fig. 4 Risk thermometer diagram showing risk of HMs (Pb, Cu, Cd, Cr, Ni) through the consumption 727 

of rice grown on coal mine contaminated and uncontaminated soil. 728 

 729 

 730 

 731 

 732 

 733 

 734 

 735 

 736 

 737 

 738 

 739 

 740 

 741 



742 
 Fig. 5 (a) sensitivity analysis of carcinogenic risk of different HMs for child and adult populations in 743 

contaminated zone, (b) predicted probability density functions of carcinogenic risk child and adult in 744 

contaminated zone. 745 
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Fig. 6 (a) SOM component planes of concentration of heavy metals (HMs) in coal mine affected 749 

agricultural soil (b) U-Matrix cluster representing sampling zones (c) Zone-wise distribution map of 750 

HMs. 751 

 752 

 753 

 754 

 755 

 756 

 757 



 758 

Fig. 7 Source allocation of HMs in coal mine contaminated soils of the study location (a) the 759 

contribution percentage of each factor by PMF and (b) PMF model factor profiles of HMs in coal 760 

mine contaminated soils. 761 
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Fig. S1 Variable importance plot from random forest algorithm representing effects of available 820 

heavy metals (Pb, Cu, Cd, Cr, and Ni) on uptake by root, shoot, and grain. 821 
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Fig. S2 Box-whisker plot comparing Geoaccumulation index (Igeo), contamination factor (Cf), 834 

contamination index (CI), pollution load index (PLI), and ecological risk index among the coal mine 835 

contaminated zones and uncontaminated zone. 836 
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Fig. S3 Source apportionment and factor profiles of heavy metals (Pb, Cu, Cd, Cr, and Ni) from the 838 

PMF model. 839 

 840 



 841 

Fig. S4 Spatial distribution HMs (Pb, Cu, Cd, Cr, and Ni) in coal mine contaminated zones (zone 1 842 

and zone 2) and uncontaminated zone (zone 3). 843 
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Fig. S5 Spatial distribution of four factors derived from the PMF model for contaminated zones (zone 845 

1 and 2) from coal mine affected soil. 846 
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Fig. S6 Comparison between observed and predicted HMs concentration resulted from FIAM analysis 849 

of rice grain grown in zone 1. 850 
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 853 

 854 
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Fig. S7 Comparison between observed and predicted HMs concentration resulted from FIAM analysis 857 

of rice grain grown in zone 2. 858 
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Table S1 Coordinates of soil sample collected from contaminated zone (zone 1 and 2) and uncontaminated zone (zone 3) 861 

Zone 1 (Giridih Open Cast Mines) Zone 2 (Kabdibad Mines) Zone 3 (Uncontaminated Zone) 

Sample ID Latitude Longitude Sample ID Latitude Longitude Sample ID Latitude Longitude 

G1 24.17361 86.265278 K1 24.16386 86.2929763 C1 24.13232 86.254853 

G2 24.16556 86.258611 K2 24.14679 86.2952714 C2 24.13259 86.25334246 

G3 24.1775 86.262222 K3 24.15135 86.2913227 C3 24.13289 86.25140054 

G4 24.17675 86.2465793 K4 24.15834 86.3100862 C4 24.13232 86.25007553 

G5 24.17972 86.258056 K5 24.15171 86.3068546 C5 24.1349 86.24910313 

G6 24.20444 86.251667 K6 24.15788 86.3110131 C6 24.13456 86.24811422 

G7 24.1775 86.260278 K7 24.14672 86.3001223 C7 24.13337 86.24563622 

G8 24.16641 86.25517002 K8 24.13556 86.302778 C8 24.13446 86.25386367 

G9 24.18333 86.261667 K9 24.15934 86.309729 C9 24.13385 86.25618069 

G10 24.18168 86.25614601 K10 24.16745 86.3006423 C10 24.13352 86.25747432 

G11 24.18115 86.25567968 K11 24.14851 86.3016964 C11 24.13136 86.25833673 

G12 24.17963 86.25503061 K12 24.14965 86.2975128 C12 24.12976 86.25931414 

G13 24.18349 86.25285998 K13 24.15786 86.3053027 C13 24.12912 86.25287476 

G14 24.181 86.2482079 K14 24.16789 86.3024554 C14 24.13633 86.25581704 

G15 24.1813 86.24626116 K15 24.15072 86.290963 C15 24.13778 86.25657022 

G16 24.18711 86.24855584 K16 24.14849 86.2992838 C16 24.13563 86.26080468 

G17 24.1801 86.24350344 K17 24.14593 86.3035563 C17 24.13546 86.26363341 

G18 24.17839 86.24409366 K18 24.1459 86.3036914 C18 24.13301 86.26509951 

G19 24.16969 86.24584505 K19 24.14376 86.3018148 C19 24.13386 86.27011303 

G20 24.16787 86.24956686 K20 24.14573 86.3062473 C20 24.13482 86.26860667 

G21 24.16622 86.25159452 K21 24.14562 86.3099559 
   

G22 24.16494 86.25591818 K22 24.15019 86.3127231 
   

G23 24.16252 86.2559185 K23 24.13981 86.318885 
   

G24 24.17672 86.24368916 K24 24.14276 86.3160225 
   

G25 24.1761 86.2411845 
      

 862 



 863 

Table S2 Physio-chemical, total and DTPA extractable HMs in soil collected from coal mine contaminated zones (zone 1 and zone 2) and uncontaminated 864 
zone (zone 3). 865 

 Zone 1 (Giridih open cast mines) Zone 2 (Kabdibad mines) Zone 3 (uncontaminated zone) 

Parameter Mean  Mean 
 

Mean  

pH 6.01±0.5   6.21±0.51  6.93±0.3  

EC (mS cm -1) 0.03±0.02  0.04±0.02  0.05±0.02  

OC (%) 1.33±0.96  2.16±1.23  0.94±0.14  

Total HMs concentration (mg kg-1)  

Pb  108.24±72.97  139.56±69.46  46.33±17.02  

Cu  57.26±23.91  69.89±19.86  33.03±12.41  

Cd  8.44±2.76  8.95±2.57  0.70±0.57  

Cr  180.05±46.90  245.46±70.66  93.83±17.70  

Ni  70.79±25.06  95.46±22.89  34.18±3.89  

DTPA-extractable HMs concentration (mg kg-1)  

Pb  16.46±10.60  22.56±9.74  1.49±0.34  

Cu  5.67±4.23  6.5±4.48  2.92±0.39  

Cd  2.43±0.91  2.67±1.06  0.08±0.05  

Cr  30.37±10.50  44.35±13.56  9.38±1.78  

Ni  15.67±3.64  16.72±3.73  3.44±0.36  

 866 

 867 

 868 

 869 



Table S3 FIAM parameters for predicting uptake of HMs by rice as a function of pH, Walkley Black organic-C and DTPA extractable PTEs, FIAM-HQ for 870 

intake of HMs through consumption of rice grains grown on coal mine contaminated soil 871 

  Zone 1 
   

Zone 2 
   

Zone 3 
 

Constant β1 β2 HQ Constant β1 β2 HQ Constant β1 β2 HQ 

Pb 0.31 -0.12 0.26 1.61 1.25 -0.24 0.13 2.14 1.72 -0.11 -0.01 0.08 

Cu 0.48 -0.41 0.69 0.10 -0.64 -0.12 0.24 0.09 -0.22 -0.05 -0.06 0.03 

Cd 2.10 -0.21 -0.20 3.81 1.08 -0.21 0.14 4.53 0.91 -0.15 0.02 0.15 

Cr -0.16 -0.07 -0.04 9.39 -0.72 0.00 0.02 9.60 0.91 -0.15 0.02 0.15 

Ni 1.66 -0.24 0.09 3.45 -1.55 0.13 0.41 3.38 -0.05 -0.09 0.04 0.51 

 872 

 873 

 874 

 875 

 876 

 877 

 878 

 879 

 880 



Table S4 Dietary risk (SAMOE and TCR) of HMs from rice grains grown on coal mine contaminated soil 881 

Metal Zone 1 Zone 2 Zone 3 

SAMOE 
   

Pb 0.570 0.430 2.65 

Cu 0.920 0.940 1.06 

Cd 0.160 0.150 2.71 

Cr 0.060 0.050 0.23 

Ni 0.040 0.030 0.13 

TCR 
   

Pb 2.37E-04 3.15E-04 5.13E-06 

Cd 1.45E-03 1.72E-03 9.27E-05 

Cr 1.41E-02 1.44E-02 6.29E-04 

Ni 6.29E-02 6.16E-02 1.97E-04 

 882 

Table S5 Fuzzy TOPSIS performance score values of HMs concentrations in rice plant grown in coal mine contaminated soil 883 

 
Zone 1       Zone 2       Zone 3       

HMs Si+ Si- Pi Rank Si+ Si- Pi Rank Si+ Si- Pi Rank 

Pb 0.378637 0.100775 0.210205 5 0.360902 0.123079 0.254306 5 0.38127 0.164544 0.301465 4 

Cu 0.198209 0.271195 0.577743 2 0.168593 0.260535 0.607126 2 0.207322 0.365437 0.63803 1 

Cd 0.41816 0.147846 0.26121 4 0.395921 0.143283 0.265731 4 0.398914 0.200442 0.334429 5 

Cr 0.259273 0.274694 0.51444 3 0.259653 0.226501 0.465903 3 0.330437 0.227994 0.408276 3 

Ni 0.153611 0.364463 0.703497 1 0.108069 0.375445 0.776493 1 0.172404 0.29359 0.63003 2 



Table S6 Average daily dose (ingestion, inhalation, and dermal) values on children and adults  884 

HMs Child Adult 

Zone 1 ADDing ADDinh ADDder ADDing ADDinh ADDder 

Pb 6.07E-04 1.69E-08 6.98E-07 6.50E-05 9.56E-09 9.76E-08 

Cu 3.11E-04 8.68E-09 3.57E-07 3.33E-05 4.90E-09 5.00E-08 

Cd 4.23E-05 1.18E-09 4.87E-08 4.54E-06 6.67E-10 6.81E-09 

Cr 9.87E-04 2.76E-08 1.13E-06 1.06E-04 1.55E-08 1.59E-07 

Ni 4.33E-04 1.21E-08 4.97E-07 4.63E-05 1.55E-08 6.96E-08 

Zone 2 
      

Pb 7.86E-04 2.20E-08 9.04E-07 8.42E-05 1.24E-08 1.26E-07 

Cu 3.28E-04 9.17E-09 3.77E-07 3.51E-05 5.17E-09 5.28E-08 

Cd 4.18E-05 1.17E-09 4.80E-08 4.48E-06 6.58E-10 6.72E-09 

Cr 1.42E-03 3.96E-08 1.63E-06 1.52E-04 2.23E-08 2.28E-07 

Ni 4.96E-04 1.39E-08 5.71E-07 5.32E-05 2.23E-08 7.98E-08 

Zone 3 
      

Pb 3.05E-04 8.51E-09 3.50E-07 3.26E-05 4.80E-09 4.90E-08 

Cu 2.17E-04 6.07E-09 2.50E-07 2.33E-05 3.42E-09 3.49E-08 

Cd 4.59E-06 1.28E-10 5.28E-09 4.92E-07 7.23E-11 7.38E-10 

Cr 6.17E-04 1.72E-08 7.10E-07 6.61E-05 9.72E-09 9.93E-08 

Ni 2.25E-04 6.28E-09 2.58E-07 2.41E-05 9.72E-09 3.62E-08 

 885 

 886 

 887 

 888 

 889 

 890 

 891 

 892 

 893 

 894 

 895 

 896 

 897 

 898 

 899 

 900 



Table S7 Non-carcinogenic risk in terms of HQ (ingestion, inhalation, and dermal) and HI on children 901 

and adults 902 

HMs Child 
 

Adult 
 

Zone 1 HQing HQinh HQder HI HQing HQinh HQder HI 

Pb 1.73E-01 4.84E-06 1.32E-03 1.75E-01 1.86E-02 2.73E-06 1.84E-04 1.88E-02 

Cu 7.77E-03 1.93E-07 8.93E-06 7.78E-03 8.32E-04 1.09E-07 1.25E-06 8.34E-04 

Cd 4.23E-02 2.08E-05 4.87E-05 4.24E-02 4.54E-03 1.17E-05 6.81E-06 4.55E-03 

Cr 6.58E-04 9.19E-04 3.78E-04 1.95E-03 7.05E-05 5.18E-04 5.29E-05 6.42E-04 

Ni 2.16E-02 4.83E-07 2.49E-05 2.17E-02 2.32E-03 6.22E-07 3.48E-06 2.32E-03 

Zone 2 
        

Pb 2.25E-01 6.28E-06 1.71E-03 2.26E-01 2.41E-02 3.54E-06 2.39E-04 2.43E-02 

Cu 8.20E-03 2.04E-07 9.43E-06 8.21E-03 8.79E-04 1.15E-07 1.32E-06 8.80E-04 

Cd 4.18E-02 2.05E-05 4.80E-05 4.18E-02 4.48E-03 1.15E-05 6.72E-06 4.49E-03 

Cr 9.44E-04 1.32E-03 5.43E-04 2.81E-03 1.01E-04 7.44E-04 7.60E-05 2.81E-03 

Ni 2.48E-02 5.55E-07 2.85E-05 2.48E-02 2.66E-03 8.93E-07 3.99E-06 2.66E-03 

Zone 3 
        

Pb 8.70E-02 2.43E-06 6.61E-04 8.77E-02 9.32E-03 1.37E-06 9.25E-05 9.42E-03 

Cu 5.43E-03 1.35E-07 6.24E-06 5.44E-03 5.82E-04 7.60E-08 8.73E-07 5.83E-04 

Cd 4.59E-03 2.25E-06 5.28E-06 4.60E-03 4.92E-04 1.27E-06 7.38E-07 4.94E-04 

Cr 4.11E-04 5.75E-04 2.37E-04 1.22E-03 4.41E-05 3.24E-04 3.31E-05 4.01E-04 

Ni 1.12E-02 2.51E-07 1.29E-05 1.12E-02 1.20E-03 3.89E-07 1.81E-06 1.21E-03 

 903 

 904 

 905 

 906 

 907 

 908 

 909 

 910 

 911 

 912 

 913 

 914 

 915 

 916 

 917 



Table S8 Carcinogenic risk (three exposure pathway) and total cancer risk values on adults and 918 
children 919 

HMs CR  TCR 

Zone 1 Child Adult Child Adult 

Pb 1.09E-06 9.37E-07 3.99E-05 3.42E-05 

Cd 6.91E-07 5.92E-07 

Cr 2.12E-05 1.82E-05 

Ni 1.69E-05 1.45E-05 

Zone 2 
    

Pb 1.42E-06 1.21E-06 5.19E-05 4.45E-05 

Cd 6.82E-07 5.84E-07 

Cr 3.04E-05 2.61E-05 

Ni 1.94E-05 1.66E-05 

Zone 3 
    

Pb 5.5E-07 4.71E-07 2.27E-05 1.94E-05 

Cd 7.49E-08 6.42E-08 

Cr 1.33E-05 1.14E-05 

Ni 8.79E-06 7.52E-06 

 920 

 921 

Table S9 Regression diagnostics test parameters recovered from the PMF (positive matrix 922 
factorization) 923 

Species Intercept Slope SE r^2 KS Test 

Stat 

KS Test P 

Value 

Pb -0.00629779 0.999997501 0.022177713 1 0.109253 0.602365 

Cu -0.009972451 1.000043539 0.043716712 0.999996 0.106952 0.629414 

Cd 4.283191812 0.226657227 1.667066904 0.116359 0.117345 0.509725 

Cr 0.689386979 0.996900879 0.637364726 0.999913 0.11115 0.580235 

Ni 0.997373879 0.987705692 1.091000346 0.997975 0.114346 0.543454 

 924 



53 
 

Table S10 Semi-variogram characteristics parameters used in geostatistical modelling of total PTEs 925 

content. RMSE – root mean square error; AIC – Akaike Information Criterion; MSE – mean square 926 

error; RMSSE – root mean square standard error; G – Goodness-of-prediction; ASE – average 927 

standard error 928 

Total 

HMs 

Nugget Partial 

sill 

Spatial 

dependency 

Model AIC RMSE MSE RMSSE G ASE 

Zone 1 
          

Pb 4,339.70 1,315.52 Moderate Spherical 198.5506 74.57028 -0.00937 1.009584 79.32624 73.72411 

Cu 436.2854 142.3696 Moderate Gaussian 170.2623 23.37763 -0.01344 0.975032 98.53943 24.10028 

Cd 7.606961 0 Strong Gaussian 62.53456 3.026474 -0.02697 1.05916 99.9832 2.869005 

Cr 191.3227 2,386.87 Moderate Gaussian 219.2733 37.87941 0.023777 1.002513 85.32468 41.41993 

Ni 465.5605 136.4925 Moderate Circular 184.4964 28.26059 0.044063 1.078711 97.41641 25.86813 

Zone 2 
          

Pb 0 6,965.03 Strong Circular 211.5536 57.22033 0.004292 0.878583 82.82071 68.93089 

Cu 394.5141 0 Strong Gaussian 172.6476 20.05908 0.035759 0.977233 98.89684 20.66577 

Cd 2.127732 7.44621 Strong Gaussian 85.48904 2.563003 -0.06407 1.04124 99.98795 2.420661 

Cr 1491.329 3,619.90 Moderate Spherical 232.8255 67.6139 -0.0374 1.065352 15.03446 61.93481 

Ni 597.982 0 Strong Gaussian 189.2399 24.13211 -0.01125 0.928681 97.88454 26.20351 

Zone 3 
          

Pb 1231.53 4,312.53 Moderate Gaussian 173.3306 68.50013 -0.00815 1.084135 88.76525 81.91142 

Cu 242.32 0 Strong Gaussian 183.6772 27.0318 0.021652 0.988442 98.97146 22.58959 

Cd 2.48622 6.887 Strong Gaussian 72.95604 2.37531 -0.01366 1.015145 99.97624 2.872645 

Cr 163.1984 2,532.06 Moderate Spherical 197.3583 43.2148 -0.01875 0.976244 65.91862 38.98256 

Ni 687.5621 0 Strong Gaussian 173.5423 21.98485 -0.08743 1.087153 97.98527 28.97642 
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 930 


