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On the limitations of transmissibility
functions for damage localisation: the
influence of completeness

Joshua WR Meggitt and Ramin C McGee

Abstract
Transmissibility functions are used to identify and locate damage in critical structures for health monitoring purposes.
Their appeal over conventional signal or frequency response-based functions lie in a unique property; sub-structural
invariance. It has been shown that the transmissibility of an assembled structure, when obtained correctly, can describe
the dynamics of a sub-structure in a manner that is independent from the remainder of the assembly. It is this sub-
structural invariance that enables transmissibility functions to locate damage in complex structures. Though a valuable
property, sub-structural invariance relies on the notion of a complete interface representation; the interface that separates
the sub-structure from the remaining assembly must be sufficiently instrumented so that all important interface
dynamics can be captured. In practice, without considerable experimental effort, complete interface representations are
not achievable. Importantly, the transmissibilities obtained in the presence of an incomplete interface are unable to dis-
cern between damage located interior, or exterior, to a particular sub-structure; they are no longer invariant. Hence,
their ability to locate damage is compromised. In the present paper we introduce the notion of completeness in the con-
text of transmissibility-based structural health monitoring, and examine its importance for the accurate localisation of
damage through numerical and experimental examples.
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Introduction

Structural health monitoring (SHM) is a key technol-
ogy in high-value infrastructure and engineering. There
exist two focal applications of SHM; condition moni-
toring of rotating machinery (e.g. generators, electric
drives, etc.), and the assessment of structural integrity
(e.g. bridges, buildings, etc.). The present paper will
focus on this latter application.

A principle concept that underlies many of the struc-
tural analysis-based SHM methods is that damage
alters the dynamic properties of a structure, typically
though a reduction of stiffness.1 By developing indica-
tors, or metrics, that are sensitive to the effect of these
changes (e.g. shifts in natural frequencies, changes in
mode shapes, etc.), SHM attempts to answer one or
more of the following questions2: Does damage exist?
(Detection); Where is the damage? (Localisation); How
serious is the damage? (Assessment); How long will the
structure remain operational? (Prediction). SHM indi-
cators are often obtained by comparing the experimen-
tal response (or extracted features) of a structure, to

those of a numerical counter part. A challenge here is
to build an accurate model of the initial structure.
Alternatively, comparisons can be made against a base-
line result obtained during commissioning.

When developing an SHM indicator, it is important
to choose the right features for comparison. To aid the
localisation of damage, chosen features should be local
in nature, that is, unaffected by damage located far
away.3 Of the available features, and of principle inter-
est in the present paper, is the transmissibility function
which, when obtained correctly, can provide localised
(i.e. sub-structural) information on the dynamic prop-
erties of a structure.4 This unique property of the trans-
missibility function, termed sub-structural invariance,
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though a requirement for damage localisation, is not a
guaranteed property. Rather, it relies on what is termed
a complete interface representation.5

To benefit from the invariance properties of the
transmissibility, the interfaces that separate each sub-
structure from the remaining assembly must be instru-
mented such that all important interface dynamics can
be captured. For practical engineering structures,
where many sub-structures and connection points are
present, a complete representation of all interfaces is
not achievable. An important consequence of which is
that the transmissibilities obtained are no longer invar-
iant. Hence, their ability to locate damage is
compromised.

In the present paper we introduce the Interface
Completeness Criterion (ICC)5 as a quantitative mea-
sure of interface completeness, and investigate its cor-
relation with the localisation capability of
transmissibility-based damage metrics. Through a
series of numerical and experimental examples it is
shown that for a sufficiently complete interface repre-
sentation, transmissibility-based metrics have the
potential to provide a reliable localisation of damage.
In contrast, with an incomplete representation the
same metrics are unable to localise damage with any
confidence, often attributing it to the wrong sub-
structure.

Having introduced the context of this paper, its
remainder will be structured as follows. Section
‘Transmissibility: a sub-structural invariant’ will begin
by introducing the transmissibility and its invariant
sub-structural properties, also discussing its application
in the context of SHM. Section ‘Completeness’ intro-
duces the notion of completeness, and outlines its
quantification (the ICC). In section ‘Numerical study:
connected plates’ we consider a numerical example in
which two plates (one subject to simulated damage)
are connected by a continuous interface, of which dif-
ferent levels of discretisation (i.e. completeness) are
considered. In section ‘Experimental study: connected
beams’ a similar study is performed, though experi-
mentally with beam-like components coupled via
point-like connections. Finally, section ‘Conclusion’
draws some concluding remarks.

Transmissibility: a sub-structural invariant

Generally, a transmissibility describes the relation
between two like quantities. The most common trans-
missibilities are those of force and response (taken to
be displacement, velocity or acceleration). The force
transmissibility T

f
ij is defined here as the relation

between an applied force fj at the DoF j, and the block-
ing force ��fi at the DoF i (i.e. the forces required to

constrain the response ui = 0, see Moorhouse et al.6

and Meggitt7 for more details), whilst all other forces
are subject to a zero force constraint fk 6¼j = 0,
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Note that the excitation and blocking force DoFs
belong to different sets of measurement positions
(j 2 M and i 2 N), and that if several blocking DoFs
are considered, a constraint is applied to all, ui2N = 0.

The response transmissibility Td
ij describes the rela-

tion between the response uj at DoF j, and the response
ui at DoF i, due to the applied force f, whilst all other
DoFs are subject to a rigid constraint uk 6¼j = 0,
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where again, the two response DoFs belong to different
sets (j 2 N and i 2 M).

From the above it is clear that there exists a symme-
try between the force and response transmissibility.
Defined in terms of a blocking force, implicit to the
force transmissibility are a set of rigid constraints.
Similarly, by definition the response transmissibility
requires the rigid constraint of all DoFs k 6¼ j.

The invariant nature of the transmissibility arises
due to the blocking constraints present in the above
definitions. If these blocking constraints are applied to
the DoFs that separate a sub-structure from the
remainder of its assembly, the dynamics of neighbour-
ing sub-structures are effectively removed, and so they
become invariant sub-structural properties. It is this
invariance that enables, in theory, transmissibility-
based metrics to localise damage.

Force transmissibility

We begin by considering the coupled AB assembly in
Figure 1(a), though what follows may be generalised to
more complex arrangements of sub-structures. Two
sets of DoFs are considered; the remote set a, located
internal to sub-structure A, and the interface set c.
According to the equivalent field theorem,6,8 the
response field along the interface c generated by an
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external force fa can be reproduced identically by
applying the (negative) blocking force ��fAc in place of
the original excitation. We thus have the following
equality,

uc =YCcafa = � YCcc
�fAc ð3Þ

where YCca is the transfer repectance matrix of the
coupled assembly C = AB from the internal DoFs a to
the coupling interface c, and YCcc is the point repec-
tance matrix of the coupled assembly at the interface c.
Pre-multiplying both sides of Equation (3) by the
inverse receptance matrix Y�1

Ccc then yields,

��fAc =Y�1
CccYCcafa: ð4Þ

Like Equation (1), Equation (4) relates the applied
force fa to the blocking force ��fAc. We can thus iden-
tify the force transmissibility as,

T
f
Aca =Y�1

CccYCca: ð5Þ

It is significant that the above definition of force trans-
missibility is based entirely on coupled assembly recep-
tances. The force transmissibility T

f
Aca is therefore a

sub-structure invariant available from in-situ experi-
mental testing; its invariance, being a consequence of
the blocking constraint (�fAc) in its definition.4

Response transmissibility

Turning attention towards the response transmissibil-
ity, we consider the application of an external force at
the interface c (as opposed to a as used in the force

transmissibility). The response at the interface and
internal DoFs are given, respectively, by

uc =YCccfc ð6Þ

and

ua =YCacfc: ð7Þ

Rearranging Equation (6) to determine fc and substi-
tuting this into Equation (7) leads to the response
transmissibility relation,

ua =YCacY
�1
Cccuc =Td

Aacuc ð8Þ

where,

Td
Aac =YCacY

�1
Ccc: ð9Þ

At first sight it is not obvious that the response trans-
missibility is also a sub-structural invariant. This is
made clearer by considering the nature of the external
force fc. The dynamic influence of sub-structure B onto
A (i.e. due to internal coupling forces) can be repre-
sented by an appropriate external force fc, on which no
requirements were placed in the derivation of Equation
(8). Hence, Equation (8) is valid in the presence of an
arbitrary forcing term, and so the response transmissi-
bility Td

Aca is an invariant sub-structural property.
Inspection of Equations (5) and (9) reveals that the

force and response transmissibility are related. Here, as
we have reversed the direction of the response trans-
missibility (it goes from c to a, rather than a to c like
the force transmissibility), we have that,

T
f
Aca =Y�1

CccYCca = YCacY
�1
Ccc

� �T
= Td

Aac

� �T ð10Þ

That is, the force transmissibility is equal to the trans-
posed response transmissibility, both of which are
invariant sub-structural properties. Note that in Lage
et al.9 and Meggitt and Moorhouse4 the direction of
the response transmissibility is not reversed, and so
their relations include an inverse.

Note that by considering an additional set of inter-
nal DoFs b located on sub-structure B, the force or
response transmissibility T

f , d
Bbc can be obtained by sim-

ply interchanging sub-scripts a ! b. Further extension
to include additional sub-structures is achieved by sim-
ply defining appropriate sets of interface DoFs that
enclose each sub-structure.

In the above, both force and response transmissibil-
ities are defined in terms of coupled assembly recep-
tances (or more generally, structural frequency
response functions (FRFs)). Whilst these FRFs are
readily measurable quantities, requiring a known input
force and measured response (most often an accelera-
tion), in the context of SHM their measurement can be

Figure 1. Interface representations of coupled structures:
(a) single complete interface and (b) interface with known cið Þ
and unknown cj

� �
DoFs.
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impractical as it requires human intervention to mea-
sure YCcc and YCca (or YCac). Instead, it is possible to
define the transmissibility in terms of output-only
quantities.

Output-only transmissibility

Suppose sub-structure A is installed within an active
assembly, that is, an assembly containing one or more
vibration generating mechanisms. In this case it is pos-
sible to determine the transmissibility based on mea-
surements of the operational response only. A key
requirement of the above is that the vibration generat-
ing mechanisms do not reside within the target sub-
structure, as the ‘excitation’ DoFs (taken here to be
those of the interface c) must be known and
instrumented.

To extend the definition of transmissibility to
output-only quantities it is sufficient to consider N line-
arly independent operational states of the assembly
AB. From the perspective of sub-structure A, each
operational state can be represented by an external
force f(i)

c . Arranging the external force vectors as the
columns of a matrix we arrive at the external force
matrix Fc = f(1)

c � � � f(N)
c

� �
. Equations (6) and (7) can

thus be rewritten as,

Uc =YCcc Fc ð11Þ

and

Ua =YCacFc ð12Þ

and Equation (8) as,

Ua =YCacY
�1
CccUc, ð13Þ

where Uc and Ua represent operational response
matrices at, respectively, the interface and internal
DoFs of sub-structure A. From Equation (13) it is
straightforward to identify the response transmissibility
matrix,

Td
Aac =YCacY

�1
Ccc =UaU

�1
c : ð14Þ

Similarly, using Equation (10) we can define the force
transmissibility matrix as,

T
f
Aac = UaU

�1
c

� �T
=U�Tc UT

a : ð15Þ

Equations (14) and (15) provide output-only defini-
tions of the sub-structure transmissibilities Td

Aac and
T

f
Aac, respectively, requiring measurement of the opera-

tional response only. Note however, that to determine
the transmissibility by means of output only measure-
ments, as per Equations (14) and (15), the inverted
response matrix must be of full rank (each operational

state must produce a linearly independent response), or
preferably over-determined.10,11

The transmissibilities obtained as per Equations (5),
(9), (14) or (15) are often termed ‘global’ or ‘general-
ised’ transmissibilities. In contrast, the transmissibil-
ities used most often in SHM are termed ‘local’ and
are defined as the scalar ratio of responses,

Td
ij =

ui

uj

: ð16Þ

Note that this local transmissibility does not benefit
from the rigid constraints present in Equation (2).
Consequently, it does not provide an invariant sub-
structural property. For this reason, local transmissi-
bilities are not suitable for damage localisation.

Transmissibility-based damage metrics

In the above, it was shown that the transmissibility, when
defined between a set of internal and interface DoFs, is
indeed a sub-structural invariant. Furthermore, being a
product of receptance functions, the transmissibility
(force or response) is also sensitive to changes in the
mass, stiffness or damping distribution of a structure.12

In combination, these invariance and sensitivity proper-
ties enable the localisation of damage using transmissibil-
ity functions; the transmissibility of a sub-structure is
only changed if damage occurs within that sub-structure,
damage located outside that sub-structure will have no
effect on its transmissibility. To the authors’ knowledge,
this is the first definitive and general explanation as to
why transmissibilities are able to localise damage.

Since their first use in the context of SHM,13 various
transmissibility-based metrics have been proposed to
quantify the level of damage present in a structure or
sub-structure, including difference-based,3,12,14–18 cor-
relation-based19–21 and coherence-based22 formula-
tions. Irrespective of their formulation, the general
idea is that the corresponding damage metric describes
the similarity between a baseline (undamaged)
transmissibility T(b)

�
, obtained either by measurement

or modelling, and that of a potentially damaged
structure T(d)

�
.

Completeness

In our treatment of transmissibility we considered sub-
structure A, whose interface was represented com-
pletely by the DoF set c. Owing to its implicit con-
straints, the transmissibility T

f , d
Aca effectively removes

the influence of sub-structure B by constraining all
interface DoFs. In the context of SHM, the transmissi-
bility T

f , d
Aca is invariant to damage within sub-structure

B, whilst sensitive to damage within sub-structure A.
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This invariance can, in theory, be used to identify and
attribute damage to a specific sub-structure within an
assembly.

Now suppose we consider the coupled AB assembly
depicted in Figure 1(b), where the interface DoFs c are
separated into measurable DoFs ci, and inaccessible
DoFs cj. The transmissibility obtained by considering
the measurable DoFs ci constrains only the ci DoFs;
the remaining cj DoFs are left unconstrained. Hence,
sub-structure B remains ‘coupled’ to sub-structure A,
and the transmissibility obtained belongs to the AB
assembly, Tf , d

ABcia
(see Appendix A for details). In the

context of SHM, the transmissibility T
f , d
ABcia

is sensitive
to damage within both sub-structure A and B; there-
fore it cannot be used to attribute damage to either.

If the intention is to use a standard transmissibility-
based metric to identify or locate damage within an
assembly, complete interface representations are
required, else damage may falsely be attributed to the
wrong sub-structure.

Quantifying completeness

Experimentally, an interface representation describes
the number, and orientation, of response sensors used
to instrument an interface. Completeness describes the
ability of the installed sensor array to capture the full
range of dynamics, or DoFs, at the interface. The
DoFs that are physically present at an interface form
two subsets; those that are known and measurable,
and those that are unknown, or known but cannot be
measured (e.g. due to poor access, or limited instru-
mentation). It is the presence of this latter subset that
gives rise to incompleteness.

The notion of interface completeness was first intro-
duced by Meggitt and Moorhouse5 in the context of
vibration source characterisation. It was shown that by
neglecting a subset of interface DoFs, a bias error (or
model uncertainty) is introduced that renders the
source characterisation structurally dependent (as
opposed to invariant). To quantify the severity of
incompleteness, they considered mathematically block-
ing the known (measurable) interface DoFs, and obser-
ving the response obtained downstream of the interface
when an upstream excitation is applied; in the presence
of a complete interface representation, the interface is
completely blocked and the observed response is zero;
in the presence of an incomplete interface, some
response will be observed due to propagation through
the unconstrained (unknown) DoFs.

It was shown that the blocking ability of an interface
representation can be assessed through the comparison
of two receptance matrices that traverse the interface.
With reference to Figure 1(b), the first is a directly
measured receptance Y(c)

Cab, and the second is a (round

trip23) reconstructed receptance Y
(ci)
Cab =YCaci

Y�1
Ccici

YCcib

that takes into account only the known measurable
DoFs ci. In the presence of a complete interface repre-
sentation, these two transfer receptances are equal,

Y(c)
Cab =Y

(ci)
Cab =YCaci

Y�1
Ccici

YCcib: ð17Þ

Hence, to quantify completeness, it is sufficient to
assess the similarity of the direct and reconstructed
receptances above. To this end, Meggitt and
Moorhouse adopted a correlation-based measure of
similarity and proposed the so-called Interface
Completeness Criterion (ICC),

ICC=Corr !Y
(c)
Cab, !Y

(ci)
Cab

� �
ð18Þ

Corr a, bð Þ =
aHb
�� ��2

aHa � bHb
ð19Þ

where!� denotes matrix column-wise vectorisation and
�

H represents a conjugate transpose. Note that to
form the necessary vectors multiple excitation and/or
response DoFs (b and a) should be considered when
measuring the necessary FRFs.

An alternative measure of similarity has also been
proposed based on a coherence style formulation,24

ICC = ICCnmh i ð20Þ

ICCnm =Coh Y(c)
Canbm

,Y(ci)
Canbm

� �
ð21Þ

Coh a, bð Þ =
a + bð Þ a� + b�ð Þ
2 aa� + bb�ð Þ ð22Þ

where �� denotes complex conjugate and �h i an aver-
age over the indices nm.

In the presence of a complete interface representa-
tion c = ci, Y

(c)
Cab =Y

(ci)
Cab, and the above ICCs are equal

to 1. If any DoFs are omitted, this equality is not satis-
fied and the ICCs yield values less than 1.

To obtain the ICC, the receptances YCaci
, YCcici

,
YCcib and YCab should be measured. This requires
response instrumentation of the known interface ci and
remote a DoFs. This level of instrumentation might be
expected for a typical output only SHM exercise.
Excitations are also applied to known interface ci and
remote b DoFs. These excitations constitute the addi-
tional experimental effort required to determine the
ICC over a conventional SHM exercise, and would be
applied during commissioning.

Importantly, the ICC is a frequency dependent
quantity; the contribution of each interface DoF varies
with frequency depending on the modal characteristics
of the structure. At certain frequencies the interface
may be represented adequately using only a small sub-
set of the DoFs present. At others, a greater number,
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or a different subset, may be required. Given an inter-
face representation, the ICC indicates over what fre-
quency range(s) the interface appears complete, and
over which results should not be relied upon.

Numerical study: connected plates

In this section we investigate the influence of interface
completeness on the localisation and quantification of
damage for a simulated example. The case considered
is illustrated in Figure 2.

Two plates (A and B) are coupled along a continu-
ous line. Damage is simulated in plate A by adding a
localised mass (approx 10% of total plate mass).
Transmissibilities are obtained between a discretised
representation of the separating interface c and a set of
remote DoFs a and b, located respectively in sub-
structures A and B. The level of interface discretisation
is varied and the transmissibilities obtained from the
baseline, T(b)

�
, and damaged, T(d)

�
, systems are used to

calculate the following correlation-based damaged
metric,

D� = 1� 1

f2 � f1

ðf2

f1

Corr !T
(d)
�
, !T

(b)
�

� �
df ð23Þ

where!� denotes vectorisation of the above matrix and
Corr �,�ð Þ is the correlation function detailed in
Equation (19). A value of D� = 0 indicates no damage,
whilst D�.0 indicates some level of damage, typically

with greater values of D� being attributed to greater
levels of damage.

The coupled plate is simulated using a modal sum-
mation approach with a simply supported boundary.
Each marker shown in Figure 2 represents three DoFs,
a vertical translation zð Þ and a pair of x=y rotations
a=bð Þ. The continuous interface is represented by a dis-
cretised set of points (each with three DoFs). The level
of discretisation and the DoFs included (i.e. with/with-
out rotations), will be varied to alter the completeness
of the interface. An example of a baseline and damaged
mobility, due to the added mass, is shown in Figure 3.

Shown in Figure 4(a) are the correlation-based
ICCs obtained by increasing the level of discretisation
through 1, 3, 5, 9 and 15 points (each with three
DoFs). In Figure 4(b) are the resulting transmissibil-
ities between a fixed interface point (red marker in
Figure 2) and a remote a DoF. It is clear that as the
number of points is increased, the completeness of the
interface does so also. It is seen that the transmissibility
obtained also depends strongly on the level of interface
completeness.

Shown in Figure 5 are the ICCs obtained for the full
15 point discretisation, with and without the rotational
DoFs included. In contrast to Figure 4(a) which shows
a gradual increase in the frequency range that is
approx. complete, neglecting rotational DoFs leads to
a reduced level of completeness across the entire fre-
quency range.

To illustrate the importance of interface complete-
ness from a damage localisation/quantification stand-
point, we consider this latter case (15 points with/
without rotations) and compute the transmissibilities

Figure 2. Diagram of coupled plate simulation; two plates (A
and B) coupled along a continuous interface. Markers: :–
remote A DoFs, � – remote B DoFs, � – discretised interface
DoFs ( – is a fixed interface DoF used for all levels of
discretisation), – location of added mass/damage.

Figure 3. Example transfer mobilities Yab obtained from the
baseline and damaged systems.
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of sub-structures A and B for the baseline and dam-
aged cases. For the complete interface (i.e. with rota-
tions) these results are shown in Figure 6. Figure 6(a)
shows that the transmissibility of sub-structure A is
clearly effected[AQ: 5] by the damage located in A.
Figure 6(b) shows that the transmissibility of sub-
structure B is completely unaffected by the damage in
A (note that due to the finite discretisation of the inter-
face, some very small deviations are still seen).

Figure 4. Interface completeness (a) and transmissibility (b) as
a function of frequency and number of interface DoFs
employed. For clarity, interface representations 3 and 9 have
been omitted from (b).

Figure 5. Interface completeness with 15 points, with and
without rotations.

Figure 6. Example transmissibilities of component A (a) and B
(b) for baseline and damaged systems with complete interface
representation. Also shown in (c) is the damage correlation
metric obtained using all transmissibilities. Single value damage
metric (see Equation (23)): DA = 0:158, DB = 0:0006.

Meggitt and McGee 7



Recalling that the sub-structure transmissibilities are
in fact matrices, a correlation-based comparison can be
made between the baseline and damaged cases for A
and B,

Dam: corr:=Corr !T
(d)
�
, !T

(b)
�

� �
: ð24Þ

This result is shown in Figure 6(c). Sub-structure B,
being unaffected by the damage, is near perfectly corre-
lated with the undamaged case, whilst sub-structure A

is not. Taking a shifted frequency average (as per
Equation (23)) of this correlation yields the following
single value damage metrics (with f1 = 100 and
f2 = 5000): DA = 0:158, DB = 0:0006, which clearly iden-
tify the location and relative severity of the damage
present.

Shown in Figure 7 are an equivalent set of results
(as in Figure 6), though obtained from an incomplete
interface representation, where rotational interface
DoFs have been omitted. As before, the transmissibil-
ity of sub-structure A has been effected by the damage,
but in this case so has that of sub-structure B. By
neglecting the rotational DoFs at the interface, damage
in sub-structure A is appearing also as damage in sub-
structure B. The results of the correlation-based com-
parison illustrate this result more generally across the
entire transmissibility matrix. The single value damage
metrics obtained from Figure 7(c) are: DA = 0:143,
DB = 0:05, that is, a reduction in DA and an approx.
100 3 increase in DB.

Though the single value metrics still suggest sub-
structure A to be the more likely origin of damage, this
is not necessarily the case for different interface repre-
sentations (i.e. levels of completeness). This fact can be
illustrated by considering the damage metrics obtained
as one increases the number of points used to discretise
the interface (as illustrate by Figure 4). Shown in
Figure 8 are the single value damage metrics obtained
for sub-structures A and B for an increasing number of
interface points.

Figure 7. Example transmissibilities of component A (a) and B
(b) for baseline and damaged systems with incomplete interface
representation. Also shown in (c) is the damage correlation
metric obtained using all transmissibilities. Single value damage
metric (see Equation (23)): DA = 0:143, DB = 0:053.

Figure 8. Single value damage metrics for sub-structures A
and B (with damage located in A) for increasing levels of
interface discretisation.

8 Structural Health Monitoring 00(0)



The trends observed in Figure 8 represent main the
contribution of this paper. For a high level of interface
completeness (15 points), transmissibilities are able to
accurately locate damage, as illustrated by the clear
separation between DA and DB. As the level of comple-
teness is reduced (in this case towards a single point
with three DoFs) DA and DB begin to converge and no
clear distinction can be made. In fact, for the specific
case considered here, results suggest that there is a
greater level of damage in sub-structure B than A
(albeit only marginally). Hence, the ability of transmis-
sibility functions to accurately locate damage is directly
proportional to the level of completeness achieved by
the given interface representation.

Experimental study: connected beams

In this section we will investigate the robustness of
transmissibility-based damage localisation on a more
conventional point-like separating interface. The struc-
ture under study is shown in Figure 9; a beam compo-
nent (A) is connected to a frame-like structure (B)
composed of four beams bolted together. We consider
both a rigid and resilient (i.e. vibration isolated) cou-
pling between the two components. For each, we mea-
sure the transmissibilities TAca and TBcb between the
interface c and a set of remote a and b DoFs (located,
respectively, on A and B). These transmissibilities are
measured for the baseline (undamaged) T(b)

�
and dam-

aged T(d)
�

cases. As before, damage is simulated by add-
ing a small mass, this time to B (mass weight is approx

1.2% of the total system weight). For each scenario,
the transmissibility and its corresponding single value
damage metric D� is computed for following interface
representations rn (with decreasing levels of
completeness):

r1 – all six DoFs (i.e. including the rotational z
DoF),

r2 – vertical z, and x=y rotations,
r3 – vertical z, and in-plane x and y,
r4 – vertical z DoFs only,
r51, 2

– single vertical DoF only.
Note that the transmissibilities obtained using the

r51, 2
representations involve the inversion of scalar

interface mobility terms (as opposed to a mobility
matrices). As such, the resulting transmissibilities are
simply direct transmissibilities, defined according to
Equation (16). The direct transmissibilities do not pos-
sess any rigid constraints in their definition.

Shown in Figure 9 is a photo of the instrumented
interface – seven uniaxial accelerometers and seven
applied forces are used (per connection) to measure the
coupled interface mobility matrix Ycc 2 C

14314. To
obtain collocated force and response measurements,
excitations were applied directly to each accelerometer.
The measurement coherence was monitored to ensure
good quality data was obtained and overloading
avoided. A finite difference (FD) transformation is
applied to extract averaged translational and rotational
motions,25 and build the FD interface mobility matrix
Y(FD)

cc 2 C
12312 (note, the FD approx. is also used to

build Y(FD)
ca 2 C

1236 and Y(FD)
cb 2 C

1236, where the
remote DoF positions are chosen arbitrarily). The vari-
ous interface representations rn are obtained by simply
omitting the appropriate rows and columns from these
FD mobility matrices. All measurements are made
using B&K type 4507-B accelerometers, a PCB type
086C02 modal hammer, and a DEWEsoft SIRUS
acquisition system.

Shown in Figure 10 is an example of the FD mobility
in the vertical z direction at one interface connection
point for the baseline and damaged case. It is clear from
this result that the structure’s FRF is most affected in
the high frequency regime. To give the damage localisa-
tion the best chance of success, the single value damage
metric will be obtained using the frequency limits
f1 = 500 and f2 = 2000. Note, exactly how to choose
appropriate frequency limits for damage metric evalua-
tion is an ongoing question, and further discussion/
investigation is beyond the scope of this work.

Shown in Figure 11 are the ICCs for each of the
representations, over the chosen frequency range, for
the rigidly coupled case. These results suggest that r1

and r2 provide similar and reasonable levels of comple-
teness, whilst r3 and r4 do not.

Figure 9. Photo of experimental structure with resilient
connection (top), added mass (bottom left) and interface
instrumentation (bottom right).
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Shown in Figure 12 are the single value damage
metrics obtained for A and B, whilst rigidly coupled,
using the various interface representations described
above. In all cases the damage was located in B. Before
discussing the results however, it is important to note
that the calculation of transmissibility requires the
inversion of an interface mobility matrix Ycc, and that
this can be a very sensitive operation with experimental
data, especially for structures with low damping; matrix
inversions are known to amplify errors.26 To alleviate
this issue a small amount of regularisation (singular

value discarding) is included in the matrix inversions
used here.

The results of Figure 12 demonstrate that for certain
interface representations, specifically r1 and r2 (i.e. all
DoFs, and vertical z with x=y rotations) the transmissi-
bility is able to attribute damage to the correct compo-
nent (B), though notable level of damage is still
predicted within A. This is likely due to small experi-
mental errors in the repeated measurement of the base-
line and damaged cases being amplified by the matrix
inversion (note that this error amplification is generally
greater for larger matrices, such as those used for r1).

Importantly, representations r3 and r4 fail to cor-
rectly attribute the damage to B; that is, the damage in
B has a greater effect on the transmissibility of A than
B. This result is particularly evident for r4 where only a
single vertical z DoF is included at each connection
point. These results follow those of the ICC presented
in Figure 11. This recapitulates the main result of this
paper – without a sufficiently complete interface repre-
sentation, transmissibility-based damage metrics are
unable to robustly localise damage. That said, even
with a complete interface representation experimental
error can still lead to falsely identified damage.

Shown in Figure 13 are the ICCs for each of the
representations, over the chosen frequency range, for
the resiliently coupled case. These results suggest that
all representations provide reasonable levels of
completeness.

In fact r1 and r2 provide similar and reasonable levels
of completeness, though over different frequency ranges.

Figure 11. Interface completeness obtained for each
representation rn for the rigidly coupled case.

Figure 10. Example point mobilities Ycc obtained from the
baseline and damaged structures.

Figure 12. Single value damage metrics for sub-structures A
and B (rigidly coupled with damage located in B) for different
interface representations.
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Shown in Figure 14 are the single value damage
metrics obtained for A and B, whilst resiliently coupled,
for the same interface representations as before. Note
that in this case, the interface c was defined as that
between A and the coupling element, such that compo-
nent B now ‘includes’ the installed isolators. The results
obtained for the resilient case are in stark contrast to
those of Figure 12; for all representations, damage is
correctly attributed to B, with minimal damage

predicted within A. This is on account of the weaker
coupling between A and B; fewer DoFs are generally
required to capture the dynamics of a resilient interface,
as in plane and rotational DoFs tend to contribute
much less than for the rigid case.

Another interesting result from Figure 14 is the gen-
eral downward trend of the damage metric (for both A
and B) as the number of interface DoFs is reduced.
Again, this is likely due to the reduced influence of
experimental error, as the matrix inversions required
reduce from 12312 in r1 to 232 in r4.

Conclusion

Transmissibility functions have been used widely
within the SHM community over the past two decades.
Compared to conventional FRFs (e.g. mobility), they
are a) available using output-only methods, and b)
have been shown to provide better localisation capabil-
ities, though no definitive explanation for this latter
feature has been offered. In the present paper we eluci-
date the origins of this capability; the blocking con-
straints present in the definition of both force and
response transmissibility. Indeed, the (generalised)
transmissibility, when defined between a complete set
of interface DoFs and a set of remote points, becomes
a sub-structural invariant; it is influenced only by dam-
age located within that sub-structure. This unique
property of sub-structural invariance is, however, reli-
ant on the use of a complete interface representation,
that is, a sufficient number of DoFs should be cap-
tured at the component’s separating interface. How
many, and which DoFs will depend on the structure
under study.

It was shown, through a series of numerical and
experimental studies, that the completeness of an inter-
face representation is directly correlated to the localisa-
tion accuracy of transmissibility-based damage metrics.
It was further shown, that for the studies considered,
incomplete representations can lead to damage being
falsely attributed to the wrong sub-structure.

From these results we conclude that transmissibility-
based metrics should not be relied upon, without suffi-
cient understanding of the interface representation and
its level of completeness. Furthermore, the present
study raises the question whether knowledge of the
interface completeness can be used to develop more
robust transmissibility-based metrics that avoid the
need for excessive instrumentation.
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Appendix

A Analysis of incomplete transmissibilities

In this section we present some further analysis regard-
ing the influence of incompleteness on the transmissi-
bility. In particular, we are interested in quantifying the
influence of sub-structure B onto the transmissibility of
sub-structure A, when only a subset of interface DoFs
are considered.
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To determine the contribution of individual sub-
structures it is convenient to describe the transmissibil-
ity in terms of inverse quantities (e.g. stiffness, impe-
dance or effective mass). Considering the coupled AB
assembly in Figure 1(a), the equations of motion are,

fa
fc

	 

=

ZAaa ZAac

ZAca ZAcc +ZBcc

� �
ua

uc

	 

ðA1Þ

where ZNij is a sub-structure (dynamic) stiffness matrix.
Note that the interface stiffness matrix is represented
here by the summed interface stiffness matrices of sub-
structures A and B, ZABcc =ZAcc +ZBcc.

By applying an appropriate blocking force at the
interface c, we are able to enforce the constraint uc = 0

(and consequently ub = 0),

fa
��fAc

	 

=

ZAaa ZAac

ZAca ZAcc +ZBcc

� �
ua

0

	 

: ðA2Þ

Note that this blocking force effectively removes the
influence of sub-structure B. From the top row of
Equation (A2) we obtain,

ua =Z�1
Aaa fa ðA3Þ

which upon substitution into the second row yields,

��fAc =ZAcaZ
�1
Aaafa: ðA4Þ

The matrix product in Equation (A4) may be inter-
preted as a generalised blocked force transmissibility.
It relates an applied force fa at the internal DoFs a, to
the blocked force necessary to constrain the interface
DoFs c. It is entirely equivalent to the transmissibility
of Equation (4),

T
f
Aca =ZAcaZ

�1
Aaa =Y�1

CccYCca: ðA5Þ

The invariance of Tf
Aca is clearly discernable here, since

both ZAca and ZAaa are invariant properties of sub-
structure A.

Let us now consider the coupled AB assembly in
Figure 1(b), where the interface DoFs have been sepa-
rated into known cið Þ and unknown cj

� �
DoFs. After

applying an appropriate blocking force at the known
interface DoFs ci, the equations of motion are

fa
��fAci

0

0
@

1
A=

ZAaa ZAaci
ZAacj

ZAcia ZAcici
+ZBcici

ZAcicj
+ZBcicj

ZAcja ZAcjci
+ZBcjci

ZAcjcj
+ZBcjcj

2
4

3
5 ua

0

ucj

0
@

1
A:
ðA6Þ

From the top row of Equation (A6) we obtain,

ua =Z�1
Aaafa � Z�1

AaaZAacj
ucj

ðA7Þ

which upon substitution into the second row yields,

��fAci
=ZAcia Z�1

Aaafa � Z�1
AaaZAacj

ucj

� �
+ � � � ZAcicj

+ZBcicj

� �
ucj

ðA8Þ

or equivalently,

��fAci
=T

f
Acia

fa + ZABcicj
� ZAciaZ

�1
AaaZAacj

� �
ucj
: ðA9Þ

It is clear from Equation (A9) that by neglecting the
DoFs cj the relation between fa and ��fAci

is no longer
governed by a transmissibility alone; a second term,
proportional to the response ucj

(a property of the
coupled AB assembly), is present. This second term
introduces two additional contributions to the blocked
force. The first, ZABcicj

ucj
, describes the blocking force

present at the known interface DoFs ci due to motion
at the unknown DoFs cj. The second, ZAciaZ

�1
AaaZAacj

ucj
,

describes the blocking force present due to motion at a,
itself induced by the motion at cj.

B Details on numerical plate model

The numerical plate was modelled using a simply sup-
ported modal summation model with a total of
nm = 602 modes included.27 The plate’s geometry was
LX = 1 m (length), LY = 0:8 m (width) and LZ = 0:005 m
(thickness). Its Young’s modulus, density and loss fac-
tor were set, respectively, to E = 2003109Nm�2,
r = 7000 kg m�3 and h = 0:05. The coordinates of the
remote A and B positions are detailed in Table B1. The
interface points share a common x coordinate of
0.35 m. Their y coordinates are such that each point is
equally spaced from its neighbouring points or plate
edge, as illustrated in Figure 2.

Table B1. Remote position coordinates. Bold value
corresponds to the added mass location.

A x, yð Þ B x, yð Þ

0.05, 0.10 0.50, 0.42
0.12, 0.75 0.60, 0.10
0.16, 0.35 0.85, 0.33
0.22, 0.54 0.80, 0.60
0.30, 0.6 0.45, 0.73
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