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ABSTRACT Deep learning-based plant disease detection has gained significant attention from the scientific
community. However, various aspects of real horticultural conditions have not yet been explored. For
example, the disease should be considered not only on leaves, but also on other parts of plants, including
stems, canes, and fruits. Furthermore, the detection of multiple diseases in a single plant organ at a time
has not been performed. Similarly, plant disease has not been identified in various crops in the complex
horticultural environment with the same optimized/modified model. To address these research gaps, this
research presents a dataset namedNZDLPlantDisease-v1, consisting of diseases in five of themost important
horticultural crops in New Zealand: kiwifruit, apple, pear, avocado, and grapevine. An optimized version of
the best obtained deep learning (DL) model named region-based fully convolutional network (RFCN) has
been proposed to detect plant disease using the newly generated dataset. After finding the most suitable
DL model, the data augmentation techniques were successively evaluated. Subsequently, the effects of
image resizers with interpolators, weight initializers, batch normalization, and DL optimizers were studied.
Finally, performancewas enhanced by empirical observation of position-sensitive scoremaps and anchor box
specifications. Furthermore, the robustness/practicality of the proposed approach was demonstrated using
a stratified k-fold cross-validation technique and testing on an external dataset. The final mean average
precision of the RFCN model was found to be 93.80%, which was 19.33% better than the default settings.
Therefore, this research could be a benchmark step for any follow-up research on automatic control of disease
in several plant species.

INDEX TERMS Convolutional neural networks, deep learning, optimization algorithms, cross-validation,
plant disease detection.

I. INTRODUCTION
According to the latest fresh facts report by a New Zealand
(NZ) research and development organization named Plant
and Food Research, the horticultural industry achieved a
record export of over NZ$6.6 billion by June 2020 [1].
The most prominent fresh fruits were kiwifruit, apples, and
avocadoes with an export value of NZ$2.5, NZ$0.9, and
NZ$0.1 billion, respectively, followed by the New Zealand
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wine at NZ$1.9 billion [1]. Furthermore, the largest crop
area of 39,935 ha has been estimated for grapevines, whereas
12,905 ha of kiwifruit and 10,750 ha of apples, pears, and
nashi have been reported. Based on these statistics, horti-
cultural crops generate a great impact on New Zealand’s
economy. Hence, addressing the problems associated with
horticultural crops could further strengthen the export value
of the horticultural sector.

Among several real field problems, plant diseases affect
crop yield, and quality [2], and cause economic losses [3].
The precise detection of the disease is an important step
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in reducing its spread to neighboring plants, application of
appropriate disease control treatments, and improving crop
productivity. In this regard, this research is dedicated to the
accurate identification of plant diseases by deep learning
(DL) in the most valuable crops of NZ, including kiwifruit,
apple, pear, avocado, and grapevine. Furthermore, several
research gaps related to the dataset, real horticultural condi-
tions, and deep learning-based plant disease recognition have
been addressed in this study.

Deep learning, a subset of machine learning, has been
reported in literature as a successful technique in recognizing
plant diseases. A recent review summarized and compared
various pre-processing steps (image resizing, data augmen-
tation, normalization and standardization, data annotation,
and others), datasets, convolutional neural networks, train-
ing techniques, deep learning frameworks, and optimization
algorithms [4]. Another review article presented variousmod-
ified DL models, plant disease detection tasks, problems, and
challenges of DL-based plant disease classification [5]. For
instance, the significance of the recent solutions for the small
datasets was presented, such as transfer learning, few-shot
learning, and one-shot learning. Furthermore, the early plant
detection problem was explained with the use of hyperspec-
tral imaging (HSI).

In the early stages of research in DL-based plant disease
identification, the major focus remained on the classification
tasks. For example, [6] did the early work in the domain
of DL-based recognition and classification of plant disease
by using two well-known DL models, namely AlexNet and
GoogLeNet. Similarly, the task of the classification of plant
diseases was presented in various articles by transfer learning
and fine-tuning methods [7], [8]. These articles showed the
importance of using the latest training techniques.

In the next stage, research community focused on the
dataset size, particularly small datasets, as it played a sig-
nificant role in the performance of the DL models. A novel
data augmentation technique to classify disease in cassava
leaves, tested on a modifiedMobileNet model, was presented
in [9]. Another research [10] presented a generative adversar-
ial network (GAN) for classifying the disease in PlantVillage
dataset [11], which contains 38 classes of healthy/disease
leaves for 14 plant species. Yet another article discussed
a GAN-based model to classify tomato leave disease [12].
These articles formed a basis for data augmentation in plant
disease detection. However, they only studied the perfor-
mance of the DL models on single datasets leaving questions
around their performance with other datasets containing dis-
ease in different crops.

Modification of well-known DL models is another area
of research that has seen continuous focus for a long time.
A modified CenterNet model with DenseNet-77 was pro-
posed by [13] to identify plant disease while aMobileNet was
modified for the classification of plant disease by [14].

A research showing the effectiveness of deep learning
optimizers was presented in [15]. Then, a study was focused
on the plant disease identification task that contains both

classification and localization in a single framework, using
the same PlantVillage dataset [16]. Although, this research
presented an improvement in the accuracy of plant disease
detection and classification tasks, the major limitation was
the analysis of the deep learning technology in a controlled
environment dataset.

Some of the studies also focused on datasets collected
in a real agricultural environment. For example, an arti-
cle presented tomato disease detection in real agricultural
conditions, using three DL object detectors named Faster
Region-based Convolutional Neural Network (RCNN),
Single-shot MultiBox Detector (SSD), and Region-based
Fully Convolutional Network (RFCN) [17]. Various real-
world scenarios were considered. However, the external
dataset could also be tested to validate the research. A study
presented a Convolutional Neural Network (CNN) named
SoyNet, to classify the disease in soybean leaves after seg-
menting the images of leaves [18]. This study presented
variations in the parameters of the DLmodel, such as dropout,
pooling operations, and inclusion of activation functions.
These adjustments were found to be successful in improving
the performance of the model. Moreover, the usefulness of
the proposed method was compared with other techniques.
An article presented the classification of cardamom plant
diseases using the EfficientNet-V2 model [19]. This study
did not provide training profiles/plots. A multilayer con-
volutional neural network was presented for the classifica-
tion of disease on mango leaves [20]. Although this article
presented the significance of the DL model compared with
other machine learning-based techniques, better effectiveness
should have been shown by comparing it with the DL mod-
els as well. In recent research, an improved version of the
Xception model was proposed for the identification of peach
diseases [21]. The novelty of this work was shown by com-
paring the proposed method with the well-known models.
However, other modified versions of the state-of-the-art DL
models could be used for the analysis. Tomato disease were
detected using a modified version of the you look only once
(YOLO) model [22]. It was observed that the training perfor-
mance of the models was presented with limited information.
Another study presented a DL-based method for the detection
of tomato disease divided into target and control classes [23].
This research proposed a new way of performing plant dis-
ease detection task that can open various opportunities for
future research. An improved region proposal network was
proposed for the detection of northern maize leaf blight [24].
A few studies have also proposed real-time detection of plant
disease. A DL model was presented for the identification of
tomato disease [25]. Similarly, disease detection on grape
leaves was performed using a DL architecture based on Faster
region-based convolutional neural network (R-CNN) [26].

After rapid advancement and research on deep learning-
based plant disease identification, there are still important
research gaps and considerable room for further develop-
ments to investigate the practical aspects of horticultural
fields. The current literature has mainly focused on the plant
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disease detection task to only plant leaves. Moreover, the
available datasets emphasize on the presence of a single
disease at a time in a plant leaf. Furthermore, recent studies
have shown high accuracy in the PlantVillage dataset (which
contains defective leaves in 14 plant species) [16], but none
of the articles have provided the significance of a single deep
learning model for different crops in real agricultural condi-
tions. This is important to consider, as each crop could have
different background elements. Therefore, the robustness of
the DL should be analyzed for that case.

This research addresses several research questions related
to the capability of DL to address various complex agri-
cultural problems. The first question is whether deep learn-
ing can perform plant disease detection with the same
trained/optimized/modified model for three problems at a
time: (a) identification of diseases in several organs of plants,
(b) presence of multiple diseases in a plant organ, and
(c) recognition of diseases in various crops considering vari-
ations in their environments/background elements? Connect-
ing to the previous question, can a DL architecture correctly
distinguish symptomatically identical diseases in different
crops? The final question is how well can the attained accu-
racy of the DL-based method be validated for the problems
highlighted earlier?

To answer these questions, this article presents a deep
learning-based performance optimization approach. First, the
dataset images were collected from various New Zealand
farms and horticultural fields. It contains 20 classes of healthy
and defective leaves, fruits, and stems/canes of five differ-
ent crops. Then, various image resizing techniques, batch
normalization, and weight optimization were applied. These
techniques have not yet been explored for the detection of
plant disease. Furthermore, the main novelty of the RFCN
model (the most suitable DL architecture obtained after com-
paring several models) was analyzed. In this regard, the
position-sensitive scoremapswere empirically evaluated, and
anchor boxes were modified, to obtain high accuracy for the
identification of all healthy and disease classes.

This research also addresses some of the research gaps
outlined in recent articles, such as the validity of deep-
learning-based plant disease identification. Moreover, the
data augmentation has been applied after dividing the data
into training, validation, and testing sub-datasets, to avoid
biased results; otherwise, there was a possibility to get simi-
lar images in the sub-datasets. Furthermore, this study pro-
vided new insights into DL-based plant disease detection,
rather than giving redundant discussions using the exces-
sively explored dataset like PlantVillage [27].

The key contributions of this research are:
1) A new dataset of plant diseases has been proposed for

the most important horticultural crops in New Zealand,
named NZDLPlantDisease-v1.

2) Detection of disease has been performed in multiple
plant organs for five different crops.

3) The presence and detection of multiple diseases on a
single plant organ have been addressed.

4) The effects of data augmentation techniques have been
studied by dividing them into various categories rather
than considering all conventional methods together.

5) A comprehensive deep learning-based plant disease
detection pipeline has been presented. In this regard,
various steps have been explored prior to suggesting
any modification to the state-of-the-art DL models.

6) The confusion/false positive results in symptomati-
cally similar diseases (occurring in different crops)
have been addressed. An in-depth analysis of the
best-obtained DL model named region-based fully
convolution network (RFCN) has been performed by
position-sensitive score maps and anchor boxes.

7) The proposed approach has been validated using a strat-
ified k-fold cross-validation technique and an external
testing dataset.

II. MATERIALS AND METHODS
A. PROPOSED APPROACH
The proposed methodology consists of various practical con-
siderations related to the presence of plant diseases in a real
horticultural environment. A comprehensive deep learning-
based optimization approach has been proposed. The pre-
sented methodology has successfully solved three identified
agricultural problems, including the detection of disease in
multiple plant organs, the identification of disease in different
crops, and the presence of multiple diseases in a plant organ
at a time. These problems have been solved by different tech-
niques presented in sub-sections. The idea was to improve the
average precision of each class. The results from each of the
stepwere evaluated, the respective problemswere highlighted
and addressed in the next step.

First, the research questions were outlined to begin collect-
ing images of the dataset. Next, well-known DL architectures
were compared, and the two best deep learning (DL) models
were obtained, which attained the highest mean average pre-
cision. Then, the data augmentation techniques were applied
category-wise, including color change (brightness, contrast,
and sharpness), the inclusion of noise with variation in color,
rotational and translational changes, and finally, the combi-
nation of all categories, including the original images. The
next step was the performance optimization of the DL model
using various techniques. In this regard, the effects of image
resizers and interpolators were analyzed. This step was per-
formed to investigate different input images for the DL-based
plant disease detection. Then, different DL initializers were
tested. Subsequently, batch normalization was applied to
cope with the internal covariate shift. Then, DL optimizers
were leveraged to optimize the weights of the deep learning
model. This led to a further improvement in the performance
of classes that achieved low average precision (AP). This
objective was achieved by empirically analyzing the novelty
of the best-obtained model. The final step was the modi-
fication of the DL model by empirically tuning its anchor
box scale and aspect ratios. In case of unsatisfactory results,
the feature extractor/classification model had to be modified.
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FIGURE 1. The overall workflow of the proposed methodology.

The final results were validated using a stratified k-fold cross-
validation technique and a test dataset generated through
various online/open-source images. The overall methodology
of this study is presented in Fig. 1

B. NZDLPLANTDISEASE-V1 DATASET
1) OVERVIEW AND GENERAL INFORMATION OF THE
PROPOSED DATASET
The proposed dataset has several properties of real agri-
cultural fields that have not been presented in previous
open-source datasets. A comprehensive overview of several
datasets along with the new/proposed dataset for this research
is presented in Table 1. Further details of the important fea-
tures of the presented dataset are explained in the following
subsections.

This dataset contains plant disease in five different crops in
New Zealand, including kiwifruit, apple, pear, avocado, and
grapevine, named NZDLPlantDisease-v1. The images were
acquired by using a Samsung smartphone Galaxy S10 plus:
12 MP f/1.5-2.4 (wide), 12 MP f/2.4 (telephoto), and 16 MP,
f/2.2 (ultrawide). Several local horticultural fields were vis-
ited in Auckland and Palmerston North, New Zealand. The
images were taken at a working distance of 200-300 mm.

2) PRACTICAL CONSIDERATIONS
The dataset was collected between December 2020 and
May 2021. The abrupt change in New Zealand’s weather was
considered a positive aspect of the dataset generation because

it helped obtain diversity in the dataset via variations in illu-
mination and environmental conditions. Furthermore, dataset
images were captured in the presence and absence of shadows
to include real horticultural conditions. Several examples of
these practical considerations are shown in Fig. 2.

FIGURE 2. Examples of healthy and defected leaves of kiwifruit and
apple in the presence and absence of shadow.

3) MULTI-DISEASE AND MULTI-ORGAN DATASET IMAGES
One of the research gaps addressed in this article is the
detection of the disease in various organs/parts of the plants.
Therefore, healthy and disease classes are considered in the
leaves, stems, and fruits of apple and pear. However, the
dataset classes for avocado and kiwifruit only consist of
leaves. The images for the grapevine were only taken for
healthy and disease cane, due to the end of the season of the
grapevines at the time of dataset collection. In this research,
the presence of multiple classes of disease in plant organs has
also been addressed. For example, black spot, mosaic virus,
and glomerella leaf spot (or two of them) were present in
some of the apple leaves at one time. Similarly, algal leaf spot
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TABLE 1. Overview of different plant disease datasets.

and branch canker were present on avocado leaves at the same
time. Samples of multiple disease problems are presented
in Fig. 3.

FIGURE 3. Examples of multiple disease problems: (a) shows the apple
mosaic virus and the glomerella leaf spot; (b) shows the apple mosaic
virus and the black spot; (c) shows the avocado algal leaf spot and the
branch canker.

4) ANNOTATIONS OF HEALTHY AND DISEASE CLASSES
The number of images from each class ranged from 60 to 318,
as presented in Table 2. The NZDLPlantDisease-v1 dataset

TABLE 2. Summary of NZDLPlantDisease-v1 dataset.

was divided into three sub-datasets: training (70%), vali-
dation (20%), and testing (10%). The dataset images were
annotated by using an open-source tool called LabelImg.
The bounding box coordinates were stored in XML format,
converted into CSV, and finally, to the TF records [16]. The
common/scientific names of each class along with the num-
ber of images (without augmentation) are shown in Table 2.
An example of each annotated healthy and disease class is
presented in Fig. 4.

5) DATA AUGMENTATION TECHNIQUES
When collecting the images for the dataset, some of them
were taken in a group; cropping of those images increased the
size of the dataset. Furthermore, several data augmentation
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FIGURE 4. Annotated sample of each healthy and disease classes from
the NZDLPlantDisease-v1 dataset: (a) Apple black rot, (b) Apple black
spot (scab), (c) Apple European canker, (d) Apple glomerella leaf spot,
(e) Apple healthy (fruit), (f) Apple healthy (leaf), (g) Apple mosaic virus,
(h) Avocado algal leaf spot, (i) Avocado branch canker, (j) Avocado
healthy, (k) Grapevine black spot, (l) Grapevine healthy, (m) Kiwifruit
bacterial canker, (n) Kiwifruit healthy, (o) Pear canker, (p) Pear fire blight,
(q) Pear healthy (fruit), (r) Pear healthy (leaf), (s) Pear scab, (t) Pear
stony pit.

techniques were applied, such as a 30% increase and decrease
in brightness, contrast, and sharpness [25]. Moreover, two
noises are injected into the training images to study their
effects and increase the variability in the dataset. In this
regard, Gaussian and Laplacian noise were added by using
the online available software named XnViewMP. The random
intensity of 2.0 and 10.0 at a maximum scale of 10.0 and
50.0 was set, respectively. In addition, rotational/translational
changes were also considered, including 90◦, -90◦, 180◦,
horizontal, and vertical changes. An example of augmented
images for a kiwifruit bacterial canker is shown in Fig. 5.

The data augmentation techniques are grouped into five
categories to thoroughly understand their effects on the per-
formance of the DL model. These categories are only orig-
inal (OO), original and change in translation/rotation (OT),
original and color change (OC) (brightness, contrast, and
sharpness), original with an injection of noise (Gaussian
and Laplacian) and color change simultaneously (OCN), and
finally a combination of all (OTCN).

C. DEEP LEARNING FRAMEWORK, HARDWARE
SPECIFICATIONS, AND PERFORMANCE METRICS
All experiments are performed using the TensorFlow object-
detection API. The DL models are trained using the transfer

FIGURE 5. Samples of kiwifruit bacterial canker with/without data
augmentation methods: (a) original, (b) 90◦, (c) -90◦, (d) 180◦, (e) horizo-
ntal, (f) vertical, (g) high brightness, (h) brightness low, (i) contrast high,
(j) low contrast, (k) sharpness high, (l) sharpness low, (m) Gaussian noise,
(n) Laplacian noise.

learning technique with pre-trained weights on the COCO
dataset. An NVIDIA GeForce GTX 1080 Ti graphics pro-
cessing unit (GPU) is used with the following specifications:
11 GB memory, 1582 MHz boost clock, 3584 CUDA cores,
and 484 GB/s memory bandwidth. The CuDNN library is
imported to accelerate training.

The performance of theDLmodels is evaluated through the
training and validation profiles in terms of various classifica-
tion and localization losses. This helped to gain insight into
the models by box classifier loss, region proposal network
(RPN) loss, and total loss. Furthermore, the testing perfor-
mance is presented using the mean average precision (mAP),
which is a commonly used performance metric for object
detection tasks [16].

D. DEEP LEARNING MODELS
Numerous well-known DL meta-architectures have been
trained, tested, and compared on the generated dataset. These
models include the Single Shot Multibox Detector (SSD)
[33], Faster Region-based Convolutional Neural Network
(RCNN) [34], Region-based Fully Convolutional Network
(RFCN) [35], RetinaNet [36], and EfficientDet [37].

The complexity of the DL models is presented by training
and detection time, architectural differences, and the number
of parameters, as shown in Table 3.

E. ARCHITECTURAL OPTIMIZATION OF THE RFCN MODEL
1) FUNDAMENTALS OF RFCN
Following the proposed methodology, the RFCN is selected
as the best DL model for the detection of plant dis-
eases. The main idea of this DL model is to address the
ambiguity between translational invariance (identifying a
particular object at different pixel values) and translational
variance (identifying the exact location of the object) using
position-sensitive score maps. An RFCN is a two-stage
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TABLE 3. Comparison of architectural features, number of parameters and training specification of DL architectures

DL architecture. First, the input image is applied to the fea-
ture extraction layer using a convolutional neural network
(CNN) to generate feature maps. These maps are applied
to a convolutional layer to generate region-of-interest (ROI)
proposals. In the former DLmodel named Faster RCNN, ROI
proposals were used to extract the feature region in the feature
map and to extract features to differentiate a particular class.
However, in the RFCN, another convolutional layer is used
to generate position-sensitive score maps. This map splits
the ROI into k × k bins, where each bin is used to vote for
the class to which the object belongs. Therefore, the main
idea was to consider the characteristics of an object divided
into a region k × k instead of as a whole. Both the RFCN
and Faster R-CNN models have the same extraction of ROI
proposals, but technical and computational differences arise
in the application of a fully connected layer (FC) in each ROI
proposal for Faster RCNN. In contrast, the RFCN generates
only the proposed score maps, and the ROI is only used to
vote for the regions in the score maps. Hence, the overall
training and testing times of the RFCN network are much
reduced than those of the Faster RCNN model [35]. This
difference can also be observed in Fig. 6.

For w x h rectangular ROI, each bin is of size w
k x

h
k . The x

and y coordinates for (i,j)th bin for one of the slices of anchor

FIGURE 6. Architectural details of RFCN and faster RCNN models.

box bin are obtained by the following formula.

[i
w
k
] ≤ x < (i+ 1)

w
k
] and [j

h
k
] ≤ y < (j+ 1)

h
k
] (6)

Then, the pooled response rc(i, j) on (i, j) bin for class c
is equal to the sum of all the pixels within that bin coming
from the position sensitive score maps. This sum is divided
by number of pixels (n) as the layer before the softmax
function is the average pooling layer. Finally, we take a vote
by averaging them out or taking the maximum and get the
position sensitive scores that lead to the softmax to predict
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the class

rc(i, j|θ ) =
∑

(x,y)εbin(i,j)
zi,j,c(x+ x0, y+ y0|)/n (7)

rc(θ ) =
∑
i,j

rc(i, j|θ) (8)

where θ presents all learnable parameters, zi,j,c is the one
score map out of k2(C+1) score maps, and (x0,yo) is the top
left corner of the ROI.

2) EMPIRICAL OBSERVATIONS ON THE POSITION-SENSITIVE
SCORE MAPS
The default architectural settings of the RFCN attained sat-
isfactory outcomes for most of the plant disease classes.
However, the pear scab could not be detected, showed false-
positive identification. It was confused with the apple black
spot. This was due to the similarity in the symptoms of both
diseases. These results motivated us to empirically investigate
the main novelty of the RFCN model. In this regard, the
spatial bin width and height for position-sensitive score maps
are tuned/analyzed for this research. The main purpose of this
step is to improve the average precision (AP) of the pear scab
and maintain the high AP of other classes.

3) PERFORMANCE ENHANCEMENT THROUGH MODIFIED
ANCHOR BOXES
The final step is the improvement of classes that achieved
low AP (less than 80%). These classes include apple black
rot, apple black spot, apple European canker, and pear
healthy (leaves) classes. In this regard, this study explored
the enhancement of anchor boxes in two steps: adjustment of
scale sizes and aspect ratios. Here, the scale size is gradually
modified, whereas the aspect ratios are reduced/enhanced in
both a step-by-step (1:2, 1:3, 1:4, and so on) and reciprocal
fashion (1:2, 2:1; 1:3, 3:1; etc.). The final output attained a
high AP for all healthy and diseased classes. The following
steps are taken to obtain a modified or enhanced version of
the anchor boxes.
• First, the RFCN model is trained by the default specifi-
cations of the scale size and aspect ratio. Therefore, the
scale width and height of 256 x 256 of combinations like
1:4, 1:2, 1:1, 2:1 with aspect ratio of 1:2, 1:1, 2:1 and 1:1
are considered.

• Afterward, smaller/larger scale sizes are added to
the default to understand their effects on model
performance.

• After obtaining the best combination of anchor box
scales, the aspect ratios are added and enhanced to obtain
further refinement in the detection of plant diseases.
From the default aspect ratios, the reciprocal ratios such
as 1:3, 3:1, and 1:4, 4:1 are applied.

• Subsequently, an empirical adjustment of the aspect
ratio is performed, and a gradual reduction/enhancement
of the aspect ratio is proposed to improve the AP of
several classes. The combined effect of reciprocal and
gradual changes in the aspect ratio is also studied.

• Finally, the training, validation profiles and testing out-
comes are compared between the proposed modifica-
tions and the default settings.

F. IMAGE RESIZERS AND INTERPOLATORS
After obtaining the best combination of the data augmenta-
tion technique and DL architecture, the effects of image resiz-
ers on the model performance are studied. Aspect ratio and
fixed shape resizers are used along with four types of image
interpolators: bilinear, bicubic, area, and nearest neighbor.

G. WEIGHTS INITIALIZERS
Three weight initialization techniques are compared to opti-
mize the performance of the best-suited DL architecture.
By default, a truncated normal is used to remove dead neurons
caused by the ReLU. Then, variance scaling is applied, which
is beneficial to balance the variance of the output with the
input layers [40]. The last initializer is a random normal ini-
tializer used to create tensors through a normal distribution.

H. BATCH NORMALIZATION
To accelerate training speed, batch normalization (BN) is
used in this research. This technique solves the problem of
internal covariate shift due to the variation in the input of the
distribution of the neural network with the variation in the
parameters of the previous layer [41].

The mini batch mean (µφ) for a mini-batch (φ), mini-batch
variance (σ 2

φ ) and normalize (affine transform) are evaluated
for each row of input matrix (xi) by:

µφ ←
1
N

∑N

i=1
xi (9)

σ 2
φ ←

1
N

∑N

i=1
(xi − µφ)2 (10)

x̂i ←
xi − µφ√
σ 2
φ + ε

(11)

where N is the number of instances in mini batch, ε is added
for the numerical stability.

There is a zero mean and variance for each component of xi
though the hidden units should have different distributions.
Therefore, the normalization scheme learns the distribution
by scaling the normalized values through scaling (γ ) and
shifting (β) parameters and evaluated the output of the batch
normalization as follows:

yi← γ.x̂i + β ≡ BNγ,β (xi) (12)

I. DEEP LEARNING OPTIMIZERS AND SELECTION OF
HYPERPARAMETERS
In this study, three DL optimizers are used. Stochastic gradi-
ent descent (SGD)withmomentum [42] is applied as a default
optimization algorithm, later, root mean square propagation
(RMSProp) [43] and adaptive moment estimation (Adam)
Adam [44] are used to optimize the weights. A brief overview
of the DL optimizers is given as follows:
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1) SGD WITH MOMENTUM
The stochastic gradient descent (SGD) is the most com-
monly used optimization algorithm for neural networks. The
momentum version of the SGD has a great capability of faster
convergence compared to the original SGD optimizer. The
exponentially weighted averages (Vdw and Vdb) are used
to evaluate the gradient and use the gradient to update the
weights (W ) and biases (b). The algorithm uses the following
equations:

Vdwt = β∗Vdwt−1 + (1− β) ∗ dwt (13)

Vdbt = β ∗ Vdbt−1 + (1− β) ∗ dbt (14)

Wt = Wt−1 − lr ∗ Vdwt (15)

bt = bt−1 − lr ∗ Vdbt (16)

where, β, lr, dw, and db present momentum, learning rate,
gradients of the weights, and biases, respectively.

2) RMSProp
This DL optimizer allows to select a large learning rate.
It works on the idea of using the moving average of the
squared gradient and dividing the gradient by square root the
mean square, using the following equations:

Vdwt = β ∗ Vdwt−1 + (1− β) ∗ dw2
t (17)

Vdbt = β ∗ Vdbt−1 + (1− β) ∗ db2t (18)

Wt =Wt−1 − lr ∗
dwt

√
Vdwt + ε

(19)

bt = bt−1−lr∗
dbt

√
Vdbt + ε

(20)

where, ε is used for the numerical stability in the denominator.

3) ADAM
The Adam optimizer is a combination of RMSProp and
SGD with momentum optimizers. Like RMSProp, Adam
takes squared gradients to scale the learning rate and uses
moving average of the gradients similar to the SGD with
momentum. As it has an adaptive learning rate, it calculates
separate learning rates for each parameter. Adam contains
estimations of first (mean) and second moments (uncentered
variance) of gradient that are used to adapt the learning rate
for each weight of the DL model/neural network. Whereas
the moment is considered as the expected value of a variable
to the power of n. The first (mdw, mdb) and second moment
(vdw, vdb) estimates are evaluated by equations (21)-(24).

mdwt = β1 ∗mdwt−1 + (1− β1) ∗dwt (21)

mdbt = β1 ∗mdbt−1 + (1− β1) ∗dbt (22)

vdwt = β2 ∗ vdwt−1 + (1− β2) ∗dw2
t (23)

vdbt = β2 ∗ vdbt−1 + (1− β2) ∗db2t (24)

The bias-corrected first (mdŵ mdb̂) and second (vdŵ, vdb̂)
moment estimates are evaluated by equations (20)-(23).

mdŵ t = mdwt/(1−β t1) (25)

mdb̂ t = mdbt/(1−β t1) (26)

vdŵ t = vdwt/(1−β t2) (27)

vdb̂ t = vdbt/(1−β t2) (28)

Then, the weights and biases are evaluated by:

Wt = Wt−1−lr∗
mdwt

√
vdwt + ε

(29)

bt = bt−1−lr∗
mdbt

√
vdbt + ε

(30)

where ε is equal to 10−8

4) SELECTION OF HYPERPARAMETERS
The hyperparameter values are selected using the random
search method [45], presented in Table 4. For example, the
learning rate (lr) of the SGD optimizer to train the RFCN
model was tuned exponentially from 10−5 to 10−1, while
the momentum (mom) was tuned with a difference of 0.1.
The hyperparameter tuning was started with lr of 10−1 and
zero mom, the RFCN did not get the training convergence.
Then, the lr was started to reduce and mom was increased.
The training of the RFCN model started to settle down. For
example, at lr of 10-3 and mom of 0.8, the mAP was 61.60%
with a total training loss of around 0.41%. A further reduction
in the lr positively influenced the performance of the RFCN.
At the learning rate of 10−4 and mom of 0.8, the training
loss was reduced to 0.23% with the mAP of 73.256%. But
a further increase in lr (10−5) significantly increased the
training time. Therefore, small random changes were made
for lr and mom and the performance of the RFCN model was
checked in various values. It was found that lr of in 3× 10−4

and mom of 0.9, the loss was reduced to around 0.09% and
the mAP improved significantly to 74.47%.

TABLE 4. Hyperparameters of deep learning optimizers.
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J. VALIDATION METHODS
1) STRATIFIED FIVE-FOLD CROSS-VALIDATION
The proposed DL-based approach has been validated using
two techniques. First, owing to the class imbalance prob-
lem due to the different number of images of each class
(can be seen in Table 2), a stratified cross-validation method
is used. This method retains the particular number of data
points/sample size of each class in each fold [46]. It ensures
the unbiased distribution of the dataset among all folds. Oth-
erwise, random sampling could generate bias in the folds
when all dataset images are randomly shuffled and split into
a certain number of folds.

2) TESTING ON AN EXTERNAL DATASET
Another contribution of this study is the validation of the
final results using an external test dataset (obtained by a
random search on various websites). This was done to show
the effectiveness and robustness of the work that presented
DL-based approach would also be applicable under differ-
ent environmental conditions than the one used for dataset
generation.

III. RESULTS AND DISCUSSIONS
After the dataset generation, the proposed approach is divided
into several steps to get the optimized DLmodel for plant dis-
ease detection. The results presented in this section follow the
methodology of the research, as shown in Fig. 1. First, a com-
parison of the DL architectures was performed. This step was
performed to obtain the top two models. The training and
validation plots are presented (to understand the performance
of several DL models) and the detection results (to evaluate
the mAP). The best two DL models were trained with all
data augmentation methods to understand their effects. Later,
the effects of image resizing techniques and interpolators are
provided in terms of training, validation losses and mAP.
These methods evaluated the impact of the input image on
the DLmodel. Afterward, performance optimization has been
explained by weight initializers, batch normalization, and DL
optimizers. The effects of various parameters of the weight
initializers are also provided. Similarly, the performance of
the best-obtained DL model was evaluated in the presence of
batch normalization, to show the better convergence ability of
the DL model. DL optimizers are also compared to optimize
the weights of the best-obtained DL architecture.

After the optimization of the DL model, further in-depth
class-wise analysis has been performed. In this regard, the
performance of the individual classes is evaluated. The
classes that attained the lowest AP were explicitly focused.
This step also aimed to maintain the high AP of the other
classes obtained in the previous step. The position-sensitive
score maps are analyzed, as it was one of the major novelties
of the RFCN model (the best-obtained model). The detection
results are shown to understand the impacts of the spatial bin
width and heights of the score maps. Furthermore, the anchor
boxes were enhanced to show the influence of various anchor

box scales and aspect ratios. The results are shown by the
training and validation plots and average precision of each
class, along with the mAP of each enhanced version. Finally,
the stratified k-fold cross-validation method was used due to
the class imbalance problem in the proposed dataset and to
validate the final mAP of the optimized DL model.

A. COMPARISON BETWEEN DL ARCHITECTURES
First, the DL models are trained on the original (without
augmentation) images. Subsequently, the two best models are
retrained on the augmented images. It is empirically found
that DL architectures should be trained to 200K steps to
achieve training convergence. The input images are resized
to 300 × 300 pixels with fixed image resizers for SSD
MobileNet-v2 and SSD Inception-v2 and 640 × 640 pixels
for SSD ResNet-50 (RetinaNet). An aspect ratio resizer with
minimum and maximum pixel dimensions of 600 and 1000,
respectively, is considered for the models including all ver-
sions of Faster R-CNN and RFCN. The EfficientDet model
is also trained with an aspect ratio resizer with 512 minimum
and maximum pixels, according to the GPU requirement.
Furthermore, SGD with a momentum optimizer is used to
train the models for this stage of the research. Different
batch sizes are tested, and the most reasonable is found to
be 4 to reduce the trade-off between accuracy and training
time. Four models required the lowest iteration steps of 170K
to achieve training convergence: Faster RCNN ResNet-50,
RFCN ResNet-101, EfficientDet, and RetinaNet. The lowest
training times are obtained for SSD MobileNet around 5.5 h.
However, the Faster RCNN Inception ResNet-v2 required the
highest time to complete the training. The following observa-
tions are made on the training and testing performance of the
DL models.

1) TRAINING PERFORMANCE
• Plots of the total training and validation losses for each
model are shown in Fig. 7. It can be observed that
the Faster R-CNN ResNet-101 and RFCN ResNet-101
models attained the lowest total training and validation
losses of approximately 0.05-0.08%, 0.06-0.09%, and
0.04-0.2%, 0.06-0.18% respectively. Both models took
around 10.5 hours to achieve convergence.

• However, the versions of SSDmodels with Inception-v2
and MobileNet-v2 have approximately 1.5% total loss.
This is comparatively higher than that of the other DL
models, apparently reflected in their detection results as
a low mAP as shown in Table 5.

• Later, the two best models are retrained with aug-
mented images due to their lowest training and valida-
tion losses (after training on non-augmented images),
including RFCN ResNet-101 and Faster RCNN
ResNet-101. Their loss plots are shown in Fig. 8. It can
be concluded from the plots that RFCN ResNet-101
has a slightly lower training and validation losses of
approximately 0.7% and 1.0%, respectively.
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TABLE 5. Summary of the plant disease detection results by the DL architectures in terms of average precision (in %) of each class divided into various
augmentation techniques.

• It can be noticed from Figs. 7-8 that the DL models did
not suffer from overfitting. Both training and validation
losses were settled down with a small fluctuation and
there was no such sudden increase in the validation loss
after achieving the convergence in both the absence and
presence of the augmented images.

2) TESTING PERFORMANCE
• The results obtained from the test dataset (without aug-
mentation) revealed that the RFCN ResNet-101 model
achieved the highest mAP of 74.47%, followed by
Faster RCNN ResNet-101 and Faster RCNN Inception
ResNet-v2, as shown in Table 5. This is because RFCN
achieved a highAP of 10 healthy/disease classes. A sam-
ple of each class is shown in Fig. 9 (a).

• The Faster RCNN trained with Inception ResNet-v2
and ResNet-101 attained a higher mAP than the rest of
the models, including Faster RCNN ResNet-50, Faster
RCNN Inception-v2, SSD models, RetinaNet and Effi-
cientDet. The Faster R-CNN ResNet-101 is found to be
the most useful model for the healthy class of avocado
(Av_healthy_l) and attained the highest AP among all
DL models. It is also noticed that some of the testing

images of apple glomerella leaf spot and pear fire blight
obtained false positive and false negative detections,
respectively, with Faster R-CNN ResNet-101, as shown
in Fig. 9 (b). Similarly, classes such as apple healthy
leaves and pear stony pits are well detected using Faster
Inception ResNet-v2, as shown in Fig. 9 (c-d).

• Although the RFCN model attained the highest mAP,
it misclassified some of the testing images of the classes,
such as the stony pit on the pear, as shown in Fig. 9 (d).

• The testing performance of the models, including Effi-
cientDet and RetinaNet, is unsatisfactory. This was due
to several classes remaining undetected and giving false
positive results, as presented in Fig. 9 (e).

• It can also be seen from Table 5 that the black spot
on the apple leaves failed to be detected and localized
by all DL models, an example from each DL model is
presented in Fig. 9 (f). Some of the classes attained 0%
average precision when trained by the models like Effi-
cientDet, SSD Inception-v2, SSD MobileNet-v2, and
SSD ResNet-50. Because these models failed to detect a
few of the classes, that was observed in two ways. First,
the testing images of those classes were undetected,
second, the false positive results were obtained due to the
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FIGURE 7. Total loss plot for deep learning models before augmentation: (a) Faster RCNN ResNet-101, (b) Faster RCNN ResNet-50, (c) Faster RCNN
Inception-v2, (d) Faster RCNN Inception ResNet-v2, (e) RFCN ResNet-101, (f) SSD MobileNet-v2, (g) SSD Inception-v2, (h) EfficientDet, (i) RetinaNet.

FIGURE 8. Total loss plot for deep learning models after the application of all augmentation techniques: (a) Faster RCNN
ResNet-101, (b) RFCN.

confusion with another plant disease/healthy classes.
In Fig. 9 (f), an example of the undetected/false negative
outcome for apple black spot is presented for Efficient-
Det and RetinaNet.

• Further analysis was required to validate the selection of
the best DL model for the next phase of research.

• In this regard, the top two DL models (RFCN ResNet-
101 and Faster RCNN ResNet-101) in terms of the
lowest training, validation losses and the highest mAP
are retrained using augmented images (considering all
13 augmentation categories).

• RFCN ResNet-101 has achieved a higher mAP than
Faster RCNN ResNet-101, as shown in Table 5.

• Some classes, including apple glomerrella leaf spot,
apple European canker, and apple healthy classes, with
the RFCN model, have achieved a higher AP compared

to the Faster RCNN ResNet-101. A few examples from
RFCN are shown in Fig. 10.

• Classes such as apple black rot, apple European canker,
and healthy leaves of apples have improved their AP
after training the RFCN through augmented images.
On the contrary, the AP of almost 13 classes is signif-
icantly reduced by training in the augmented images,
as shown in Table 5.

• The main finding of this step is that the RFCN model
has achieved the highest mAP with and without aug-
mented images. Another important observation is that
the augmented images helped improve the AP of only a
few classes.Moreover, the RFCN has shown its ability to
address problems such as the detection of plant diseases
in different organs and the identification of disease in
different fruits, as shown in Figs. 9-10. However, the
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FIGURE 9. Detection results by various DL models trained without
augmented images. (a) true positive and false negative (P_fr_blight) by
RFCN, (b) true positive (Av_healthy_l), false positive (A_gl_lf_spot), and
false negative results (P_fr_blight) with Faster RCNN ResNet-101, (c) true
positive outcome for A_healthy_l class with Faster RCNN Inception
ResNet-v2, Faster RCNN ResNet-101, and false negative for RFCN (first
from the right), (d) P_s_pit with Faster RCNN Inception ResNet-v2, Faster
ResNet-101, and RFCN (left to right), (e) false positive and false negative
results with EfficientDet and RetinaNet, (f) false positive for A_blk_spot
by RFCN, Faster RCNN ResNet-101, Faster RCNN Inception ResNet-v2,
Faster RCNN ResNet-50, and Faster RCNN Inception-v2, (first row – left to
right), and false positive, false negatives by SSD MobileNet-v2, SSD
Inception-v2, EfficientDet, and RetinaNet (second row – left to right).

low AP of several classes was attained in the pres-
ence of augmentation techniques. This motivated us to

individually evaluate the effects of the augmentation
techniques. This helped to understand the reason for per-
formance degradation after the application of 13 types of
augmentation methods for this step of the study.

FIGURE 10. True positive results of RFCN after training on augmented
images.

B. EFFECTS OF DATA AUGMENTATION TECHNIQUES
The effects of data augmentation methods are studied
by dividing them into five categories as described in
Section II-B (5). The two top DL models are trained on
all five groups of augmented images, including RFCN
ResNet-101 and Faster R-CNN ResNet-101. The important
results from this phase of the study are discussed in the
following.
• The RFCN model has achieved the highest mAP after
training with the OT data augmentation category, fol-
lowed by the results obtained through the OO images,
as shown in Table 5. However, comparatively lower
mAP values are observed for OC and OCN. Whereas,
RFCN has achieved the lowest mAP with the OTCN.

• To further perform an in-depth analysis of the data
augmentation techniques, a class-wise analysis is per-
formed. For example, OT is found to be the best method
due to its higher AP by the RFCN in eight classes of
healthy individuals and diseases. Therefore, the OT cat-
egory has attained superior results.

• The effectiveness of the OT category is also validated
using Faster RCNN ResNet-101, as shown in Table 5.
The mAP is higher in the OT group than in all other
categories. However, with the OTCN, the model has
achieved the lowest mAP value.

• There could be several reasons for performance degra-
dation when training with OC and OCN. The nature
of the real agricultural environment could contribute to
the confusion in discriminating between plant diseases.
Because the real field contains several background ele-
ments, a change in color or addition of noise to the orig-
inal images distracts/fails the model to extract and learn
the specific and distinct features of the disease symp-
toms. There may be similarities between the symptoms
of the disease and background elements [47] after adding
noise and changes in brightness, contrast, and sharpness.
This has resulted in a low AP for the individual classes
and a low mAP for the 20 classes.

• The above statement can be further understood by taking
examples of some classes that achieved comparatively
lower AP. For example, avocado branch canker is con-
fused with apple glomerella leaf spot, healthy avocado
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leaf with healthy pear leaves, and apple mosaic virus
with healthy apple healthy leaves. Similarly, the black
spot-on grapevine cane could not be detected and/or is
misclassified as an apple European canker. The stony
pit virus on the pear is also confused with fire blight.
Furthermore, in avocado leaves, several algal leaf spots
are not detected. Some examples of false-positives and
undetected outcomes are shown in Fig. 11.

• In contrast, the improved performance with OT has
shown the practical aspect of this work. Because the
location of disease spots in a real agricultural environ-
ment varies from one plant to another. Furthermore, if a
DL model such as RFCN can detect the disease in the
translated and rotated images, it shows the importance
of the OT-based data augmentation technique for the
identification of plant diseases.

• Fig. 11 showed the significance of the original with
translational changes (OT-based augmentation method)
by taking examples of five plant classes. These classes
consist of diseases in plant organs including leaves
(apple and avocado), fruit (pear), and cane (grapevine),
including avocado branch canker, avocado healthy
leaves, apple mosaic virus, grapevine black spot, and
pear stonypit. An improvement of 23.59, 20.53, 24.8,
and 17.12%, and 48.25%, respectively, was attained as
compared to the previous step.

C. EFFECTS OF IMAGE RESIZERS AND INTERPOLATORS
The next step is to study the effects of image resizers with
different interpolators on RFCN. In this regard, the RFCN
model is initially trained using an aspect ratio resizer and a
bilinear interpolator. Eight possible combinations of image
resizers and interpolation methods are used to obtain the
best results, as shown in Table 6. The performance of each
combination was not only evaluated by mAP, training, and
validation losses, but also by the training time as considered
in [48]. The main observations and discussions of this step of
the analysis are presented below.

• The aspect ratio is considered the default resizing tech-
nique with minimum and maximum dimensions of
600 and 1000 pixels, respectively [35]. This image
resizing technique is used in conjunction with bilinear
interpolation.

• As presented in Table 6, the aspect ratio resizer with the
other three interpolators, such as bicubic, area, and near-
est neighbor, has degraded the performance of RFCN in
terms of lower mAP.

• Later, a fixed-shape resizer with a default value of 300×
300 pixels is applied with bilinear interpolation. Subse-
quently, three other interpolators are tested. The RFCN
model trained with the bicubic interpolator with fixed
shape resizer required the lowest training time, training
loss (0.52%) and validation loss (0.85%) as shown in
Table 6. Both losses were lower than the loss acquired
with the default resizer/interpolator, as shown in Fig. 12.

FIGURE 11. Detection outcomes of RFCN model by three augmentation
categories. True positive, false positive, and false-negative results from
left to right in each example belong to OT, OC, and OCN respectively.

• There is no such sign of overfitting of the RFCN model
as the validation loss was also settled to the final
value and no such increase in the loss was observed.
It is validated with a higher mAP of 80.59%, which
is 3.83% better than that obtained using the default
settings. Furthermore, the AP of avocado algal leaf spot,
pear fire blight, and healthy pear leaves are significantly
improved to 88.55%, 98.16%, and 49.9%, respectively.

• The bilinear interpolator with a fixed-shape resizer has
also performed slightly better than the nearest neighbor
and area interpolation.

• Bicubic interpolation considers a 4 × 4 or 16-pixel
square and evaluates the resulting interpolated pixels,
compared to 2 × 2 pixels for bilinear interpolation.
Therefore, better-quality images are obtained for the
healthy and disease classes to be fed into the RFCN
model, producing a better mAP.

• In conclusion, both the training and testing perfor-
mances of the RFCN model are improved with an
enhancement in the AP of the three classes (after training
with a fixed-shape resizer along with a bicubic interpo-
lator). In the future, other relevant datasets can be tested
using the combinations of resizers and interpolators pre-
sented in this phase of the research.

D. EFFECTS OF WEIGHT INITIALIZERS, BATCH
NORMALIZATION, AND DL OPTIMIZERS
The next phase of the proposed approach is the optimization
of the RFCN model. The appropriate selection of weight
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TABLE 6. Effects of image resizing techniques and interpolators on the RFCN ResNet-101 model.

FIGURE 12. Total loss plots from two different image resizers/
interpolators: (a) aspect ratio resizer with bilinear interpolator,
(b) fixed shape resizer with bicubic interpolator.

initializers along with their parameters solves the problems
of vanishing and exploding gradient descent. Three weight
initialization methods are used: truncated normal (default
initializer), scaling variance, and random normal. After deter-
mining the most suitable initialization technique, the effects
of batch normalization are studied. Then, the best DL opti-
mizer is selected, and the hyperparameters are tuned using
a random search method [45]. These steps are performed
before proposing any modifications to the RFCN model. The
training and testing evaluations of this phase of the study are
summarized below.
• First, the RFCN model is trained using a truncated
normal initializer. Subsequently, it is trained using the
scaling variance and random normal initializers.

• The random normal initializer has achieved the lowest
training loss and the highest mAP with a standard devi-
ation of 0.01 and a mean value of zero. It has been
observed that the selection of an optimum value for
standard deviation and mean plays an important role in
the performance of the model.

• When searching for the appropriate values of standard
deviation and mean, the random normal initializer was
initially used with a default standard deviation of 1 and

a mean of zero. However, these values were unable to
achieve convergence. Therefore, the standard deviation
started to tune exponentially. It was empirically found
that 0.01 was the most suitable standard deviation and
the mean value of zero remained the same. This was
due to the lowest training and validation losses, which
resulted in a slight improvement of 0.916% in the mAP.
Furthermore, the extraction of distinct features was also
improved, as the AP of some of the classes was enhanced
with the described settings. These classes include apple
black rot, apple European canker, apple glomerella leaf
spot, apple mosaic virus, and healthy pear (leaves),
with an improvement of 8% to 28%. Similar standard
deviations and mean values were also suitable for the
truncated normal initializer.

• The best settings for scaling variance were single scaling
factors with a uniform distribution and considering the
average of the input and output units in the weight tensor
(Fan_avg). However, these parameters did not contribute
to improving the model performance and attained an
mAP of only 70.20%.

• The random normal initializer has produced the best
result for a particular application of the detection of
plant disease by the RFCN model. Therefore, it can be
concluded from its basic functionality that the initialized
weights through the generation of tensors with normal
distribution performed well for the selected problem.
Moreover, theoretically, the random normal is supposed
to work with weights initialized very close to zero. So,
each neuron of the network does not perform the same
calculation.

• It was experimentally found that a small standard devi-
ation value was not suitable. For example, at a standard
deviation of 0.001, the performance declined in terms of
mAP to 78.33%, compared to mAP at 81.50%, obtained
with a 0.01 standard deviation.

• The next step was the use of batch normalization. The
RFCN is trained with the default values of epsilon and
decay of 0.001 and 0.99, respectively. It is also noted that
the training convergence is achieved earlier to around
160K steps from around 170K iterations. Therefore,
it can be concluded that batch normalization reduced
the overall training time and showed a fast convergence
ability [49].

• The decay and epsilon were started to tune, and it was
experimentally found that the lower value of decay and
the higher value of epsilon improved the performance

89812 VOLUME 10, 2022



M. H. Saleem et al.: Performance-Optimized DL-Based Plant Disease Detection Approach for Horticultural Crops of NZ

of RFCN. Therefore, the decay was set to 0.5 and the
epsilon was 0.01. The training performance was slightly
improved to around 0.515%.

• The testing performance of the RFCN model was also
significantly improved. The model attained an mAP of
85.94% with an improvement of 4.345% compared to
the one obtained in the previous step.

• The individual AP of several classes were improved such
as apple black spot, apple healthy (leaves), apple mosaic
virus, grapevine black spot, pear fire blight, and pear
stony pit at 61.66%, 100%, 96.43%, 98.53%, 98.45%,
and 96.66%.

• The last step before proposing any modification to the
RFCN model is the utilization of different DL optimiz-
ers. SGD (with momentum) is used to train the model as
the default DL optimizer. Subsequently, its performance
is compared with that of Adam and RMSProp.

• After training the RFCN model using all three DL opti-
mizers, it is found that SGD with momentum is the best
DL optimization algorithm. Adam optimizer is unable
to achieve a high mAP. Therefore, it did not effectively
optimize the weights of the RFCN model. However,
RMSProp has also achieved a lower mAP of 82.819%.

• Individual APs of several classes, including apple black
rot, apple black spot, and pear canker are degraded by
RMSProp.

• The best performance of the SGD optimizer demon-
strates its generalizability in extracting the features
of the healthy and disease classes and optimizing the
weights of the RFCN. Therefore, it can be summarized
that, for the NZDLPlantDisease-v1 dataset of healthy
and diseased plant organs, the non-adaptive optimizer
- SGD with momentum was quite successful compared
to the adaptive optimization techniques RMSProp and
Adam.

• To address one of the research gaps presented in the
previous section, the RFCNmodel trainedwith a random
normal initializer, using batch normalization and SGD
with momentum optimizer is also successful in identi-
fying multiple disease problems and detection of plant
disease in different weather conditions (sunny, cloudy),
as shown in Fig. 13 and Fig. 14, respectively.

Another important observation is that the pear scab class still
attained a low AP of 5.06%. Although all steps until the
application of various DL optimizers significantly improved
the performance of RFCN in terms of a lower training and
validation losses compared to the default configurations of
the model. Still, the pear scab remained almost undetected
or falsely identified. This result has provided a strong basis
for the next steps of the research to focus on the architectural
evaluation/modifications of the RFCN model.

E. PERFORMANCE ENHANCEMENT OF PEAR SCAB
There are two major goals for this step of the research. First,
an improvement in the AP of pear scab, which is undetected
after the application of several techniques explained earlier.

FIGURE 13. Examples of multiclass plant disease detection after the
application of random normal initializer and batch normalization for the
RFCN model.

FIGURE 14. Examples of apple plant disease/healthy leaves in different
environmental conditions.

Second, the high AP of the other 19 healthy/disease classes
should be maintained. In this regard, the RFCN model has
been investigated in two stages: position-sensitive score maps
and enhanced/modified anchor box scale and aspect ratio.

One of the primary novelties of the RFCN model is the
generation of position-sensitive score maps. The spatial bin
configuration was set to 3 × 3 by default. It was empir-
ically observed that the spots of pear scab were so small
that the model could not extract its features and therefore
could not be detected. This might be because none of the
sub-regions of positive-sensitive score maps could match
the pear scab for most of the testing images. Therefore,
the position-sensitive region of interest (RoI) pool cannot
vote for pear scab disease. In this regard, the first attempt
is to increase the score maps using multiples of 3. The
width and height of the 9 × 9 spatial grid have yielded
satisfactory results and attained an mAP of 84.68%. Oth-
erwise, with other spatial bins, such as 6 × 6, 12 × 12,
and 15 × 15, a lower mAP of 82.819%, 82.041% and
82.59%, respectively are observed with the AP of the pear
scab of 5.03%, 5.05%, and 5.28%. However, there is a slight
difference in the total training and validation losses with
9 × 9 grids and the model has detected pear scab with an AP
of 20.1%. Still, the DL model could detect the pear scab with
a high AP. Furthermore, the RFCN trained with 9× 9 spatial
bins has disrupted the detection of apple black spots and
achieved a lower AP of 49.69%. An example of the detection
of apple black spot is presented in Fig. 15.

Another attempt has been made to solve this problem. The
training images of the pear scab are magnified, and the RFCN
model has been trained again. This is one of the ways to
overlap the pear scab with 3 × 3 score maps. RFCN has
successfully detected and localized both the apple black spot
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FIGURE 15. Detection outcomes for apple black spot using different
positive sensitive score maps. (a) true positive results of apple black spot
with 3 × 3 spatial bins, (b) false-negative detection with 9 × 9 spatial bins.

and the pear scab simultaneously. This indicates that the
specific features of both disease classes are well extracted.
The mAP is 87.394%, with the individual AP of the apple
black spot and the pear scab at 59.85% and 94.43%, respec-
tively. Few samples of the pear scab results are shown in
Fig. 16. Moreover, a high AP of the rest of the classes is also
maintained.

FIGURE 16. (a) Examples of false-negative results before zooming in the
pear scab with 3 × 3 spatial bins (b) Examples of true positive results
after zooming in the pear scab with 3 × 3 spatial bins

F. ENHANCEMENT OF ANCHOR BOXES
After a significant improvement in the average precision of
the pear scab has been achieved in the previous step, the
anchor boxes of the RFCN are enhanced. In this regard, the
scale size and aspect ratios are modified to obtain an optimum
anchor box that can provide an AP of more than 80% for each
class. The summary of the results is as follows.
• Although the previous step has considerably improved
the AP of the pear scab, a few classes also required
attention towards further performance enhancement. For
example, classes such as apple black rot, apple black
spot, apple European canker, and pear healthy (leaves)
have achieved an AP of less than 80%. During the
annotation of the training images, it was empirically
observed that the bounding-box coordinates of several
classes varied. Therefore, different scales are tested to
generate the anchor boxes.

• Hence, the addition of scales such as 64 × 64, 32 × 32,
and 16 × 16 with the default scale sizes such as
128 x 128, 256 x 256, and 512 x 512, has significantly
improved the mAP.

• On the other hand, an addition of a very small scale
size such as 8 × 8 reduced the mAP. Similarly, a very
large scale size of 1024 × 1024 could not contribute to
attaining better mAP.

• Next, reciprocal aspect ratios are applied and the default
aspect ratios of 1:2 and 2:1 are replaced. It is found
that 1:4 and 4:1 have achieved an almost similar result
with mAP of 87.33% with scale sizes of 16 × 16, 32 ×
32, 64 × 64, 128 × 128, 256 × 256, and 512 × 512.
Otherwise, none of the other combinations of reciprocal
aspect ratios has shown noticeable results.

• Subsequently, the effects of the step-by-step/gradual
enhancement of the aspect ratio are studied. In this
regard, a small aspect ratio was started to add from
1:4 to default ratios of 1:2, 1:1, and 2:1, and enhanced
scale sizes. After several experiments, it is found that
the addition of the aspect ratio like 1:2, 1:1, 2:1, 3:1, and
4:1, has improved the training and testing performance
of the model. The total training and validation loss
from 0.4-0.515% and 0.4-0.8% have been reduced to
almost 0.3-0.37% and 0.4-0.71%, respectively Further-
more, the individual loss of box classifier localization
loss was reduced to almost 0.2% from 0.3%, as shown
in Fig. 17. There is no sign of overfitting as the losses
were converged, no abrupt rise in the validation loss was
observed after the final iteration step, and there was a
small difference between both training and validation
losses.

• The feature extraction of the healthy and disease plant
classes has been presented by t-distributed stochastic
neighbor embedding (t-SNE) plots in Fig. 18. It can be
seen for each of the healthy/defective classes trained
by the final RFCN model that there is a high inter-
class distance separability, a small intraclass distance
and grouped clusters have been created which were
concentrated in their respective features. Furthermore,
the effectiveness of the proposed modifications has been
presented by comparing the t-SNE plot for the previous
step and the default settings of the RFCN and Faster
RCNN model after the application of the OT data aug-
mentation method.

• It can be observed in Fig. 18 (b) that after the application
of several techniques (presented in section III C-E),
some of the features of the classes such as apple
black rot, apple black spot, apple European canker,
and pear healthy leaves were not well extracted and
confused with the features of other apple and pear
classes. Similarly, the t-SNE plots by the RFCN model
after the OT data augmentation technique (Fig. 18 (c))
attained comparatively small interclass distances. There
were several features of the apple black spot, pear fire
blight, and pear healthy leaves, were not extracted and
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FIGURE 17. Training and validation losses for different anchor box configurations (a) box classifier classification loss with default scales and
aspect ratio, (b) box classifier classification loss with modified anchor boxes, (c) box classifier localization loss with default scales and aspect
ratio, (d) box classifier localization loss with modified anchor boxes, (e) RPN objectness loss with default scales and aspect ratio, (f) RPN
objectness loss with modified anchor boxes, (g) RPN localization loss with default scales and aspect ratio, (h) RPN localization loss with
modified anchor boxes, (i) total loss with default scales and aspect ratio, (j) total loss with modified anchor boxes.
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FIGURE 18. t-SNE plots of the proposed and existing methods. (a) final proposed RFCN model, (b) optimized model after the
application of several weights optimization techniques and analyzing position-sensitive score maps, (c) RFCN model with default
settings (after the application of translational augmentation techniques), (d) Faster RCNN ResNet-101 model with default settings
(after the application of translational augmentation techniques).

confused with apple European canker, apple healthy
leaves, pear fire blight, pear healthy leaves, and pear
scab. Likewise, the Faster RCNN ResNet-101 model
(Fig. 18 (d)) provided a degraded clustering performance
as compared to the final RFCN model. The distinct fea-
tures of apple black spot, apple European canker, apple
mosaic virus, grapevine black spot, pear fire blight,
pear healthy leaves, and pear scab were not made a

proper cluster and confused with the features of other
healthy/disease classes. This shows that the proposed
modifications in the anchor boxes generate a significant
difference in the feature extraction of the healthy and
diseased plant classes.

• Moreover, the mAP is improved with a margin of
6.406% (Fig. 19). Also, a significant improvement in
individual AP of classes such as apple black rot, apple

89816 VOLUME 10, 2022



M. H. Saleem et al.: Performance-Optimized DL-Based Plant Disease Detection Approach for Horticultural Crops of NZ

FIGURE 19. A summary of mAP with various specifications of anchor boxes.

FIGURE 20. Average precision of each class by four prominent anchor box specifications.

black spot, apple European canker, pear healthy (leaves),
and pear stony pit, as shown in Fig. 19.

• Other combinations of gradual addition of aspect ratios
are examined, as shown in Fig. 19. One of the prominent
combinations of 1:2, 1:1, 2:1, and 4:1 has attained a high
mAP of 91.65

• In conclusion, the addition of various small scales like
16 × 16, 32 × 32, 64 × 64, and aspect ratios of
3:1 and 4:1 to the default anchor box have signifi-
cantly improved the performance of the RFCN model
with an mAP of 93.8. Furthermore, the AP of several
classes is improved, and no class has achieved an AP
of less than 80. Moreover, 12 classes have achieved

a high AP of > 95, as shown in Fig. 20. The class-wise
performance of the four prominent combinations of
enhanced anchor boxes is presented in Fig. 20. A few
examples of the false-negative results by the default
anchor boxes, solved by the enhanced anchor boxes are
presented in Fig. 21. A pictorial representation of the
proposed modification of the anchor boxes is presented
in Fig. 22.

G. OVERALL REMARKS ON THE PREVIOUS STEPS
A summary of the results presented from Section III-A to
Section III-F is provided as under:
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FIGURE 21. False-negative by default anchor box and true positive by
final enhanced anchor box of classes including apple black rot, apple
black spot, apple European canker, and pear healthy.

• The proposed deep learning (DL)-based method
gradually enhanced the accuracy of plant disease detec-
tion from the step of comparison between deep learn-
ing architectures (Section III-A) to the enhancement
of anchor boxes (Section III-F). The average precision
of each class along with the mean average precision of
the deep learning models are evaluated for each stage
of the research. Each step has significance in terms of
better training and testing results. The main reason for
getting better results was that each step performed an
in-depth analysis and identified a strong motivation for
the subsequent steps to further improve mAP.

• For example, a comprehensive analysis of several
DL models was performed to select the best-suited
model. This selection was done and validated by using
augmentation techniques. But the mAP obtained by
all augmentation methods was significantly reduced.
To cope with this problem, a category-wise compar-
ison of the augmentation technique was performed,
which gave us the best-suited technique for the selected
application.

• Similarly, after the application of various techniques
such as image resizers, interpolators, weight initializers,
batch normalization, and deep learning optimizers, pear
scab achieved unsatisfactory results. To attain a high AP
of pear scab, the major novelty of the original RFCN
model was analyzed, and the enhancement of the anchor
boxes was attempted. In this way, the strong analyses
of each step gave us the solid grounds for applying
the following/next steps. A summary of the all steps
including the best-selected method/model along with
mAP is presented in Table 7.

• From Table 7, it can be concluded that all succeeding
steps achieved a higher mAP, compared to its previous
step. Furthermore, the most effective step in terms of
improvement in the mAP was found to be the enhance-
ment of the anchor boxes with an improvement of
6.406 compared to its earlier step.

• The effectiveness of the proposed approach has also
been presented by the confusion matrix. For exam-
ple, classes such as the apple black spot and pear

FIGURE 22. Anchor boxes for the RFCN model (a) present default anchor
scales and aspect ratio, (b) present modified anchor boxes, (c) presents a
zoomed version of 16 × 16 (red-colored boxes), 32 × 32 (blue colored
boxes), and 64 × 64 (black colored boxes) scales sizes in the proposed
version.

stony pit were confused with the healthy apple (leaves)
and the fire blight, respectively, during the initial step
of the methodology (Fig. 23 (a)). This can be ver-
ified by their detection results, already presented in
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TABLE 7. Main findings of each step of the proposed methodology.

FIGURE 23. Confusion matrix for RFCN model (a) from the first step: training by original images with default settings, (b) from the last step: after the
enhanced anchor boxes.

Figs. 9 (d) and (f). Consequently, a low recall of these
classes was attained at 40.62 and 36.84, respectively.
However, none of the classes suffered from a high num-
ber of wrong/missed classifications after the enhanced
anchor boxes (Fig. 23 (b)), which led to significantly
high mAP.

H. VALIDATION OF THE FINAL RESULTS
This study has also validated the results and the claims
described in this article, in two ways. The first technique
adopted is the stratified five-fold cross-validation, through

which the dataset images of each class are folded five times
so that the testing images in each fold are different from
one-fold to another. This technique has been applied because
of the class imbalance problem in the generated dataset and
it avoids biased distribution in the dataset for each fold.
The mAP obtained through all folds varied from 0.65% to
1.13% in the optimized configuration of the RFCN model,
as compared to the final mAP. The first fold is considered
as a default in which the modified/optimized RFCN model
obtained 93.80%, while fold2, fold3, fold4, and fold5 attained
mAP of 93.15%, 94.93%, 94.62%, and 93.09%, respectively.
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To further evaluate the final mAP by the proposed method,
the variance was calculated by the formula (31) and evaluated
as 0.70157.

Variance =
∑n

i=1 (xi−̄x)
2

n− 1
(31)

where n is the number of folds, xi is the fold number (fold1,
fold2, etc.), and x̄ is the mean.

The next way to validate the claimed results is to test
the optimized model on an external curated dataset. The
original and translational/rotational change - OT augmen-
tation method is also applied to that testing dataset. The
mAP is 87.95%, which is only 5.85% lower than the final
mAP obtained from the testing sub-dataset of the proposed
dataset. Eleven classes, including avocado algal leaf spots,
avocado branch cankers, avocado healthy, apple black rot,
apple glomerella leaf spot, apple healthy (fruit), grapevine
healthy, kiwifruit healthy, pear healthy (fruit), pear fire blight,
and pear scab, are detected with a high AP of more than 90%.
However, a few classes, such as pear canker, grapevine black
spot, and pear stony pit, attained an AP of less than 80%.
Therefore, the difference in mAP is obtained from that
obtained by the testing images of the NZDLPlantDisease-v1
dataset. Examples of a few classes that achieved high and low
AP from the external dataset are presented in Fig. 24.

FIGURE 24. Results from an external dataset (a) True positive results of
apple black rot, pear fire blight, and pear scab; (b) false positives of
grapevine black spot and pear canker.

I. LIMITATIONS OF THE STUDY
Although the presented methodology has successfully
detected the plant disease using the proposed dataset. Still,
there are a few limitations of this study that can be taken
into account in future research. The presence of disease in
multiple organs of apple and pear has been considered for
this research.Whereas, for grapevine, avocado, and kiwifruit,
disease in only one plant organ has been considered. More-
over, only one disease class is presented for both grapevine
and kiwifruit. Therefore, the proposed dataset should be
further extended to get more insight into deep learning-
based plant disease detection. Moreover, the validation of the

modified/optimized model on an external generated dataset
revealed that few of the classes did not achieve a high AP.
One of the reasons could be the absence of diversity in the
samples of those classes in the presented dataset. Further-
more, the dataset images from both sides of the plant organs
should be considered. For example, the symptoms of the
disease on the front and backside of the plant leaf could be
included. This would generate more variety in the symptoms
of plant disease. Also, all dataset images were collected from
New Zealand horticultural fields. However, the dataset can
be extended by capturing images of similar diseases in the
same crops from horticultural fields in different countries.
Moreover, the annotation was a bit tiring process due to the
addition of the augmented images. Furthermore, as this article
has addressed various practical problems, the most difficult
among them was the detection of multiple diseases in a plant
organ at a time. This task required evenmore time to correctly
annotate the task. Therefore, it can be said that there is still a
human intervention to use deep learning to perform complex
task like plant disease detection.

IV. CONCLUSION AND FUTURE DIRECTIONS
This study addresses various research gaps in the identifica-
tion of plant diseases based on deep learning. In this regard,
a new dataset called NZDLPlantDisease-v1 is generated, and
a DL-based approach is presented to detect and localize the
disease in five of the most important New Zealand horti-
cultural crops in terms of export value. After training and
testing various DL architectures, the region-based fully con-
volutional network (RFCN) has achieved the highest mean
average precision with and without the application of aug-
mentation techniques. The proposed methodology consists of
a comprehensive evaluation of various techniques impacted
on the deep learning model that has not yet been explored
for plant disease identification tasks. Furthermore, a modi-
fied/optimized version of the RFCN model is proposed by
performing an in-depth analysis of position-sensitive score
maps and anchor-box scales with aspect ratios. An improved
mAP of 93.80% is achieved, which was 19.33% better than
the default setting. The optimized RFCN includes training the
model with a fixed-shape resizer with a bicubic interpolator,
a random normal initializer, use of batch normalization, and
SGD with a momentum optimizer. It is also observed that
the translational/rotational augmentation method is the most
suitable for obtaining satisfactory results. Furthermore, the
addition of a 16 × 16, 32 × 32, 64 × 64 scales with an
aspect ratio of 3:1 and 4:1 significantly improved the perfor-
mance of the RFCN. The optimized/modified RFCN model
has successfully answered research questions, including the
detection of diseases in several plant organs, the presence of
multiple diseases in one organ at a time, and the identification
of diseases in different crops using the same trained DL
model. Finally, the statements and results are validated by two
different methods: stratified five-fold cross-validation and
testing on an external dataset. These validation approaches
demonstrate the significance and novelty of this study.
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Furthermore, one of the advantages of this study is that differ-
ent crops (selected for this research) have certain variations
in their environments/backgrounds. Therefore, high average
precision in each class shows an extended potential of deep
learning technology for the detection of plant diseases, con-
sidering various challenges of the horticultural environment.

The idea/methodology proposed in this study can be uti-
lized in several ways in future studies. A deep learning-
basedmethod can be embedded in automated/robotic systems
to apply disease control techniques. For example, a fungi-
cide spray can be applied to the defective parts of plants
using a robotic manipulator. Furthermore, the diseases are
treated differently based on the pathogen affecting the plants.
Therefore, the research question related to the detection of
multiple classes of plant diseases (suffering from different
diseases at a time) [50] could be useful for implementing a
cost-effective protection system. For instance, black spots on
apples are normally treated with a fungicide spray, whereas
no such treatment is available for apple viruses [51]. Hence,
this research will be helpful for growers to take appropriate
treatment measures after detecting multiple plant diseases in
an organ.

In addition, various tasks can be performed to further
enhance research on DL-based plant diseases. For instance,
advanced data augmentation techniques, including super-
resolution convolutional neural networks (SRCNNs) and
super-resolution generative adversarial networks (SRGANs),
can be explored. Moreover, segmentation-based DL mod-
els can be leveraged and modified by using the generated
dataset. Furthermore, the performance metrics presented in
[52] can also be explored to perform a more in-depth analysis
of the multi-label plant disease detection problem. Some
other research ideas can be explored to further strengthen
the research on DL-based solutions for agricultural prob-
lems. For example, the sensitivity analysis (like the one
performed for a teleoperation system to examine the effects
of important parameters on the system performance [53])
can be performed for the DL models to implement various
agricultural operations. Moreover, the layer-wise output of
the well-known DL models could be visualized to modify
the hidden layer. The comparison of CNNs with CapsuleNet
models can also be emphasized, as this class of machine
learning is being explored for various object detection
problems [54].

AVAILABILITY OF DATA
The dataset generated and analyzed during the cur-
rent study is available in the GitHub repository https://
github.com/kmarif/NZDLPlantDisease-v1.
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