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Abstract

Monitoring is essential to ensure that environmental goals are being achieved, including

those of sustainable agriculture. Growing interest in environmental monitoring provides an

opportunity to improve monitoring practices. Approaches that directly monitor land cover

change and biodiversity annually by coupling the wall-to-wall coverage from remote sensing

and the site-specific community composition from environmental DNA (eDNA) can provide

timely, relevant results for parties interested in the success of sustainable agricultural prac-

tices. To ensure that the measured impacts are due to the environmental projects and not

exogenous factors, sites where projects have been implemented should be benchmarked

against counterfactuals (no project) and control (natural habitat) sites. Results can then be

used to calculate diverse sets of indicators customized to monitor different projects. Here,

we report on our experience developing and applying one such approach to assess the

impact of shaded cocoa projects implemented by the Instituto de Manejo e Certificação Flor-

estal e Agrı́cola (IMAFLORA) near São Félix do Xingu, in Pará, Brazil. We used the Continu-

ous Degradation Detection (CODED) and LandTrendr algorithms to create a remote

sensing-based assessment of forest disturbance and regeneration, estimate carbon

sequestration, and changes in essential habitats. We coupled these remote sensing meth-

ods with eDNA analyses using arthropod-targeted primers by collecting soil samples from

intervention and counterfactual pasture field sites and a control secondary forest. We used

a custom set of indicators from the pilot application of a coupled monitoring framework called
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TerraBio. Our results suggest that, due to IMAFLORA’s shaded cocoa projects, over 400

acres were restored in the intervention area and the community composition of arthropods

in shaded cocoa is closer to second-growth forests than that of pastures. In reviewing the

coupled approach, we found multiple aspects worked well, and we conclude by presenting

multiple lessons learned.

Introduction

Sustainable agriculture projects, which both generate income and contribute to environmental

conservation, are important to address biodiversity loss, climate change, and to improve living

conditions [1–3]. In Brazil, sustainable agriculture approaches have been developed in

response to the simultaneous pressures of combatting ongoing habitat and biodiversity loss

caused by agricultural expansion and food security issues [4–10]. Such practices include agro-

forestry, sustainability certifications, and the promotion of non-timber forest products.

Environmental monitoring is essential to ensure that the promised impacts of sustainable

agriculture are being achieved [11] and a growing interest in environmental monitoring pro-

vides an opportunity to improve monitoring practices [1,12–16]. To improve transparency

and enhance credibility, organizations need accurate, timely, and easily digestible information

collected using robust methods informed by the best available science. Because the environ-

mental impacts of projects or interventions can take many years to become evident, any moni-

toring system must be replicable and comparable across time. Monitoring systems should

examine multiple scales to account for both individual farm and landscape-scale habitat loss or

fragmentation, habitat diversity, and connectivity [7,17,18]. Similarly, to ensure that the mea-

sured impacts are due to the project and not exogenous factors, sites where projects have been

implemented should be benchmarked against counterfactuals (no projects) and control (natu-

ral habitat) sites. Indicators, or predefined metrics for assessing ecosystem services, ecosystem

health and biodiversity, can be used to assess relative performance rapidly and can be designed

with communication to both experts and non-experts in mind.

Using remote sensing and environmental DNA (eDNA) approaches, systematic, broad-

scale, multi-year monitoring efforts are financially and operationally feasible. Traditional

approaches to monitoring forests and biodiversity, such as forest surveys and biodiversity tran-

sects, are expensive and require significant methodological and taxonomic expertise, particu-

larly in megadiverse regions [19]. In contrast, products derived from remote sensing facilitate

a substantial reduction in monitoring costs and simultaneously increase the timeliness of

information needed to inform management [20–22]. Remote sensing uses satellite and aircraft

imagery and statistical approaches to detect and monitor the Earth. Existing remote sensing

approaches for monitoring biodiversity allow for the evaluation of ecosystem structure and

ecosystem function but are not yet extensively used in biodiversity assessment, monitoring, or

conservation [23].

Similarly, eDNA monitoring has speed and cost advantages over traditional methods; thus,

it is rapidly becoming a preferred method to monitor biodiversity, including in agricultural

systems [24–27]. eDNA refers to genetic material obtained directly from environmental sam-

ples, such as water, soil, or air, without capturing or observing the organisms themselves [28]

and coupled with the metabarcoding approach allows for the simultaneous identification of

multiple species from a single sample [29]. eDNA sampling approaches can monitor entire
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taxonomic groups at multiple spatial scales depending on whether eDNA is collected from

leaves, soil, animal waste, water, or air [30–35].

Coupling the two technologies allows for both wall-to-wall coverage from remote sensing

and the site-specific community composition from eDNA (Fig 1). Together, these methods

can be used to calculate diverse sets of indicators for monitoring sustainable agriculture proj-

ects and other sustainable interventions. These indicators can include but are not limited to

measures of ecosystem function such as landscape scale and site scale habitat loss and conser-

vation, ecosystem structure, carbon sequestration through revegetation, species richness, com-

munity composition, and relative changes in community composition over time. The

approaches are cost effective, and the results provide a complete picture of activities occurring

across the full project site.

Here, we report on the pilot application of this approach to assess the effect of one of the

sustainable agriculture initiatives of Florestas de Valor, created by the Instituto de Manejo e

Certificação Florestal e Agrı́cola (IMAFLORA). Florestas de Valor consists of multiple initia-

tives including agroforestry and collection of non-timber forest products [36]. We applied the

coupled monitoring approach to shaded cocoa projects implemented by IMAFLORA near São

Félix do Xingu, in Pará, Brazil. Shaded cocoa in Brazil is currently being supported as an alter-

native to unshaded cocoa and low-yield pasturelands used for cattle ranching [37,38]. Key

research questions included: 1) have the shaded cocoa projects contributed to conservation in

the Brazilian Amazon? and 2) what impacts does shaded cocoa have on community structure

and forest landscape patterns? We tested the relative effects of these management activities on

biodiversity conservation and compared the results with counterfactual “business as usual”

pastures and control second-growth forests to control for outside factors.

This implementation of coupling remote sensing and eDNA for biodiversity monitoring

provided an opportunity to test multiple approaches and improve the methodology. Key areas

of testing included our remote sensing mapping approach, including algorithm selection, sam-

pling design and our data collection approach, and indicator choices. These tests contributed

to lessons learned that will greatly improve coupled biodiversity monitoring methods moving

forward.

Fig 1. An overview of the proposed coupled approach to environmental monitoring. In the remote sensing

component, we identify and pre-process key satellite imagery. Next, we input data into change algorithms or other

models. Then, we assess the accuracy of the produced maps. In the eDNA component, we design the sampling

approach by identifying locations to sample. Next, we visit sites to collect eDNA data. Then, the soil samples go

through the eDNA extraction and biodiversity analysis processes. Finally, we calculate indicators from the map outputs

and biodiversity results.

https://doi.org/10.1371/journal.pone.0289437.g001
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Materials and methods

Study area

The study area is in the Xingu River basin, near the city of São Félix do Xingu, in the state of

Pará, Brazil (06˚38030@South and 51˚58032@West). The region is warm moist equatorial, with

dry months from May to October. The average annual rainfall is 2,041 mm. The average

annual temperature is 25˚C, with minimum and maximum temperatures of 20˚C and 30˚C,

respectively [39]. Native tree species in the region include Attalea speciosa (Mart.) and Cedrela
odorata L., for example [40]. Primary forest cover was almost entirely removed from the area

in the 1960s for agriculture and was slowly replaced by secondary vegetation, including forest.

Subsequently, farmers cleared secondary forests for cattle grazing [41,42]. As a result of this

history, we refer to “secondary forest” as forest throughout.

More recently, shade-grown cacao (Theobroma cacao L.) has been promoted in the region as

a sustainable alternative [42–44]. Shaded cocoa is thought to reduce agricultural inputs, disease

susceptibility, and drought susceptibility as well as increase food security and environmental

benefits [43,44]. There are two phases to cultivating shade trees in cocoa agroforestry systems.

First, specific shade trees, including banana and papaya, are cultivated while native regeneration

occurs, and second, these cultivated trees are thinned, and native shade trees become dominant

[44; Fig 2]. During the first phase, annual crops like cassava and maize are also grown, with cas-

sava chosen to increase the nitrogen content in the soil [44]. Native shade trees include Apuleia
leiocarpa (Vogel) J.F. Macbr., Bagassa guianensis Aubl., Pouteria macrophylla (Lam.) Eyma, Ery-
thrina verna Vell., Pouteria pariry (Ducke) Baehni, Chrysophyllum cuneifolium (Rudge) A. DC.,

Perebea guianensis Aubl., Spondias mombin L., Colubrina glandulosa Perkins, Cenostigma tocan-
tinum Ducke, Annona mucosa Jacq., Handroanthus serratifolius (Vahl) S.Grose, Inga edulis
Mart. and Samanea tubulosa (Benth.) Barneby and J. W. Grimes [44].

IMAFLORA is a nonprofit partner in the SERVIR Amazonia consortium based in Brazil.

IMAFLORA maintains a database of 150 farms participating in multiple agricultural practices

and has worked with a subset of these farmers to implement shaded cocoa practices over the

past 20 years [45, Fig 3]. Most of these were implemented and actively growing between 2010

to 2015. Within this context, our study boundary encapsulated the farms partnering with

IMAFLORA.

Fig 2. Shade grown cocoa agroforestry in the Xingu River basin begins with cultivating shade trees in cocoa agroforestry

systems, alongside annual crops and young native trees (left). Over time, the cultivated shade trees are thinned and the native

shade trees become dominant (right). Created using components from the University of Maryland Center for Environmental

Science Integration and Application Network media library; components copyright Tracey Saxby, Jane Thomas, and Dieter

Tracey; under Attribution-ShareAlike 4.0 International.

https://doi.org/10.1371/journal.pone.0289437.g002

PLOS ONE Coupling remote sensing and eDNA to monitor environmental impact

PLOS ONE | https://doi.org/10.1371/journal.pone.0289437 February 14, 2024 4 / 33

https://doi.org/10.1371/journal.pone.0289437.g002
https://doi.org/10.1371/journal.pone.0289437


Remote sensing methods

Disturbance mapping. Forest disturbances were mapped using a combination of two

pixel-based time series mapping methods: the Continuous Degradation Detection (CODED)

algorithm [46,47], and the Landsat-based detection of Trends in Disturbance and Recovery

(LandTrendr) algorithm [48,49]. Both algorithms utilize Landsat collections in a time series

approach (30 m spatial resolution). For this application, disturbance events were classified as

deforestation and forest degradation. Deforestation was defined as a permanent conversion of

forested land to non-forested land. Degradation was defined as a process that does not lead to

a change in land cover but shows a reduction in tree cover canopy [50,51]. The changes were

mapped for the 5-year period 2010–2015, when most of the interventions occurred. The results

of the two algorithms were combined and evaluated for accuracy.

CODED is a freely available tool on Google Earth Engine (GEE), an online planetary-scale

computing platform for remote sensing and satellite imagery analysis [52]. CODED uses all

the Landsat imagery available from Landsat collections 5, 7, and 8 to perform a subpixel spec-

tral mixture analysis (SMA), analyzing time series changes in the Normalized Degradation

Fraction Index (NDFI; 30 m resolution; [46,50]). The spectral index of choice was the NDFI to

be in accordance with CODED and since previous studies have shown that NDFI is more sen-

sitive to disturbances in tropical forests compared to the commonly used Normalized

Fig 3. Study area in the state of Pará, Brazil. Yellow dots represent the farms that have partnered with IMAFLORA.

https://doi.org/10.1371/journal.pone.0289437.g003
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Difference Vegetation Index (NDVI), which tends to show higher variability [46–47,53]. We

used 3,000 training points labeled as forest or non-forest and tested chi-squared values of both

0.9 and 0.99, which controls the width of the change-detection moving time window [51]. We

defined the required number of sequential out-of-range NDFI values to flag an event as four

times. In post-processing, we required the magnitude of these flagged disturbances to be above

0.4 to be considered severe enough to include in the final map. In this manner CODED can

detect low-severity disturbances, which is often characteristic of the more difficult-to-detect

forest degradation events, as opposed to forest loss. The final CODED output is a map with 30

m pixels labeled as non-forest, stable forest, deforestation, or degradation.

Next, we used the LandTrendr algorithm, also freely available and hosted on GEE [54].

LandTrendr is a mapping algorithm used to detect land cover changes through time series

analysis of Landsat imagery. This tool aims to filter out inter-annual noise in spectral signals

and generate trajectory-based time series estimates and accomplishes this through simplifying

multi-year spectral trajectories into several straight-line segments that capture the progressing

changes of the signal [48].

The LandTrendr implementation in GEE is connected to an image collection of all Landsat

5, 7, and 8 images. Users select an approach to convert the full time series into an annual value

(one image per year) for analysis; we selected medoid composites. The medoid image

compositing approach compares each pixel’s spectral band values to the median spectral values

of those bands across all images within the date-constrained collection for a given year. The

pixel with spectral values closest to the median value, determined by Euclidean spectral dis-

tance, is then selected [54]. In this application of LandTrendr, the algorithm was parameter-

ized to estimate the “greatest” disturbance, and specific parameters were selected in

accordance with previous studies in the Amazon [55,56]. We added a sub-classification ruleset

to the disturbance events from LandTrendr using MapBiomas land cover maps from 2015

[57]. LandTrendr disturbances were classified as degradation if the land cover had returned to

forest by 2015 (according to MapBiomas layers); disturbances were classified as forest loss if

the land cover in 2015 was non-forest.

Lastly, the final disturbance map was generated by overlapping the CODED and Land-

Trendr maps. Pixels with classification disagreements between maps were reclassified accord-

ing to the following rules: if at least one of the maps classified the pixel as degradation, we set

the merged layer as degradation; if neither of the maps classified a pixel as degradation and at

least one classified it as deforestation we set the merged layer value to deforestation; and if

both maps classified the pixel as stable forest we left it as stable forest. We used this rule system

because degradation was underestimated in previous studies [51,55,58].

Regeneration mapping. We also used LandTrendr and the NDFI index to map forest

regeneration [56,59]. In this application, we adjust the LandTrendr parameters to return the

“greatest” gain and detect upward trends in the spectral signature of forested areas. The other

parameters were adjusted to capture short-time regeneration over the 5-year time period from

2010–2015.

We made a regeneration map using MapBiomas data to compare to the map from Land-

Trendr. Silva Junior and colleagues [60] developed annual maps of secondary forest extent,

age, increment, and loss within Brazil for 1986–2019 using maps from the Brazilian Annual

Land Use and Land Cover Mapping Project [58]. Secondary forest growth is a conversion

from an anthropic dominated cover classification (e.g., pasture or agriculture) to forest cover,

excluding mangroves and forest plantations [60]. We used this approach to generate a map of

secondary forest cover from 2010 to 2015. The final regeneration map was a combination of

the LandTrendr map and the map built using MapBiomas [60]. These maps were merged
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using the following rules: a pixel is mapped as “regeneration” if at least one of the outputs was

mapped as “regeneration.

Accuracy assessment of mapping products. An independent validation effort was con-

ducted leveraging high- and medium-resolution optical imagery (Planet NICFI mosaics, Goo-

gle Earth Pro basemaps, Sentinel-2, and Landsat Collections) and ancillary datasets

(MapBiomas products, the Global Forest Canopy Height 2019, and NDFI time series) to assess

forest change dynamics on the ground [61–66]. Visual interpretation was done in Collect

Earth Online (CEO), a free and open-source web-based tool that facilitates data collection and

validation [67,68]. The interpreters used a decision tree approach for classifying the validation

samples.

For the validation of the disturbance and regeneration maps, the sample points were 30 by

30 meters square, mimicking the map output pixel sizes. The validation of both change maps

(disturbance and regeneration) was done using the same set of points. We also used a stratified

random sampling design. We extracted 600 points from both maps. We had 100 points for

each class: degradation, stable non-forest, stable forest, deforestation, regeneration, different

events (S1 Table). The two maps, the forest disturbance and forest gain maps, were merged by

applying one more rule: pixels with at least two events (loss, degradation, or regeneration)

were allocated to a “different events” class. For example, these areas can include regeneration

events on non-forest areas followed by degradation or deforestation or disturbance events,

most likely deforestation, followed by regeneration. The accuracy metrics (overall, user, and

producer accuracies) and unbiased area estimates for each class were calculated through the

ratio estimator approach [69] for when the strata are different from the map classes since we

used the same sample points for the disturbance map and the regeneration map.

eDNA methods

eDNA field data collection. We defined our sampling frame as the 150 farms partnering

with IMAFLORA. Within this sampling frame, we verified which farms included our project

sites (farms with mature shaded cocoa) by checking average vegetation height of cocoa fields

(minimum average canopy height of 7.5m) and verifying that fields contained greater than

25% canopy cover in CEO [66]. We identified 49 farms containing mature shaded cocoa.

Our sampling design was chosen to reduce the influence of exogenous variables that influ-

ence biodiversity to maximize our statistical power in detecting differences between project

and counterfactual sites. Sites were delineated by the cocoa field boundary for project sites,

and the pasture boundary for counterfactual sites. Key exogenous variables include the amount

and configuration of forest both within the farm boundaries and in a 250m buffer [70–74]. To

represent these exogenous influences, we selected a suite of landscape ecology metrics that best

captured landscape variance using principal component analysis [PCA; 75,76]. Metrics used

for clustering included within the farm boundaries: total forest area, number of forest patches,

forest percentage of farm, forest contiguity, and forest aggregation index; and within the 250m

buffer included: total forest area, forest percentage of landscape, and forest aggregation index

[77]. We used these landscape metrics to assign each farm to a cluster using Ward’s hierarchi-

cal clustering with the Euclidean distance matrix [78].

Following cluster assignment for each farm, we used stratified random sampling to select

five project sites and five counterfactual sites with the same proportion of each cluster in each

group of sites. We also used the same process to select two back-up sites for each group. We

avoided excluding clusters since that would have changed the sampling frame. In addition,

experts from IMAFLORA identified five forest sites that represented the oldest known second

growth forest areas in the study area. Permission for all sites was granted by the property
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owner, and no agency permits were needed for sampling on private property [79]. However,

the field team experienced difficulties accessing sites, weather delays, and COVID delays. This

led to only one second growth forest being sampled, reduced numbers of plots sampled in one

shaded cocoa field and two pastures, and the use of both shaded cocoa backup sites and one

pasture backup site.

Within each site, we randomly placed either 3 or 4 50m x 50m plots depending on the field

size, with at least 25m between plots. Each plot included four sub-samples, set back from the

edge of the plot by 12.5m, to sample the heterogeneity found within the plot. This plot spacing

was chosen based on previous research and discussions with local experts [80,81], along with

the limitations imposed by field size [82]. Approximately 30g of the topsoil (between 0–5 cm

deep) was collected for each sub-sample, making sure to avoid non-soil matter including leaf

litter, and sub-samples were pooled to represent one sample per plot. In total, a total of 38

plots were sampled, with 18 plots from 5 shaded-cocoa sites, 17 from 5 pasture sites and 3

from one forest site.

To avoid sample contamination and ensure consistency across samples, a protocol was fol-

lowed during sampling that included the use of disposable sampling materials and gloves and

samples were labeled and individually packed according to plots and sites to ensure no cross-

contamination occurred [detail of methods see S2 File; 83,84]. Following collection, soil sam-

ples were stored with silica desiccant bags (minimum of 25g per sample) protected from heat

and sunlight to prevent DNA degradation, and later transported to the laboratory facilities for

further laboratory analysis.

eDNA extraction. Soil samples were pre-processed in a Department for Environment,

Food & Rural Affairs (DEFRA) licensed laboratory facility. To avoid contamination, samples

were handled in a pre-PCR laboratory, using disposable tools and gloves, following standard

decontamination procedures (i.e., use of bleach to clean surfaces and equipment), and person-

nel wore disposable full-body suits when handling the samples.

The extraction method was conducted using 2 g of mixed soil (per analyzed plot) and fol-

lowing the Mu-DNA soil DNA extraction protocol described by [85]. Negative controls were

included, comprising DNA extraction blanks containing only the required buffers.

Following DNA extractions, DNA amplification was conducted using three sets of primers

targeting two partial mitochondrial genes. First, vertebrate specific primers were used target-

ing ~106 bp of the 12S rRNA gene [86; forward primer 5’-TAGAACAGGCTCCTCTAG-3’ and

reverse primer 5’-TTAGATACCCCACTATGC-3’]. Second, to detect arthropods, DNA extracts

were amplified using two primer sets targeting different short inserts of the mtDNA COI gene.

The Zeale primer set [87] was used to amplify a ~157 bp fragment, and the Gillet primers [88–

90] were used to amplify a ~133 bp section (Zeale: forward primer 5’-AGATATTGGAACWT
TATATTTTATTTTTGG-3’ and reverse primer 5’-WACTAATCAATTWCCAAATCCTCC-3’; Gil-

let: forward primer 5’-CCATCTCATCCCTGCGTGTCTCCGACTCAGNNNNNNNATTCHACD
AAYCAYAA RGAYATYGG-3’ and reverse primer 5’-CCTCTCTATGGGCAGTCGGTGATNNNNN
NNACTATAAAARAAAATYTDAYAAA DGCRTG-3’).

PCR reactions consisted of 12.5 μl Master Mix, 7.5 μl molecular grade water, 2 μl of DNA

template and 1 μl of the forward and reverse of each primer. The PCR conditions for the Riaz

primer followed the [91] methodology, consisting of an incubation of 5 minutes at 95˚C, then

35 cycles for 15 seconds at 95˚C, 30 seconds at 57˚C, ending with 30 seconds at 72˚C. PCR

conditions of the Gillet and Zeale primers followed the protocols set by [92]. Gillet cycles

included an initial 15-minute denaturation at 95˚C, then 10 cycles for 30 seconds at 94˚C, 45

seconds at 49˚C, 30 seconds at 72˚C, 30 cycles of 30 seconds at 95˚C, 45 seconds at 47˚C and

30 seconds at 72˚C, with a final extension following of 10 minutes at 72˚C. Zeale PCR condi-

tions began with a 15-minute denaturation at 95˚C, then 40 cycles of 20 seconds each at 95˚C,
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30 seconds at 55˚C and 1 minute at 72˚C, with a final extension of 7 minutes at 72˚C. PCR

cycles were authenticated by electrophoresis in a 1.2% agarose gel stained with GelRed. PCRs

were run in triplicates, and the success of the reactions was determined by electrophoresis on a

1.5% agarose gel. Four PCR blanks were included in each library to account for putative con-

taminations arising in the amplification steps. In total, 44 samples were analyzed per library,

38 eDNA soil samples, two extraction blanks and four PCR blanks. A left-sided size selection

was performed using 1.2× Agencourt AMPure XP (Beckman Coulter) and the KAPA Hyper-

Prep kit (Roche) was used to construct the Illumina libraries using the dual-indexed adapters.

Libraries were quantified using the NEBNext qPCR quantification kit (New England Biolabs)

and pooled in equimolar concentrations. Two Illumina MiSeq sequencing runs were con-

ducted, one MiSeq v2 Reagent Kit (2 × 150 bp paired-end reads) and one MiSeq v3 Reagent

Kit (2 × 300 bp paired-end reads).

Bioinformatic steps were conducted as described in [92]. In brief, bioinformatic analysis

used the OBITools 1.2.2 metabarcoding package [93]. Read quality was assessed using FastQC,

Illumina paired end aligned paired-end reads, and ngsfilter demultiplexed samples and

removed primers. The obigrep command performed size selection by eliminating artifacts and

ambiguous reads. Vsearch [94] clustered unique sequences and removed chimeras using

uchime-denovo [95]. Sumaclust clustered sequences into Molecular Operational Taxonomic

Units (MOTUs) at thresholds of 0.95-0.98. For both primer sets, analyses were processed using

the 98% clustering threshold based off empirical results [96,97]. Taxonomic assignment relied

on Basic Local Alignment Search Tool (BLAST, specifically blastn) against Genbank, with a

minimum of 90% alignment and>80% similarity [98]. Species-level assignment required

�98% identity, while MOTUs at 95%-98% or with multiple species were assigned at the genus

level. MOTUs between 93%-95% were assigned to the family level, and MOTUs between 90%-

93% were assigned to the order level [92]. Sequences were retained when they could be identi-

fied at least to the Class level. A final filtering step was conducted, including the removal of

putative contaminants, tag-jumping (MOTUs represented by less than 0.01% of the total reads

were removed from each sample), and non-target taxa (e.g., Human DNA). Additionally,

molecular operational taxonomic units (MOTUs) were retained when the total number of reads

was over 50 [99]. MOTUs were considered compositional data and treated as such [100–102],

except for when indicators called for species abundance measures where reads were used [103].

eDNA analysis. The four initial biodiversity indicators and four proposed indicators were

calculated based on the resulting data. For indicators using key species, we defined key species

for mammals as threatened native species and excluded domesticated and invasive species

from analysis more broadly [104]. We defined key species for arthropods as members of the

Hymenoptera and Lepidoptera orders as important pollinator species, including for coffee

crops [105,106]. These indicators require BLAST to match sequences to the Order level. As has

been previously reported in other studies [e.g., 92], the Gillet primers were notably better at

detecting members of Hymenoptera, and the Zeale primers were better at detecting members of

Lepidoptera. Due to the limited overlap between the two primer sets, we combined the resulting

datasets for further analysis. For determining if any MOTUs were associated with (indicative

of) either cocoa fields or pasture and the ecological conditions found there [107,108] we used

the multipatt function {indicspecies 1.7.14} with a custom wrapper [109–111].

For community-based indicators, we used all sequences identified by BLAST as Arthro-

pods, requiring identification to the Phylum level. We first accounted for zeros in the dataset

using zCompositions [112], then transformed the data using compositions [113]. We calcu-

lated Aitchison distance between sites and between treatments using the Euclidean distance

matrix [26,114,115]. We created PCA plots using the transformed compositional data

[114,115].
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Where needed, we used linear mixed models to account for the repeated sampling design to

test the difference between projects and counterfactuals [116]. Significance tests were performed

using ANOVA and Type II Sums of Squares [117]. All data analysis was conducted in R 4.3

[118] and all code and data are available on GitHub (https://github.com/sig-gis/TerraBioPilot).

Carbon calculations

Estimates of carbon sequestration due to land cover transitions to forest and emissions from

forest loss were calculated using methods modified from the New IPCC Tier-1 Global Biomass

Carbon Map for the Year 2000 [119]. Tier 1 carbon estimates are defined using a look-up table

which has an associated carbon value based on the classification scheme of the Global Land

Cover 2000 (GLC2000) cover type, ecofloristic zone, continental region, and frontier forest

designation [120]. Areas of carbon gain were determined based on areas of gain from the

regeneration map product located in the shaded cocoa areas for the 150 farms. Because these

farms were previously degraded pasture that were improved to shaded cocoa, we assigned the

2010 land cover to the GLC2000 land cover class of cultivated and managed lands; this was

used to assign a carbon factor from the lookup tables (GLC2000; 120) Our site is in the Tropi-

cal Rainforest ecofloristic zone [121]. A 50% factor was applied for disturbed vegetation cate-

gories [122].

Morphological Spatial Pattern Analysis (MSPA)

To calculate the number of hectares of essential habitat we used Morphological Spatial Analy-

sis (MSPA; 123). A binary image composed of the objects of interest (tree cover) and back-

ground and divides it into morphological classes that describe the spatial arrangement of tree

habitat across the landscape [123]. For this application, the 8 classes we mapped include patch

forest, outer edge, inner edge, core forest, secondary degradation, secondary deforestation, pri-

mary degradation, and primary deforestation (for definitions, see S2 File). The analysis con-

sists of a customized sequence of mathematical morphological operators targeted at the

description of the geometry and connectivity of the image components. The MSPA segmenta-

tion results in 25 mutually exclusive feature classes which, when merged, correspond to the ini-

tial foreground tree cover area. In this case, we created a binary image of tree canopy cover

using maps from the Global Forest Change dataset [124]. These included the fractional tree

cover and forest loss map from 2001 to 2019 [123].

TerraBio

To assess the shaded cocoa projects implemented by IMAFLORA, we conducted a pilot of Ter-

raBio. TerraBio is a methodological framework developed to provide environmental assess-

ment and accountability to private sector firms that (1) commercialize sustainable agriculture

and forest products and/or, (2) invest in sustainable business models as profitable and conser-

vation-driven development initiatives. TerraBio directly monitors the land cover change and

biodiversity measures annually to provide timely and relevant results for investment funds,

businesses, and other parties invested in the success of sustainable agricultural practices [125].

TerraBio uses a coupled approach to environmental monitoring, with the landscape compo-

nent conducted with remote sensing and the biodiversity component conducted with eDNA,

which work together to calculate a series of indicators. Intervention areas were shaded cocoa

fields; our counterfactual areas or ‘business as usual’ areas were pasture fields, and our control

areas were the areas of naturally regenerated second growth forest.

The initial set of indicators for the TerraBio pilot were derived from existing sources, includ-

ing the Amazon Biodiversity Fund Brazil Key Performance Indicators (KPI) and the United
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States Agency for International Development/Brazil’s Partnership for the Conservation of Ama-

zon Biodiversity standard indicators [125–127]. These indicators were: Number of hectares

directly restored; Number of hectares indirectly conserved; Carbon sequestration through

revegetation; Number of keystone/priority species; Change in abundance of keystone/priority

species; Change in species richness; Change in biodiversity index; Number of hectares showing

improved biodiversity; and Number of hectares of essential habitat area conserved (Table 1).

In addition to these indicators derived from existing sources, we proposed several new indi-

cators based on the literature [24,25,128]. These proposed biodiversity indicators included:

Alpha diversity; Beta diversity; Change in beta diversity due to the intervention; and a qualita-

tive assessment of biodiversity change due to the intervention [25,26,129,130]. Both the indica-

tors themselves and the visualizations for all indicators were designed to be easily understood

by a lay audience and for consistency in interpretation over time.

Results

Mapping results

According to the final disturbance mapping results, 183 hectares were degraded, and 358 hect-

ares were deforested within the 150 IMAFLORA properties (11,546 ha) between 2010–2015.

Overall, producer’s and user’s accuracies (± 95% confidence interval) per class from the distur-

bances classified map (Fig 4) are summarized in Table 2. As expected, the stable classes (stable

Table 1. Overview of all indicators calculated for the TerraBio implementation.

Indicator Type # Name Calculation Method

Land Cover/ Land Use

Indicator

1 Number of hectares indirectly conserved We considered areas of stable forest within the 150 shaded cocoa farm properties

provided by IMAFLORA excluding intervention sites (areas of shaded-grown cocoa) as

areas that were indirectly conserved, i.e., areas that could have been deforested or

degraded but were conserved due to project activities.

Land Cover / Land

Use Indicator

2 Number of hectares directly restored. We calculated the number of hectares regenerated from 2010 to 2015 within the

intervention sites (areas of shaded-grown cocoa) of the 150 farms provided by

IMAFLORA.

Land Cover / Land

Use Indicator

3 Carbon sequestration through revegetation—

net positive climate impact annually

We calculated total carbon sequestration through revegetation from 2010 through 2015

within the areas of shade-grown cocoa for the 150 farms provided by IMAFLORA.

Biodiversity Indicator

(existing)

1 Number of key species due to intervention We determined the number and identity of MOTUs associated with key species present

only in shaded cocoa fields and only in pasture. We also calculated the number of species

in both habitats. In addition, we used indicator species analysis to determine if there were

any key species associated with either habitat.

Biodiversity Indicator

(existing)

2 Change in abundance of keystone/ priority

species due to interventions

We calculated key species abundance for each plot using filtered reads.

Biodiversity Indicator

(existing)

3 Change in species richness due to interventions We calculated the total species richness for each plot.

Biodiversity Indicator

(existing)

4 Change in biodiversity indices due to

interventions

We calculated Shannon’s diversity index and Simpson’s diversity index.

Biodiversity Indicator

(proposed)

5 Change in alpha diversity We calculated species richness (Hill’s q = 0), effective species richness (Hill’s q = 1), and

inverse Simpson’s [Hills q = 2], combining Biodiversity Indicators 3 and 4.

Biodiversity Indicator

(proposed)

6 Beta diversity We calculated beta diversity using Aitchison distance between sites using the Euclidean

distance matrix.

Biodiversity Indicator

(proposed)

7 Change in beta diversity due to interventions We calculated Aitchison distance between treatments using the Euclidean distance

matrix.

Biodiversity Indicator

(proposed)

8 Qualitative assessment of change in

biodiversity due to interventions

We created PCA plots to assess change in communities qualitatively.

Landscape Integrity

Indicator

1 Number of hectares of essential habitat area

conserved

We calculated the number of hectares of core forest, patch forest, stable inner forest edge,

and stable outer forest edge (buffer zone) within the 150 shaded cocoa farm properties

provided by IMAFLORA.

https://doi.org/10.1371/journal.pone.0289437.t001
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forest and non-forest) had higher user’s and producer’s accuracies and lower uncertainties

compared to the dynamic classes (degradation and deforestation). Nevertheless, omission and

commission errors happened within and across these two groups of classes (stable and

dynamic classes). For example, in the dynamic classes (degradation and deforestation): most

incorrectly classified pixels in the degradation class were omitted in the deforestation class and

committed to the stable forest class, and both omission and commission errors in the defores-

tation class happened in the degradation class. The reasons behind these errors are explained

in the discussion section.

Fig 4. (A) Disturbance classification 2010–2015. Inset maps (B: B1, B2, B3) are shown with black outline and inset maps (C: C1, C2) are shown with blue

outline on the main map. (B1) Inset map of disturbance classification 2010–2015 over a particular area to outline classification vs. RGB images. (B2) Inset RGB

image pre-study period from Landsat 5 (July 30, 2009). (B3) Inset RGB image post-study period from Sentinel-2 (June 26, 2016). (C1, C2) Example of

disturbances within one of the properties (degradation in yellow, deforestation in red, stable forest in dark green, and non-forest in gray). overlayed on the

RGB Landsat 5 image (July 30, 2009).

https://doi.org/10.1371/journal.pone.0289437.g004

Table 2. Accuracy assessment of the disturbances map.

Accuracies (%) Degradation Deforestation Stable forest Non-forest

User’s accuracy 40.5 ± 10.2 60.5 ± 9.1 89.0 ± 6.2 85.0 ± 5.4

Producer’s accuracy 6.8 ± 3.4 30.5 ± 16.2 95.9 ± 1.8 97.0 ± 4.0

Overall accuracy 86.5 ± 4.3

https://doi.org/10.1371/journal.pone.0289437.t002
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Overall, producer’s and user’s accuracies (± 95% confidence interval) from the regeneration

classified map (Fig 5) are summarized in Table 3. As expected, our approach performed better

at identifying where regeneration did not occur compared to where regeneration did occur.

The regeneration class presented low user’s and producer’s accuracies and higher levels of

uncertainties. The biggest source of error was pixels being mapped as regeneration when they

should not have been, leading to an overestimation of areas where regeneration occurred.

eDNA results

Overall, five cocoa sites and five pasture sites, in addition to one second growth forest site,

were surveyed by the field team. While the paired sampling design was not maintained, all but

one of the fields sampled came from cluster 1 so the reduction in exogenous variation should

be maintained (S3 Table).

Fig 5. (A) regeneration map output 2010–2015 overlayed on Sentinel-2 imagery (ESA). Inset maps (B: B1, B2, B3) are shown with black outline and inset maps

(C: C1) are shown with blue outline on the main map. (B1) Inset map of regeneration output 2010–2015 over a particular area to outline regeneration areas vs.

RGB images. (B2) Inset RGB median image pre-study period from Landsat 5 (July-August 2011). (B3) Inset RGB image post-study period from Planet NICFI

mosaic (July—November 2016). (C1) Example of regeneration areas (in green) within two of the properties.

https://doi.org/10.1371/journal.pone.0289437.g005

Table 3. Accuracy assessment of the regeneration map.

Accuracies (%) Non-regeneration Regeneration

User’s accuracy 98.3 ± 1.7 34.1 ± 9.1

Producer’s accuracy 97.6 ± 0.3 43.0 ± 25.3

Overall accuracy 96.0 ± 1.6

https://doi.org/10.1371/journal.pone.0289437.t003
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Upon the initial bioinformatics filtering steps, a yield of 14,387,489 sequencing reads was

obtained from the two sequencing runs, with 10,775,915 reads for the invertebrates dataset

(5,598,018 Gillet, and 5,177,897 Zeale) and 3,611,574 for vertebrates. After applying all taxo-

nomic filtering steps and retrieving only target MOTUs, the number of reads retained were

2,665,095 reads for arthropods including both Gillet and Zeale primer sets, and 38,806 reads

for vertebrates after the removal of human and domestic animal reads. For the vertebrates

dataset, a very high proportion of human reads was detected (>75% of total reads, from 6.9

million mammal reads, 5.2 million belonged to humans), with 14 MOTUs from 10 unique

families identified when considering only the target wild mammalian taxa. For arthropods,

290 MOTU from 27 unique identified families were retained after the removal of MOTUs that

were not assigned any taxonomic information. Due to the low amount of reads and MOTU

returned for vertebrates, further analyses focused on the arthropod dataset (S3 File).

Indicator results

Land Cover/ Land Use Indicator 1: Number of hectares indirectly conserved. We

found 2,871 hectares within the 150 IMAFLORA properties (excluding intervention sites)

were indirectly conserved between 2010–2015.

Land Cover/ Land Use Indicator 2: Number of hectares directly restored. We found

471 hectares within the intervention sites (areas of shaded-grown cocoa) of the 150 farms had

regeneration between 2010–2015.

Land Cover / Land Use Indicator 3: Carbon sequestration through revegetation—net

positive climate impact annually. We found carbon sequestration through revegetation in

shade-grown cocoa systems in the intervention farms of 44,300 Mg C (8,860 Mg C/yr) between

2010 and 2015.

Biodiversity Indicator 1: Number of key species due to intervention. Overall, we found

a total of 19 key MOTUs, including 11 in Hymenoptera and 8 in Lepidoptera. Most Hymenop-

tera belonged to the family Formicidae (ants), while Lepidoptera belonged to families Saturnii-

dae and Crambidae, among others. Only one group of butterflies was detected

(Hermeuptychia hermes [Fabricius], or the Hermes satyr).

One member of Hymenoptera was found in both cocoa fields and pasture. Five MOTU

were found only in cocoa fields, including Labidus sp. (army ants), Solenopsis sp. (fire ants),

Hileithia sp. (moth), a member of family Platygastridae and a member of Hymenoptera for

which further identification was not possible. Thirteen MOTU were found only in pastures,

including Crematogaster abstinens [Forel] and two other Crematogaster species, Solenopsis
geminata [Fabricius] and another Solenopsis species, Argyria sp., Heliura sp., Hermeuptychia
hermes, Hylesia sp. Clepsis sp., and a member of Hymenoptera for which further identification

was not possible. No Hymenoptera or Lepidoptera were detected in forests. No species were

consistently found to be indicator species.

Biodiversity Indicator 2: Change in abundance of keystone/ priority species due to

interventions. As this pilot only included one time period, we compared the intervention to

the counterfactual for this one time period. We found that there was also no significant differ-

ence in key species abundance when comparing cocoa fields (intervention) and pasture (coun-

terfactuals; Pr(>Chisq) = 0.2648).

Biodiversity Indicator 3: Change in species richness due to interventions. The mean

species richness in cocoa fields was 17.9 species (SD = 11.0), while on pastures mean species

richness was 18.2 (SD = 9.4). When comparing total species richness between cocoa fields and

pasture, we found there was no significant difference in MOTU richness (Pr(>Chisq) = 0.978;

Fig 6).
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Biodiversity Indicator 4: Change in biodiversity indices due to interventions. When

comparing diversity indices between shaded cocoa fields (intervention) and pasture (counter-

factuals), we found that there were no significant differences for Shannon diversity (Pr

(>Chisq) = 0.3639) or for Simpson’s diversity (Pr(>Chisq) = 0.2964; Fig 7).

Biodiversity Indicator 5: Alpha diversity. When comparing diversity indices between

cocoa fields (intervention) and pasture (counterfactuals), we found that there were no signifi-

cant differences for species richness (Hill’s q = 0; previous section), for effective species rich-

ness (Hill’s q = 1; Pr(>Chisq) = 0.4824), and for inverse Simpson’s (Hill’s q = 2; Pr(>Chisq) =

0.5243; Fig 8).

Biodiversity Indicator 6: Beta diversity. Pairwise distances between all sampling sites

ranged from 10.3 and 35.1, where 0 represents no dissimilarity, and larger distances indicate

increasing dissimilarity (Fig 9). The highest dissimilarities were observed between the Cocoa 1

field and the Pasture fields.

Biodiversity Indicator 7: Change in beta diversity due to the intervention. The Aitchi-

son distance between shaded cocoa (intervention) and pasture (BAU) was about equal to the

distance between shaded cocoa (intervention) and forest (control; 16.6 and 16.8 respectively),

Fig 6. Species richness by field type. Each dot represents a sample point in shaded cocoa fields (red) or pasture fields

(blue).

https://doi.org/10.1371/journal.pone.0289437.g006
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but much smaller than the distance between pasture (BAU) and forest (control; 23.2), though

this difference was not significant [131; Fig 10].

Biodiversity Indicator 8: Qualitative assessment of change in biodiversity

due to the intervention

PCA graphs of plots and sites revealed that cocoa and forest sites were co-located in site-spe-

cies space, while pastures were strongly separated along the first axis (Fig 11). This agrees with

our findings in Biodiversity Indicator 7.

Landscape Integrity Indicator 1: No. of hectares of essential habitat area

conserved

Essential habitat areas calculated using MSPA within all farm properties with shaded cocoa

included 93 ha of core forest, 114 ha of patch forest, 82 ha of stable inner forest edge, and 1,000

ha of stable outer forest edge (buffer habitat; S2 Table). Thus, a total of 289 ha can be considered

critical habitat within the intervention farms, and an additional 1,000 ha is stable buffer habitat.

Discussion

Piloting the TerraBio framework

The pilot application of TerraBio, a coupled eDNA and remote sensing environmental moni-

toring approach, demonstrated the potential for such systems in monitoring sustainable

Fig 7. Shannon diversity (left) and Simpson’s (right) by field type.

https://doi.org/10.1371/journal.pone.0289437.g007
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agriculture such as the shaded cocoa fields implemented by IMAFLROA. Overall, our remote

sensing analysis suggests that the shaded cocoa established by IMAFLORA helped revegetate

over 400 hectares, and the eDNA analysis suggests that the community composition of arthro-

pods in shaded cocoa is closer to second growth forests than that of pastures.

Based on the indicators, the broader impacts of shaded cocoa in the study area are most

likely increased canopy cover, increased carbon sequestration, and more ‘forest-like’ habitat

availability for arthropods. Land Cover/Land Use Indicators 1 and 2 both found support for

the shaded cocoa indicators directly and indirectly restoring forest cover. Land Cover/Land

Use Indicator 3 similarly found a net gain due to carbon sequestration by the shade canopy

and cocoa in the intervention farms. While the results from the initially provided biodiversity

indicators and vertebrates were inconclusive, the proposed biodiversity indicators found that

arthropod communities in shaded cocoa fields were closer to forests than arthropod commu-

nities in pastures were to forests. This suggests that the habitat available to arthropods in

shaded cocoa was more ‘forest-like’ than the pastures due to the interventions, in agreement

with Landscape Integrity Indicator 1.

Importantly, our results agree with previous studies on the impacts of shaded cocoa. In

Ethiopia, researchers found that shade coffee certification increased the probability of forest

conservation by 19.3% [132] and that indirect forest conservation was also observed within

100m of the project areas [133]. Similarly, the contribution of shaded cocoa to biodiversity

conservation viewed through the lens of retaining forest-like communities echoes decades of

Fig 8. Effective species richness (L) and Inverse Simpson Diversity (R) by field type. Each dot represents a sample point in shaded cocoa fields (red) or

pasture fields (blue).

https://doi.org/10.1371/journal.pone.0289437.g008
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previous research [134–137]. Contributions of shaded cocoa systems to landscape connectivity

are also well supported [136,138], though systems emphasizing native trees are likely more suc-

cessful than those using bananas and Erythrina fusca [139]. In Brazil’s Atlantic Forest, tradi-

tional agroforests where cacao is planted under thinned native forests called cabrucas, have

greater diversity of tree species, including forest specialist tree species, and while they are not

substitutes for undisturbed forest they do have a critical role in biodiversity conservation

[140].

Learning from the pilot implementation

Lessons for remote sensing. Implementing the pilot allowed us to both improve TerraBio

and provide guidance for other coupled monitoring approaches for the future. In general, we

found multiple aspects of our approach worked well, including robust field sampling using

random samples, using the management unit as the unit of analysis, and benchmarking against

a control and/or business as usual land use.

With the remote sensing component of the coupled methodology, we encountered some

challenges specific to the complex agroecosystems of the Brazilian Amazon, highlighting the

need for careful integration of region-specific remote sensing knowledge in developing

Fig 9. Beta diversity (Aitchison distance) between each site. Blue corresponds to lower dissimilarities between sites

and yellow corresponds to higher dissimilarities between sites.

https://doi.org/10.1371/journal.pone.0289437.g009

PLOS ONE Coupling remote sensing and eDNA to monitor environmental impact

PLOS ONE | https://doi.org/10.1371/journal.pone.0289437 February 14, 2024 18 / 33

https://doi.org/10.1371/journal.pone.0289437.g009
https://doi.org/10.1371/journal.pone.0289437


coupled monitoring approaches. These were detected during the accuracy assessment,

highlighting the importance of this step.

First, to calculate the Land Cover/Land Use and Landscape Integrity indicators, we created

two map products. While the methods used to create these map products have significant sup-

port in the literature [e.g., 51,141,142], we found that applying them in this specific context

had wide margins of error and some unexpected results that provided an opportunity to learn

and improve upon these methods. For example, our disturbance maps, which were used for

LCLU Indicator 2, showed omission errors in the stable forest class. In accordance with [143],

many of the omission errors associated with this class were derived from the presence of decid-

uous tree species (“caducifólias’’, in Portuguese) in this region, which show a seasonal leaf

color change, leaf-off pattern (Fig 12), and changes in NDFI values. Therefore, the algorithms

assume a disturbance event in forested lands, classifying most of these pixels as degradation,

which explains the low accuracy obtained for these classes. Both CODED and LandTrendr

should be able to capture seasonal variations of forests with varying crown covers, and parame-

trization for local conditions can mitigate this issue [46,47,54].

Further, it is important to fully understand the forest conversion process and pastureland

management practices in the region, as this greatly influences the interpretation itself of distur-

bance samples for validation. Many of the samples analyzed represented patches of degraded

Fig 10. Aitchison distances within treatments and between treatments.

https://doi.org/10.1371/journal.pone.0289437.g010
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forest cover or “dirty pastures”. Some of the degraded patches presented recurrent regenera-

tion and disturbance patterns, visible in the NDFI time series due to fragmentation or border

effect (Fig 13). This is sometimes not captured in the visual interpretation analysis, where just

one change event is recorded, which yields omission or commission errors for the change clas-

ses (e.g., regeneration and degradation, deforestation, and degradation). For future applica-

tions, it will be important to separate the regeneration output validation from the disturbance

output validation to refine confidence intervals.

A better understanding of the degradation process and its relationship with deforestation is

vital for the decision-making process of interpreting validation samples. Many times, the dis-

turbances happen gradually, in phases, until they reach the final clear-cut stage of deforesta-

tion. The relationship between degradation and deforestation may vary significantly across the

different land tenures. The same happens with the regeneration process, which will be charac-

terized by secondary forests with different stages depending on how many years of recovery

we are seeing. The interpretation of what is happening on the ground is not always clear and

straightforward, especially when the interpretation is being made through satellite imagery

(Fig 14). In a span of five years, we may observe two or three different events (e.g., selective log-

ging followed by fire and then regeneration). Without the availability of Planet NICFI data

Fig 11. Arthropod PCA for arthropods found in shaded cocoa, forest, and pasture sites.

https://doi.org/10.1371/journal.pone.0289437.g011
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prior to 2015, the visual inspection of these events through Landsat imagery and NDFI time

series interpretation was challenging, which could have yielded validation errors.

Finally, our estimates of carbon sequestration due to revegetation do not align well with

those that have been estimated previously. For example, potential sequestration for small-

holder agroforestry systems like shaded cocoa has been estimated at 1.5 to 3.5 Mg per year per

hectare [144]. This rate suggests that we should expect approximately 6,000 Mg C sequestra-

tion due to revegetation over the study period based on our regeneration maps. Our overesti-

mate is caused by the approach’s treatment of regeneration as entirely occurring within the

study time period, which is unrealistic. For future applications of TerraBio, we plan to adapt

the carbon calculation method by [145]. We will use forest stand age calculated by the Land-

Trendr algorithm to create more accurate estimates of carbon sequestration through revegeta-

tion by more realistically accounting for the rate of growth and thus rate of sequestration.

We also recognize similar limitations with the MSPA calculations by using the Global For-

est Change dataset. We plan to use the LandTrendr product and simplify the MSPA classes. By

applying the existing LandTrendr product, and therefore, more local-based information, to

both methods we expect the results to have higher accuracy, which can be supported by confi-

dence intervals for the case of the carbon estimates.

Fig 12. Plot in the CEO disturbances validation project. This pixel was misclassified as Degradation. NDFI time

series show a seasonal pattern with lower NDFI values around August of each year. It is important to note that the

MapBiomas classification maps these areas as “Savannic Forest Formations”. Basemap imagery is from Sentinel-2

(European Space Agency).

https://doi.org/10.1371/journal.pone.0289437.g012
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Lessons for monitoring with eDNA. The success of using arthropod communities as

indicators focused more on community composition points to some lessons learned for future

coupled biodiversity monitoring approaches and implementations of TerraBio. The arthropod

datasets did not encounter the same issues with high numbers of human reads and domesti-

cated species, likely associated with the anthropogenic land uses [146,147], and other research

has found bulk soil analysis of arthropod communities to accurately estimate diversity [148].

Combined with their ecological importance, arthropods are thus a promising taxonomic

group to use as a target moving forward [105,148,149]. Both Gillet and Zeale primers suc-

ceeded in capturing different parts of the Arthropoda phylum, however most reads obtained

belonged to non-target taxa, and for future studies, we recommend that both primer sets be

used if both Hymenoptera and Lepidoptera groups are targeted taxa.

From the reads attributed to Arthopoda, a significant fraction of detected MOTUs could

not be successfully assigned at the taxonomic rank required for the downstream analyses. The

lack of resolution at short fragments associated with eDNA monitoring and sparse or incom-

plete reference databases is a well-known issue in understudied regions such as the Neotropics

[150]. For the “key species” indicators requiring identification to species, many key arthropod

Fig 13. Example plot of the CEO change validation project showing a fragmented/degraded forested patch and its

variations on the NDFI time series. Basemap imagery is from Sentinel-2 (European Space Agency).

https://doi.org/10.1371/journal.pone.0289437.g013
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species were present in only one plot. Thus, when monitoring these indicators over time, as

TerraBio plans to do, researchers must either use an outdated database or constantly update

previous years’ results to separate the effect of improving databases from any real biological

change. Further, due to the fundamental character of eDNA data, some traditional indicators

such as species abundance calculated with eDNA data can be misleading [128].

This points to one key benefit of using indicators focused on overall community composi-

tion over those focused on species specific (e.g., keystone, rare, endangered, or endemic spe-

cies) used elsewhere. The initial set of indicators selected for use in the pilot implementation of

TerraBio were derived from existing indicators based on traditional field ecology methods

where organisms are directly observed. However, eDNA represents a fundamental shift in how

ecological communities are measured. Any taxonomy-based indicator requires accurate data-

bases linking genomic sequences with their taxonomic identity [19,25]. New approaches to

ecological indicator selection can better leverage eDNA data to monitor communities using

taxonomy-free approaches [24,25,128].

Our proposed indicators, chosen specifically to take advantage of eDNA data and to still be

interpretable by lay people, were more successful at identifying patterns separating communi-

ties found in the intervention, even when differences were not significant due to low power.

For example, Biodiversity Indicators 2–5 found no meaningful differences between the shaded

cocoa and pasture sites, however, the community focused Biodiversity Indicators 7 and 8

Fig 14. Example plot of the CEO change validation project showing a plot that was classified as regrowth by the

algorithm, but the interpreter classified it as a single degradation event. We note some regreening between the

dates and the variation in NDFI values. Although not entirely clear, the interpreter assumed selective logging followed

by a fire event in 2011. Another fire event seems to have happened in 2012. It is not clear that by the end of 2014 the

area was already-established pastureland.

https://doi.org/10.1371/journal.pone.0289437.g014
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identified that the arthropod communities in cocoa fields were more similar to forest plots

than the pasture sites. Using these community ecology-based taxonomy-free approaches to

fully make use of eDNA data is an important lesson learned for coupled environmental moni-

toring approaches, including TerraBio. However, when implementing this approach to indica-

tors, they must be clearly communicated to stakeholders accustomed to the outputs of

traditional field ecology methods. Overall, eDNA is well suited to monitoring these projects,

but successful integration in monitoring, reporting, and verification (MRV) standards will

require balancing the best available science with reporting requirements.

We also encountered some challenges with our sampling protocols when implemented in

remote areas by field partners and packaging scientific best practices in a way that is easily

accessible and actionable. During data collection, our field team ran into multiple practical

issues while collecting soil samples using the plot sample design. Having specific areas to col-

lect from proved very time consuming, which when added to the already long transit times

between field locations resulted in reduced data collection. The size and shape of the fields also

limited the field team’s ability to change the location of plots if necessitated by field conditions

[79]. These challenges will become increasingly important when farm owners and community

scientists are collecting data.

Thus, we suggest using a simplified larger volume sampling approach, and will be moving

to this in future implementations of TerraBio. We are moving away from a plot-based

approach with small amounts of soil collected to an approach collecting large volumes of soil

from the entire site [1–2 liters; 151]. Recent research suggests that large soil volumes are likely

needed to accurately capture community representation [e.g., 151–154]. This sampling

approach will also be significantly easier for farmers and community scientists to implement,

and early testing is promising.

Further, during our data analysis, we noticed that fewer reads were returned for cocoa fields

than for pasture fields, with multiple plots missing data entirely or exhibiting very low species

richness (i.e., number of detected species, S3 Table). One potential issue was that our field sites

were remote. This limited the viable approaches for sample preservation, in contrast to other

studies using soil in Amazonia where either -40˚C freezer storage or ethanol was available [e.g.

155], or samples could be analyzed hours after collection [156].

Additionally, differences in soil moisture may have accounted for this result, as pastures

were generally drier than shaded cocoa fields and forests. If the desiccant volume was not suffi-

cient to handle higher soil moistures, then sample degradation may have occurred unevenly

between the more shaded and thus wetter cocoa and forest samples and the drier pasture sam-

ples [147,157; though see 158]. We will be testing higher volumes of desiccant and Longmire’s

solution, as many of the sustainable agricultural projects occur in remote areas and tropical or

sub-tropical climates [157,159]. Early results suggest this approach may help with high moisture

soils, allowing for more accurate comparisons between land uses.

Conclusion

Approaches that directly monitor land cover change and biodiversity on an annual basis by

coupling remote sensing and environmental DNA (eDNA) can provide timely and relevant

results for parties interested in the success of sustainable agricultural practices. Monitoring

information collected from these approaches serves two essential functions: assessing the effec-

tiveness of project-level management actions and approaches and facilitating ongoing learning

about the circumstances in which different approaches outperform others.

In this pilot, we found that shaded cocoa projects implemented by IMAFLORA contributed

to forest and biodiversity conservation in the Brazilian Amazon. The broader impacts of shaded
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cocoa projects in the study area, as revealed through the indicators, are most likely increased

canopy cover, increased carbon sequestration, and more ‘forest-like’ habitat availability for

arthropods. Following the successful pilot application of TerraBio to assess the effect of shaded

cocoa interventions near São Félix do Xingu, in Pará, Brazil on biodiversity conservation, the

approach will be expanded to other projects created through innovative funding mechanisms.

Implementing this pilot allowed us to provide guidance for coupled monitoring approaches

for the future, including TerraBio. In general, we found multiple aspects of our coupled

approach worked well. These included our sampling design using randomly selected farms

and using the management unit as the unit of analysis. Benchmarking the intervention against

a control and business as usual land use was a unique and cost-effective way to validate results

on the project level while controlling for exogenous variables. Using remote sensing and

eDNA data collection in tandem to calculate indicators also provided a more holistic view

than either alone.

For our remote sensing analysis, we found that detecting forest disturbances and regenera-

tion was challenging due to regional land management practices and vegetation characteristics,

suggesting better algorithm parametrization to local conditions is needed to improve future

accuracy. Understanding the degradation process and its relationship with deforestation is

also vital for interpreting validation samples. Additionally, more realistic approaches to forest

growth for carbon calculation analysis are needed. For our eDNA analysis, we suggest moving

to straightforward sampling designs using high volume sampling and replication. We also

found that taxonomy-free arthropod community focused indicators were more successful at

illuminating ecologically holistic differences between intervention (shaded cocoa) and busi-

ness as usual (pasture) scenarios.

Supporting information

S1 Table. Sample sizes for change map validation. Sample size per class for validation efforts.

The change maps (disturbance map and regeneration map) were combined into one map and

the same sample dataset was used for accuracy assessment.

(DOCX)

S2 Table. Detailed MSPA results. Morphological Spatial Pattern Analysis of forest change

dynamics from 2001 to 2019 in the study area.

(DOCX)

S3 Table. Biodiversity results by site. Planned sampling and plots returning usable data after

filtering.

(DOCX)

S1 File. MPSA definitions. A detailed description of all MPSA definitions.

(DOCX)

S2 File. eDNA soil sampling protocol. Detailed protocol for eDNA soil sampling.

(DOCX)

S3 File. Vertebrate results. Indicator results from the vertebrate primers.

(DOCX)

Acknowledgments

We want to thank the farmers who allowed us to sample their fields for the eDNA work and

Eric Bullock, for his expert advice on the use of his CODED algorithm in the Amazon.

PLOS ONE Coupling remote sensing and eDNA to monitor environmental impact

PLOS ONE | https://doi.org/10.1371/journal.pone.0289437 February 14, 2024 25 / 33

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0289437.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0289437.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0289437.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0289437.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0289437.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0289437.s006
https://doi.org/10.1371/journal.pone.0289437


Author Contributions
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nández T. eDNA extraction protocol for metagenomic studies in tropical soils. Biotechniques. 2021

Sep; 71(6):580–6. https://doi.org/10.2144/btn-2021-0057 PMID: 34636654
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