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ABSTRACT 

This article, motivated by hybrid magnetic coating manufacturing developments, utilizes a neural network-

based computational program to study the dynamics of hybrid magnetic nanofluids with entropy generation. 

A new physico-chemo-mathematical model has been presented to simulate the hybrid magnetic nano-

coating flow along a stretching surface to a porous medium with viscous heating. A Rosseland flux model 

is used for radiation heat transfer, and Darcy’s model for the isotropic porous medium. The stretching sheet 

is porous and wall suction or injection are possible. A robust neural network has been deployed to optimize 

the physical parameters controlling transport characteristics of hybrid nanofluids. Specifically, 2 hybrid 

nanoparticle combination are addressed, namely graphite oxide (GO)-molybdenum disulfide (𝑀𝑜𝑆2) and 

copper (Cu)-silicon dioxide (𝑆𝑖𝑂2), both with engine oil as the base fluid. The dimensional boundary layer 

model is transformed via suitable scaling variables from a partial differential system into a dimensionless 

non-linear coupled ordinary differential system. The transformed boundary value problem is solved 

numerically with the BVP4C subroutine in the symbolic software MATLAB, which achieves exceptional 

accuracy. Validation with previous simpler studies is conducted and good correlation is obtained. The 

neural network optimization analysis which incorporates Bayesian regularization as the training algorithm. 

The Bejan entropy generation minimization (EGM) analysis shows that with increasing radiation parameter 

𝑅𝑑, both entropy generation rate and Bejan number are increased. Furthermore, an elevation in Brinkman 

number 𝐵𝑟 leads to an upsurge in entropy generation rate and a downtrend in Bejan number. The numerical 

solution of the boundary value problem reveals that with increment in nanoparticle solid volume 

fraction 𝜑2, magnetic parameter 𝑀, inverse permeability parameter 𝜖, surface injection parameter (𝑠 < 0), 

Eckert number 𝐸𝑐 and radiation parameter 𝑅𝑑 and with a decrement in suction parameter (𝑠 > 0) and 

Prandtl number 𝑃𝑟, there is a strong enhancement in temperature magnitude and thermal boundary layer 

thickness. With greater nanoparticle solid volume fraction 𝜑2, magnetic parameter 𝑀, inverse permeability 

parameter 𝜖, suction parameter 𝑠 and a reduction in thermal buoyancy parameter 𝜆, strong flow deceleration 

is induced, and momentum boundary layer thickness is increased. Skin friction coefficient is substantially 

boosted with lower values of magnetic parameter 𝑀, inverse permeability parameter 𝜖, suction parameter 

𝑠 and higher values of thermal buoyancy parameter 𝜆. There is a significant decrement also computed in 
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Nusselt number with greater radiation parameter 𝑅𝑑. The simulations provide a good benchmark for future 

extensions which may consider non-Newtonian behaviour.  

KEYWORDS: Hybrid magnetic nanofluids; boundary layers; coating; neural network; thermodynamic 

optimization, wall mass flux, entropy generation, MATLAB BVP4C, Bayesian regularization, 𝐶𝑢 − 𝑆𝑖𝑂2/𝑒𝑛𝑔𝑖𝑛𝑒  𝑜𝑖𝑙 
hybrid nanofluid, Bejan number; radiative heat flux; Brinkman number.  

 

NOMENCLATURE 

(𝑥, 𝑦) Cartesian coordinate system 𝜇𝑓 dynamic viscosity of the fluid 

 

𝑢, 𝑣 velocity components along (𝑥, 𝑦) 

directions 
 

𝜇𝑛𝑓 dynamic viscosity of the nanofluid 

 

𝑈𝑤 wall velocity 𝜇ℎ𝑛𝑓 dynamic viscosity of the hybrid nanofluid 

𝑇 fluid temperature 𝜗𝑓 kinematic viscosity of the fluid 

𝑇𝑤 wall temperature 𝜗𝑛𝑓 kinematic viscosity of the nanofluid 

𝑇∞ ambient temperature 𝜗ℎ𝑛𝑓 kinematic viscosity of the hybrid nanofluid 

𝑎, 𝑏, 𝑐 constants 𝜂 transformed transverse coordinate 

𝑓 dimensionless stream function 𝜎 electrical conductivity 

𝜃 dimensionless temperature function 𝜎𝑓 electrical conductivity of the fluid 

𝑞𝑟 radiative heat flux 𝜎𝑛𝑓 electrical conductivity of the nanofluid 

𝜎∗ Stefan Boltzmann constant  𝜎ℎ𝑛𝑓 electrical conductivity of the hybrid 

Nanofluid 

𝐵 uniform magnetic field (𝜌𝛽)𝑓 thermal expansion of the fluid 

𝐵0 magnetic induction (𝜌𝛽)𝑛𝑓 thermal expansion of the nanofluid 

𝐾 thermal slip factor (𝜌𝛽)ℎ𝑛𝑓 thermal expansion of the hybrid 

nanofluid 

𝛽 Thermal expansion coefficient 𝐶𝑓𝑥
 skin friction coefficient along 𝑥 directions 

𝐶𝑝 specific heat at constant pressure 𝑞𝑤 heat flux 

(𝜌𝐶𝑝)
𝑓
heat capacitance of the fluid 𝑁𝑢𝑥 local Nusselt number 

(𝜌𝐶𝑝)
ℎ𝑛𝑓

heat capacitance of the hybrid 

nanofluid 

𝜏𝑤𝑥 wall shear stress along 𝑥 directions 

𝑘 thermal conductivity 𝑃𝑟 Prandtl number 

𝑘𝑓 thermal conductivity of the fluid 𝐴 parameter for unsteadiness 

𝑘𝑛𝑓 thermal conductivity of the nanofluid 𝑅𝑑 radiation parameter 

𝑘ℎ𝑛𝑓 thermal conductivity of the hybrid 

nanofluid 

𝜆 thermal buoyancy parameter 

𝜑1, 𝜑2 volume fraction coefficients 𝑀 magnetic parameter 

𝐾∗ mean absorption coefficient 𝜖 inverse permeability parameter 

𝜌 density of the fluid 𝐸𝑐 Eckert number 

𝜓 dimensional stream function 𝐺𝑟 thermal Grashof number 
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S suction/injection parameter 𝑅𝑒𝑥 local Reynolds number 

𝑁𝑔 entropy generation rate 𝐵𝑒 Bejan Number 

Ω Dimensionless temperature difference 𝐵𝑟 Brinkman number 

 

 

1. INTRODUCTION  

The thin layer of viscous fluid in close proximity to a solid surface, as a result of fluid flow along 

the surface, is called the boundary layer [1]. The fluid contact with the boundary causes it to come 

to a standstill and this is termed the classical no-slip condition in boundary-layer theory. As the 

distance from the boundary increases, the fluid velocity increases until it attains the maximum 

(free stream) value. The thin shear layer where velocity has not yet reached the external inviscid 

flow velocity constitutes the hydrodynamic or momentum boundary layer.  When heat and mas 

transfer are also present, as frequently encountered in materials processing and industrial thermos-

hydraulics operations, additional thermal and concentration (solutal) boundary layers are also 

present. Each has a distinct thickness and unique characteristics. Even a century after its 

introduction, Prandtl’s boundary-layer theory (which applied to both laminar and turbulent flows) 

remains the cornerstone of modern fluid dynamics. It is the single most important framework ever 

developed for fluid mechanics analysis and has been verified experimentally showing excellent 

correlation with real phenomena. Originating in aircraft wing aerodynamics it has successfully 

infiltrated into practically every application of viscous flow ranging from coating deposition to 

blood flows. An important category of boundary-layer flows is encountered in manufacturing 

operations where coatings are extruded onto engineering components (substrates). When the 

substrate is stretching or moving (translating), very precise fabrication of coatings can be achieved. 

Crane [2] was the first to study the boundary layer flow induced by a linearly stretching sheet and 

obtained analytical solutions for the purely hydrodynamic problem. Lin and Shih [2] extended this 

methodology to study thermal convection laminar boundary layer flow along cylinders that are 

moving horizontally and vertically at a constant velocity. They discovered that it was not possible 

to obtain similarity solutions due to the influence of the cylinder curvature on the flow. Since then, 

many researchers [4-9] have continued to build upon Crane's work extending models to consider 

non-Newtonian effects, non-Fourier heat flux, hydromagnetics, thermo-solutal transport (coupled 

heat and mass transfer), wall transpiration, nonlinear (quadratic, exponential) stretching and many 
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other aspects. Magyari and Keller [10] studied the boundary layer flow and heat transfer caused 

by an exponentially stretching sheet for Newtonian liquids. Ishak [11] investigated the 

magnetohydrodynamic (MHD) boundary layer flow from an exponentially shrinking sheet with 

radiative flux effects. All these investigations confirmed the marked modifications that are induced 

in momentum, heat and mass transfer behaviour with wall stretching (or shrinking) which are 

important in real materials synthesis applications. 

In the past several decades, various unique approaches have been developed to enhance the rate of 

heat transfer and achieve different levels of thermal efficiency in industrial fluid dynamics. A key 

objective has been the sustainable and inexpensive improvement of thermal conductivity. 

Researchers have made significant efforts to disperse high thermal conducting solid particles into 

working liquids to achieve this goal. Fluids play a crucial role in thermal management systems, 

helping to regulate and improve the rate of heat transfer [12]. This is also of relevance in optimizing 

the manufacture of complex coatings [5] where thermal properties contribute significantly to the 

constitutional homogeneity of final products. With advancements in technology, the amount of 

heat output in modern systems has increased, requiring higher rates of heat transfer to prevent 

overheating. In 1995, researchers Choi [13] discovered that adding solid nanoparticles to fluids, 

known as nanofluids, can significantly increase their thermal conductivity [14]. Nanofluids are a 

novel category of fluids created by incorporating nanometer-sized materials (such as nanoparticles, 

nanofibers, nanotubes, nanowires, nanorods, nanosheets, or droplets) into a base fluid. Essentially, 

nanofluids are nanoscale suspensions composed of condensed nanomaterials. They are a two-

phase colloidal suspension system, with one phase being a solid and the other a liquid. Nanofluids 

have become increasingly popular as working fluids due to their improved heat transfer capabilities 

although they also exhibit higher viscosity [15]. However, they have the key advantage of avoiding 

agglomeration (clustering) effects encountered in, for example, microscale particle-based fluids, 

which can lead to clogging, discontinuous distribution etc. In recent years, the study of nanofluids 

has attracted enormous attention both experimentally and theoretically. Early formulations 

developed to describe flows of nanofluids include the Tiwari-Das nanoscale model and the 

Buongiorno two-component model, both of which have been reviewed in detail by Bég [16]. The 

former model (Tiwari-Das) is useful for studying actual nanomaterials since it provides a 

framework for nano-particle volume fraction and includes momentum and energy equations but 

does not feature nanoparticle mass diffusion physics. The latter model (Buongiorno) does feature 
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a formulation for nanoparticle mass diffusion but cannot be deployed for studying actual 

nanomaterial types as it excluded a volume fraction feature and has no relationships for 

nanoparticle properties.  Kuznetsov and Nield [17] presented one of the first studies of natural 

convective boundary layer flow of nanofluids using the Buongiorno model, noting that smaller 

nanoparticle sizes correspond to stronger Brownian motion effects. The main driving force behind 

the research on nanofluids is their ever-widening range of potential applications which are being 

embraced in diverse areas including environmental contamination reduction, nano-drug delivery, 

solar collector optimization and emerging smart coating materials.  

Several review articles have been presented on the progress of nanofluid research in recent years, 

often with a focus on experimental and theoretical studies of the thermophysical properties or 

convective heat transfer of unitary nanofluids [18-20]. Unitary nanofluids deploy a single 

nanoparticle material type. However, engineers have explored the idea of combining different 

nanoparticle types (and shapes) and have recently developed the hybrid nanofluid. A hybrid 

nanofluid is a homogeneous mixture of two or more nanoparticles that have formed new physical 

and chemical bonds. Binary hybrid nanofluids contain two nanoparticles, ternary contain three and 

so on. The main idea behind using hybrid nanofluids is to achieve a significant improvement in 

thermophysical, hydrodynamic and mass transfer properties when compared to traditional single 

component (unitary) nanofluids, due to the synergistic effect [21]. Niihara [22] presented a new 

material design concept for nanocomposites that improved mechanical and thermal properties. 

Jana [23] observed that, the addition of single and hybrid nano-additives further enhances 

successfully the thermal conductivity of fluids. This means that the ability of the fluid to transfer 

heat is increased when these nano-additives are added. Suresh [24] synthesized a (𝐴𝑙2𝑂3  −

 𝐶𝑢/𝑤𝑎𝑡𝑒𝑟) hybrid nanofluid, which showed significant improvements in thermal and mechanical 

properties. Additionally, Momin [25] examined mixed convection with (𝐴𝑙2𝑂3/𝑤𝑎𝑡𝑒𝑟) hybrid 

nanofluid in an inclined tube for laminar flow. Suresh et al. [26] investigated the effect of 

(𝐴𝑙2𝑂3  −  𝐶𝑢/𝑤𝑎𝑡𝑒𝑟) hybrid nanofluid in thermal engineering systems.  

Magnetohydrodynamics (MHD) has a wide range of applications in modern materials processing, 

metallurgy, renewable energy systems, nuclear reactor technology etc. It involves the interaction 

of viscous electro-conductive fluids with externally applied magnetic fields. MHD flows have 

therefore been extensively studied in industrial systems including magnetic spin coating and 
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stretching sheet dynamics. Nanofluids containing magnetic nanoparticles invoke MHD effects. 

Pattnaik et al. [27] computed the magnetic nanofluid enrobing coating boundary layer flow on a 

stretching cylinder with homogeneous/heterogeneous reactions using titania nanoparticles. Hybrid 

magnetic nanofluids e.g. 𝐴𝑙2𝑂3 − 𝐶𝑢 -water hybrid nanofluids on a stretching wall were 

considered by Usman et al. [28] with MHD and radiative flux. Further studies include Nayak et 

al. [29] (on hydromagnetic nanofluids from an extending porous wall), Khan et al. [30] (second 

law thermodynamic analysis of rotating channel hybrid nanofluid MHD flow), Reddy et al. [31] 

(perturbation analysis of MHD reactive nanofluid flow from a rotating wall), Samart et al. [32] 

(unsteady viscoplastic nanofluid transport with MHD and radiative flux) and Iqbal et al. [33] (on 

Hall current magnetized oscillating hybrid nanofluid flows). The studies considered many other 

phenomena discussed in conjunction with hybrid nanoparticle effects including multiple wall slip, 

bi-axial stretching and Coriolis body forces. The specific role of wall stretching has received 

significant attention not just in nanofluid dynamics but also non-Newtonian transport phenomena. 

Relevant studies have deployed a range of numerical methods including finite element methods, 

finite difference methods and shooting quadrature to solve the associated nonlinear partial 

differential and ordinary differential boundary value problems. Further investigations of both 

unitary and binary hybrid nanofluid dynamics have been presented in [34-39]. These investigations 

have shown that net shear stress and drag experienced by the nanofluid is enhanced as a result of 

lateral stretching. Grosan and Pop [40] generalized single direction stretching sheet nanofluid 

transport to the case of bi-directional stretching/shrinking with a modified nanoscale model. 

Entropy generation analysis is a valuable method for enhancing the efficiency of thermal systems. 

Recent investigations have also shown that incorporating nanoparticles into the base fluid can 

impact the overall entropy generation in a system. Thermodynamic systems are susceptible to a 

number of phenomena that result in energy wastage. These may include diffusion, chemical 

reactions, drag between solid surfaces, and the internal resistance of fluids. These factors can all 

contribute to a rise in entropy, which can negatively affect the system performance. The 

optimization of entropy and the application of the second law of thermodynamics are crucial 

methods for systems in thermodynamics including coatings, power generation, thermal ducts, 

propulsion and heat exchangers. These techniques were first introduced by the Romanian-

American mechanical engineer Bejan [41-42]. Now known as Bejan’s entropy generation 

minimization (EGM) this approach has been deployed in multiple applications to accurately 
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evaluate and improve the performance of thermodynamic systems by reducing entropy generation 

and increasing the net thermal efficiency. Sciacovelli [43] lucidly reviewed the various theoretical 

and practical applications of EGM in different engineering systems. Manjunath and Kaushik [44] 

applied EGM to heat exchangers. External coating flows with entropy generation were scrutinized 

by Reddy et al. [45] for a second order viscoelastic polymeric liquid with an optimized finite 

difference code. Gajjela et al. [46] computed the internal coating of a micropolar magnetic liquid 

with entropy generation. Thameem Basha et al. [47] studied the external coating of a horizontal 

cylinder with a magnetic shear-thinning nanofluid, computing the entropy generation and Bejan 

number over a wide range of thermal buoyancy parameter values with the Keller box method. 

Khan et al. [48] considered radiative heat transfer contributions to entropy generation in reacting 

nanofluids with activation energy effects. Further studies include Shukla et al. [49] (on time-

dependent Hiemenz stagnation coating flow of a radiative magnetic nanofluid with chemical 

reaction and shape factor effects) and Reddy et al. [50] (on third grade viscoelastic non-Fourier 

magnetic nanofluid internal coating flows). All these investigations confirmed that EGM permits 

unique combinations of control parameters to be identified for strategically optimizing heat 

transfer efficiency and reducing entropy generation and losses.  

In recent years, engineers have increasingly adopted artificial neural networks (ANNs) due to its 

effectiveness in accommodating large data sets generated in a wide range of complex multi-

physical, multi-scale engineering applications. In the context of nanofluids, ANNs have been 

implemented in smart nanofluid magnetic biomimetic pumps [51], coating flows of nanofluids in 

porous media [52] and reactive nanofluid transport around bluff bodies [53]. These networks have 

been utilized for analysis, forecasting and optimization of thermal and other characteristics. For 

instance, researchers have applied ANNs to examine the distribution of temperature in a porous 

fin model [54], while others have employed a combination of ANNs and genetic algorithms to 

optimize the shape and angle of vortex generators and the volume fraction of nanoparticles in a 

flow in a rectangular channel [55]. Furthermore, various forms of ANNs, such as particle swarm 

optimization (PSO), artificial bee colony (ABC) and Support Vector Regression (SVR), can be 

considered a dependable and logical approach for predicting results [56]. Neural networks are 

widely used in current research due to their ability to provide solutions for a wide range of 

problems which involve non-linearity [57]. They are particularly useful for tasks such as 
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extrapolation, noise robustness, interpolation and handling of insufficient data. Additionally, they 

are relatively easy to use and have a high degree of fault tolerance [58-59].  

The focus of the present article is to deploy ANNs and EGM to conduct a neural network-based 

simulation with Bejan entropy generation minimization (EGM) hybrid magnetic nano-coating 

flow along a stretching surface to a porous medium with viscous dissipation. Specifically, 2 hybrid 

nanoparticle combination are examined, namely magnetic graphite oxide (GO)-molybdenum 

disulfide (𝑀𝑜𝑆2) and copper (Cu)-silicon dioxide (𝑆𝑖𝑂2), both with engine oil as the base fluid, 

which are appropriate for advanced smart polymeric nano-coatings. The novelty of the present 

study is therefore the combined approach with ANNs and EGM for these unique hybrid 

nanoparticle combinations which has not been addressed before in the literature. A new physico-

chemo-mathematical boundary layer model has been presented to simulate the coating problem. 

Optically thick properties are assumed for the magnetic nanofluid, and the Rosseland diffusion 

flux model is deployed for radiation heat transfer. The Darcy model for the isotropic porous 

homogenous medium. The stretching sheet is porous and both wall suction or injection are 

examined. A robust neural network is deployed which incorporates Bayesian regularization as the 

training algorithm, to optimize the physical parameters controlling transport characteristics of 

hybrid nanofluids. The dimensional boundary layer model is transformed via suitable scaling 

variables from a partial differential system into a dimensionless non-linear coupled ordinary 

differential system. The transformed boundary value problem is solved numerically with the 

BVP4C subroutine in the symbolic software MATLAB which achieves exceptional accuracy. 

Validation with previous simpler studies is conducted. Extensive visualization of velocity, 

temperature, Nusselt number, skin friction, entropy generation rate, Bejan number, ANN epochs 

and other results are included. The simulations provide a good insight into thermal optimization 

of hybrid smart magnetic nano-coatings. The research applications also include enhancing heat 

transfer in energy systems, optimizing industrial processes, aiding biomedical multi-functional 

coating deposition and improving electromagnetic sensor surface design. Understanding 

convective flows, radiative heat transfer and magnetized nanofluids contributes to efficiency, 

performance and sustainability across various fields, including energy, manufacturing, healthcare 

and environmental science.  
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2. PHYSICAL MODEL AND MATHEMATICAL FORMULATION  

In this work, we examine the two-dimensional unsteady magnetohydrodynamic (MHD) natural 

convection flow of a viscous and incompressible hybrid electrically conducting nanofluid in the 

presence of convective boundary conditions, from a stretching sheet embedded in a Darcian porous 

medium. The flow domain and the coordinate system are depicted in Fig. 1, where the x and y 

coordinates are directed along and perpendicular to the sheet. The stretching wall is porous and 

lateral mass flux arises (suction, injection). Viscous heating is included. The magnetic hybrid 

nanofluid is assumed to have uniform particle size, and we ignore agglomeration effects on 

thermophysical properties, assuming they are synthesized as a stable mixture of nanoparticles and 

base fluid. We have considered silicon dioxide (𝑆𝑖𝑂2), molybdenum disulfide (𝑀𝑜𝑆2), Graphite 

oxide (GO), Copper (Cu) as nanoparticles and engine oil as base fluid (polymeric nanocoating). 

Thermophysical properties are assumed to be constant. Rosseland’s diffusion algebraic model is 

implemented for radiative heat flux. Magnetic induction is ignored since magnetic Reynolds 

number is sufficiently small. The sheet is electrically insulated, and Hall current effects are 

negated.  

 

Figure 1: Physical configuration and coordinate system 

Based on the above assumptions and under the usual boundary layer and Boussinesq 

approximations in (𝑥, 𝑦) coordinate system for the two-dimensional hybrid nanofluid are the 

governing continuity, momentum, and energy equations may be formulated by extending the 

models in [60-61]: 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0                                                                                                                                                  (1) 
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𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝜗ℎ𝑛𝑓 (

𝜕2𝑢

𝜕𝑦2
−

𝑢

𝐾
) −

𝜎ℎ𝑛𝑓

𝜌ℎ𝑛𝑓
𝐵2(𝑡)𝑢 +

𝑔(𝜌𝛽)ℎ𝑛𝑓

𝜌ℎ𝑛𝑓

(𝑇 − 𝑇∞)                              (2) 

𝜕𝑇

𝜕𝑡
+ 𝑢

𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=

1

(𝜌𝐶𝑝)ℎ𝑛𝑓
[𝐾ℎ𝑛𝑓

𝜕2𝑇

𝜕𝑦2
−

𝜕𝑞𝑟

𝜕𝑦
+ 𝜇ℎ𝑛𝑓 (

𝜕𝑢

𝜕𝑦
)

2

]                                                    (3) 

 

Here u and v are velocity components in the x and y-directions, t is time, 𝜗ℎ𝑛𝑓 is kinematic viscosity 

of the hybrid magnetic nanofluid, K is permeability of the porous medium, 𝜎ℎ𝑛𝑓 is electrical 

conductivity, 𝜌ℎ𝑛𝑓 is density, B(t) is magnetic field, 𝛽 is coefficient of thermal expansion, g is 

gravitational acceleration, T is temperature, 𝑇∞ is free stream temperature, Cp is specific heat 

capacity at constant pressure,  𝐾ℎ𝑛𝑓 is   thermal conductivity, 𝑐𝑝 is its specific heat, 
ℎ𝑛𝑓

 is dynamic 

viscosity and 𝑞𝑟 is the radiative heat flux. The velocity and temperature at the wall and in the free 

stream are specified with the following boundary conditions. 

𝐴𝑡 𝑦 = 0:    𝑢 = 𝑈𝑤, 𝑣 = 𝑣𝑤, 𝑇 = 𝑇𝑤, 𝑣𝑤 = −√
𝜗𝑓𝑈𝑤

𝑥
𝑓(0)   

𝐴𝑡 𝑦 → ∞:      𝑢 → 0, 𝑇 → 𝑇∞                                                                                                      (4)                                                                                                                               

 

The radiative heat flux (𝑞𝑟) in Eqn. (3) is analyzed using the Rosseland flux model [49] as: 

   𝑞𝑟 = −
4𝜎∗

3𝐾∗

𝜕𝑇4

𝜕𝑦
                 (5)  

Here 𝜎∗ is the famous Stefan-Boltzmann constant and K* is the radiation extinction coefficient. 

The radiative heat flux can be approximated by linearizing via a Taylor series expansion, 

expanding  𝑇4 about 𝑇∞ then ignoring higher order terms. This yields the expression, 𝑇4 ≅

4𝑇∞
3  𝑇 − 3𝑇∞

3 . 

2.1 Transformation of mathematical model 

We employ the following transformations to non-dimensionalize Eqns. (1) to (4) [60-61], 
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𝜂 = √
𝑈𝑤

𝜗𝑓𝑥
𝑦, 𝜓 = √𝜗𝑓𝑥𝑈𝑤𝑓(𝜂),   

𝑢 =
𝑎𝑥

1 − 𝑐𝑡
𝑓′(𝜂), 𝑣 = −√

𝜗𝑓𝑎

1 − 𝑐𝑡
 𝑓(𝜂),   𝜃(𝜂) =

𝑇 − 𝑇∞

𝑇𝑤 − 𝑇∞
                                                       (6) 

 

Here,  is transformed transverse coordinate,  𝜓 is dimensional stream function, f () is the 

dimensionless stream function, Uw is the wall velocity, a and c are arbitrary constants,  is the 

dimensionless temperature function and Tw is the wall temperature. By utilizing the scaling 

transformations in Eqn. (6) on the primitive conservation Eqn. (1-3) with the modified Rosseland 

flux term (5), the continuity eqn. (1) is automatically satisfied (via the Cauchy-Riemann 

equations), and the partial differential boundary value problem reduces to the following coupled 

non-dimensional ordinary differential momentum and thermal boundary layer equations: 

𝜗ℎ𝑛𝑓

𝜗𝑓

{𝑓′′′(𝜂) − ϵ𝑓′(𝜂)} + 𝑓(𝜂)𝑓′′(𝜂) − {𝑓′(𝜂)}2 − 𝐴 {𝑓′(𝜂) +
𝜂

2
𝑓′′(𝜂)} −

𝜎ℎ𝑛𝑓 𝜎𝑓⁄

𝜌ℎ𝑛𝑓 𝜌𝑓⁄
𝑀𝑓′(𝜂)

+
(𝜌𝛽)ℎ𝑛𝑓 (𝜌𝛽)𝑓⁄

𝜌ℎ𝑛𝑓 𝜌𝑓⁄
𝜆𝜃(𝜂) = 0                                                                                         (7) 

 

1

𝑃𝑟 × {(𝜌𝐶𝑝)ℎ𝑛𝑓 (𝜌𝐶𝑝)𝑓⁄ }
{

𝐾ℎ𝑛𝑓

𝐾𝑓
+

4

3
𝑅𝑑} 𝜃′′(𝜂) +

𝜇ℎ𝑛𝑓 𝜇𝑓⁄

(𝜌𝐶𝑝)
ℎ𝑛𝑓

(𝜌𝐶𝑝)
𝑓

⁄
𝐸𝑐{𝑓′′(𝜂)}2

− 𝐴 {𝜃(𝜂) +
𝜂

2
𝜃′(𝜂)} − 𝑓′(𝜂)𝜃(𝜂) + 𝑓(𝜂)𝜃′(𝜂) = 0                                               (8) 

The corresponding boundary conditions at the sheet and in the free stream (4) emerge as follows:  

𝑓′(0) = 1, 𝑓(0) = 𝑠, 𝜃(0) = 1 𝑎𝑡 𝜂 = 0,  

𝑓′(∞) → 0,  𝜃(∞) → 0 𝑎𝑡 𝜂 = ∞.                                                                                               (9) 

Here the following dimensionless parameters arise: 

Unsteadiness parameter, 𝐴 =
𝑐

𝑎
, Prandtl number, 𝑃𝑟 =

𝜗𝑓(𝜌𝐶𝑝)𝑓

𝐾𝑓
, Radiation parameter (Boltzmann 

number), 𝑅𝑑 =
4𝜎∗𝑇∞

3

𝐾∗𝐾𝑓
, Magnetic parameter, 𝑀 =

𝜎𝑓𝐵0
2

𝜌𝑓𝑎
, Inverse permeability parameter, ϵ =
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𝜗𝑓(1−𝑐𝑡)

𝑎𝐾
, Eckert number, 𝐸𝑐 =

𝑈𝑤
2

(𝐶𝑝)𝑓(𝑇𝑤−𝑇∞)
, Thermal buoyancy parameter, 𝜆 =

𝐺𝑟

𝑅𝑒𝑥
2, Thermal 

Grashof number,      𝐺𝑟 =
𝑔𝛽𝑓(𝑇𝑤−𝑇∞)𝑥3

𝜗𝑓
2 , Local Reynolds number, 𝑅𝑒𝑥 =

𝑈𝑤𝑥

𝜗𝑓
.     

          (10) 

 

2.2 Physical quantities of interest: 

Important characteristics at the wall (sheet) in materials coating operations are the non-

dimensional shear stress and heat transfer gradient (Nusselt number). These are formulated for the 

present problem as follows: 

Skin friction component 𝐶𝑓 along the 𝑥 − direction:  

∴
1

2
𝐶𝑓√𝑅𝑒𝑥 =

𝜇ℎ𝑛𝑓

𝜇𝑓
𝑓′′(0)    (11) 

The local Nusselt number:  

∴
𝑁𝑢𝑥

√𝑅𝑒𝑥
= −

𝐾ℎ𝑛𝑓

𝐾𝑓
𝜃′(0)          (12) 

 

2.3 Thermophysical Characteristics of Hybrid Nanofluid 

The appropriate relations for both unitary and hybrid (binary) nanofluids used to compute dynamic 

viscosity, density, heat capacity, thermal expansion coefficient, thermal conductivity and electrical 

conductivity are given in Table 1 following [62,63]. The computed values based on these relations 

are documented in Table 2. 

Table 1: Thermophysical characteristics of nanofluid and hybrid nanofluid [62-63] 

Thermophysical 

characteristics 

Nanofluid Hybrid Nanofluid 

Dynamic 

viscosity 

𝜇𝑛𝑓 =
𝜇𝑓

(1 − 𝜑1)2.5
 𝜇ℎ𝑛𝑓 =

𝜇𝑓

(1 − 𝜑1)2.5(1 − 𝜑2)2.5
 

Density 𝜌𝑛𝑓 = (1 − 𝜑1)𝜌𝑓 + 𝜑1𝜌𝑠1 𝜌ℎ𝑛𝑓 = (1 − 𝜑2)[(1 − 𝜑1)𝜌𝑓 + 𝜑1𝜌𝑠1] + 𝜑2𝜌𝑠2  
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Heat capacity (𝜌𝐶𝑝)𝑛𝑓 = (1 − 𝜑1)(𝜌𝐶𝑝)𝑓 + 𝜑1(𝜌𝐶𝑝)𝑠1 (𝜌𝐶𝑝)ℎ𝑛𝑓 = (1 − 𝜑2)[(1 − 𝜑1)(𝜌𝐶𝑝)
𝑓

+ 𝜑1(𝜌𝐶𝑝)
𝑠1

 ]

+  𝜑2(𝜌𝐶𝑝)𝑠2 

Thermal 

Expansion 

(𝜌𝛽)𝑛𝑓 = (1 − 𝜑1)(𝜌𝛽)𝑓 + 𝜑1(𝜌𝛽)𝑠1 

 

(𝜌𝛽)ℎ𝑛𝑓 = (1 − 𝜑2)[(1 − 𝜑1)(𝜌𝛽)𝑓 + 𝜑1(𝜌𝛽)𝑠1]

+   𝜑2(𝜌𝛽)𝑠2 

Thermal 

conductivity 

𝑘𝑛𝑓

𝑘𝑓

=
𝑘𝑠1 + 2𝑘𝑓 − 2𝜑1(𝑘𝑓 − 𝑘𝑠1)

𝑘𝑠1 + 2𝑘𝑓 + 𝜑1(𝑘𝑓 − 𝑘𝑠1)
 

𝑘ℎ𝑛𝑓

𝑘𝑛𝑓

=
𝑘𝑠2 + 2𝑘𝑛𝑓 − 2𝜑2(𝑘𝑛𝑓 − 𝑘𝑠2)

𝑘𝑠2 + 2𝑘𝑛𝑓 + 𝜑2(𝑘𝑛𝑓 − 𝑘𝑠2)
 

Electrical 

conductivity 

𝜎𝑛𝑓

𝜎𝑓

=
𝜎𝑠1 + 2𝜎𝑓 − 2𝜑1(𝜎𝑓 − 𝜎𝑠1)

𝜎𝑠1 + 2𝜎𝑓 + 𝜑1(𝜎𝑓 − 𝜎𝑠1)
 

𝜎ℎ𝑛𝑓

𝜎𝑛𝑓

=
𝜎𝑠2 + 2𝜎𝑛𝑓 − 2𝜑2(𝜎𝑛𝑓 − 𝜎𝑠2)

𝜎𝑠2 + 2𝜎𝑛𝑓 + 𝜑2(𝜎𝑛𝑓 − 𝜎𝑠2)
 

 

 

Table 2: Thermophysical characteristics [64-65] 

Properties Graphite oxide 
 

Molybdenum 

disulfide (𝑀𝑜𝑆2) 

Copper 

(Cu) 

Silicon dioxide 

(𝑆𝑖𝑂2) 

engine oil 

Density

 𝜌(𝑘𝑔/𝑚3) 

1800 5060 8933 2650 884 

Specific heat 

𝑐𝑝(𝐽/𝐾𝑔𝐾) 

717 397.21 385 730 1910 

Thermal 

conductivity 

𝑘(𝑊/𝑚𝐾) 

5000 904.4 400 1.5 0.144 

Thermal 

expansion 

coefficient 

𝛽(1/𝐾) 

0.284 × 10−5 2.8424 × 10−5 1.67 × 10−5 0.55 × 10−6 70 × 10−5 

Electrical 

Conductivity 

𝜎(𝑆/𝑚) 

107 2.1 × 10−4 5.96 × 107 10−25 2.1 × 10−12 

 

 

 

3. ENTROPY GENERATION MINIMIZATION (EGM) 

Entropy generation refers to the amount of energy that is lost or dissipated as a result of a process, 

which can lead to a decrease in the effectiveness of engineering systems such as conduction and 

convective heat transfer rate. Entropy measures the randomness of molecular behavior in a 

microscopic system. Heat drives thermodynamic irreversibility and entropy increases according to 
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the second law of thermodynamics, which states that the entropy of a closed system never 

decreases. The system moves towards the maximum entropy equilibrium configuration. Entropy 

generation signifies a decline in energy quality and is crucial in heat transfer analysis. The presence 

of thermal radiation, porous medium fibers, viscous heating and variations in thermal conductivity 

as featured in the present hybrid magnetic nanofluid coating model, are all factors that contribute 

to different types of irreversibility in the flow and thermal gradients. 

The local volumetric rate of entropy generation 𝑆𝑔𝑒𝑛(𝑊 𝑚3𝐾⁄ ) is given as [66-67]: 

𝑆𝑔𝑒𝑛 =
𝐾𝑓

𝑇∞
2

(
𝐾ℎ𝑛𝑓

𝐾𝑓
+

4

3
𝑅𝑑) (

𝜕𝑇

𝜕𝑦
)

2

+
𝜇ℎ𝑛𝑓

𝑇∞
(

𝜕𝑢

𝜕𝑦
)

2

                                                                              (13) 

         =
𝐾𝑓

𝑇∞
2

(
𝐾ℎ𝑛𝑓

𝐾𝑓
+

4

3
𝑅𝑑) (𝑇𝑤 − 𝑇∞)2

𝑎

𝜗𝑓(1 − 𝑐𝑡)
{𝜃′(𝜂)}2 +

𝜇ℎ𝑛𝑓

𝑇∞

𝑎3𝑥2

𝜗𝑓(1 − 𝑐𝑡)3
{𝑓′′(𝜂)}2 

         =
𝐾𝑓(𝑇𝑤 − 𝑇∞)2

𝑇∞
2

𝑎

𝜗𝑓(1 − 𝑐𝑡)
{(

𝐾ℎ𝑛𝑓

𝐾𝑓
+

4

3
𝑅𝑑) {𝜃′(𝜂)}2 +

𝜇ℎ𝑛𝑓

𝜇𝑓
∙

𝑇∞

𝑇𝑤 − 𝑇∞

∙
𝜇𝑓𝑈𝑤

2

𝐾𝑓(𝑇𝑤 − 𝑇∞)
{𝑓′′(𝜂)}2} 

        =
𝐾𝑓(𝑇𝑤 − 𝑇∞)2

𝑇∞
2

𝑎

𝜗𝑓(1 − 𝑐𝑡)
{(

𝐾ℎ𝑛𝑓

𝐾𝑓
+

4

3
𝑅𝑑) {𝜃′(𝜂)}2 +

𝜇ℎ𝑛𝑓

𝜇𝑓
∙

𝐵𝑟

Ω
{𝑓′′(𝜂)}2} 

The first term on the right-hand side of Eq. (12) represents irreversibility due to heat transfer and 

the second term represents irreversibility due to viscous dissipation (internal friction in the 

nanofluid). 

The characteristic entropy generation is defined as [66-67]: 

(𝑆𝑔𝑒𝑛)0 =
𝐾𝑓(𝑇𝑤−𝑇∞)2

𝑇∞
2 𝑥2        (14) 

Next, the local entropy generation rate is given by, 

𝑁𝑔 =
  𝑆𝑔𝑒𝑛

(  𝑆𝑔𝑒𝑛)0
 

       =
𝐾𝑓(𝑇𝑤 − 𝑇∞)2

𝑇∞
2

𝑎

𝜗𝑓(1 − 𝑐𝑡)

𝑇∞
2 𝑥2

𝐾𝑓(𝑇𝑤 − 𝑇∞)2
{(

𝐾ℎ𝑛𝑓

𝐾𝑓
+

4

3
𝑅𝑑) {𝜃′(𝜂)}2 +

𝜇ℎ𝑛𝑓

𝜇𝑓
∙

𝐵𝑟

Ω
{𝑓′′(𝜂)}2} 

       =
𝑎𝑥2

𝜗𝑓(1 − 𝑐𝑡)
[(

𝐾ℎ𝑛𝑓

𝐾𝑓
+

4

3
𝑅𝑑) {𝜃′(𝜂)}2 +

𝜇ℎ𝑛𝑓

𝜇𝑓
∙

𝐵𝑟

Ω
{𝑓′′(𝜂)}2] 
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       =
𝑈𝑤𝑥

𝜗𝑓
[(

𝐾ℎ𝑛𝑓

𝐾𝑓
+

4

3
𝑅𝑑) {𝜃′(𝜂)}2 +

𝜇ℎ𝑛𝑓

𝜇𝑓
∙

𝐵𝑟

Ω
{𝑓′′(𝜂)}2] 

       = 𝑅𝑒𝑥 [(
𝐾ℎ𝑛𝑓

𝐾𝑓
+

4

3
𝑅𝑑) {𝜃′(𝜂)}2 +

𝜇ℎ𝑛𝑓

𝜇𝑓
∙

𝐵𝑟

Ω
{𝑓′′(𝜂)}2]    (15) 

Here Brinkman number, 𝐵𝑟 =
𝜇𝑓𝑈𝑤

2

𝐾𝑓(𝑇𝑤−𝑇∞)
 and dimensionless temperature difference, Ω =

(𝑇𝑤−𝑇∞)

𝑇∞
. 

In the case of entropy generation minimization, the objective function may involve minimizing the 

total entropy generation rate or minimizing specific entropy generation terms within the system. 

The optimal solution obtained from the optimization process can be implemented in the design or 

operation of the thermodynamic system to achieve improved efficiency, reduced energy 

consumption and other desired outcomes. 

3.1 Bejan Number 

In thermal systems, Bejan number close to 1 indicates that thermal entropy generation is more 

dominant than frictional entropy generation in the overall entropy production. For 𝐵𝑒 < 0.5 the 

entropy generation produced by energy dissipation exceeds by that due to heat transfer. Bejan 

number can be defined following [66] as: 

𝐵𝑒 =
Entropy production due to thermal irreversibility

Total entropy generation
 

       =

𝑅𝑒𝑥 [(
𝐾ℎ𝑛𝑓

𝐾𝑓
+

4
3 𝑅𝑑) {𝜃′(𝜂)}2]

𝑅𝑒𝑥 [(
𝐾ℎ𝑛𝑓

𝐾𝑓
+

4
3 𝑅𝑑) {𝜃′(𝜂)}2 +

𝜇ℎ𝑛𝑓

𝜇𝑓
∙

𝐵𝑟
Ω

{𝑓′′(𝜂)}2]

 

                                              =

(
𝐾ℎ𝑛𝑓

𝐾𝑓
+

4
3 𝑅𝑑) {𝜃′(𝜂)}2

(
𝐾ℎ𝑛𝑓

𝐾𝑓
+

4
3 𝑅𝑑) {𝜃′(𝜂)}2 +

𝜇ℎ𝑛𝑓

𝜇𝑓
∙

𝐵𝑟
Ω

{𝑓′′(𝜂)}2

                                          (16) 

4. NUMERICAL SOLUTION OF BOUNDARY VALUE PROBLEM AND VALIDATION 

Computational solutions to the derived ordinary differential boundary value problem i. e. Eqns. 

(7), (8) and boundary conditions (9) are calculated by using the bvp4c solver, which implements a 

numerical method called 3-stage Lobatto IIIa collocation [68]. This method belongs to the finite 
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difference discretization family of techniques. To use the bvp4c solver, the nonlinear ordinary 

differential equations and boundary conditions in Eqs. (7) to (8) need to be reformulated and the 

basic syntax used is sol = bvp4c (@OdeBVP, @OdeBC, solinit). This leads to the reduced system:  

𝑓 = 𝑦(1) 

𝑓′ = 𝑦(2) 

𝑓′′ = 𝑦(3) 

𝑓′′′ = ϵ𝑓′(𝜂) +
𝜗ℎ𝑛𝑓

𝜗𝑓
[{𝑓′(𝜂)}2 − 𝑓(𝜂)𝑓′′(𝜂) + 𝐴 {𝑓′(𝜂) +

𝜂

2
𝑓′′(𝜂)} +

𝜎ℎ𝑛𝑓 𝜎𝑓⁄

𝜌ℎ𝑛𝑓 𝜌𝑓⁄
𝑀𝑓′(𝜂)

−
(𝜌𝛽)ℎ𝑛𝑓 (𝜌𝛽)𝑓⁄

𝜌ℎ𝑛𝑓 𝜌𝑓⁄
𝜆𝜃(𝜂)] 

𝜃 = 𝑦(4) 

𝜃′ = 𝑦(5) 

𝜃′′ =
𝑃𝑟 × {(𝜌𝐶𝑝)ℎ𝑛𝑓 (𝜌𝐶𝑝)𝑓⁄ }

{
𝐾ℎ𝑛𝑓

𝐾𝑓
+

4
3 𝑅𝑑}

[𝐴 {𝜃(𝜂) +
𝜂

2
𝜃′(𝜂)} −

𝜇ℎ𝑛𝑓 𝜇𝑓⁄

(𝜌𝐶𝑝)
ℎ𝑛𝑓

(𝜌𝐶𝑝)
𝑓

⁄
𝐸𝑐{𝑓′′(𝜂)}2

+ 𝑓′(𝜂)𝜃(𝜂) − 𝑓(𝜂)𝜃′(𝜂)] 

            (17a-g) 

These equations are coded into the function @OdeBVP. 

 

The boundary conditions are formulated as: 

𝑦𝑎(1) = 𝑠, 𝑦𝑎(2) = 1, 𝑦𝑎(4) = 1,        (18) 

𝑦𝑏(2) = 𝑦𝑏(4) = 0 

In the above statement, "ya" and "yb" refer to the initial and boundary conditions, respectively. 

These conditions are specified in the @OdeBC function. The "solininit" function contains the 

initial mesh points and initial guesses at these points. Multiple solutions can be obtained by 

providing additional initial guesses in the solinit function. The step size of Δ𝜂 = 0.05 was selected 

to meet the convergence criteria of 10−5 in all cases. The value of 𝜂∞ was determined for each 

iteration loop by adding Δ𝜂 to the previous value, i. e. 𝜂∞ = 𝜂∞ + Δ𝜂. The numerical MATLAB 

results (bvp4c) are first validated with viscous fluid i. e. in the absence of either hybrid nanoparticle 
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(𝜑1 = 𝜑2 = 0) without unsteadiness, dissipation, porous medium, magnetic, radiative, thermal 

buoyancy or wall mass flux effects (𝐴 = 𝐸𝑐 = 𝜖 = 𝑀 = 𝑅𝑑 = 𝜆 = 𝑠 = 0) based on previous 

solutions in the existing literature for Nusselt number. The comparisons are presented in Table 3 

and very good agreement is achieved confirming the accuracy of the current MATLAB bvp4c 

results. 

Table 3: Comparison results for heat transfer rate −𝜃′(0) for various Prandtl numbers with         

𝐴 = 𝐸𝑐 = 𝜖 = 𝑀 = 𝑅𝑑 = 𝜆 = 𝑠 = 𝜑1 = 𝜑2 = 0. 

 

5. NEURAL NETWORK OPTIMIZATION  

Artificial intelligence (AI) refers to the development of intelligent computer systems that can 

perform tasks that typically require human intelligence, such as speech recognition, decision-

making and visual perception. AI uses algorithms and statistical models to analyze data and make 

predictions or decisions based on that analysis. There are several branches of AI, including 

machine learning, deep learning, natural language processing, computer vision, robotics, and 

expert systems. Machine learning, in particular, focuses on the development of algorithms that can 

learn from and make predictions on data without being explicitly programmed. Artificial Neural 

Networks (ANNs) are a type of computational model that draw inspiration from the structure and 

function of biological nervous systems. One of the most commonly used forms of ANNs is the 

Multi-Layer Perceptron (MLP). The MLP is made up of three main layers: input, hidden, and 

output. The structure of MLP represent in Figure 2. This approach is implemented in the present 

study. 

Pr Jamshed et al [72] Nisar et al [74] Jamshed et al [75] Present 

MATLAB 

bvp4c 

1 1.0 1.0 1.0 1.0 

3 1.923574 1.923574 1.923574 1.919243 

7 3.073146 3.073146 3.073146 3.069175 

10 3.720554 3.720554 3.720554 3.719087 
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Figure 2: Structure of Multi-layer Perceptron in the ANN  

The number of hidden layers can vary based on the complexity of the problem and the amount of 

data noise. Each node in the MLP is connected to the nodes in the next layer by means of a weight 

vector. The inputs are summed up in the first layer and then passed on as inputs to the next layer. 

The output of the 𝑏𝑗 node in the next layer is determined by the input 𝑛𝑗 , the weight in the 

connection and the threshold of the 𝑏𝑗 node. 

𝑛𝑗 = ∑ 𝑤𝑗𝑖𝑥𝑖 + 𝑏𝑗
𝑛
𝑖=1 ,                   𝑏𝑗 = 1, 2, … , 𝐾         (19)  

The inputs are then transformed by a transfer function, which gives the overall inputs to the next 

layer. The outputs of the hidden layer are then multiplied by the corresponding linking weights to 

obtain the final node output. The size and number of hidden layers can vary based on the problem, 

but there is no standard method for determining these parameters. To create predictive models 

using MLP, a training stage is necessary. This stage adjusts the bias and weight values through 

the use of algorithms such as backpropagation. The training process adds neurons incrementally 

until an optimal solution is reached. To utilize the ANN approach, data has to be first generated 

from the MATLAB numerical solutions. This stage is described first. Next, we address the ANN 

computations based on this generated data.  

5.1 MATLAB data generated  
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Table 4 compares the influence of various different parameters on the skin friction coefficient for 

GO − MoS2/EO and Cu − SiO2/EO hybrid nanofluids. It is evident that with increasing inverse 

permeability parameter (), magnetic parameter (M) and unsteadiness parameter (A), the skin 

friction coefficient is decreased. However, with increasing thermal buoyancy parameter, the skin 

friction coefficient is increased. In all cases, GO − MoS2/EO consistently achieves a higher skin 

friction coefficient than Cu − SiO2/EO. 

Table 4: Effect of various parameters on skin friction for GO − MoS2/EO and Cu − SiO2/EO. 

 

Table 5: Effect of various parameters on Nusselt number for GO − MoS2/EO and Cu − SiO2/EO. 

 

Table 5 compares the impact of different selected parameters on Nusselt number for GO −

MoS2/EO and Cu − SiO2/EO. Evidently with increasing Prandtl number, Pr, (decreasing thermal 

conductivity) the heat transfer rate is also increased since the nanofluid in the boundary layer will 

be cooled and the net heat transfer to the wall be boosted. However, with increasing radiation 
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parameter (Rd) and Eckert number (Ec), the heat transfer rate is decreased. Higher radiative flux 

and viscous heating will energize the nanofluid within the boundary layer and elevated 

temperatures. This will produce a concomitant reduction in heat diffusing to the wall and therefore 

lower Nusselt numbers. Cu − SiO2/EO exhibits higher heat transfer rates than GO − MoS2/EO 

implying that the former cools the boundary layer regime and heats the boundary (wall) whereas 

relatively speaking the latter heats the boundary layer and cools the wall (sheet). 

5.2 ANN computation in MATLAB environment  

To launch the neural network in the MATLAB environment, one has to execute the nftool 

command. This system features 4 inputs, 2 outputs and a 4-layer hidden structure, with 10 neurons 

in each hidden layer. For data division, 10% is designated for validation, 10% for testing, and the 

remaining 80% is allocated for training purposes. In this specific scenario, Bayesian regularization 

is applied as the training algorithm for more precise results, compared to other training options. 

Table 6: Performance of the 10 runs of br-NN for 𝐺𝑂 − 𝑀𝑜𝑆2/𝐸𝑛𝑔𝑖𝑛𝑒  𝑜𝑖𝑙: 

Runs MSE Gradient Mu Num 

parameters 

Sum squared  

 

s 

Epochs 

1 1.27162E-09 9.99E-08 50 32.1 863 404 

2 1.19091E-09 1.00E-07 50 32.4 704 553 

3 1.09196E-09 9.95E-08 500 36.5 928 403 

4 1.30623E-09 9.86E-08 50 31.2 834 404 

5 1.24283E-09 9.89E-08 50 32.7 1080 258 

6 1.49953E-09 9.96E-08 500 35.6 844 525 

7 1.22988E-09 9.89E-08 50 33.5 908 300 

8 1.27294E-09 9.98E-08 50 33.0 915 447 

9 1.08175E-09 9.93E-08 50 33.4 912 408 

10 1.12010E-09 9.98E-08 50 33.4 942 297 

 

 

 

Table 7: Performance of the 10 runs of br-NN for 𝐶𝑢 − 𝑆𝑖𝑂2/𝐸𝑛𝑔𝑖𝑛𝑒  𝑜𝑖𝑙: 

Runs MSE Gradient Mu Num 

parameters 

Sum squared 

parameters 

Epochs 

1 1.79687E-08 9.94E-08 500 32.8 935 678 
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2 1.13279E-09 9.98E-08 50 32.1 845 423 

3 1.188617E-09 9.99E-09 500 32.9 900 624 

4 2.20286E-09 9.94E-08 500 36.3 810 250 

5 1.17278E-09 9.87E-08 50 32.7 934 335 

6 1.35537E-09 9.91E-08 50 31.3 917 400 

7 2.17436E-09 1.00E-09 500 36.9 883 410 

8 1.57340E-09 9.97E-08 500 33.2 989 762 

9 1.35404E-09 9.94E-08 50 34.7 942 350 

10 1.35968E-09 9.91E-08 50 32.4 963 789 

 

Tables 6 and 7 present the details of ten separate runs of the artificial neural network (ANN). The 

network was trained ten times for each scenario. The run with the lowest mean square error (MSE) 

was selected for discussion, as it exhibits the best performance among all other runs. The present 

article therefore focuses on the graph of training, performance, error histogram, fitting and 

regression for the run with the minimum MSE in each case. 

 

6. RESULTS AND DISCUSSION 

Computational estimates of different dimensionless parameters involved in present study have 

been presented in graphical/tabular forms. Using the numerical procedures described earlier Eqns. 

(7, 8) with boundary conditions (9) were solved numerically using the bvp4c package in MATLAB 

for several values of 𝑃𝑟, 𝑅𝑑 , 𝐴, 𝑀, 𝑠, 𝐸𝑐, 𝜆, 𝐵𝑟, 𝑅𝑒𝑥, 𝜖, 𝜑1, 𝜑2. Following this the ANN simulation 

was conducted via executing the nftool command. Data has been selected to represent physically 

viable hybrid magnetic nanofluid coating regimes and is summarized in Table 8 with all relevant 

sources. Numerical results for various combinations of the thermal, magnetic and nanoscale 

(volume fraction) parameters are presented graphically in Figures 3- 26. 

Table 8. Parametric values used in the present simulations 

Parameters Symbol Value Reference  

Parameters of unsteadiness 𝐴 −0.5, 0.5, 1 [69] 

Suction/ injection parameter s -1, -0.5, 0, 0.5, 1 [70] 

Radiation parameter  𝑅𝑑 0.2, 0.4, 0.6 [69] 

Volume fraction coefficient 𝜑2 0.01, 0.03, 0.05 [70] 
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Prandtl number 𝑃𝑟 30, 40, 50 [70] 

Magnetic parameter 𝑀 1, 2, 3 [69] 

Inverse permeability 

parameter 
ϵ 0.5, 1, 1.5 [69] 

Eckert number 𝐸𝑐 0.001, 0.005, 0.01 [69] 

Thermal buoyancy 𝜆 −0.5, 0, 0.5 [70] 

Reynolds number 𝑅𝑒𝑥 1 [71] 

Brinkman Number 𝐵𝑟 1, 2, 3 [71] 

 

 

Figure 3: Velocity distribution for unitary and hybrid nanofluids 



23 
 

 

Figure 4: Temperature distribution for unitary and hybrid nanofluids 

 

The profiles for velocity 𝑓′(𝜂) and temperature 𝜃(𝜂) for 2 unitary nanofluids (GO/Engine  oil and 

Cu/Engine  oil) and 2 hybrid nanofluids (GO − MoS2/Engine  oil and Cu − SiO2/Engine  oil)  on 

are displayed in figures (3) and (4). Fig. 3 shows that with a second nanoparticle present i. e. 
2
>0, 

for the hybrid nanofluids, there is an elevation in velocity relative to unitary nanofluids (
2

= 0). 

The boundary layer flow is accelerated therefore, and momentum boundary layer thickness will 

be reduced.  The Cu − SiO2/Engine  oil hybrid nanofluid clearly achieves higher velocity 

magnitudes compared with the GO − MoS2/Engine  oil, indicating that viscosity is reduced in the 

former which produces greater flow acceleration. In all profiles there is a smooth asymptotic 

convergence achieved in the free stream confirming that sufficiently large infinity boundary 

condition has been prescribed in the MATLAB bvp4c computations. Fig. 4 indicates that for all 4 

nanofluids studied there is a smooth descent in temperatures from the wall to the free stream. 

GO/Engine  oil supersedes  Cu/Engine  oil temperatures at all locations in the boundary layer. 

Thermal boundary layer thickness is also greater for the former. However significantly higher 

temperature is computed with the GO − MoS2/Engine  oil hybrid nanofluid compared with both 



24 
 

unitary nanofluids. The Cu − SiO2/Engine  oil hybrid nanofluid temperature exceeds that of the 

Cu/Engine  oil unitary nanofluid but is not as high as the GO/Engine  oil unitary nanofluid. 

Clearly the unique nanoparticle contributions exert a different overall impact on thermal 

conductivity of the nanofluid. Effectively graphene oxide combined with molybdenum sulphide 

(GO − MoS2/Engine  oil hybrid nanofluid ) is observed to achieve the best thermal enhancement 

properties which is contrary to its performance in the velocity distribution (Fig.3). The 

amalgamation of carbon-based and metallic nanoparticles would therefore appear to be more 

efficient than purely metallic or carbon-based nanoparticles. Nevertheless, no single nanofluid 

whether unitary or hybrid simultaneously attains the best velocity or thermal performance.  

 

 

(a) Mean square error 
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(b) Gradient of MU 

 

(c) Error Histogram 



26 
 

(d) Regression 

               

 

(e) Fitting 

Figure 5: Mean square error, gradient, MU, regressions and fitting for 𝐺𝑂 − 𝑀𝑜𝑆2/Engine  oil 
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The GO − MoS2/Engine  oil hybrid nanofluid case has first been analyzed using neural networks 

incorporating Bayesian regularization as the training algorithm. In sub-figure 5(a), the mean square 

error was found to be attain a minimum value at 404 epochs, displaying a small error of almost 

10−8. The training graphs in sub-figure 5(b) visualize all key outputs, namely gradient, Mu, 

number of parameters and sum of squared parameters values of 9.99 × 10−8, 50, 32.1 and 863 

respectively. The error histogram in sub-figure 5(c) shows that the errors approach the zero-error 

line of approximately 2.7 × 10−5. Sub-figure 5(d) illustrates the regression plots, which present a 

correlation assessment of R close to unity, a highly desirable outcome for testing, validation and 

training. Finally, sub-figure 5(e) displays the fitness graph, displaying the maximum error during 

testing, validation, and training being less than 1 × 10−4 

 

 

(a) Mean Squared Error 
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(b) Gradient and MU 

 

(c) Error Histogram 
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(d) Regressions 

 

(e) Fitting 

Figure 6: Mean square error, gradient, MU, regressions and fitting for 𝐶𝑢 − 𝑆𝑖𝑂2/Engine  oil 
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Next the Cu − SiO2/Engine  oil hybrid nanofluid case has been studied again using neural 

networks incorporating Bayesian regularization as the training algorithm. In sub-figure 6(a), the 

mean square error is now observed to attain its minimum at 678 epochs (a much higher value than 

the 404 epochs computed in the GO − MoS2/Engine  oil hybrid nanofluid case, Fig 5a)), 

displaying a small error of almost 10−8. The training graphs in sub-figure 6(b) again visualize 

gradient, Mu, number of parameters, and sum of squared parameters values of 9.99 ×

10−8, 500, 32.8 and 935, respectively, The error histogram in sub-figure 6(c) shows the errors 

approach a zero error line of approximately −1.5 × 10−5 which in this case is sub-zero, whereas 

in the GO − MoS2/Engine  oil hybrid nanofluid case (Fig 5c) the value is positive i.e. 

approximately 2.7 × 10−5. Sub-figure 6(d) illustrates the regression plots, which again present a 

correlation assessment of R close to unity, indicating that again a beneficial outcome is achieved 

as with the GO − MoS2/Engine  oil hybrid nanofluid case (Fig 5d) for testing, validation, and 

training. Finally, sub-figure 6(e) displays the fitness graph, displaying the maximum error during 

testing, validation and training is again less than 1 × 10−4 which concurs with the GO −

MoS2/Engine  oil hybrid nanofluid case (Fig. 5e). 

 

Figure 7. Velocity distribution for various values of 𝑀 
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Figure 8. Temperature distribution for various values of 𝑀 

In figures (7) and (8), the influence of increasing magnetic parameter 𝑀, on the velocity and 

temperature distributions is visualized. Fig. 7 shows that the velocity 𝑓′(𝜂) is damped significantly 

for all unitary and hybrid nanofluids with increment in magnetic parameter. Hydrodynamic 

(momentum) boundary layer thickness is therefore elevated. The presence of the Lorentz magnetic 

body force, −
𝜎ℎ𝑛𝑓 𝜎𝑓⁄

𝜌ℎ𝑛𝑓 𝜌𝑓⁄
𝑀𝑓′(𝜂) featured in Eqn. (8), creates a strong damping effect which 

decelerates the blood flow and increases momentum boundary layer thickness. The parameter M 

is sometimes known as Stuart number and embodies the relative contribution of Lorentzian 

magnetic drag to inertial force. It is therefore distinct from the more familiar Hartmann number 

which represents the ratio of Lorentz magnetic force to viscous force in the regime. For M = 1 both 

inertial and magnetic Lorentz forces contribute equally. For M > 1 the Lorentz force dominates the 

inertial force. At all values of M, the GO − MoS2/Engine  oil achieves distinctly greater velocity 

magnitudes than the  Cu − SiO2/Engine  oil. This may be related to both the weaker magnetic 

response of the former to external magnetic field and/or the lower global viscosity of this hybrid 

nanofluid. Both these factors will reduce the impact of Lorentzian body force and will produce a 

thinner momentum boundary layer thickness. The disparity between the velocity profiles for the 
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two hybrid nanofluids is also found to be reduced at stronger magnetic field i. e. the profiles are 

more clustered when M = 3 compared with when M = 1.  

Fig. 8 visualizes the temperature 𝜃(𝜂) response with increment in M and a weak elevation in 

temperatures is computed for both hybrid nanofluids.  The hybrid nanofluids have to perform 

supplementary work in dragging against the action of the magnetic field. As magnetic field is  

increased this additional energy expenditure is elevated. This work is dissipated as thermal energy 

in the nanofluid which manifests naturally in an escalation in temperature. Thermal boundary layer 

thickness is therefore also increased. Consistently the  GO − MoS2/Engine  oil case exhibits 

higher temperatures (and greater thermal boundary layer thickness) than Cu − SiO2/Engine  oil 

case. Additionally, the profiles are all separate for each nanofluid and not clustered as with the 

velocity profiles (Fig. 7). Although there is no direct contribution of magnetic field in the energy 

eqn. (8)., it is strongly coupled to the momentum eqn. (7) via multiple terms including the 

convective terms, −𝑓′(𝜂)𝜃(𝜂) + 𝑓(𝜂)𝜃′(𝜂) and the viscous heating term,  

+
𝜇ℎ𝑛𝑓 𝜇𝑓⁄

(𝜌𝐶𝑝)
ℎ𝑛𝑓

(𝜌𝐶𝑝)
𝑓

⁄
𝐸𝑐{𝑓′′(𝜂)}2. Mathematically the influence of magnetic field is therefore 

experienced indirectly by the temperature distribution, although the effect is less pronounced 

understandably than in the velocity distribution since the latter is affected directly by the 

Lorentzian linear magnetic body force. 

 

Figure 9. Velocity distribution for various values of 𝜖 
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Figure 10. Temperature distribution for various values of 𝜖  

 

In figures (9) and (10), the responses of velocity and temperature to variation in inverse 

permeability parameter, 𝜖, have been plotted. Fig. 9 shows that velocity magnitude  𝑓′(𝜂) is 

reduced at all values of transverse coordinate () with increment in 𝜖. ϵ =
𝜗𝑓(1−𝑐𝑡)

𝑎𝐾
 and is clearly 

inversely proportional to the porous medium permeability, K. It features in the Darcian linear bulk 

matrix impedance force in the momentum eqn. (7), viz 
𝜗ℎ𝑛𝑓

𝜗𝑓
{−ϵ𝑓′(𝜂)}. As K is decreased therefore 

𝜖 is increased and the Darcian drag effect is amplified. This decelerates the boundary layer flow 

for both hybrid nanofluids, although the velocities computed for Cu − SiO2/Engine oil exceed 

those observed for GO − MoS2/Engine oil. The decrease in permeability implies an elevation in 

the concentration of solid fibers in the porous medium which inhibits percolation. This decelerates 

the flow and increases momentum boundary layer thickness although the latter is of lower 

magnitude for Cu − SiO2/Engine oil hybrid nanofluid (since velocity magnitudes are higher). The 

resistive effect of lower permeability offers an excellent mechanism for flow regulation. However, 

it does not induce flow reversal or separation (back flow) since at all locations in the boundary 

layer only positive values of velocity are computed. Fig. 10 reveals that increment in inverse 



34 
 

permeability parameter, 𝜖, there is a marked boost in temperatures computed again for both hybrid 

nanofluids. The decrease in permeability as explained earlier corresponds to a hike in volume of 

solid fibers present. This encourages thermal conduction and produces a heating effect in the 

regime, as noted by Tien and Vafai [75]. Thermal boundary layer thickness will therefore also be 

accentuated with increasing inverse permeability parameter, 𝜖. With larger value of ϵ, GO −

MoS2/Engine oil produces higher temperatures and greater thermal boundary layer thickness than 

Cu − SiO2/Engine oil (the converse response to that computed for the velocity field, Fig. 9). 

 

 

Figure 11. Velocity distribution for various values of 𝑠. 
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Figure 12. Temperature distribution for various values of 𝑠  

In figures (11) and (12), we observe that with increasing suction parameter (𝑠 > 0), the velocity 

𝑓′(𝜂) and the temperature magnitude 𝜃(𝜂) are decreased. Stronger suction at the porous wall 

(sheet) withdraws hybrid nanofluid out of the boundary layer and destroys momentum. This 

induces greater adherence of the nanofluid to the wall and decelerates the flow (Fig. 11) resulting 

in a thicker momentum boundary layer. Via coupling of the momentum eqn. (7) with the energy 

eqn. (8) due to natural convection, the temperature (Fig. 12) is also depleted in the regime. Thermal 

boundary layer thickness will therefore be reduced with stronger suction. For the velocity 

distribution (Fig. 11) Cu − SiO2/Engine oil attains higher velocities whereas for the temperature 

distribution, GO − MoS2/Engine oil shows higher magnitudes. The case of s = 0 corresponds to a 

solid wall (non-perforated sheet) and as anticipated produces maximum velocity and maximum 

temperature for both hybrid nanofluids. Clearly successful thermal management may be achieved 

with strong wall suction in addition to flow control, both of which are of considerable interest in 

nano-coating operations as emphasized by Koch [76]. 
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Figure 13. Velocity distribution for various values of 𝑠 

 

Figure 14. Temperature distribution for various values of 𝑠  
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In figures (13) and (14), the influence of increasing injection parameter (𝑠 < 0) on velocity 

profiles  𝑓′(𝜂) and the temperature profile 𝜃(𝜂) is presented. The opposite trends are computed as 

observed for suction (Figures 11, 12). With increasing injection strong flow acceleration is induced 

due to the addition of more hybrid nanofluid through pores of the stretching wall. This aids 

momentum development and decreases hydrodynamic boundary layer thickness (Fig. 13). Slightly 

greater velocity values are computed for Cu − SiO2/Engine oil, as also observed in the suction 

case (Fig. 11). Temperature (Fig. 14) is similarly enhanced with increment in injection (blowing) 

leading to larger thermal boundary layer thickness. Again, as in the case for suction, the GO −

MoS2/Engine oil hybrid nanofluid attains superior temperature values. For the solid wall case (s 

= 0), minimal velocity and temperature are computed at all positions in the boundary layer. 

 

Figure 15. Temperature distribution for various values of 𝑃𝑟 

 

Figure (15) depicts the evolution in temperature, 𝜃(𝜂) with increasing Prandtl number Pr. A strong 

decrement is computed. It is noteworthy that large Prandtl numbers are assigned to physically 
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represent actual hybrid nanofluids utilizing a base fluid of engine oil. The Prandtl number is 

inversely related to thermal conductivity. Oil-based nanofluids therefore have very high Prandtl 

numbers since the base fluid thermal conductivity is generally low. One objective of doping the 

nano-coatings with combinations of metallic (e. g. copper, molybdenum) and carbon-based 

nanoparticles (e. g. graphene) is to enhance the thermal conductivity of the nano-coatings.  For Pr 

>> 1 thermal diffusivity is greatly exceeded by momentum diffusivity in the nanofluid. This 

inhibits thermal transport and cools the boundary layer resulting in a depletion in temperature and 

also thermal boundary layer thickness. The GO − MoS2/Engine oil hybrid nanofluid again clearly 

achieves higher temperatures relative Cu − SiO2/Engine oil hybrid nanofluid and will produce a 

greater thermal boundary layer thickness.  The temperature distribution will also influence the heat 

transmission to the wall. Therefore, a more prominent cooling of the wall can be achieved with the 

deployment of  GO − MoS2/Engine oil.  

 

 

Figure 16. Temperature distribution for various values of 𝐸𝑐  
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Figure 17. Temperature distribution for various values of 𝑅𝑑  

Figures (16) and (17) visualize the modification in temperature profile 𝜃(𝜂), with a change in 

Eckert number Ec and radiation parameter 𝑅𝑑.  An increment in both parameters produces a 

substantial enhancement in temperature. Eckert number features in the modified viscous 

dissipation term, +
𝜇ℎ𝑛𝑓 𝜇𝑓⁄

(𝜌𝐶𝑝)
ℎ𝑛𝑓

(𝜌𝐶𝑝)
𝑓

⁄
𝐸𝑐{𝑓′′(𝜂)}2 in Eqn. (8). Ec represents the relative contribution 

of kinetic energy expended as internal friction to the boundary layer enthalpy difference. It arises 

both in high speed and low velocity transport and is generated by molecular ballistic collisions in 

the nanofluid which create a heating effect. Since the overall kinetic energy in the flow is reduced, 

and transitions to thermal energy, temperatures are boosted. Strong viscous heating induces large 

elevations in thermal boundary layer thickness (Fig. 16). Markedly larger temperatures are 

associated with GO − MoS2/Engine oil hybrid nanofluid compared with Cu − SiO2/Engine oil, 

at any value of Eckert number. The radiative parameter, 𝑅𝑑 (Fig. 17) arises only in the augmented 

thermal diffusion term, 
1

𝑃𝑟×{(𝜌𝐶𝑝)ℎ𝑛𝑓 (𝜌𝐶𝑝)𝑓⁄ }
{

𝐾ℎ𝑛𝑓

𝐾𝑓
+

4

3
𝑅𝑑} 𝜃′′(𝜂), also in Eqn. (8). 𝑅𝑑 =

4𝜎∗𝑇∞
3

𝐾∗𝐾𝑓
 and 

is variously known as the Rosseland, Stark, or Boltzmann conduction-radiation parameter in heat 

transfer literature. This parameter in fact defines the relative contribution of thermal radiation heat 
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transfer to thermal conduction heat transfer. For 𝑅𝑑 = 0 radiation contribution vanishes. When 𝑅𝑑 

= both conduction and radiation contribute equally. For 𝑅𝑑 < 1 thermal conduction dominates and 

for 𝑅𝑑> 1 thermal radiation dominates. The Rosseland diffusion model is confined to optically 

thick fluids (the general limit for optical thickness is around 5), this approach only simulates 

absorption and emission, not scattering of radiative energy. It is important to note that in the present 

nanofluid formulations, while absorption properties are assumed, thy are not explicitly addressed. 

Optical thickness and absorption coefficient quantify the degree to which a given medium inhibits 

the passage of thermal radiation. Radiative intensity is known to be depleted by an exponential 

factor when optical thickness is unity. Physically optical thickness is dependent on not only 

absorption coefficient, medium density but also propagation distance. Nevertheless, although more 

complex radiative formulations are available that may address these issues (and will be explored 

in future studies), the present simple flux model does manage to capture the thermal energizing 

behaviour of radiative heat flux, even with relatively weak values of 𝑅𝑑 < 1. The strongest 

adjustment in temperatures is witnessed at intermediate distances from the wall and the free stream. 

Thermal boundary layer thickness is clearly accentuated with increment in radiative flux.  As with 

earlier plots, GO − MoS2/Engine oil hybrid nanofluid demonstrates better thermal enhancement 

than Cu − SiO2/Engine oil. 

 

Figure 18. Velocity distribution for various values of 𝜆 
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Figure (18) displays the impact of the thermal buoyancy parameter, 𝜆, on the velocity profiles  

𝑓′(𝜂) gets increased. 𝜆 =
𝐺𝑟

𝑅𝑒𝑥
2  and appears in a single term, +

(𝜌𝛽)ℎ𝑛𝑓 (𝜌𝛽)𝑓⁄

𝜌ℎ𝑛𝑓 𝜌𝑓⁄
𝜆𝜃(𝜂), in the 

momentum eqn. (7). This couples very strongly the velocity and temperature fields and represents 

the natural convection effect. For forced convection →0. As  increases positively the thermal 

buoyancy force contribution relative to resistive viscous force is elevated. Positive  also implies 

that the thermal buoyancy force assists the inertial force in the free convection process. This 

mobilizes stronger convection currents and accelerates the boundary layer flow. However, for  

<0, the thermal buoyancy force opposes the inertial force and this produces a damping effect. 

Momentum boundary layer thickness is therefore increased for  <0 whereas it is depleted with  

>0. Furthermore, the nature of the thermal buoyancy can be exploited to manipulate velocity 

characteristics in the regime in combination with the type of hybrid nanofluid utilized for the nano-

coating since Cu − SiO2/Engine oil produces stronger flow acceleration than GO − MoS2/

Engine oil. 

 

Figure 19. Variation of 𝑓′′(0) with 𝜖 for various values of 𝑀 
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Fig. 19 illustrates the impact of the inverse permeability parameter 𝜖 and the magnetic interaction 

parameter 𝑀, on skin friction coefficient. In figure (19), larger values of  𝜖 i. e. progressively lower 

permeability are observed to strongly reduce skin friction (a linear decay is computed). GO −

MoS2/Engine oil produces higher (more positive) skin friction coefficient values than Cu −

SiO2/Engine oil. Clearly lower permeability resists the percolation of both hybrid nanofluids and 

decelerates the flow. However, it is noteworthy that utilizing porous media is intrusive since the 

nanofluid is percolating the permeable material. This is classified as an intrusive technique in flow 

control in materials processing. However, via appropriate deployment of inert porous materials, 

with larger porosity (e. g. ceramic foams), chemical reactions and tortuosity effects may be 

mitigated. An increment in magnetic parameter 𝑀, is also found to suppress skin friction 

coefficient. The damping effect induced with a stronger external magnetic field is confirmed. 

Efficient flow regulation is therefore achieved in the nano-coating via this non-intrusive 

methodology. Attention has been confined her to static and transverse magnetic field. However, it 

is possible to modify the orientation of the applied field via a suitable circuit set up and study 

oblique magnetic field effects, a topic under consideration for future investigations. Also, the use 

of an alternating magnetic field (sinusoidal form) may also constitute an interesting refinement to 

the current analysis. 

 

Figure 20. Variation of 𝑓′′(0) with 𝑠 for various values of 𝜆 
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In figure (20), the collective influence of wall mass flux (suction, s>0) and thermal buoyancy 

parameter, 𝜆, on skin friction coefficient have been visualized. While larger suction clearly 

manifests in a sustained linear decay in skin friction, the response for the two hybrid nanofluids 

alters after a critical value of suction (s~0.4) is attained. Prior to this Cu − SiO2/Engine oil attains 

higher (more-positive) skin friction coefficient than GO − MoS2/Engine oil hybrid nanofluid. 

However, after s ~0.4, the response is reversed and GO − MoS2/Engine oil is associated with 

higher skin friction values. The rate of descent in skin friction with increasing suction is generally 

sharper for the GO − MoS2/Engine oil case. At any value of suction, negative thermal buoyancy 

parameter (𝜆<0) decreases skin friction whereas positive thermal buoyancy parameter (𝜆 > 0) 

increases it. The forced convection case (𝜆=0) falls between these two other cases. 

 

 

Figure 21. Variation of −𝜃′(0) with 𝑅𝑑 for various values of 𝑃𝑟 
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Figure 22. Variation of −𝜃′(0) with 𝑅𝑑 for various values of 𝐸𝑐 

 

Figs 21-22 show the combined impact of several parameters on local Nusselt number distribution. 

Fig. (21) shows that with increasing the radiation parameter 𝑅𝑑, the local Nusselt number is 

reduced. Since higher temperatures are produced in both hybrid nanofluids with stronger radiation 

flux, the net rate of heat transferred to the wall is diminished. This manifests in a plummet in 

Nusselt number magnitudes. Cu − SiO2/Engine oil hybrid nanofluid therefore achieves higher 

Nusselt number than GO − MoS2/Engine oil  hybrid nanofluid, which is the opposite trend to that 

computed earlier in the temperature plots. It is further evident from figure (21) that local Nusselt 

number is increased with greater Prandtl number, which again is the contrary behaviour to that 

computed for the temperature distributions earlier. The lower thermal conductivity associated with 

higher Prandtl number cools the boundary layer. This results in an overall transit in thermal energy 

to the wall producing higher Nusselt numbers. In figure (22), local Nusselt number is likewise 

observed to decrease with increasing Eckert number. Since greater viscous dissipation is induced 

with increasing Ec values, temperatures are boosted due to the conversion of mechanical energy 

into heat. This results in a net migration of heat from the wall to the hybrid nanofluid. In other 

words, heat transferred from the nanofluid to the wall (sheet) is reduced producing lower Nusselt 

numbers. In fig 22 once again higher Nusselt numbers are computed for Cu − SiO2/Engine oil 

hybrid nanofluid relative to the GO − MoS2/Engine oil  hybrid nanofluid. 
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Figure 23. Variation of 𝑁𝑔 for various 𝐵𝑟 

 

Figure 24. Variation of 𝐵𝑒 for various 𝐵𝑟 
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In figures (23) and (24) display the influence of Brinkman number (𝐵𝑟) on entropy generation 

rate (𝑁𝑔) and Bejan number (𝐵𝑒), respectively. Increasing Brinkman number generates an 

elevation in entropy generation rate (𝑁𝑔) whereas it suppresses Bejan number (𝐵𝑒). 

Conventionally Brinkman number, 𝐵𝑟 =
𝜇𝑓𝑈𝑤

2

𝐾𝑓(𝑇𝑤−𝑇∞)
 quantifies the relative significance of viscous 

heating to the conductive heat transfer. It is particularly important when a significant velocity 

change arises over short distances such as nano-coating processes. It also embodies the ratio of the 

heat generation by viscous forces to the heat transferred from the wall to the nanofluid. As 

elaborated earlier when Be = 1 this corresponds to the limit at which the irreversibility due to heat 

transfer dominates while Be = 0 corresponds to the opposite limit where the irreversibility is only 

due to fluid friction. With increasing Brinkman number, higher viscous heating generated in 

proximity to the wall boundary intensifies the difference between the nanofluid fluid temperature 

and the wall (sheet) temperature. The temperature gradient becomes steeper, indicating that there 

is an upsurge in heat transported from the wall to the fluid increases at higher Brinkman number. 

This leads to a boost in entropy generation rate (Ng). The contrary behaviour computed in Bejan 

number indicates that maximum entropy produced at the wall is mainly attributable to the fluid 

friction irreversibility and compensated by the heat transfer irreversibility. In both figures (23) and 

(24), GO − MoS2/Engine oil corresponds to higher entropy generation and Bejan number than 

Cu − SiO2/Engine oil hybrid nanofluid.  The use of entropy generation minimization (EGM) 

clearly enables a clear picture of the relative contributions of viscous heating and thermal 

conduction to be quantified. 
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Figure 25. Variation of 𝑁𝑔 for various 𝑅𝑑 

 

Figure 26. Variation of 𝑁𝑔 for various 𝑅𝑑 
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Finally, in figures (25) and (26) the influence of radiation parameter (𝑅𝑑) on entropy generation 

rate (𝑁𝑔) and Bejan number (𝐵𝑒) is plotted. Increasing radiation parameter leads to an escalation 

in both entropy generation rate (𝑁𝑔) and Bejan number (𝐵𝑒). With increasing radiation parameter 

(𝑅𝑑), GO − MoS2/Engine oil achieves lower entropy generation rate but a higher Bejan number 

than Cu − SiO2/Engine oil hybrid nanofluid Radiative flux clearly induces significant changes in 

the entropy generation in the nano-coating regime. The inclusion of a radiative flux model is 

therefore justified since purely conductive-convective flow models will tend to produce erroneous 

estimates not only for temperature and Nusselt numbers (as computed earlier) but also entropy 

generation rate and Bejan number. 

 

7. CONCLUSIONS 

A neural network-based computation and entropy generation minimization (EGM) have been 

conducted for boundary layer hybrid magnetic nano-coating flow along a stretching surface to a 

porous medium with viscous heating. A Rosseland diffusion flux model has been employed for 

radiation heat transfer and Darcy’s model has been used for the isotropic porous medium. Wall 

suction and injection have also been considered: 2 unitary nanofluids (Cu-engine oil and graphene 

oxide-engine oil) and 2 hybrid nanoparticle combinations i. e. graphite oxide (GO)-molybdenum 

disulfide (𝑀𝑜𝑆2) and copper (Cu)-silicon dioxide (𝑆𝑖𝑂2), both with engine oil as the base fluid, 

have been studied. The dimensional boundary layer model has been transformed via suitable 

scaling variables from a partial differential system into a dimensionless non-linear coupled 

ordinary differential system. The transformed boundary value problem has been solved 

computationally with the BVP4C subroutine in the symbolic software MATLAB. Plots have been 

produced for velocity, temperature, skin friction, Nusselt number, entropy generation rate, Bejan 

number, including mean squared errors, performance, training, error histogram, regression and 

fitting. Verification of the numerical methodology has been included with earlier studies from the 

literature. The computations have shown that: 

(i) Hybrid nanofluid generally achieve improved heat transfer rates compared with unitary 

nanofluids. 
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(ii) The neural network optimization analysis deployed which incorporates Bayesian regularization 

as the training algorithm, has demonstrated that for the Cu − SiO2/Engine  oil hybrid nanofluid 

regime, the mean square error is minimized at 678 epochs whereas it is computed at 404 epochs 

for the (GO)-molybdenum disulfide (𝑀𝑜𝑆2)/Engine oil case. 

(iii) The Bejan entropy generation minimization (EGM) analysis shows that with increasing 

radiation parameter 𝑅𝑑, both entropy generation rate and Bejan number are increased, whereas 

with increasing Brinkman number 𝐵𝑟 only entropy generation rate is elevated whereas Bejan 

number is reduced.  

(iv)With increasing values of nanoparticle solid volume fraction 𝜑2, magnetic parameter 𝑀, 

inverse permeability parameter 𝜖, surface injection parameter (𝑠 < 0), Eckert number 𝐸𝑐 and 

radiation parameter 𝑅𝑑 and with a decrement in suction parameter (𝑠 > 0) and Prandtl number 

𝑃𝑟, there is a significant boost in nanofluid temperature and thermal boundary layer thickness.  

(v)With greater nanoparticle solid volume fraction 𝜑2, magnetic parameter 𝑀, inverse 

permeability parameter 𝜖, suction parameter 𝑠 and a reduction in thermal buoyancy parameter, 𝜆, 

strong flow deceleration is induced, and momentum boundary layer thickness is increased.  

(vi) Skin friction coefficient is substantially elevated with lower values of magnetic parameter 𝑀, 

inverse permeability parameter 𝜖, suction parameter 𝑠 and higher values of thermal buoyancy 

parameter, 𝜆.  

(vii) Nusselt number is reduced with greater radiation parameter 𝑅𝑑 and Eckert number, Ec. 

The present computations have identified some important characteristics of nanocoating flow 

processing using a variety of approaches. However, attention has been confined to Newtonian 

behaviour. Future work may consider a wide spectrum of non-Newtonian models including 

viscoplastic, viscoelastic and microstructural formulations and will be reported imminently. 

Additionally, some other pathways relevant to magnetic nanofluid coatings include Majeed et al. 

[77] considered entropy generation and thermal convective flow of magnetized hybrid nanofluid 

within a closed hexagonal domain containing a cylinder. Additionally, Majeed et al. [78] 

considered the integration of CFD simulations with ANN, utilizing CFD-generated datasets to 



50 
 

optimize neuron count for improved accuracy in modeling incompressible flow around a cylinder. 

These aspects may also be addressed in the future.   
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